
TCP Rate Control�

Shrikrishna Karandikar Shivkumar Kalyanaraman Prasad Bagaly

Bob Packerz

Department of ECSE, Department of Computer Science,
Rensselaer Polytechnic Institute.

Email: karans@cs.rpi.edu, shivkuma@ecse.rpi.edu, bob@packeteer.com

Abstract

This paper presents TCP rate control, a new technique for
transparently augmenting end-to-end TCP performance
by controlling the sending rate of a TCP source. The send-
ing rate of a TCP source is determined by its window size,
the round trip time and the rate of acknowledgments. TCP
rate control affects these aspects by modifying the ack1

number and receiver window fields in acknowledgments
and by modulating the acknowledgment rate. From a per-
formance viewpoint a key benefit of TCP rate control is
to avoid adverse performance effects due to packet losses
such as reduced goodput and unfairness or large spread in
per-user goodputs. Further, TCP rate control positively af-
fects performance even if the bottleneck is non-local and
the end-host TCP implementations are non-conforming.
These aspects are demonstrated through a comparative
study of TCP rate control, RED and TCP-ECN. The TCP
rate control approach has been implemented and patented
by Packeteer Inc.

1 Introduction

TCP congestion control is designed for network stability,
robustness and opportunistic use of network resources on
an end-to-end basis [13]. Using a robust technique to de-
tect packet loss (timeout or triple-duplicate acks), TCP
infers congestion and trades off per-user goodput for net-
work stability. Specifically, TCP throughput is known to
be a function which is inversely proportional to the round

�This work has been sponsored by Packeteer, Inc and in part by NSF
Contract number ANI9806660 and DARPA contract number F30602-
97-C-0274

yPrasad Bagal is with Oracle, Inc., CA, USA
zBob Packer is with Packeteer, Inc., CA, USA.
1Abbreviations: ack for acknowledgment, RTT for round trip time,

dupack for duplicate ack, SACK for selective acknowledgment.

trip time, the timeout delays and the square root of loss
probability [25] (ignoring effects of small windows and
timeouts [22]):

Ti / 1p
pi:RTTi

(1)

where,
Ti = throughput for flowi.
pi = probability of a packet loss for flowi.
RTTi = round trip time for flowi.

Given this equation, we can view the function of any
buffer management algorithm managing TCP flows as as-
signing loss probabilities (pi) and queuing delays (which
affectRTTi) to competing TCP flows in order to meet
performance requirements such as utilization, queuing de-
lays, spread of per-user goodputs etc. However, this equa-
tion assumes that the TCP receiver window is not a limit-
ing factor, which is not necessarily the case. Therefore if
the TCP receiver window were the primary limiting factor,
we could design a buffer management algorithm in which
TCP throughput would not depend primarily on loss rate
pi (orRTTi) under controlled operating conditions.

The design of TCP rate control is motivated by the
above observations. It uses rich congestion related in-
formation available at the bottleneck and calculates rate
allocations for competing TCP flows. It then enforces
these allocations by modifying the ack number and re-
ceiver window fields in the ack headers and by modulating
the ack rate. Observe that the rate allocation can be done
by leveraging any of the well-known rate calculation algo-
rithms studied for the ATM ABR service [15]. Such algo-
rithms have already been shown to achieve strong control
of metrics such as utilization, queuing delay and fairness
of allocations. The novel part in TCP rate control is to
ensure that these properties are preserved in the rate en-
forcement process.

The key contributions and observations of this paper
are:

1

� Section 1.1 articulates the issues in the rate-to-
window translation and enforcement process . Sec-
tions 3 and 4 discuss related work and deployment
issues respectively. Specifically, TCP rate control is
best deployed at WAN edges of enterprise or ISP net-
works and not in ISP network cores.

� We also study the performance of TCP rate control
in comparison to RED and ECN [9, 27] (section 2).

– We divide our performance measures into two
groups:user metrics and provider metrics. We
find that in general, RED and ECN optimize
provider metrics while TCP rate control opti-
mizes both user and provider metrics.

– For long transfers, TCP rate control can man-
age the spread of per-user goodputs (a user met-
ric) without compromising on utilization, ag-
gregate goodput and queuing delays (provider
metrics) even if the round trip times (RTTs) of
the competing flows are different (section 2.2).
We have verified the same result for other pa-
rameter dimensions. For brevity, we have in-
cluded these results in a more detailed technical
report [18].

– For short transfers, both TCP rate control and
TCP-ECN manage the spread of transfer times
(a user metric) better compared to RED. But
TCP rate control does so by slightly reduc-
ing the total number of transfers completed (a
provider metric), whereas TCP-ECN trades off
a larger queue (a provider metric) for the same
benefit (section 2.3).

� Another key benefit of TCP rate control is in man-
aging misbehaving (non-conforming) TCP sources
which can be easily created by hacking operating
systems like Linux. Such sources if unchecked can
combine to steal bandwidth from conformant sources
(denial-of-service attacks) or even lead to conges-
tion collapse. Assuming that such sources respond
to ack header fields (receiver window and ack num-
ber), TCP rate control can successfully restrain them
and eliminate all their ill-effects (section 2.4). RED
and ECN are much less effective in this respect.

� TCP rate control can be reasonably effective even
if the bottleneck is non-local i.e. it is not imple-
mented at the bottleneck, but at a farther upstream
non-bottlenecked node. However, in this case it loses
some of the advantages of controlling packet losses
(section 2.5).

1.1 TCP Rate Control

The two core ideas behind TCP rate control are:

1. Calculate a rate allocation per-TCP flow and

2. Enforce the rate allocation by manipulating TCP
header fields and the ack rate.

1.1.1 Rate Allocation Algorithm

For commercial reasons we do not disclose the Packe-
teer rate allocation algorithm. Instead, we have used a
well-knownmax-min fairalgorithm due to Anna Charny
[6](see Algorithm 1) in our simulations. The claims made
in this paper therefore apply to the general TCP rate con-
trol approach because any other max-min fair rate alloca-
tion algorithm can be used in the place of the algorithm
used here. For example, in an earlier study, we used a
different rate allocation algorithm ERICA [1, 16].

