TCP Rate Control

Shrikrishna Karandikar Shivkumar Kalyanaraman Prasad Bagal

Bob Packet
Department of ECSE, Department of Computer Science,
Rensselaer Polytechnic Institute.
Email: karans@cs.rpi.edu, shivkuma@ecse.rpi.edu, bob@packeteer.com

Abstract trip time, the timeout delays and the square root of loss
probability [25] (ignoring effects of small windows and

) , timeouts [22]):
This paper presents TCP rate control, a new technique for 1

transparently augmenting end-to-end TCP performance Ti o m @)
by controlling the sending rate of a TCP source. The sendﬁere
ing rate of a TCP source is determined by its window siz ’)

the round trip time and the rate of acknowledgments. TCP - throughput for flow, .

rate control affects these aspects by modifying the! acﬁ - pri)bablhty (.)f a packet IOSS_ for flod

number and receiver window fields in acknowledgmen I'T; = round trip time for flow.

and by modulating the acknowledgment rate. From a per-given this equation, we can view the function of any
formance viewpoint a key benefit of TCP rate control igfer management algorithm managing TCP flows as as-
to avoid adverse performance effects due to packet |05§?g‘7ning loss probabilitiess) and queuing delays (which
such as reduced goodput and unfairness or Iargg §preagﬁgct RTT;) to competing TCP flows in order to meet
per-user goodputs. Further, TCP rate control positively &farformance requirements such as utilization, queuing de-
fects performance even if the bottleneck is non-local angl,s spread of per-user goodputs etc. However, this equa-
the end-host TCP implementations are non-conformingsn assumes that the TCP receiver window is not a limit-
These aspects are demonstrated through a compargfi¢eactor, which is not necessarily the case. Therefore if
study of TCP rate control, RED and TCP-ECN. The TCe TCP receiver window were the primary limiting factor,

rate control approach has been implemented and patenigdcould design a buffer management algorithm in which

by Packeteer Inc. TCP throughput would not depend primarily on loss rate
p; (or RT'T;) under controlled operating conditions.

. The design of TCP rate control is motivated by the
1 Introduction above observations. It uses rich congestion related in-
formation available at the bottleneck and calculates rate

TCP congestion control is designed for network stabilit 'Ilocat|ons for competing TCP flows. It then enforces

robustness and opportunistic use of network resources Bﬁse al'locatlops by_ modifying the ack number and re-
an end-to-end basis [13]. Using a robust technigue to ziver window fields in the ack headers and by modulating
tect packet loss (timeout or triple-duplicate acks), TCP® ack rate. Observe that the rate allocation can be done

infers congestion and trades off per-user goodput for n@,@l Ieveragipg any of the well-known rgte calculation algo-
work stability. Specifically, TCP throughput is known td!tums f]tUd'eo: for(;hebATM '?‘IBR SerVICE.[15]. Such algo- |
be a function which is inversely proportional to the rounfthms ave aiready been shown tolac leve strong (?ontro
of metrics such as utilization, queuing delay and fairness
*This work has been sponsored by Packeteer, Inc and in part by NfFallocations. The novel part in TCP rate control is to

Contract number ANI9806660 and DARPA contract number F306Q§nsure that these properties are preserved in the rate en-
97-C-0274

tPrasad Bagal is with Oracle, Inc., CA, USA forcement process.

tBob Packer is with Packeteer, Inc., CA, USA. L . .
L Abbreviations: ack for acknowledgment, RTT for round trip time, 1N€ key contributions and observations of this paper

dupack for duplicate ack, SACK for selective acknowledgment. are:

e Section 1.1 articulates the issues in the rate-td-1 TCP Rate Control
window translation and enforcement process . Sec-
tions 3 and 4 discuss related work and deploymefhe two core ideas behind TCP rate control are:
issues respectively. Specifically, TCP rate control is

best deployed at WAN edges of enterprise or ISP net-)
works and not in ISP network cores. 1. Calculate a rate allocation per-TCP flow and

2. Enforce the rate allocation by manipulating TCP

e We also study the performance of TCP rate control header fields and the ack rate.

in comparison to RED and ECN [9, 27] (section 2).

— We divide our performance measures into tw
groups:user metrics and provider metricsVe

find that in general, RED and ECN optimize . _
provider metrics while TCP rate control optiFor commercial reasons we do not disclose the Packe-

mizes both user and provider metrics. teer rate allocation algorithm. Instead, we have used a
well-known max-min fairalgorithm due to Anna Charny
— For long transfers, TCP rate control can mang <ee algorithm 1) in our simulations. The claims made
age the spread of per-user goodputs (a user M@fyis naner therefore apply to the general TCP rate con-
ric) without compromising on utilization, ag-y| approach because any other max-min fair rate alloca-

gregate goodput and queuing delays (providgpy, aigorithm can be used in the place of the algorithm

metrics) even if the round trip times (RTTS) 0f 5o here. For example, in an earlier study, we used a

the competing flows are different (section 2.2)jjiterent rate allocation algorithm ERICA [1, 16].
We have verified the same result for other pa-

rameter dimensions. For brevity, we have in- The choice of theate sampling intervaln Algorithm
cluded these results in a more detailed techniciinvolves a tradeoff between reliability of measurements
report [18]. (longer intervals) and speed of response (shorter inter-

— For short transfers, both TCP rate control an¢gls). Ideally, the interval length should be at least the
TCP-ECN manage the spread of transfer timégaxi_mum of the following: the longest RTT and th(_e time
(a user metric) better compared to RED. gJgauired to see at least one packet from each active flow
TCP rate control does so by slightly reduc[16]'_|n the case of extremely short lived flows, some ap-
ing the total number of transfers completed (Broxmatlon is necessary. For example, the rate of new

provider metric), whereas TCP-ECN trades 0f:fonnec:tions may be initialized to one MSS per RTT. In
a larger queue ('a provider metric) for the sam@ur simulations with short-lived flows (section 2.3), the
benefit (section 2.3). flows lasted for at least a few RTTs and could be estimated

reasonably with the sampling interval chosen.

