IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004

259

Assessing and Improving TCP Rate Shaping
over Edge Gateways

Huan-Yun Wei, Shih-Chiang Tsao, and Ying-Dar Lin

Abstract—Computers installed with commercial/open-source software have been widely employed as organizational edge gateways
to provide policy-based network management. Such gateways include firewalls for access control, and bandwidth managers for
managing the narrow Internet access links. When managing the TCP traffic, pass-through TCP flows can introduce large buffer
requirements, large latency, frequent buffer overflows, and unfairness among flows competing for the same queue. So, how to allocate
the bandwidth for a TCP flow without the above drawbacks becomes an important issue. This study assesses and improves TCP rate
shaping algorithms to solve the above problems through self-developed implementations in Linux, testbed emulations, live Internet
measurements, computer simulations, modeling, and analysis. The widely deployed TCP Rate control (TCR) approach is found to be
more vulnerable to Internet packet losses and less compatible to some TCP sending operating systems. The proposed PostACK
approach can preserve TCR’s advantages while avoiding TCR’s drawbacks. PostACK emulates per-flow queuing, but relocates the
queuing of data to the queuing of ACKs in the reverse direction, hence minimizing the buffer requirement up to 96 percent. PostACK
also has 10 percent goodput improvement against TCR under lossy WAN environments. A further scalable design of PostACK can
scale up to 750Mbps while seamlessly cooperating with the link-sharing architecture. Experimental results can be reproduced through
our open sources: 1) tcp-masq: a modified Linux kernel, 2) wan-emu: a testbed for conducting switched LAN-to-WAN or WAN-to-LAN

experiments with RTT/loss/jitter emulations.

Index Terms—Bandwidth management, TCP, rate enforcement, window-sizing, ACK-pacing, scheduling, queuing, packet scheduler,

testbed.

<+

1 INTRODUCTION

POLICY—BASED networking is a plan of an organization to
achieve its resource-sharing objectives. Many policy-
based gateways have been installed at the LAN-WAN
interconnected edges to enforce their organizational poli-
cies. Such gateways include Firewall, Virtual Private Net-
work (VPN), Network Address Translation (NAT), Content
Filtering (CF), Intrusion Detection System (IDS), and
Bandwidth Management (BM). Nowadays, computers
(especially x86-compatible) installed with commercial or
open-source software such as Linux have been the most
widely used platform to provide high performance services
[1], [2]. From the bandwidth management aspect, since end-
to-end Internet QoS such as DiffServ [3] is still under
experiment, enterprises seek to at least manage their
inbound and outbound traffic on the expansive but narrow
Internet access links. Thus, their important, interactive or
mission-critical traffic such as voice over IP (VoIP),
e-business, and ERP (Enterprise Resource Planning) flows
are not blocked by less-important traffic such as FTP. A
policy rule usually consists of condition and action fields that
define specific actions for specific conditions. For band-
width policy rules, the condition field defines the packet-
matching criteria, such as a certain subnet or application, to
classify packets into their corresponding queues. Then, the

o The authors are with the Department of Computer and Information
Science, National Chiao Tung University, Hsinchu, Taiwan 300.
E-mail: {hywei, weafon, ydlin}@cis.nctu.edu.tw.

Manuscript received 26 July 2002; revised 23 June 2003; accepted 21 July
2003.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 117027.

0018-9340/04/$20.00 © 2004 IEEE

queued packets are scheduled according to the specified
action such as “at least/most 20kbps.” The urgent demand
for such gateways encourages many commercial or open-
source implementations.

An intuitive example: A 125kbps access link is partitioned
into a 90kbps VoIP class and a 35kbps FIP class. If there is no
voice call, FTP sessions can occupy the entire 125kbps link.
Whenever a 30kbps VoIP session starts, the bandwidth
manager allocates 30kbps for the VoIP class until the 90kbps
is used up by the three 30kbps voice calls. Administrators can
set the minimum bandwidth for each FTP flow to be 10kbps.
When the FTP class contains only 35kbps, the bandwidth
manager allocates about 11.6kbps for the first three
FTP sessions. Any newly initiated FTP sessions will be
blocked by the bandwidth manager since the minimum
bandwidth for each FTP session is 10kbps now. If a voice call
leaves, the FTP class can obtain another 30kbps and become a
65kbps class. So, a newly initiated FTP session is allowed to
join the FTIP class. The four FTP sessions fairly share the
65kbps class and satisfy the administrative 10kbps minimum
session bandwidth guarantee.