The choice of therate sampling intervalin Algorithm
1 involves a tradeoff between reliability of measurements
(longer intervals) and speed of response (shorter inter-
vals). Ideally, the interval length should be at least the
maximum of the following: the longest RTT and the time
required to see at least one packet from each active flow
[16]. In the case of extremely short lived flows, some ap-
proximation is necessary. For example, the rate of new
connections may be initialized to one MSS per RTT. In
our simulations with short-lived flows (section 2.3), the
flows lasted for at least a few RTTs and could be estimated
reasonably with the sampling interval chosen.

1.1.2 Rate-enforcement algorithm

Once a rate r has been calculated, it can be converted into
a window value as follows:

W = r � T

An obvious choice for T is the round trip time of the
flow, not including queuing delays,RTTi (measurement
of RTTi is discussed later). An earlier unpublished study
of ours also shows that several other choices (eg:a fixed T
estimate for all flows) lead to unfairness [1]. This window
value W is then used to limit the TCP congestion window
variable. The feedback is given via the receiver window
field (Wr) in the TCP header:

Wrnew = Min (Wrold, W)

2

Note that if the window scale option is used, the router
must be aware of the window scale factor and should ad-
just the 16-bit window feedback appropriately. Further,
the TCP checksum should be adjusted as follows:

Delta= Wrnew �Wrold (one’s complement subtrac-
tion)

TCP checksum= TCP checksum+ Delta (one’s com-
plement addition)

The header modification does not violate the TCP pro-
tocol. Hence the scheme is transparent and requires no
standardization. However, the need for reading and writ-
ing into TCP headers means that the IP payload should
not be encrypted or authenticated. Further, the need to
measure the round trip time (RTTi) of each flow means
that the solution is applicable to network edges. The RTT
of a flow can be approximated by observing packets and
corresponding acks or vice versa. No extra traffic is in-
jected. Ignoring these details, Algorithm 2 presents the
rate enforcement part of TCP rate control.

Observe that TCP rate control paces the acks over a
round trip time (steps 3 and 4) in addition to the receiver
window modification. This is because given a fixed win-
dow size, the rate of a TCP source is dictated by the rate of
acknowledgments received. Therefore control of the ack
rate in general smoothes out the burstiness in TCP trans-
mission.

Another source of burstiness occurs when there is a
change in the rate allocation which manifests itself as a
change in window size or when the ideal window sizewi

for rate regulation is not an integral multiple ofMSSi
(step 4). Such window changes at the end of rate sampling
intervals could potentially result in a burst of packets (if
the window increased) or in an idle period (if the win-
dow was reduced). By distributing the window changes
over multiple ack transmission opportunities, even such
burstiness can be smoothed out (not modeled in our sim-
ulations). Similarly, rounding up of non-integral window
values might result in errors especially when average win-
dow sizes are small (eg: low speed bottlenecks, large
number of flows). However, for simplicity, we do not
model these aspects, though Packeteer’s implementation
addresses them. This leads to some excess queues in sim-
ulation, especially in cases such as low speed bottlenecks
with large number of flows. This problem has also been
articulated by Robert Morris in his study of effects caused
by large number of TCP flows [22].

Another interesting aspect of TCP rate control is that,
since the TCP window is the sum of the packets in the for-

ward direction and the acks in the reverse direction, larger
ack queues can be traded off for smaller packet queues.
Moreover, the entire per-flow ack queue can be main-
tained in by holding just three variables: two of which
indicate an interval of sequence numbers being stored
(left edge andright edge) and one indicating the
flow’s MSS (maximum segment size). Theleft edge
is the highest ack number that has been forwarded to
the sender andright edge is the highest ack number
the receiver has sent so far. This is equivalent to queu-
ing (right edge - left edge) acks. This makes the
space requirement for the ack queue constant, since phys-
ical queuing of acks is not necessary. Acknowledgments
are then generated at a suitable rate using the recorded in-
formation (step 4).

In the case of piggy-backed acks, the ack information
in the data packet is first recorded and then the ack num-
ber and receiver window fields in the packet header are
modified suitably before forwarding it. For duplicate acks
an additional variable is used to count the number of du-
packs. Then while sending the last ack in our ack queue
(containing sequence numberright edge) we generate
as many dupacks as indicated by this counter (since all du-
packs received so far would be numberedright edge).
Since the information conveyed by SACKs can be viewed
as an extension of the information conveyed with dupli-
cate acks, they are handled similarly with addition of a
few more variables to record the block number informa-
tion. Specifically, the SACK is withheld till the ack num-
ber being sent to the source reaches the beginning of a
block which was not received at the destination. Our sim-
ulations did not contain piggy-backed acks (unidirectional
flows) or SACKS (end systems implemented TCP-Reno).

2 Performance Analysis

In this section, we compare the performance of TCP Rate
Control with RED and TCP-ECN [9, 27]. A brief dis-
cussion of parameters, metrics and the base configuration
used follows.

2.1 Metrics, Parameters and Configura-
tions

We classify our metrics into two major categories:user
or customer metricsandoperator or provider metricsas
described below:

3

Provider metrics: The common provider metrics we use
in all simulations areaverage link utilization, aver-
age queue length, maximum queue length and total
number of packet drops.In addition for short file
transfer simulations, we introduce a new provider
metric: the number of transfers completed.

User metrics for large file transfers: We would like to
measure the per-flow goodput, which is the rate at
which the destination application receives informa-
tion. It excludes the retransmission rate, but includes
the effect of delays such as retransmission and time-
out delays. Instead of measuring N such metrics, we
summarize it using two metrics:the average (per-
flow) goodput and the coefficient of variation (ra-
tio of the standard deviation and the average)which
measures the relative spread in per-user goodputs.