21.1 Rate Allocation Algorithm

e Another key benefit of TCP rate control is in man-
aging misbehaving (non-conforming) TCP source
which can be easily created by hacking operati
systems like Linux. Such sources if unchecked can
combine to steal bandwidth from conformant sourcégnce a rate r has been calculated, it can be converted into
(denial-of-service attachsor even lead to conges-a window value as follows:
tion collapse. Assuming that such sources responckN
to ack header fields (receiver window and ack num-
ber), TCP rate control can successfully restrain them ap gpvious choice for T is the round trip time of the
and eliminate all their |II-effect_s (;echgn 2.4). REDHow, not including queuing delayszT'T; (measurement
and ECN are much less effective in this respect. o p77; is discussed later). An earlier unpublished study

of ours also shows that several other choices (eg:afixed T

* TCP rate control can be reasonably effective EVelitimate for all flows) lead to unfairness [1]. This window

if the bottleneck is non-local i.e. it is not ImIOIe'valueW is then used to limit the TCP congestion window
mented at the bottleneck, but at a farther upstre

S SU€qD able. The feedback is given via the receiver window
non-bottlenecked node. However, in this case it los 21d (Wr) in the TCP header:

some of the advantages of controlling packet losses
(section 2.5). Wrnew = Min (Wroq, W)

1.2 Rate-enforcement algorithm

=rxT

Note that if the window scale option is used, the routevard direction and the acks in the reverse direction, larger
must be aware of the window scale factor and should aakk queues can be traded off for smaller packet queues.
just the 16-bit window feedback appropriately. FurtheMoreover, the entire per-flow ack queue can be main-
the TCP checksum should be adjusted as follows: tained in by holding just three variables: two of which

indicate an interval of sequence numbers being stored
~ Delta= Wryew — Wroa (On€’s complement subtrac-(ieft _edge andright _edge) and one indicating the
tion) flow's MSS (maximum segment size). Theft _edge
is the highest ack number that has been forwarded to
the sender andght _edge is the highest ack number
the receiver has sent so far. This is equivalent to queu-

The header modification does not violate the TCP pritd (right _edge - left _edge) acks. This makes the
tocol. Hence the scheme is transparent and requiressf@ce requirement for the ack queue constant, since phys-
standardization. However, the need for reading and wri€al queuing of acks is not necessary. Acknowledgments
ing into TCP headers means that the IP payload sho@ then generated at a suitable rate using the recorded in-
not be encrypted or authenticated. Further, the needf@mation (step 4).
measure the round trip timeR('T;) of each flow means

TCP_checksum= TCP-checksumt Delta (one’s com-
plement addition)

that the solution is applicable to network edges. The RTTIn the case of plggy-backed acks, the ack information
the data packet is first recorded and then the ack num-

of a flow can be approximated by observing packets a er and receiver window fields in the packet header are

corresponding acks or vice versa. No extra traffic is in-" - i S .

jected. Ignoring these details, Algorithm 2 presents tﬁ@Od'f'e.d. sunably_befor_e forwarding it. For duplicate acks

rate enforcement part of TCP rate control. an additional var'lable is .used to count the number of du-
packs. Then while sending the last ack in our ack queue

Observe that TCP rate control paces the acks ovefc@ntaining sequence numheght _edge) we generate

round trip time (steps 3 and 4) in addition to the receivé&s many dupacks as indicated by this counter (since all du-

window modification. This is because given a fixed wirPacks received so far would be numbergght _edge).

dow size, the rate of a TCP source is dictated by the rategince the information conveyed by SACKs can be viewed

acknowledgments received. Therefore control of the agié an extension of the information conveyed with dupli-

rate in general smoothes out the burstiness in TCP trafate acks, they are handled similarly with addition of a
mission. few more variables to record the block number informa-

tion. Specifically, the SACK is withheld till the ack num-

Another source of burstiness occurs when there ispar being sent to the source reaches the beginning of a
change in the rate allocation which manifests itself aspock which was not received at the destination. Our sim-
change in window size or when the ideal window size uylations did not contain piggy-backed acks (unidirectional
for rate regulation is not an integral multiple 6#.SS; flows) or SACKS (end systems implemented TCP-Reno).
(step 4). Such window changes at the end of rate sampling
intervals could potentially result in a burst of packets (if
the window increased) or in an idle period (if the win-
dow was reduced). By distributing the window change® Performance Analysis
over multiple ack transmission opportunities, even such
burstiness can be smoothed out (not modeled in our sim-
ulations). Similarly, rounding up of non-integral windowin this section, we compare the performance of TCP Rate
values might result in errors especially when average wigontrol with RED and TCP-ECN [9, 27]. A brief dis-
dow sizes are small (eg: low speed bottlenecks, largession of parameters, metrics and the base configuration
number of flows). However, for simplicity, we do notused follows.
model these aspects, though Packeteer’'s implementation
addresses them. This leads to some excess queues in sim-
ulation, especially in cases such as low speed bottlenecks . .
with large number of flows. This problem has also be 1 Metrlcs, Parameters and Configura-
articulated by Robert Morris in his study of effects caused ~ tlONS
by large number of TCP flows [22].
a\{Ye classify our metrics into two major categoriasser

Another interesting aspect of TCP rate control is th : . .
I customer metriceind operator or provider metrices

since the TCP window is the sum of the packets in the fogéscribed below:

Provider metrics: The common provider metrics we use 1007TCP Sources 100TCP Sinks

in all simulations areaverage link utilization, aver- 0 0
age queue length, maximum queue length and total : \ fﬁ/
number of packet dropsin addition for short file 0 Router - Router 0
transfer simulations, we introduce a new provider Bottieneck Link :
metric: the number of transfers completed O

User metrics for large file transfers: We would like to Figure 1: Configuration template used in simulations with
measure the per-flow goodput, which is the rate gfcal bottlenecks

which the destination application receives informa-

tion. It excludes the retransmission rate, but includes

the effect of delays such as retransmission and timeEN) and number of flows (10 - 100). The workloads
out delays. Instead of measuring N such metrics, wed included short and long file transfers and misbehav-

summarize it using two metricsthe average (per- ing (non-conformant) TCP sources.
flow) goodput and the coefficient of variation (ra-

tio of the standard deviation and the average)ich
measures the relative spread in per-user goodputs.