After quantitatively evaluating three kinds of policies
among eight major players [1] in the market, we summarize a
general bandwidth management model in Section 1.1. The
objectives and contributions are then described in Section 1.2.

1.1 General Bandwidth Management Model

Most surveyed bandwidth management gateways [1] can
control both inbound and outbound traffic. For simplicity,
the following general model (Fig. 1) focuses on the control
of outbound TCP traffic. Inbound control of TCP traffic is

Published by the IEEE Computer Society

260

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

Traffic Source Internet Traffic Destination
(Local LAN) (WAN) (Remote LAN)
class-based
bandwidth policy P CcD Qc
condition action ‘ BW p
BWi
. — ; MSS.
TCP flow i ——] . TCP flow i € classc b
|:E| per-class / 1 | I AN I [I I I I B
packet u
Wci classifier \ : acket y
___scheduler]
Enterprise Edge D,
per-flow ACK W’”i
control add-on $ -
ACK | backward ack stream (inbound)
Control " %
O Sk i[O O O 0O 0O 0O
64-byte TCP ACK

PFAQ,
A

i

A

Negligible (A) Packets/ACKs queued (B)W/,,,: # packets in the WAN pipe for flow i = =

at the edge device

—

Y BW,-D., BDP;
MSS;

A

MSS;

T~

Total unacknowledged packets for flow 7 in flight = (A) + (B) = min(Wci y Wr,-)

Fig. 1. General bandwidth management model for class-based outgoing TCP traffic. Terms: S;: TCP sender i; D;: TCP destination ¢; W..: congestion
window maintained by S;; W,.: receiver advertised window announced by D;; D,,,: round-trip WAN delay for flow i; PCD(Q),: per-class data queue for
class c, inside which mixes N flows; PFAQ);: per-flow ACK queue for flow ¢, inside which queues the ACKs for flow i; BW,: bandwidth settings for
class c; BW;: bandwidth share for flow i (= BW,/N); MSS;: max segment size for flow .

discussed in Appendix A. Key terms used in this paper are
also defined in Fig. 1, where two types of policy rules can be

exercised:

1. Class-based bandwidth allocation: Most bandwidth
allocation policies are class-based. As shown in
Fig. 1, each such policy rule groups a set of flows
into a class by the per-class packet classifier. Each
class corresponds to a FIFO-based per-class data
queue (PCDQ). Data packets queued at PCDQ are
scheduled out to the WAN pipe by the packet
scheduler. A packet scheduler is often a must to
control all kinds of traffic including unresponsive
flows like UDP and ICMP. Many implementations
employed the Class Based Queuing (CBQ) [4], which
can efficiently utilize newly available bandwidth
among classes. However, multiple TCP flows com-
peting for the same queue can cause high buffer
requirement at the edge gateway, hence resulting in
large latency, frequent buffer overflows, and unfair-
ness among the competing TCP flows within the
same class. This is due to the mismatch between the
growing TCP window and the fixed bandwidth
delay product [5], [7] (BDP) of the flow. The
microscopic details will be analyzed in Section 2.4.

2. Guarantee bandwidth for each flow within a class:
Traditionally, RED [8] can be used to alleviate the
unfairness among competing TCP flows within a
class. However, RED is less effective to achieve perfect
fairness [1], [9], [10]. Nowadays, most vendors have

incorporated a per-flow ACK control add-on module
(Fig. 1) in the reverse direction to actively control the
behavior of each TCP sender. All evaluated commer-
cial implementations [1] fairly treat the flows within
the class, namely, no weighted fairness can be set
among the flows in the class. Since flows are
dynamically created, it is not practical to assign some
specific rate on the fly to some dynamically created
flow. In Fig. 1, if n TCP flows are now mixed in the
PCDQ of class ¢, ideally, the bandwidth for each
flow BW; obtains a share of BW../n.