User metrics for short file transfers: Since average
per-user goodput is meaningless for short transfers,
we use transfer time instead. As before, we use the
average and the coefficient of variation of this quan-
tity.

We evaluate performance with local and non-local bot-
tlenecks. Figure 1 gives the basic configuration template
that we used in our simulations in the case of local bot-
tlenecks with long transfers (section 2.2), short transfers
(section 2.3) and misbehaving sources (section 2.4). It
contains a single bottleneck shared by a set of unidirec-
tional TCP flows. This simple template matches typical
corporate network WAN connections where the expensive
WAN link or leased line is the key bottleneck in the sys-
tem. For the heterogeneous RTT simulations, the sources
were grouped into four groups, each group having a differ-
ent RTT (specifically 30 us, 300us, 3ms, 30ms). Within a
group, the flows had equal RTTs. The RED parameter set-
tings used were as follows: the minimum and maximum
queue thresholds were 10 and 30 respectively, the queue
averaging parameterwq was set to 0.02 and the drop prob-
ability p was 0.2.

The end systems implemented TCP-Reno. This is be-
cause the overwhelming majority of hosts today use TCP
Reno, even though newer versions of TCP (New-Reno
and SACK) are being deployed. We would expect the
performance gap to reduce with these newer versions, but
have not evaluated them in this paper.

We have evaluated the following parameters dimen-
sions in our simulations for the local-bottleneck case:
speed of the bottleneck (56 kbps - 45 Mbps), the RTTs
(30 us - 30 ms), schemes used (TCP rate control, RED,

100 TCP Sources 100 TCP Sinks

Bottleneck Link
Router Router

Figure 1: Configuration template used in simulations with
local bottlenecks

ECN) and number of flows (10 - 100). The workloads
used included short and long file transfers and misbehav-
ing (non-conformant) TCP sources.

2.2 Long File Transfers, Heterogeneous
RTTs

In this section we demonstrate that the TCP rate con-
trol when operating at the bottleneck can decouple TCP
throughput from loss rate (and to some extent, RTT),
without compromising provider metrics. To illustrate this
point, we have chosen the RTTs of flows in the configura-
tion to be heterogeneous.

2.2.1 RED (heterogeneous RTTs)

Table 1 lists the performance metrics with RED in a het-
erogeneous RTT configuration. Observe the last column
which is bold faced. The coefficient of variation (CoV)
indicates a large spread (or variation) of per-user good-
puts. In other words, a randomly chosen flow has a
non-trivial probability of getting worse performance (in
terms of goodput) compared to the mean. This occurs be-
cause RED allocates different loss probabilities (pi) and
the flows themselves have different RTTs. But we have
also observed similar behavior with homogeneous RTTs
[18], indicating that the component of CoV attributable to
loss probabilities is non-trivial.

In terms of the other metrics, the utilization is high (94-
99%), queuing delays are low (10-30 packets), but the
number of packet losses (552-4418 packets) and its ef-
fect on aggregate goodput increase with the speed of the
bottleneck (eg: in the last row, the aggregate goodput on a
45 Mbps line is 32 Mbps). In other words, RED optimizes
performance in terms of provider metrics, trading off user
metrics under these conditions.

4

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation (CoV)
0.056 98.79 30.33/62 552 0.00049 1.18367
0.384 99.68 27.54/62 890 0.00313 0.79872
1.5 99.85 21.80/63 1453 0.01252 1.26278
10 99.54 14.56/63 2626 0.08803 1.99602
45 94.17 9.59/61 4418 0.32083 1.51962

Table 1: RED, 100 sources, Heterogeneous RTTs. Result: Optimized provider metrics. Tradeoff: High CoV, low avg.
goodput.

2.2.2 ECN (heterogeneous RTTs)

Table 2 shows the performance of ECN under similar con-
ditions (observe the bold faced column). ECN reduces the
coefficient of variation (CoV) considerably and eliminates
the effect of packet losses on user metrics, while trading
off slightly higher queuing delays (226-313 packets).

2.2.3 TCP rate control (heterogeneous RTTs)

0.01 0.10 1.00 10.00 100.00
Bandwidth Capacity(Mbps)

0

1

2

C
o

e
ff
 o

f
V

a
ri
a

ti
o

n
(G

o
o

d
p

u
t)

Coeff. of Variation vs Bottleneck Capacity

 RED

 ECN

 TCR

Figure 2: Plot for coefficient of variation of per-flow
goodput - Heterogeneous RTTs, long transfers

Table 3 shows the corresponding performance of TCP
rate control. Observe that TCP rate control further dimin-
ishes the coefficient of variation (CoV) and the queuing
delays. The comparative performance in terms of CoV is
illustrated in Figure 2. Though we have emphasized CoV

in this evaluation, the important point to note is that TCP
rate control optimizesall metrics of interest i.e.bothuser
and provider metrics. As described earlier, this is possible
due to the direct control of the receiver window and the
ack rate.

We have verified the same result for all other parameter
dimensions such as homogeneous RTTs, LAN vs WAN
RTTs and for different numbers of competing flows. For
brevity, we have excluded these results, but they may be
found in a more detailed technical report online [18].

2.3 Short File Transfers, Homogeneous
RTTs

In this section we look at the performance of the schemes
with respect to short file transfers. The same configuration
template (Figure 1) is used in these simulations. Flows
are grouped into four sets and the start time of every set
is staggered by 250 ms. Every flow sends 10K bytes (10
packets) and closes the connection. After a pause of 250
ms, the same source reopens the connection (with param-
eters set to initial values) and sends another 10K bytes (10
packets) and so on. The simulation time was 100 seconds.

As mentioned earlier, since goodput is meaningless for
short transfers, we use per-user transfer time (average and
coefficient of variation) and the total number of transfers
as our metrics. A similar model has been used in the
past [2]. Though this is not a model of WWW transfers,
it may provide illustrative information because WWW
transfers are typically short.