_ _ _ 2.2 Long File Transfers, Heterogeneous
User metrics for short file transfers: Since average RTTs

per-user goodput is meaningless for short transfers,

we use transfer time instead. As before, we use the

average and the coefficient of variation of this quarn this section we demonstrate that the TCP rate con-

tity. trol when operating at the bottleneck can decouple TCP
throughput from loss rate (and to some extent, RTT),
without compromising provider metrics. To illustrate this

We evalugte performance With'local a.md nqn-local boy.t)'oint, we have chosen the RTTs of flows in the configura-
tlenecks. Figure 1 gives the basic configuration templaign, to pe heterogeneous.

that we used in our simulations in the case of local bot-

tlenecks with long transfers (section 2.2), short transfers

(section 2.3) and misbehaving sources (section 2.4). It

contains a single bottleneck shared by a set of unidire€2 1 RED (heterogeneous RTTSs)

tional TCP flows. This simple template matches typical

corporate network WAN connections where the expensive)] .)

WAN link or leased line is the key bottleneck in the sysT@ble 1 lists the performance metrics with RED in a het-
tem. For the heterogeneous RTT simulations, the sour&&8geneous RTT configuration. Observe the last column
were grouped into four groups, each group having adifféflh'_Ch is bold faced. The coefﬂqept of variation (CoV)
ent RTT (specifically 30 us, 300us, 3ms, 30ms). Withinigdicates a large spread (or variation) of per-user good-
group, the flows had equal RTTs. The RED parameter sBHS- In other words, a randomly chosen flow has a
tings used were as follows: the minimum and maximufiPn-trivial probability of getting worse performance (in
queue thresholds were 10 and 30 respectively, the qudggns of goodput) compared to the mean. This occurs be-

averaging parameter, was set to 0.02 and the drop probSause RED allocates different loss probabilitipg) @nd
ability p was 0.2. the flows themselves have different RTTs. But we have

also observed similar behavior with homogeneous RTTs
The end systems implemented TCP-Reno. This is H&8], indicating that the component of CoV attributable to
cause the overwhelming majority of hosts today use TQ®ss probabilities is non-trivial.
Reno, even though newer versions of TCP (New-Reno . S
and SACK) are being deployed. We would expect the In terms of the other metrics, the utilization is high (94-

performance gap to reduce with these newer versions, 88¢0). queuing delays are low (10-30 packets), but the
have not evaluated them in this paper. number of packet losses (552-4418 packets) and its ef-

fect on aggregate goodput increase with the speed of the
We have evaluated the following parameters dimebettleneck (eg: in the last row, the aggregate goodput on a
sions in our simulations for the local-bottleneck casd5 Mbps line is 32 Mbps). In other words, RED optimizes
speed of the bottleneck (56 kbps - 45 Mbps), the RTerformance in terms of provider metrics, trading off user
(30 us - 30 ms), schemes used (TCP rate control, REDetrics under these conditions.

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation (CoV)
0.056 98.79 30.33/62 552 0.00049 1.18367
0.384 99.68 27.54/62 890 0.00313 0.79872
15 99.85 21.80/63 1453 0.01252 1.26278
10 99.54 14.56/63 2626 0.08803 1.99602
45 94.17 9.59/61 4418 0.32083 1.51962

Table 1: RED, 100 sources, Heterogeneous RTTs. Result: Optimized provider metrics. Tradeoff: High CoV, low avg.
goodput.

2.2.2 ECN (heterogeneous RTTSs) in this evaluation, the important point to note is that TCP
rate control optimizeall metrics of interest i.ebothuser

Table 2 shows the performance of ECN under similar cofnd provider metrics. As described earlier, this is possible
ditions (observe the bold faced column). ECN reduces tAE® t0 the direct control of the receiver window and the
coefficient of variation (CoV) considerably and eliminate@Ck rate.

the effect of packet losses on user metrics, while trading

off slightly higher queuing delays (226-313 packets). We have verified the same result for all other parameter

dimensions such as homogeneous RTTs, LAN vs WAN
RTTs and for different numbers of competing flows. For
brevity, we have excluded these results, but they may be

2.23 TCPrate control (heterogeneous RTTS) found in a more detailed technical report online [18].

Coeff. of Variation vs Bottleneck Capacity

2 a
' 2.3 Short File Transfers, Homogeneous
RTTs

In this section we look at the performance of the schemes
with respect to short file transfers. The same configuration
template (Figure 1) is used in these simulations. Flows
o are grouped into four sets and the start time of every set
o = 1CR is staggered by 250 ms. Every flow sends 10K bytes (10
packets) and closes the connection. After a pause of 250
ms, the same source reopens the connection (with param-
eters set to initial values) and sends another 10K bytes (10

A\\ /A\ packets) and so on. The simulation time was 100 seconds.
T

o, J o RED
: ’ ECN

Coeff of Variation(Goodput)
-
1

0 T T T As mentioned earlier, since goodput is meaningless for
0.01 0.10 1.00 10.00 100.00 short transfers, we use per-user transfer time (average and
Bandwidth Capacity(Mbps) coefficient of variation) and the total number of transfers

' o o as our metrics. A similar model has been used in the
Figure 2: Plot for coefficient of variation of per-flowpast [2]. Though this is not a model of WWW transfers,
goodput - Heterogeneous RTTs, long transfers it may provide illustrative information because WWW