1.2 Objectives and Contributions

Guided by the above demand, our objectives and contribu-
tions lie in assessing and improving possible approaches,
namely, the TCP Rate Control, Per-Flow Queuing, and the
proposed PostACK, to solve the problem defined in this

section.

1.2.1 Problem Statement
How to keep TCP flow i at BW; (= BW,/n) with

optimizations to the performance metrics:

1. Buffer requirement at the edge gateway, which implies
cost and latency (Section 5.2.1).

2. Vulnerability of goodput under lossy environments (aver-
age goodput' under packet losses (Section 5.2.2)).

1. The reason is minor when applying RED at edge gateways because the
retransmissions only consume LAN bandwidth.

WEI ET AL.: ASSESSING AND IMPROVING TCP RATE SHAPING OVER EDGE GATEWAYS 261

3. Fairness among flows in one class (flow isolation within
one class (Section 5.2.3)).

4. Robustness under Various TCP implementations (Sec-
tion 5.2.4).

1.2.2 Underlying Assumptions

As described in Section 1.1, a TCP-unaware packet
scheduler is always needed to deal with unresponsive
flows. Moreover, a qualified network administrator should
not mix TCP flows with TCP-unfriendly [11] (ie., un-
responsive) flows in the same class (i.e., queue). Addition-
ally, the LAN bandwidth is big so that the delay and frame
loss rate in LAN are negligible compared to those in WAN.
Bulk data transfer is assumed during the analysis. Encryp-
tion/decryption beyond the IP layer are performed after/
before bandwidth management, respectively, so that the
gateway can differentiate the flows. Importantly, TCP flows
should be able to reach their target rates, namely, they are
bottlenecked by their configured rates at the edge gateway
rather than the receiver advertised window sizes
(W,, > W,,). For simplicity, all figures and discussions
assume that TCP receivers will instantly reply with an ACK
for each successful received data packet.

1.3 Organization of This Work

The following sections are organized as follows: The next
section reviews TCP sender behaviors and previous works
(Section 2). The PostACK approach is presented in Section 3.
Next, the microscopic behaviors and goodput analysis of
TCP over these schemes are modeled (Section 4.1). Subse-
quently, the effectiveness of the schemes is verified through
prototype experiments, simulations, and live experiments
(Section 5). Section 6 designs a scalable PostACK for gigabit
networks. Finally, conclusions are given in Section 7. Some
analytical works, proofs, and discussions are included in
the appendices.

2 BACKGROUND AND RELATED WORKS

This section briefly reviews the behaviors and throughput
of a TCP sender. Subsequently, we survey previous
approaches in solving the problem.

2.1 Brief Review of TCP Sender Behaviors

The design philosophy of TCP aims at reliably and
cooperatively [14] utilizing network resources. As for
reliability, TCP senders carefully avoid overflowing their
receivers’ buffer and retransmit lost packets which are not
acknowledged within a timeout. As for cooperation, TCP
senders infer network congestion by detecting packet loss
events and trade off their goodputs for network stability. To
satisfy both of them, each TCP sender keeps two window
values, receiver advertised window (RWND or W,) and
congestion window (CWND or W,), indicating its receiver’s
buffer capacity (flow control) and the current network
capacity (congestion control), respectively. So, each TCP
sender does not have unacknowledged data more than the
min(RWND, CWND). RWND is advertised by the receiver
in TCP ACK packets and ranges widely among operating
systems [7]. CWND, which is kept by the sender, increases
exponentially during the slow-start phase and linearly

during the congestion-avoidance phase to probe available
bandwidth until packet losses occur. Loss behavior differs
among TCP versions, mainly on how the CWND is
shrunken and raised or on how the lost packets are
accurately retransmitted . Fall and Floyd [15] give a good
overview and problems on Tahoe, Reno, NewReno, and
SACK versions. Vegas [16] and FACK [17] are also famous
for their elaborate designs. The four TCP congestion control
algorithms, slow start, congestion avoidance, fast retrans-
mit, and fast recovery are formally defined in [18] as basic
requirements of an Internet host. The TCP sender imple-
mentation in Linux kernel 2.2.17, which constitutes most of
our traffic source when evaluating related schemes, is a
joint implementation of NewReno, SACK, and FACK. The
following sections assume that readers are familiar with
TCP congestion control schemes.