Our primary observation in this section is that for short
transfers, TCP rate control and TCP-ECN manage the
spread of transfer time (a user metric) better when com-
pared to RED. But TCP rate control does so by slightly re-

5

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation (CoV)
0.056 97.90 313.21/564 0 0.00052 0.55769
0.384 99.66 414.75/640 0 0.00242 0.28512
1.5 99.91 252.28/300 0 0.01497 0.03273
10 99.99 252.26/299 0 0.09995 0.07494
45 100.00 226.45/286 0 0.45004 0.23940

Table 2: ECN, 100 sources, Heterogeneous RTTs. Result: Reduced CoV, higher goodput than RED. Tradeoff: High
queuing delays

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation (CoV)
0.056 97.60 256.67/420 0 0.00046 0.28261
0.384 98.64 105.19/194 0 0.00372 0.05914
1.5 99.91 99.34/177 0 0.01496 0.03476
10 99.99 89.63/177 0 0.09995 0.16378
45 100.00 91.87/154 0 0.45000 0.07962

Table 3: TCP rate control, 100 sources, heterogeneous RTTs. Result: Optimized User AND provider metrics. Trade-
off: None.

ducing the total number of transfers completed (a provider
metric), whereas TCP-ECN trades off a larger queue (a
provider metric) for the same benefit. Our results for TCP
rate control were affected in this case by some modeling
approximations.

2.3.1 RED (Short transfers)

Table 4 tabulates the results for simulations with RED.
We observe that the average transfer time reduces with in-
crease in bandwidth. The coefficient of variation (CoV) of
per-user transfer times is large indicating that some trans-
fers were able complete at the expense of other transfers.
In other words, even though a larger number of transfers
are completed, a randomly chosen transfer would have
a non-trivial probability of having a larger transfer time
when compared to the mean.

2.3.2 ECN (Short transfers)

Table 5 shows the simulation results of short transfers
with ECN.

We note that the average response times in slower speed
configurations are slightly worse than RED because in
spite of not having loss triggered effects, the queuing de-
lays add significantly to the response time. Except for
queuing delays at low speeds, ECN performance scaled
well with increase in link speeds allowing a larger num-
ber of transfers and reduction in coefficient of variation of
transfer time.

2.3.3 TCP rate control (Short transfers)

The results for TCP rate control in this situation are shown
in table 6.

One important point to note in case of TCP rate control
is that even though the transfer time is short, each transfer
continues at least for a few RTTs which is long enough to
obtain a few rate measurements.

In general, TCP rate control trades off the total number
of transfers completed, but consistently reduces the coef-
ficient of variation (CoV) of per-flow transfer times com-
pared to RED. It also has smaller queuing delays com-
pared to ECN. This effect on CoV is also illustrated in

6

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q # Transfers Avg. transfer time Coeff. of
Mbps Percent Packets/Packets Milli Secs variation (CoV)
0.056 99.87 30.45/53 52 75925 0.40706
0.384 99.88 23.37/50 436 16797 1.23062
1.5 99.16 12.68/49 1702 4848 3.57821
10 97.09 7.33/51 6655 234 1.04665
45 89.32 5.47/47 7195 161 0.48968

Table 4: RED, 100 sources, Short Transfers. Result: Higher number of transfers. Tradeoff: Higher CoV

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q # Transfers Avg. transfer time Coeff. of
Mbps Percent Packets/Packets Milli Secs variation (CoV)
0.056 99.77 687.48/960 25 99624 0.00282
0.384 99.86 218.86/616 355 22294 1.03563
1.5 99.95 220.27/273 1816 5090 0.14240
10 99.96 89.74/153 7256 573 0.05464
45 87.65 4.97/77 7272 152 0.04307

Table 5: ECN, 100 sources, Short Transfers. Result: Lower CoV. Tradeoff: Queuing delay

Figure 3.

Note that the modeling approximations we have made
for evaluation purposes (mentioned in section 1.1.2) affect
performance in this case (as seen in reduced utilization
and fewer transfers) because the rate allocations translate
into non-integral window sizes (in terms of MSS) and the
relative changes in window sizes have larger effect on per-
formance since the average TCP window sizes are small
during the lifetime of short flows. Packeteer’s implemen-
tation does not suffer from these modeling approxima-
tions.

2.4 Misbehaving Sources

Another key benefit of TCP rate control is in manag-
ing misbehaving (non-conforming) TCP sources, which
can be easily created by hacking operating systems like
Linux. Such sources if unchecked can combine to steal
bandwidth from conformant sources (denial-of-service at-
tacks) or even lead to congestion collapse. Assuming that
such sources respond to ack header fields (receiver win-
dow and ack number), TCP rate control can successfully
control them and eliminate all their ill-effects on confor-
mant flows. RED and ECN are much less effective in this

respect. Therefore rate control can be used as a tool in
countering such TCP traffic based denial of service at-
tacks.

We used a simple technique to create a misbehaving
source in our simulation. A normal TCP source starts in
the slow start phase and enters the the congestion avoid-
ance phase when the value ofcwndcrossesssthresh. We
disabled the congestion avoidance logic in our code, so
that the congestion windowcwndalways increases expo-
nentially over RTTs. In our simulations, we created a mix
of misbehaving and normal sources (50 of each type).

2.4.1 RED : Misbehaving Sources

The bold faced columns in Table 7 indicates that RED
performance degrades in terms of number of packets lost,
the average per-user goodput and coefficient of variation
(CoV). However, provider metrics such as link utilization
and queuing delay are optimized. This is another example
whereprovider metrics being optimized, does not imply
that user metrics will be optimized.