. transfers are typically short.
Table 3 shows the corresponding performance of TCP

rate control. Observe that TCP rate control further dimin- Our primary observation in this section is that for short
ishes the coefficient of variation (CoV) and the queuingansfers, TCP rate control and TCP-ECN manage the
delays. The comparative performance in terms of CoV $pread of transfer time (a user metric) better when com-
illustrated in Figure 2. Though we have emphasized Cq)ared to RED. But TCP rate control does so by slightly re-

Provider Metrics User Metrics

Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation (CoV)
0.056 97.90 313.21/564 0 0.00052 0.55769
0.384 99.66 414.75/640 0 0.00242 0.28512
1.5 99.91 252.28/300 0 0.01497 0.03273
10 99.99 252.26/299 0 0.09995 0.07494
45 100.00 226.45/286 0 0.45004 0.23940

Table 2: ECN, 100 sources, Heterogeneous RTTs. Result: Reduced CoV, higher goodput than RED. Tradeoff: High
gueuing delays

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation (CoV)
0.056 97.60 256.67/420 0 0.00046 0.28261
0.384 98.64 105.19/194 0 0.00372 0.05914
1.5 99.91 99.34/177 0 0.01496 0.03476
10 99.99 89.63/177 0 0.09995 0.16378
45 100.00 91.87/154 0 0.45000 0.07962

Table 3: TCP rate control, 100 sources, heterogeneous RTTs. Result: Optimized User AND provider metrics. Trade-
off: None.

ducing the total number of transfers completed (a providerWe note that the average response times in slower speed
metric), whereas TCP-ECN trades off a larger queue ¢anfigurations are slightly worse than RED because in
provider metric) for the same benefit. Our results for TCshite of not having loss triggered effects, the queuing de-
rate control were affected in this case by some modelifays add significantly to the response time. Except for
approximations. gueuing delays at low speeds, ECN performance scaled
well with increase in link speeds allowing a larger num-
ber of transfers and reduction in coefficient of variation of

2.3.1 RED (Short transfers) transfer time.

Table 4 tabulates the results for simulations with RED.

We observe that the average transfer time reduces with%:3-3 TCP rate control (Short transfers)

crease in bandwidth. The coefficient of variation (CoV) of

per-user transfer times is large indicating that some trange results for TCP rate control in this situation are shown

fers were able complete at the expense of other transfersable 6.

In other words, even though a larger number of transfers

are completed, a randomly chosen transfer would haveOne important point to note in case of TCP rate control

a non-trivial probability of having a larger transfer timds that even though the transfer time is short, each transfer

when compared to the mean. continues at least for a few RTTs which is long enough to
obtain a few rate measurements.

In general, TCP rate control trades off the total number
of transfers completed, but consistently reduces the coef-
ficient of variation (CoV) of per-flow transfer times com-
Table 5 shows the simulation results of short transfepared to RED. It also has smaller queuing delays com-
with ECN. pared to ECN. This effect on CoV is also illustrated in

2.3.2 ECN (Short transfers)

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q | # Transfers | Avg. transfer time Coeff. of
Mbps | Percent | Packets/Packets Milli Secs variation (CoV)
0.056 99.87 30.45/53 52 75925 0.40706
0.384 99.88 23.37/50 436 16797 1.23062
15 99.16 12.68/49 1702 4848 3.57821
10 97.09 7.33/51 6655 234 1.04665
45 89.32 5.47/47 7195 161 0.48968

Table 4: RED, 100 sources, Short Transfers. Result: Higher number of transfers. Tradeoff: Higher CoV

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q | # Transfers | Avg. transfer time Coeff. of
Mbps | Percent | Packets/Packets Milli Secs variation (CoV)
0.056 99.77 687.48/960 25 99624 0.00282
0.384 99.86 218.86/616 355 22294 1.03563
15 99.95 220.27/273 1816 5090 0.14240
10 99.96 89.74/153 7256 573 0.05464
45 87.65 4.97/77 7272 152 0.04307

Table 5: ECN, 100 sources, Short Transfers. Result: Lower CoV. Tradeoff: Queuing delay

Figure 3. respect. Therefore rate control can be used as a tool in

] o countering such TCP traffic based denial of service at-
Note that the modeling approximations we have magg-ys.

for evaluation purposes (mentioned in section 1.1.2) affect

performance in this case (as seen in reduced utilizationWe used a simple technique to create a misbehaving
and fewer transfers) because the rate allocations transkdarce in our simulation. A normal TCP source starts in
into non-integral window sizes (in terms of MSS) and thihe slow start phase and enters the the congestion avoid-
relative changes in window sizes have larger effect on pance phase when the valueamfndcrossesssthresh We
formance since the average TCP window sizes are sndiflabled the congestion avoidance logic in our code, so
during the lifetime of short flows. Packeteer’s implemerthat the congestion windoawndalways increases expo-
tation does not suffer from these modeling approximaentially over RTTs. In our simulations, we created a mix
tions. of misbehaving and normal sources (50 of each type).

2.4 Misbehaving Sources

Another key benefit of TCP rate control is in manag.4.1 RED : Misbehaving Sources

ing misbehaving (non-conforming) TCP sources, which

can be easily created by hacking operating systems like

Linux. Such sources if unchecked can combine to stélhe bold faced columns in Table 7 indicates that RED
bandwidth from conformant sourceddnial-of-service at- performance degrades in terms of number of packets lost,
tack9 or even lead to congestion collapse. Assuming théite average per-user goodput and coefficient of variation
such sources respond to ack header fields (receiver wi@oV). However, provider metrics such as link utilization
dow and ack number), TCP rate control can successfulind queuing delay are optimized. This is another example
control them and eliminate all their ill-effects on conforwhere provider metrics being optimized, does not imply
mant flows. RED and ECN are much less effective in thibat user metrics will be optimized

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q | # Transfers | Avg. transfer time Coeff. of
Mbps | Percent | Packets/Packets Milli Secs variation (CoV)
0.056 93.93 401.83/496 15 99624 0.00282
0.384 99.07 98.59/174 465 19724 0.14851
15 99.97 92.00/114 1816 5047 0.17556
10 99.85 19.06/94 7054 575 0.13742
45 75.76 2.92/59 6974 193 0.10172