2.2 Bandwidth of a TCP Flow

TCP throughput modeling has been extensively studied in
[12] and [13]. But, they are too complex to be used for
discussion in this paper. Without considering packet losses
for simplicity, the bandwidth (or rate) of a TCP flow can be
measured in various time scales as shown in (1). For a TCP
flow, choosing its RTT (D,, plus delays at PCD(),. and
PFAQ;) as the measuring time interval can establish a
relation with TCP windows as in (2). Excluding the packets
queued at the edge gateway (A in Fig. 1), (2) is transformed
into (3). Apparently, the bandwidth of a TCP flow can be
affected by either shrinking the window size (the TCP rate
control approach) or stretching the RTT (the PostACK and
per-flow queuing approaches).

Bytes Sent
- JgomE 1
BW: Time Interval (1)
_ TCP window min(W,,, W,,) - MSS; @)
~ RIT D, +PCDQ!™ + PFAQ™™
B Bytes in WAN Wy, - MSS; (3)
"~ Round Trip WAN Delay D,, ’

As shown in Fig. 1, if the WAN pipe of flow ¢ is full, each
bandwidth sample of flow ¢ measured at the end of each
D, will approximate BW;; otherwise, the flow is under-
utilizing its bandwidth share. Additionally, the more evenly
the packets are distributed across the D,,, the fewer the
fluctuations among the consecutive measured bandwidth
samples.

2.3 History of Existing Schemes

Several packet scheduling algorithms have been proposed
and formally analyzed by Stiliadis and Varma [19]. Floyd
and Jacobson [4] investigate the hierarchical link sharing
among bandwidth classes. Bennett and Zhang [20] further
propose a theoretical-proven link-sharing architecture that
can simultaneously support real-time traffic. These schemes
are TCP-unaware approaches.

Since a TCP sender is clocked by its feedback ACKs, most
TCP-aware works tend to regulate the ACKs to actively control
the TCP senders. The approaches are motivated by two
concepts: window-sizing and ACK-pacing. Window-sizing

262

Traffic Source
(Local LAN)

Enterprise Edge

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

Per-flow packet classifier, for measuring RTT
by observing sequence number of each flow

------ TCP flow i € classc ...
] = =1 [= [= 1 = g 1~
Zob R g T I O
SENM ERL [o BT B, D
| s oassameanssancsacmnct) ilke D ws
per-flow> i
— RO 2B @
[Measure Wi W” er -
o -
(_E,fg n :"I'Lh] | Tl I
\

Negligible

—

(A) Packets/ACKs
queued at the edge device

(B)W,, : # packets in the WAN pipe for flow i =

BW; - Dy, _ BDP;
MSS; MSS;
R

Total unacknowledged packets for flow i in flight = (A) + (B) = min(Wci 5 Wn)

Fig. 2. TCP rate control ACK control model for managing outgoing TCP traffic.

determines how much to send while ACK-pacing decides
when to send. Many works employ these concepts, but
only typical examples are outlined here.

2.3.1 Window-Sizing

TCP Vegas [16] employs a sender-based window-sizing
scheme that adapts its CWND to the BDP by a fine-grained
RTT measurement. Kalampoukas et al. [21] propose a
gateway-based window-sizing scheme that reduces the
buffer overflow at interconnected gateways by modifying
the RWND in TCP ACKs. Spring et al. [22] present a
receiver-based window-sizing approach that makes each
bulk-data transfer advertise a small RWND.

2.3.2 ACK-Pacing

Zhang et al. [23] suggest sender-based pacing to alleviate
the ACK-compression phenomenon due to cross traffic.
Narvéaez and Siu [24] propose a gateway-based scheme that
regulates ACKs to make the sender adapt to the ABR
explicit rate. Aggarwal et al. [25] then summarize sender-
based and receiver-based approaches.