7

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q # Transfers Avg. transfer time Coeff. of
Mbps Percent Packets/Packets Milli Secs variation (CoV)
0.056 93.93 401.83/496 15 99624 0.00282
0.384 99.07 98.59/174 465 19724 0.14851
1.5 99.97 92.00/114 1816 5047 0.17556
10 99.85 19.06/94 7054 575 0.13742
45 75.76 2.92/59 6974 193 0.10172

Table 6: TCP rate control, 100 sources, Short Flows. Result: Lower CoV. Tradeoff: Number of transfers

Provider Metrics User Met rics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation (CoV)
0.056 94.76 31.85/62 429 0.00009 1.88889
0.384 99.70 28.84/60 873 0.00286 1.03846
1.5 99.66 24.27/64 1721 0.01176 1.01190
10 97.87 18.65/62 4849 0.06109 0.50810
45 96.14 16.58/63 12334 0.21604 0.48320

Table 7: RED: misbehaving sources, homogeneous RTTs, 3000km. Result: Large drop rates, low average goodputs,
high CoV

2.4.2 ECN : Misbehaving Sources

In this simulation, we have assumed that the misbehaving
sources also respond to ECN, but they never use linear
increase. Compared to RED, ECN has much better av-
erage per-user goodput and reduced CoV because it does
not incur the effects of packet loss. However, the effect of
misbehaving sources shows up as higher queues (which
require larger buffers).

2.4.3 TCP Rate Control : Misbehaving Sources

TCP rate control clearly stands out in this situation, be-
cause there is virtually no effect of misbehaving sources
on the performance of the system (eg: compare with Ta-
ble 3, even though that table uses heterogeneous RTTs).
In other words, given that the misbehaving sources re-
spond to receiver window changes in ack headers and
modify windows or clock out packets upon receipt of
acks, TCP rate control effectively normalizes the perfor-
mance of such sources.

2.5 Remote Bottlenecks

In all the scenarios studied so far, TCP rate control was
implemented at the bottleneck. The interesting question
is what happens when TCP rate control is non-local or re-
mote i.e. not present at the bottleneck of a flow, but else-
where on its path ? Our primary observation in studying
this issue is that since our rate allocation algorithm tracks
the current sending rate of a flow and reduces the allo-
cation if the flow is bottlenecked elsewhere, it limits the
overload caused by these flows at the remote bottlenecks.
This results in smaller queuing delays even at the remote
bottlenecks, though the control is not as effective as when
TCP rate control is implemented at the bottleneck. Inter-
estingly, the average goodput and coefficient of variation
(CoV) provided by TCP rate control even remotely is bet-
ter than offered by RED locally, albeit at the expense of
higher queuing delays.

Figure 4 shows the configuration used to study the re-
sponse of TCP rate control when bottlenecks are non-
local. Again here we compare performance with RED
and ECN. In these comparisons, RED and ECN mark-
ing are implemented at the bottleneck (router 2 in the
figure), whereas, TCP rate control is implemented at an
upstream, non-bottlenecked node (router 1 in the fig-

8

Provider Metrics User Met rics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation
0.056 99.35 268.97/539 0 0.00048 0.45833
0.384 99.84 398.91/688 0 0.00254 0.25591
1.5 99.95 566.71/810 0 0.01473 0.06042
10 99.99 1554.71/2941 0 0.09982 0.03526
45 100.00 3249.93/5271 0 0.44773 0.05954

Table 8: ECN: misbehaving sources, homogeneous RTTs, 3000km. Result: Higher Avg. Goodput and lower CoV.
Tradeoff: high queuing delays.

Provider Metrics User Met rics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation (CoV)
0.056 99.06 221.42/413 0 0.00043 0.13953
0.384 99.88 96.46/200 0 0.00380 0.04211
1.5 99.95 89.65/200 0 0.01494 0.01406
10 99.99 27.37/200 0 0.09982 0.00311
45 99.92 7.28/197 0 0.44729 0.00782

Table 9: TCP Rate Control: misbehaving sources, homogeneous RTTs, 3000km. Result: All metrics optimized. Effect
of misbehaving sources eliminated.

ure). Further, in the TCP rate control case, we assume in-
finite buffers and no buffer management algorithm at the
bottleneck.

Tables 10, 11, 12 show the comparative results in this
case. We observe that RED again incurs the performance
penalties due to packet losses, whereas ECN and TCP rate
control do not. TCP rate control has smaller queues than
ECN, but the fidelity of control (as seen in the CoV met-
ric) is diminished compared to the cases where it operates
locally at the bottleneck.

The reason for the performance benefits with rate con-
trol even operating remotely is the fact that it tracks bot-
tlenecked flows and bounds the excess allocation to these
flows. As a result, these flows do not overload the remote
bottlenecks by a large difference and are also less bursty,
leading to shorter queues.

However, we notice that as the bottleneck speed in-
creases (last two rows in Table 12), the remote rate control
is less effective because these flows are classified asnon-
bottleneckedor hungryfor a longer duration. And during
this time these flows could overload a remote bottleneck
leading to poorer performance.

3 Related Work

The closest work relative to this paper is proposed by Nar-
vaez and Siu [23], Koike [19], Kalampoukas et al [17]
and Satyavolu et al [28]. While these researchers inde-
pendently suggested the idea of overwriting the acknowl-
edgment fields and pacing the acks (called “acknowledg-
ment bucket” by these authors), this idea was originally
invented (patent pending) by Packeteer in 1995-1996 and
products based upon these ideas have been shipping ever
since [24]. Further, these authors explored such ideas
from the point of view of TCP/IP-ATM internetworking
i.e. extending the ATM ABR type rate control from ATM
edges to TCP end systems.

Narvaez and Siu suggest implementation of a some-
what complex TCP emulation engine at the rate-controller
and an acknowledgment bucket. Koike also suggests use
of an acknowledgment bucket. Kalampoukas et al develop
a new buffer management scheme to directly determine
the TCP window rather than taking a pre-existing rate al-
location algorithm and then translating it into a window
value. Satyavolu et al suggest a rate-to-window transla-
tion scheme based upon another ATM ABR algorithm,

9

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation
0.056 98.48 30.14/58 367 0.00044 1.11364
0.384 99.68 29.00/58 707 0.00288 0.91319
1.5 99.70 25.57/59 1651 0.01164 0.75430
10 97.54 18.19/56 4850 0.06694 0.65581
45 96.15 16.31/50 12150 0.22047 0.49803

Table 10: RED: Remote Bottlenecks. Result: Optimized provider metrics. Tradeoff: lower avg goodput, high CoV
and packets lost.