Table 6: TCP rate control, 100 sources, Short Flows. Result: Lower CoV. Tradeoff: Number of transfers

Provider Metrics User Met rics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation (CoV)
0.056 94.76 31.85/62 429 0.00009 1.88889
0.384 99.70 28.84/60 873 0.00286 1.03846
15 99.66 24.27/64 1721 0.01176 1.01190
10 97.87 18.65/62 4849 0.06109 0.50810
45 96.14 16.58/63 12334 0.21604 0.48320

Table 7: RED: misbehaving sources, homogeneous RTTs, 3000km. Result: Large drop rates, low average goodputs,
high CoV

2.4.2 ECN : Misbehaving Sources 2.5 Remote Bottlenecks

In this simulation, we have assumed that the misbehavi
sources also respond to ECN, but they never use lind)
increase. Compared to RED, ECN has much better é%/-Wha.lt happens when TCP rate control is non-local or re-
erage per-user goodput and reduced CoV because it d fe I.e. not present at thg bottleneck of a ﬂOYV’ but e!se-
not incur the effects of packet loss. However, the effect gf. ere on its path ? Our primary observation in studying

misbehaving sources shows up as higher queues (wht'hﬁ Issue ';5 tha';gmce (t)ur rfatefflllocatlgn a(;gorlthmtraﬁlks
require larger buffers). e current sending rate of a flow and reduces the allo-

cation if the flow is bottlenecked elsewhere, it limits the
overload caused by these flows at the remote bottlenecks.
This results in smaller queuing delays even at the remote
bottlenecks, though the control is not as effective as when
TCP rate control is implemented at the bottleneck. Inter-
2.4.3 TCP Rate Control : Misbehaving Sources estingly, the average goodput and coefficient of variation
(CoV) provided by TCP rate control even remotely is bet-

S ter than offered by RED locally, albeit at the expense of
TCP rate control clearly stands out in this situation, b?ﬁgherqueuing delays.

cause there is virtually no effect of misbehaving sources

on the performance of the system (eg: compare with Ta-Figure 4 shows the configuration used to study the re-
ble 3, even though that table uses heterogeneous RTBponse of TCP rate control when bottlenecks are non-
In other words, given that the misbehaving sources necal. Again here we compare performance with RED
spond to receiver window changes in ack headers aaod ECN. In these comparisons, RED and ECN mark-
modify windows or clock out packets upon receipt oing are implemented at the bottleneckiter 2 inthe
acks, TCP rate control effectively normalizes the perfofigure), whereas, TCP rate control is implemented at an
mance of such sources. upstream, non-bottlenecked nodeifter 1 in the fig-

all the scenarios studied so far, TCP rate control was
Iplemented at the bottleneck. The interesting question

Provider Metrics User Met rics

Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput | Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation
0.056 99.35 268.97/539 0 0.00048 0.45833
0.384 99.84 398.91/688 0 0.00254 0.25591

15 99.95 566.71/810 0 0.01473 0.06042

10 99.99 1554.71/2941 0 0.09982 0.03526

45 100.00 3249.93/5271 0 0.44773 0.05954

Table 8: ECN: misbehaving sources, homogeneous RTTs, 3000km. Result: Higher Avg. Goodput and lower CoV.
Tradeoff: high queuing delays.

Provider Metrics User Met rics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation (CoV)
0.056 99.06 221.42/413 0 0.00043 0.13953
0.384 99.88 96.46/200 0 0.00380 0.04211
15 99.95 89.65/200 0 0.01494 0.01406
10 99.99 27.37/200 0 0.09982 0.00311
45 99.92 7.28/197 0 0.44729 0.00782

Table 9: TCP Rate Control: misbehaving sources, homogeneous RTTs, 3000km. Result: All metrics optimized. Effect
of misbehaving sources eliminated.

ure). Further, in the TCP rate control case, we assume B- Related Work
finite buffers and no buffer management algorithm at the
bottleneck.

e closest work relative to this paper is proposed by Nar-
z and Siu [23], Koike [19], Kalampoukas et al [17]

Satyavolu et al [28]. While these researchers inde-
ndently suggested the idea of overwriting the acknowl-

Tables 10, 11, 12 show the comparative results in thE1
case. We observe that RED again incurs the performaH@g
penalties due to packet losses, whereas ECN and TCP

control do not. TCP rate control has smaller queues thgﬁ Cfield d ina th K led “acknowled
ECN, but the fidelity of control (as seen in the CoV mef£99MENt IE1AS and pacing the acks (called “acknowledg-

ric) is diminished compared to the cases where it opera{ggm bucket” by thesg authors), this |d§a was originally
locally at the bottleneck. invented (patent pending) by Packeteer in 1995-1996 and

products based upon these ideas have been shipping ever
The reason for the performance benefits with rate cosince [24]. Further, these authors explored such ideas
trol even operating remotely is the fact that it tracks botrom the point of view of TCP/IP-ATM internetworking
tlenecked flows and bounds the excess allocation to thé€e extending the ATM ABR type rate control from ATM
flows. As a result, these flows do not overload the remdt€ges to TCP end systems.

bottlenecks by a large difference and are also less burstyN dsi timpl tai f
leading to shorter queues. arvaez and Siu suggest implementation of a some-

what complex TCP emulation engine at the rate-controller
However, we notice that as the bottleneck speed iand an acknowledgment bucket. Koike also suggests use
creases (last two rows in Table 12), the remote rate cont@bRn acknowledgmentbucket. Kalampoukas et al develop
is less effective because these flows are classifieas @ new buffer management scheme to directly determine
bottleneckear hungryfor a longer duration. And during the TCP window rather than taking a pre-existing rate al-
this time these flows could overload a remote bottlenetfication algorithm and then translating it into a window
leading to poorer performance. value. Satyavolu et al suggest a rate-to-window transla-
tion scheme based upon another ATM ABR algorithm,

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput | Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation
0.056 98.48 30.14/58 367 0.00044 1.11364
0.384 99.68 29.00/58 707 0.00288 0.91319
15 99.70 25.57/59 1651 0.01164 0.75430
10 97.54 18.19/56 4850 0.06694 0.65581
45 96.15 16.31/50 12150 0.22047 0.49803

Table 10: RED: Remote Bottlenecks. Result: Optimized provider metrics. Tradeoff: lower avg goodput, high CoV
and packets lost.