2.3.3 Hybrid (Window-Sizing Plus ACK-Pacing)
Karandikar et al. [9] sponsored by Packeteer [26] propose a
edge-gateway approach, the TCP rate control (TCR, a
strange acronym named in [9]), that combines window-
sizing and ACK-pacing. While TCR is popular among many
commercial implementations [1], it remains only partially
studied. TCR is only compared with RED and ECN, which
are merely congestion control schemes without keeping
per-flow states as TCR does. Additionally, not a single loss
in the TCR performance study may hide its deficiencies
compared with per-flow queuing.® Because better under-
standing of TCR is helpful in presenting the PostACK
algorithm, next we assess the TCR algorithm in detail.

2. Goodput means effective throughput, which excludes the throughput
consumed by retransmissions.

2.4 Prior-Art ACK Control Approach: TCR
2.4.1 Algorithm Review

Fig. 2 displays the TCR [9] ACK control model that
exercises window-sizing and ACK-pacing. If ,, denotes
the number of packets in the WAN pipe for flow ¢ with BW;
(= BW,/n), then

BDP, _BW,-D,,
MSS; MSS;

VVw,; =) (4)

where the equation can be used as follows:

1. Window-sizing: Because, normally, a TCP sender S;
expands its W,, to speed up its rate, window-sizing
tries to slow it down by locking the TCP window
(= min(W,,, W,,)) using the modified W,,. Window-
sizing periodically measures the D,, by observing
the sequence numbers and then rewrites the W,, in
each ACK with BDP; bytes (W,, packets). Thus,
flow i is expected to just fill up its WAN pipe
without overflowing excessive packets to the PCDQ.

2. ACK-pacing: To evenly spread W,, of packets across
the WAN pipe, the inter-ACK spacing time, A;, can
also be derived from (4) as A; = 5 = j‘éﬁs The
ACK-pacing module then clocks out ACKs of flow i

MSS;

at intervals of B Thus, the W,, packets from S,

are smoothly paced out and are most likely to be

evenly distributed across the measured D,,.

2.4.2 Microscopic Behaviors of TCR-Applied Flows

To develop an efficient ACK-pacing, TCR can be imple-
mented with a single timer for each class instead of for each
flow. The timer times out at intervals of % and releases
all n ACKs back to the n senders at a time. If window-sizing
is absent, the reaction of releasing an ACK to a sender

depends on the congestion control phase the sender is in:

1. TCP Senders in Slow-Start Phase: In the TCP slow-start
phase, CWND advances by one whenever an ACK

WEI ET AL.: ASSESSING AND IMPROVING TCP RATE SHAPING OVER EDGE GATEWAYS 263

acknowledges the receipt of a full-size data segment.
So, generally, every ACK released by the edge
gateway in this condition will trigger out two new
data packets into the corresponding PCDQ.

2. Full-CWND ACKed TCP Senders in Congestion-Auvoid-
ance Phase: In the TCP congestion-avoidance phase,
CWND advances by one whenever an ACK ac-
knowledges the whole window (CWND) of data
packets. So, generally, each ACK will trigger out one
new data packet, but the last ACK of each CWND
round” can trigger out two new data packets into the
corresponding PCDQ.

3. TCP Senders Exited from Fast Recovery Phase:
Acknowledgments of successfully retransmitted
packets may bring the sender out of the fast recovery
phase, causing the W, to reset to ssthresh
(= %min(WC, W,), where W, herein means the largest
W, before congestion occurs) . The reset action can
trigger a burst of packets into the PC'DQ).

Because the edge gateway cannot accurately identify
which sender is in which phase, simultaneous releasing of
n ACKs to the n flows of class ¢ may result in unfairness.
Some flows may respond to multiple packets while some
flows may only respond to one. By window-sizing, TCR can
enforce that each ACK will respond to exactly one packet,
no matter in which phase the TCP sender is, because the
sending window is then bounded by the W, instead of W..