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation
0.056 99.25 271.45/547 0 0.00048 0.45833
0.384 99.82 448.35/731 0 0.00269 0.20074
1.5 99.95 531.63/831 0 0.01494 0.10843
10 99.99 1343.15/2094 0 0.09982 0.03967
45 100.00 2691.98/4194 0 0.44777 0.01874

Table 11: ECN: Remote Bottlenecks. Result: Improved avg goodput and CoV compared to RED. Tradeoff: Higher
queues

ERICA [28]. As mentioned earlier, any good rate allo-
cation algorithm from the ABR literature (eg: see [15])
can be adopted for use in the TCP rate control approach.
Moreover, we present more extensive performance anal-
ysis compared to these authors, which distinguishes the
solution clearly from traditional alternatives.

The TCP rate control approach described in this paper
uses a combination of two techniques: a) receiver win-
dow modification and b) ack pacing for the rate enforce-
ment process once the max-min fair rate allocations are
obtained. If only the receiver window modification proce-
dure were used, it would lead to burstiness due to abrupt
changes in window values. On the other hand, if only
the ack pacing procedure were used, we would lose con-
trol over the sender’s effective window size and by conse-
quence have lesser control over the size of packet queues
at the bottleneck. This is because the TCP window size
is equal to the sum of outstanding packets in the forward
direction and acks in the reverse direction and ack pacing
would effectively control packet queues better only when
the TCP window is also under control. An example of this
phenomenon is described in [28].

An alternative rate enforcement technique would be to

use per-flow token buckets in the forward direction. The
token bucket rates would vary according to the per-flow
rate allocations calculated by Algorithm 1. However, this
would again not be as effective because it would still rely
on packet drops to control the TCP window and queue
growth. Packet dropping would lead to the types of perfor-
mance degradation studied in this paper. Moreover, per-
flow queueing in general requires increased implementa-
tion complexity.

Several enhancements in TCP have been aimed at re-
ducing the negative effects of packet losses i.e. timeouts
and retransmission delays. TCP New-Reno and SACK
[11, 21] are the most prominent ones which are also being
deployed in server-side upgrades. We chose TCP Reno
in this simulation study because of the overwhelming ma-
jority of the installed base. We would expect the perfor-
mance gap seen in this paper to reduce if either TCP New-
Reno or SACK are used in end systems, but we expect rate
control would still be useful in these cases because of the
use of explicit, detailed feedback and in cases when non-
conforming flows are present.

The name “TCP rate control” is somewhat of an oxy-
moron because TCP does not use a rate parameter or leaky

10

Provider Metrics User Metrics
Speed Utilization Avg. Q/Max Q Drops Avg. Goodput Coeff. of
Mbps Percent Packets/Packets Packets Mbps variation
0.056 99.25 230.02/440 0 0.00044 0.25000
0.384 98.33 108.37/197 0 0.00344 0.15116
1.5 99.95 91.33/187 0 0.01494 0.01740
10 99.99 181.80/573 0 0.09982 1.27570
45 100.00 480.42/859 0 0.44791 0.58762

Table 12: TCP Rate Control: Remote Bottlenecks. Result: Improved avg goodput compared to RED. Tradeoff: High
queues, but still lower than ECN.

0.01 0.10 1.00 10.00 100.00
Bottleneck Capacity(Mbps)

0

2

4

C
o

e
ff

.
o

f
V

a
ri
a

ti
o

n
(T

ra
n

s
fe

r
T

im
e

)

Coeff of Variation vs bottleneck Capacity

 RED

 ECN

 TCR

Figure 3: Plot for coefficient of variation in per-flow trans-
fer time - Short transfers

bucket to regulate packets. But if TCP’s window remains
constant (equal to the receiver window), the rate of pack-
ets clocked out by TCP (in packets/s) is equal to the rate
of acknowledgments. Even if the window varies, the rate
allocation algorithm (step 6 in algorithm 1) quickly tracks
this value and regulates TCP’s rate implicitly by regulat-
ing the rate of acks.

TCP rate control is different from scheduling schemes
like WFQ, priority queuing, CBQ [7, 12] because rate
control operates on a single FIFO queue (with per-flow
information), whereas scheduling schemes use multiple
queues. In fact, TCP rate control can be applied inde-
pendently to each queue in these scheduling algorithms,
especially when many flows may share any given queue.
The interesting aspect about the underlying rate alloca-

(router 1) (router 2) (router 3) (1000 km)

(1000 km) (1000 km)

(bottleneck)

(100 TCP sources)
(100 TCP sinks)

(each link 1000km)

Figure 4: Configuration Template for Remote Bottlenecks

tion algorithm is that, it can potentially achieve max-
min fairness even with a FIFO queue (but requires closed
loop rate feedback), whereas scheduling algorithms can
achieve max-min fairness by maintaining per-flow queues
in an open loop manner.

Similarly, TCP rate control is orthogonal to the dif-
ferentiated services (diff-serv) approach [3] because it
provides dynamic max-min fair-share allocation to TCP
microflows belonging to a class or a queue. Diff-serv
operates at the level of flow aggregates and not at the
level of TCP microflows. Further it aims to provide
bandwidth sharing and/or premium service differentia-
tion based upon large time-scale service level agreements
(SLAs) and not fairness in time-scales of a few RTTs.
However, each diff-serv queue or class can be enhanced
with TCP rate control.

TCP rate control is different from buffer management
algorithms like RED and FRED [9, 20, 22] in that the lat-
ter assign non-zero packet loss probabilitiespi and queu-
ing delays (which affectRTTi), whereas rate control as-
signs a zero loss probability and uses the receiver window
(Wrcvr) and rate of acks as the primary control mecha-
nisms. Hence, as argued in this paper, it side-steps the
effects due to packet loss. However, we note that TCP
rate control is TCP-friendly [25] in the sense that when
packet loss does occur and congestion window drops be-
low the assigned window value, the rate controller never

11

artificially inflates it.