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput | Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation
0.056 99.25 271.45/547 0 0.00048 0.45833
0.384 99.82 448.35/731 0 0.00269 0.20074
15 99.95 531.63/831 0 0.01494 0.10843
10 99.99 1343.15/2094 0 0.09982 0.03967
45 100.00 2691.98/4194 0 0.44777 0.01874

Table 11: ECN: Remote Bottlenecks. Result: Improved avg goodput and CoV compared to RED. Tradeoff: Higher
queues

ERICA [28]. As mentioned earlier, any good rate allouse per-flow token buckets in the forward direction. The
cation algorithm from the ABR literature (eg: see [15)joken bucket rates would vary according to the per-flow
can be adopted for use in the TCP rate control approacite allocations calculated by Algorithm 1. However, this
Moreover, we present more extensive performance anabuld again not be as effective because it would still rely
ysis compared to these authors, which distinguishes the packet drops to control the TCP window and queue
solution clearly from traditional alternatives. growth. Packet dropping would lead to the types of perfor-

mance degradation studied in this paper. Moreover, per-

The TCP rate control approach described in this papfy queueing in general requires increased implementa-
uses a combination of two techniques: a) receiver wifjgp, complexity.

dow maodification and b) ack pacing for the rate enforce-
ment process once the max-min fair rate allocations areSeveral enhancements in TCP have been aimed at re-
obtained. If only the receiver window modification proceducing the negative effects of packet losses i.e. timeouts
dure were used, it would lead to burstiness due to abrugstd retransmission delays. TCP New-Reno and SACK
changes in window values. On the other hand, if on[iL1, 21] are the most prominent ones which are also being
the ack pacing procedure were used, we would lose cateployed in server-side upgrades. We chose TCP Reno
trol over the sender’s effective window size and by consithis simulation study because of the overwhelming ma-
guence have lesser control over the size of packet quejegy of the installed base. We would expect the perfor-
at the bottleneck. This is because the TCP window siz@ance gap seen in this paper to reduce if either TCP New-
is equal to the sum of outstanding packets in the forwaREno or SACK are used in end systems, but we expect rate
direction and acks in the reverse direction and ack paciogntrol would still be useful in these cases because of the
would effectively control packet queues better only whemse of explicit, detailed feedback and in cases when non-
the TCP window is also under control. An example of thisonforming flows are present.
phenomenon is described in [28].
The name “TCP rate control” is somewhat of an oxy-
An alternative rate enforcement technique would be tnoron because TCP does not use a rate parameter or leaky

10

Table 12: TCP Rate Control: Remote Bottlenecks. Result: Improved avg goodput compared to RED. Tradeoff: High

Provider Metrics User Metrics
Speed | Utilization Avg. Q/Max Q Drops | Avg. Goodput | Coeff. of
Mbps | Percent | Packets/Packets Packets Mbps variation
0.056 99.25 230.02/440 0 0.00044 0.25000
0.384 98.33 108.37/197 0 0.00344 0.15116
15 99.95 91.33/187 0 0.01494 0.01740
10 99.99 181.80/573 0 0.09982 1.27570
45 100.00 480.42/859 0 0.44791 0.58762

gueues, but still lower than ECN.

(100TCPsiks)
(ach ink 1000Kr)

0

Coeff of Variation vs bottleneck Capacity (100 7CPouce

(bottleneck)

(1000km) (1000km)

{1000km)

(router 1) (router 2) (router 3)
! . orep Figure 4: Configuration Template for Remote Bottlenecks
ECN
-~ TCR

s tion algorithm is that, it can potentially achieve max-
I,|:'| | min fairness even with a FIFO queue (but requires closed

Coeff. of Variation(Transfer Time)
N
1

SN loop rate feedback), whereas scheduling algorithms can
, . achieve max-min fairness by maintaining per-flow queues
o’ o in an open loop manner.
0 Yoo A T A------ A L - .
5oL 510 o0 000 T00.00 Similarly, TCP rate control is orthogonal to the dif-

ferentiated services (diff-serv) approach [3] because it
provides dynamic max-min fair-share allocation to TCP
Figure 3: Plot for coefficient of variation in per-flow transmicroflows belonging to a class or a queue. Diff-serv
fer time - Short transfers operates at the level of flow aggregates and not at the
level of TCP microflows. Further it aims to provide
bandwidth sharing and/or premium service differentia-
bucket to regulate packets. But if TCP’s window remairtfon based upon large time-scale service level agreements
constant (equal to the receiver window), the rate of pac{SLAs) and not fairness in time-scales of a few RTTs.
ets clocked out by TCP (in packets/s) is equal to the ratewever, each diff-serv queue or class can be enhanced
of acknowledgments. Even if the window varies, the rateith TCP rate control.
allocation algorithm (step 6 in algorithm 1) quickly tracks

this value and regulates TCP’s rate implicitly by regulat- 1CP rate control is different from buffer management
ing the rate of acks. algorithms like RED and FRED [9, 20, 22] in that the lat-

ter assign non-zero packet loss probabilifiegnd queu-
TCP rate control is different from scheduling schemesg delays (which affecR11;), whereas rate control as-
like WFQ, priority queuing, CBQ [7, 12] because ratsigns a zero loss probability and uses the receiver window
control operates on a single FIFO queue (with per-flo@#...,.) and rate of acks as the primary control mecha-
information), whereas scheduling schemes use multiplssms. Hence, as argued in this paper, it side-steps the
gueues. In fact, TCP rate control can be applied indeffects due to packet loss. However, we note that TCP
pendently to each queue in these scheduling algorithmeate control is TCP-friendly [25] in the sense that when
especially when many flows may share any given queymacket loss does occur and congestion window drops be-
The interesting aspect about the underlying rate allodaw the assigned window value, the rate controller never