2.4.3 Expected Side Effects of TCR Approach
Measuring round-trip WAN delay and modifying the TCP
ACK header are expected to have at least three side effects:

1. Halved-BDP Side Effect: Lower Throughput: Since TCR
shrinks the RWND of flow i to its WAN pipe size
(BDP; bytes or W,, packets, which is smaller than
W,.), a single loss can trigger the sender to halve its
window down to W, (which is smaller than JW,,)
rather than to imin(W,,W,) packets. Thus, the
performance degrades even under slight WAN
packet losses.

2. Tiny-Window Side Effect: Less Compatibility and even
Lower Throughput: For flows with small BDP (either
BW; or D,, is too small), window-sizing may shrink
their RWNDs to the situation that no more than
three unacknowledged data packets are in the WAN
pipe. As such, any single loss resorts to a retransmis-
sion timeout (RTO) rather than using fast retransmit
(also stated in RFC 3042 [6]). Some classical
Berkeley-derived operating systems employ a
coarse-grained timer (500ms), which can cause a
1-second idle to retransmit the packet [5]. This
significantly degrades the TCR-applied flows. Many
enterprises installing heterogeneous OSs may en-
counter such problems. A recent benchmark [28]
among TCR-employed vendors also demonstrates
this phenomenon.

3. Per-flow queuing (PFQ) assigns each TCP flow to a queue to isolate the
bandwidth share. The scheduling algorithm can be any, such as weighted
fair queuing [27] (WFQ). In this paper, PFQ results are obtained by simply
applying a token bucket shaper to each flow.

3. Inaccurate D,, Estimation Side Effect: Less Fairness: In
[9], the WAN delay is assumed to be a constant. So,
the TCR approach can effectively adjust the window
size as described. However, the D,, of a flow 4 can
vary dramatically. An increase of measured D,
indicates an increase in queuing rather than an
increase in end-to-end distance. Then, the mislead-
ing D,, causes the TCR to raise the modified W,,,
thereby causes a burst of traffic into its correspond-
ing PCDQ that results in unfairness among flows
within the class. Our TCR implementation uses the
exponential weighted moving average (EWMA) as
in thr TCP RTT measurement to smooth the burst.

3 ALTERNATIVE ACK CONTROL APPROACH:
PosTACK

PostACK is designed to be more intelligent both in retaining
previous TCR benefits and eliminating its deficiencies.
Without measuring the WAN delay and shrinking the RWND in
TCP ACKs, PostACK can avoid the side effects of TCR.

3.1 Motivation: Delaying the ACKs instead of

Data Packets

As assumed in Section 1.2, ideally, each flow should obtain
a bandwidth share of BW; = BW,/n. Recall that, in Fig. 1,
the RTT consists of D,,, the queuing delays at PCDQ,. and
PFAQ);, and the neligible round-trip LAN delay. Generally
the delay at PFAQ); approaches zero while the forward-
data-packet queuing delay for TCP is large. Imagine that a
Per-Flow Queuing (PFQ) is placed within the class ¢ to
enforce that each BW; = BW,/n (i € c). Thus, the number of
data packets of flow i queued before the packet scheduler in
Fig. 1, PCDQ™", is min(W,,, W,,) — (BDP;/MSS;), namely,
all unacknowledged packets excluding the packets in the
WAN pipe. To achieve BW;, each queued data packet
should wait for a period of (PCDQ;’ZC” x MSS;)/BW,.
Imagine that the packet scheduler in the forward direction
was absent. By delaying each ACK for the same interval
(PCDQ™" x MSS;)/BW;), the bandwidth of flow i will
also approach its target bandwidth BW;. The effects of
delaying the data packets in the forward direction by the
packet scheduler is identical to delaying the ACKs in the
reverse direction since a TCP sender only measures RTT,
which consists of bidirectional delays. Gradually increasing
the delay of ACKs would not cause Retransmission Time-
Outs (RTO) because a TCP sender can adapt the RTO to the
newly measured RTTs. Without considering any imple-
mentation details, the PostACK algorithm is shown in Fig. 3.
The TCP window (min(W,, W,,)) can be estimated by
watching the data stream and the ACK stream.