From the complexity point of view, the space complex-
ity for TCP rate control is O(N) as it stores per-flow infor-
mation and the time complexity for processing a packet or
an ack is O(1). The rate allocation algorithm complexity
can vary from O(1) to O(N) depending upon the particular
algorithm chosen [15]. As a useful data point regarding
scalability, we note that Packeteer products handling over
20,000 flows simultaneously and running at 45 Mbps have
been deployed for over a year.

4 Deployment Issues

RED is stateless and does not depend upon any protocol
headers for its functionality. Therefore it can be deployed
at any queue in the network. It is also simple and has O(1)
operation. It has therefore been widely recommended as
an active queue management technique, though no stan-
dardization process is required [5].

ECN requires support from both end systems (host
TCP/IP stacks) and routers. In other words, it requires
some minimal standardization and has therefore been de-
fined as an experimental RFC [27]. Since it would take
a long time to upgrade and deploy both key routers and
hosts, ECN has the longest deployment cycle among the
three alternatives.

TCP rate control is stateful (maintains state per TCP
flow) and depends upon ability to read and write to TCP
headers of acknowledgments. TCP rate control works best
when both the TCP packet and ack flows are accessible to
it. However it can perform the core functions even un-
der limited asymmetry (eg: ack flow alone accessible).
Since it requires reading and writing into TCP headers,
these headers should be accessible (eg: not encrypted or
authenticated). However, given these conditions, it can
function transparently and does not require any standard-
ization or support from existing routers or end systems
(hosts). Though it maintains per-flow state, through in-
formation compression and O(1) computation, reasonably
scalable commercial implementations (over 20,000 simul-
taneous flows, 45 Mbps) have been deployed which is suf-
ficient for network edges and enterprise networks. Due
to the above constraints, the solution is more applicable
to network edges (ISPs and enterprises) rather than core
nodes, given that the TCP headers are accessible.

5 Summary and Future work

TCP rate control is a new technique which transparently
augments TCP performance through indirect control of
its rate (achieved by manipulating the ack stream only).
Performancewise, it avoids the adverse performance ef-
fects due to packet losses. Further, it can provide protec-
tion against misbehaving (non-conformant) TCP sources
and improve performance even if the bottlenecks are non-
local. Though it is somewhat constrained in its deploy-
ment space compared to stateless algorithms like RED, it
has been quickly and effectively applied at network edges
of ISPs and enterprise networks.

Future work will focus on further augmenting perfor-
mance in the presence of remote bottlenecks using diff-
serv marking, using more accurate modeling and bench-
marking performance against TCP-SACK/New-Reno.

References

[1] ATM Forum Traffic Management, “The ATM Fo-
rum Traffic Management Specification Version 4.0,”
April 1996.

[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, M.
Stemm and R. H. Katz, “TCP Behavior of a Busy
Internet Server: Analysis and Improvements,”Pro-
ceedings of IEEE Infocomm, San Francisco, CA,
USA, March 1998.

[3] S. Blake, et al, “An Architecture for Differentiated
Services,”IETF RFC 2475, December 1998.

[4] J. Bolot and A. Vega-Garcia, “Control Mechanisms
for packet audio in the Internet,”Proceedings of
IEEE Infocom’96,1996.

[5] B. Braden, D. Clark, J. Crowcroft, B. Davie, S.
Deering, D. Estrin, S. Floyd, V. Jacobson, G. Min-
shall, C. Partridge, L. Peterson, K. Ramakrishnan, S.
Shenker, J. Wroclawski, L. Zhang, “Recommenda-
tions on Queue Management and Congestion Avoid-
ance in the Internet,”Internet RFC 2309, April 1998.

[6] A. Charny “An Algorithm for Rate Allocation in a
Packet-Switching Network with feedback”, Masters
thesis. MIT 1994

[7] A. Demers, S. Keshav and S. Shenker, “Analysis and
Simulation of a Fair Queuing Algorithm,”Internet-
working: Research and Experience, Vol. 1, 1990,
pp. 3-26.

12

[8] W. Feng, D. Kandlur, D. Saha, K. Shin, “Techniques
for Eliminating Packet Loss in Congested TCP/IP
Networks,” U. Michigan CSE-TR-349-97,Novem-
ber 1997.

[9] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,”IEEE/ACM
Transactions on Networking, Vol. 1, No. 4, August
1993, pp.397-413.

[10] S. Floyd, “TCP and Explicit Congestion No-
tification”, ACM Computer Communication Re-
view, Vol. 24, No. 5, October 1994, pp. 10-23.
ftp://ftp.ee.lbl.gov/papers/tcpecn.4.ps.Z

[11] Floyd, S. and Henderson, T., ”The NewReno Mod-
ification to TCP’s Fast Recovery Algorithm”,Inter-
net RFC 2582, Experimental, April 1999.

[12] Floyd, S. and Jacobson, V., ”Link-sharing and
Resource Management Models for Packet Net-
works”IEEE/ACM Transactions on Networking, Vol.
3 No. 4, pp. 365-386, August 1995. Available from:
ee.lbl.gov/nrg-papers.html

[13] V. Jacobson, “Congestion Avoidance and Control,”
Proceedings of the SIGCOMM’88 Symposium, pp.
314-32, August 1988.

[14] R. Jain, “The Art of Computer Systems Performance
Analysis,”John Wiley & Sons Inc.,1991.

[15] S. Kalyanaraman, “Traffic Management for the
Available Bit Rate (ABR) Service in Asynchronous
Transfer Mode (ATM) networks”Ph.D. Disserta-
tion, Dept. of Computer and Information Sciences,
The Ohio State University, August 1997.