11

artificially inflates it. 5 Summary and Future work

From the complexity point of view, the space complex-
ity for TCP rate control is O(N) as it stores per-flow inforTCP rate control is a new technique which transparently
mation and the time complexity for processing a packet 8igments TCP performance through indirect control of
an ack is O(1). The rate allocation algorithm complexitijs rate (achieved by manipulating the ack stream only).
can vary from O(1) to O(N) depending upon the particuldrerformancewise, it avoids the adverse performance ef-
algorithm chosen [15]. As a useful data point regardirfgcts due to packet losses. Further, it can provide protec-
scalability, we note that Packeteer products handling oy against misbehaving (non-conformant) TCP sources
20,000 flows simultaneously and running at 45 Mbps ha@&d improve performance even if the bottlenecks are non-
been deployed for over a year. local. Though it is somewhat constrained in its deploy-
ment space compared to stateless algorithms like RED, it
has been quickly and effectively applied at network edges
of ISPs and enterprise networks.

Future work will focus on further augmenting perfor-
mance in the presence of remote bottlenecks using diff-
4 Deployment Issues serv marking, using more accurate modeling and bench-
marking performance against TCP-SACK/New-Reno.

RED is stateless and does not depend upon any protocol

headers for its functionality. Therefore it can be deploy eferences
at any queue in the network. Itis also simple and has O(1)
operation. It has therefore been widely recommended
an active queue management technique, though no st
dardization process is required [5].

] ATM Forum Traffic Management, “The ATM Fo-
rum Traffic Management Specification Version 4.0,”
April 1996.

ECN requires support from both end systems (ho
TCP/IP stacks) and routers. In other words, it require
some minimal standardization and has therefore been de-
fined as an experimental RFC [27]. Since it would take
a long time to upgrade and deploy both key routers and
hosts, ECN has the longest deployment cycle among the
three alternatives. [3] S. Blake, et al, “An Architecture for Differentiated
Services,[ETF RFC 2475 December 1998.

] H. Balakrishnan, V. Padmanabhan, S. Seshan, M.
Stemm and R. H. Katz, “TCP Behavior of a Busy
Internet Server: Analysis and Improvementsyo-
ceedings of IEEE InfocomnBan Francisco, CA,
USA, March 1998.

TCP rate control is stateful (maintains state per TCP
flow) and depends upon ability to read and write to TCH4] J. Bolot and A. Vega-Garcia, “Control Mechanisms
headers of acknowledgments. TCP rate control works best for packet audio in the Internet,Proceedings of
when both the TCP packet and ack flows are accessible to |IEEE Infocom’96,1996.
it. However it can perform the core functions even un-)
der limited asymmetry (eg: ack flow alone accessible)[®] B Braden, D. Clark, J. Crowcroft, B. Davie, S.
Since it requires reading and writing into TCP headers, ~Deering, D. Estrin, S. Floyd, V. Jacobson, G. Min-
these headers should be accessible (eg: not encrypted or Shall, C. Partridge, L. Peterson, K. Ramakrishnan, S.
authenticated). However, given these conditions, it can Snhenker, J. Wroclawski, L. Zhang, “‘Recommenda-
function transparently and does not require any standard- tions on Queue Managementand Congestion Avoid-
ization or support from existing routers or end systems ~ance in the Internet/hternet RFC 2309April 1998.

(hosts). Though it maintains per-flow state, through in-[6] A. Charny “An Algorithm for Rate Allocation in a

formation compression and O(1) computation, reasonably Packet-Switching Network with feedback”, Masters
scalable commercial implementations (over 20,000 simul- thesis. MIT 1994

taneous flows, 45 Mbps) have been deployed which is suf-

ficient for network edges and enterprise networks. Du§7] A. Demers, S. Keshav and S. Shenker, “Analysis and
to the above constraints, the solution is more applicable Simulation of a Fair Queuing AlgorithmJhternet-

to network edges (ISPs and enterprises) rather than core working: Research and Experienc¥ol. 1, 1990,
nodes, given that the TCP headers are accessible. pp. 3-26.

12

[8] W. Feng, D. Kandlur, D. Saha, K. Shin, “Techniquefl9] A. Koike, “TCP flow control with ACR informa-

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

for Eliminating Packet Loss in Congested TCP/IP
Networks,” U. Michigan CSE-TR-349-9Mlovem-
ber 1997. [20]

S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion AvoidancdEEE/ACM [21]
Transactions on Networking/ol. 1, No. 4, August
1993, pp.397-413.

S. Floyd, “TCP and Explicit Congestion No-[
tification”, ACM Computer Communication Re-
view, Vol. 24, No. 5, October 1994, pp. 10-23.
ftp://ftp.ee.lbl.gov/papers/tcpcn.4.ps.Z

22]

23
Floyd, S. and Henderson, T., "The NewReno Moc1[—]
ification to TCP’s Fast Recovery Algorithminter-
net RFC 2582, Experimentahpril 1999.

Floyd, S. and Jacobson, V., "Link-sharing and
Resource Management Models for Packet Neb4]
works”"IEEE/ACM Transactions on Networking, Vol.

3 No. 4, pp. 365-386August 1995. Available from: [25]
ee.lbl.gov/nrg-papers.htmi

V. Jacobson, “Congestion Avoidance and Control,”
Proceedings of the SIGCOMM’88 Symposjyp.
314-32, August 1988. [26]

R. Jain, “The Art of Computer Systems Performance
Analysis,” John Wiley & Sons Inc1991.

S. Kalyanaraman, “Traffic Management for the
Available Bit Rate (ABR) Service in Asynchronoud27]
Transfer Mode (ATM) networksPh.D. Disserta-
tion, Dept. of Computer and Information Sciences,
The Ohio State University, August 1997.