[16] S. Kalyanaraman, R. Jain, R. Goyal, S. Fahmy
and R. Viswanathan, “The ERICA Switch Algo-
rithm for ABR Traffic Management in ATM Net-
works” IEEE Transactions on Networking, to ap-
pear, 1999. Available from: http://www.cis.ohio-
state.edu/ jain/papers/erica.htm.

[17] L. Kalampoukas, A. Varma, K.K. Ramakrishnan,
“Explicit Window Adaptation: A Method to En-
hance TCP Performance,”Proceedings of INFO-
COM’98, April 1998.

[18] S. Karandikar, S. Kalyanaraman, P Bagal and B.
Packer. “TCP Rate Control for Congestion Avoid-
ance” Technical Report, October 1999. Available
from
http://www.ecse.rpi.edu/Homepages/shivkuma/

[19] A. Koike, “TCP flow control with ACR informa-
tion,” ATM Forum/97-0998, December 1997.

[20] D. Lin and R. Morris, “Dynamics of Random Early
Detection,” Proceedings of SIGCOMM’97, August
1997.

[21] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow,
“TCP Selective Acknowledgement Options,”Inter-
net RFC 2018, October 1996.

[22] R. Morris, ”TCP Behavior with Many Flows”,IEEE
International Conference on Network Protocols, Oc-
tober 1997.

[23] P. Narvaez and K.Y. Siu, “An Acknowledgment
Bucket Scheme for Regulating TCP Flow over
ATM,” to appear inComputer Networks and ISDN
Systems Special issue on ATM Traffic Management,
1998.

[24] Packeteer Inc., http://www.packeteer.com/

[25] J. Padhye, V. Firoiu, D. Towsley and Jim Kurose,
“Modeling TCP Throughput: A Simple Model
and its Empirical Validation,”Proceedings of SIG-
COMM’98, Vancouver, August 1998.

[26] K.K. Ramakrishnan and R. Jain, “A Binary
Feedback Scheme for Congestion Avoidance in
Computer Networks with Connectionless Network
Layer,” Proceedings of SIGCOMM’88, August
1988, pp. 303-313.

[27] K.K. Ramakrishnan, S. Floyd, “A proposal to
add Explicit Congestion Notification (ECN) to
IPv6 and to TCP,”IETF Internet Draft, Novem-
ber 1997, Available as http://ds.internic.net/internet-
drafts/draft-kksjf-ecn-00.txt

[28] R. Satyavolu, K. Duvedi, S. Kalyanaraman, “Ex-
plicit rate control of TCP applications,” 1999.
http://www.ecse.rpi.edu/Homepages/shivkuma/

[29] W. R. Stevens, “TCP Slow Start, Congestion Avoid-
ance, Fast Retransmit and Fast Recovery Algo-
rithms,” Internet RFC 2001, January 1997.

13

Algorithm 1 Rate Allocation Algorithm
The goal of this algorithm is to allocate max-min fair rates
to competing TCP flows. The algorithm described here
is a minor variant of that proposed by Charny [6]. Ini-
tially, equal rate allocations are given to all competing
flows. Then sending rates of flows are estimated by main-
taining an exponential average over arate sampling in-
terval. When a flow does not to utilize its allocation, it
is labeled asbottlenecked. Excess allocation is stripped
off from all suchbottleneckedflows and allocated to non-
bottlenecked orhungryflows. This step is repeated until
there is no residual bandwidth to allocate or all flows are
bottlenecked. This algorithm is invoked every time a new
flow begins, a flow terminates or when the rate sampling
interval expires. The resulting rate allocations are stored
into a table. A stepwise description of the algorithm fol-
lows.

1. For each flowi, letRi be the measured rate andAi

be the allocated rate.

2. If N is the total number of flows andB is the bot-
tleneck capacity, the initial allocation for each flowi
is

Ai =
B

N
: (2)

3. If Ri < p:Ai for some satisfaction percentagep (a
statically chosen parameter), then mark flowi asbot-
tlenecked, else mark it ashungry.

4. Let U be the aggregate residual bandwidth i.e the
bandwidth which remains unutilized by the bottle-
necked flows.

5. Distribute this residual bandwidth evenly over all the
hungry flows. IfH is the total number of hungry
flows , the new allocation for a hungry flowj is given
by,

Aj = Aj +
U

H
(3)

6. For each bottlenecked flowk the new allocation is
given by,

Ak =
Ak + Rk

2
(4)

So for bottlenecked flows, the allocation approaches
the measured rate over successive iterations of the
algorithm.

Algorithm 2 Rate Enforcement Algorithm
This algorithm enforces the rate allocation by converting
the rate to a window value. Additionally, it spaces out
the acknowledgments of a flow, so that they are evenly
distributed over its RTT.

1. For each flowi let ,
wi = the calculated window size in units of packets.
4i = the inter-ack spacing in seconds.
RTTi = the round trip time (RTT) of flow i, ideally
not including queuing delays, in seconds.
MSSi = the maximum segment size of flow i, in bytes.
Ai = the rate allocation in bytes/s.

2. Observe that for each flowi, we have:

wi �MSSi = Ai �RTTi (5)

So the window value can be calculated as,

wi =
Ai �RTTi
MSSi

(6)

3. The inter-ack spacing time (RTTi/wi) can also be
obtained from equation 5:

4i =
RTTi

wi

=
MSSi

Ai

(7)

4. For each flowi, acks (if available) are clocked out at
intervals of4i with the receiver window field set to
Wi. Burstiness is introduced whenWi fluctuates or
when it is is not an integral multiple of MSS. This
burstiness is not smoothed out in our modeling, but
is smoothed out in the Packeteer implementation.

5. The receiver window field of the ack of flowi is set
as:

Wi = min(wi �MSSi , actual receiver window)
(8)

6. The ack number field in the header is determined
based upon two variables (max and min sequence
number) used to denote the ack queue. In the
common case, the ack number would be chosen to
progress by oneMSSi. Adjustments for dupacks,
piggy-backed acks and SACKs are minor.

14