S. Kalyanaraman, R. Jain, R. Goyal, S. Fahm
and R. Viswanathan, “The ERICA Switch Algo-
rithm for ABR Traffic Management in ATM Net-
works” IEEE Transactions on Networkingo ap-

tion,” ATM Forum/97-0998December 1997.

D. Lin and R. Morris, “Dynamics of Random Early
Detection,” Proceedings of SIGCOMM’'97August
1997.

M. Mathis, J. Mahdavi, S. Floyd, A. Romanow,
“TCP Selective Acknowledgement Optiongiiter-
net RFC 20180ctober 1996.

R. Morris, "TCP Behavior with Many FlowsTEEE
International Conference on Network ProtocoBxc-
tober 1997.

P. Narvaez and K.Y. Siu, “An Acknowledgment
Bucket Scheme for Regulating TCP Flow over
ATM,” to appear inComputer Networks and ISDN
Systems Special issue on ATM Traffic Management
1998.

Packeteer Inc., http://www.packeteer.com/

J. Padhye, V. Firoiu, D. Towsley and Jim Kurose,
“Modeling TCP Throughput: A Simple Model
and its Empirical Validation,"Proceedings of SIG-
COMM’98, Vancouver, August 1998.

K.K. Ramakrishnan and R. Jain, “A Binary
Feedback Scheme for Congestion Avoidance in
Computer Networks with Connectionless Network
Layer,” Proceedings of SIGCOMM'88 August
1988, pp. 303-313.

K.K. Ramakrishnan, S. Floyd, “A proposal to
add Explicit Congestion Notification (ECN) to
IPv6 and to TCPIETF Internet Draft Novem-
ber 1997, Available as http://ds.internic.net/internet-
drafts/draft-kksjf-ecn-00.txt

8] R. Satyavolu, K. Duvedi, S. Kalyanaraman, “Ex-

plicit rate control of TCP applications,” 1999.
http://www.ecse.rpi.edu/Homepages/shivkuma/

pear, 1999. Available from: http://www.cis.ohio-[zg] W. R. Stevens, “TCP Slow Start, Congestion Avoid-

state.edu/ jain/papers/erica.htm.

L. Kalampoukas, A. Varma, K.K. Ramakrishnan,
“Explicit Window Adaptation: A Method to En-
hance TCP PerformanceProceedings of INFO-
COM'98, April 1998.

S. Karandikar, S. Kalyanaraman, P Bagal and B.
Packer. “TCP Rate Control for Congestion Avoid-
ance” Technical Report October 1999. Available
from
http://www.ecse.rpi.edu/Homepages/shivkuma/

13

ance, Fast Retransmit and Fast Recovery Algo-
rithms,” Internet RFC 2001January 1997.

Algorithm 1 Rate Allocation Algorithm Algorithm 2 Rate Enforcement Algorithm

The goal of this algorithm is to allocate max-min fair rateShis algorithm enforces the rate allocation by converting
to competing TCP flows. The algorithm described hethe rate to a window value. Additionally, it spaces out
is a minor variant of that proposed by Charny [6]. Inithe acknowledgments of a flow, so that they are evenly
tially, equal rate allocations are given to all competingistributed over its RTT.

flows. Then sending rates of flows are estimated by main-

taining an exponential average overate sampling in- 1. Foreach flow let,

terval. When a flow does not to utilize its allocation, it ~ w; = the calculated window size in units of packets.

is labeled adottlenecked Excess allocation is stripped 4A; = the inter-ack spacing in seconds.

off from all suchbottleneckedlows and allocated to non- ~ RT'T; = the round trip time (RTT) of flow i, ideally
bottlenecked ohungryflows. This step is repeated untii notincluding queuing delays, in seconds.

there is no residual bandwidth to allocate or all flows are M SS; = the maximum segment size of flow i, in bytes.
bottlenecked. This algorithm is invoked every time anew A; = the rate allocation in bytes/s.

flow begins, a flow terminates or when the rate sampling
interval expires. The resulting rate allocations are store%
into a table. A stepwise description of the algorithm fol- =
lows.

Observe that for each flowy we have:

w; X MSSZ = Ai X RTT, (5)
be the allocated rate.
A,‘ X RTTZ
2. If N is the total number of flows an@ is the bot- Wi = T MSS; (6)
tleneck capacity, the initial allocation for each flaw
IS B 3. The inter-ack spacing timeR({['T;/w;) can also be
A; = N (2) obtained from equation 5:
3. If R; < p.A; for some satisfaction percentagea A; = RTT: _ MSS5; (7)
statically chosen parameter), then mark floasbot- Wi A

tleneckedelse mark it asiungry.) .
4. For each flowi, acks (if available) are clocked out at

4. Let U be the aggregate residual bandwidth i.e the intervals ofA; with the receiver window field set to
bandwidth which remains unutilized by the bottle- ;. Burstiness is introduced whdf; fluctuates or
necked flows. when it is is not an integral multiple of MSS. This

burstiness is not smoothed out in our modeling, but

5. Distribute this residual bandwidth evenly over all the is smoothed out in the Packeteer implementation.

hungry flows. If H is the total number of hungry
flows , the new allocation for a hungry floyds given 5. The receiver window field of the ack of flowis set

by, as:
U
Ay =45+ H (3) W; = min(w; x MSS; , actual receiver windoyv
6. For each bottlenecked flow the new allocation is ®)
given by, 6. The ack number field in the header is determined
Ay = Ar + Ry, (4) based upon two variables (max and min sequence
2 number) used to denote the ack queue. In the

So for bottlenecked flows, the allocation approaches common case, the ack number would be chosen to
the measured rate over successive iterations of the progress by oné/SS;. Adjustments for dupacks,
algorithm. piggy-backed acks and SACKs are minor.

14