In summary, the target bandwidth, BW;, which keeps
only BDP,/MSS; packets in the WAN pipe, can be
achieved through queuing excessive packets. Either queu-
ing the data packets or the ACKs have the same effects on
rate shaping. While queuing data packets has many
drawbacks (Section 1), queuing the ACKs has many
advantages:

1. Low buffer requirement: Buffer requirement for TCP at
edge gateways can be minimized up to 96 percent

264

Initialization:
n = # TCP flows in class ¢ with bandwidth BW/,
BW,; = BW,/n
Algorithm:
if (min(We,, Wy,) < (BDP;/MSS:)){
/* flow i is under-utilizing its share */
do nothing

Jelse{

/* flow i is over its share */

PCDQ™™ = min(W,,, Wy,) — (BDP;/MSS;)

Delay each feedback ACK for (PC])Q;’le” * MSS;)/BW;
}

Fig. 3. Basic Post/ACK Algorithm.
(= 139=01) since an ACK takes only 64 bytes, while a
data packet takes roughly 1,500 bytes if the path MTU
so permits. Zero buffer is feasible because ACKs
can be artificially generated by the edge gateway.
However, it improves little and introduces addi-
tional overheads to record TCP timestamp/SACK
options. So, our implementation chooses to merely
queue the ACKs.

2. Low data packet latency: Low buffer requirement
implies small data packet latency at the gateway.
So, a newly created flow can establish the connection
faster because the shared PCD(Q. and the flow’s
initial PFAQ); are empty. Thus, users may obtain a
faster response when establishing a connection.

3. Fairness among Flows within a Class: Each flow in
class ¢ can be enforced to its target bandwidth BW;

4. Higher Goodputs than TCR-applied Flows: Without
measuring the D,, and shrinking the W,, Post-
ACK does not have the Halved-BDP side effect
(Section 2.4.3).

5. More Robust under Various TCP Implementations:Same
as above.

While queuing the ACKs may sound good, it is not practical
due to the following two challenges:

1. Computational Inefficiency: The algorithm in Fig. 3 may
not be computationally efficient because it requires
accurately delaying each ACK for some time. The
most straightforward method is to employ a timer for
each TCP flow to shape its ACKs. If there are IV flows
passing through the edge gateway, the kernel timers
require per-packet O(logN) complexity.

2. Bottlenecked by PCDQ.: Since a packet scheduler is
assumed to be always present at the forward direction
to manage non-TCP traffic, PCDQ. and PFAQ; are
two shaping points of flow 4. Because the n flows
sharing the PC'D(Q), should obtain BW,/n, packets of
flow i will be bottlenecked by its PCDQ), first rather
than by its PF'AQ);. Obviously, the PCDQ), will grow
up before PF'AQ); can queue the ACKs since PCDQ). is
the first shaping point of flow i.

The above challenges question the deployment of the basic

PostACK algorithm in Fig. 3. However, an efficient and
elegant PostACK does exist. To cope with the above

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

challenges, the implementation should avoid having per-
packet O(logN) complexity or being bottlenecked by the
PCDQ. Moreover, it should neither require the information
of CWND nor measure the RTT of a flow to estimate its BDP.

3.2 Efficient PostACK Implementation

3.2.1 Motivations to Overcome the Challenges

Although the concept of PostACK is completely different
from that of TCR, PostACK can also be efficiently
implemented as an on-off variant of ACK-pacing. Namel,y
it can also employ a per-class timer and has O(1) per-packet
processing time complexity, which is as efficient as TCR.
Recall that the ACK-pacing interval (A; = %) can be
derived without estimating the RTT. So, PostACK imple-
mented as an on-off variant of ACK-pacing does not need to
measure the WAN delay.

To overcome the second challenge, we first recall that
TCR achieves the fairness among the n flows within the
class c by using a per-class timer to simultaneously release n
ACKs to the n TCP senders. Window-sizing forces each
ACK to trigger out only one data packet such that n senders
are expected to send n data packets into the PC'DQ,. Since
PostACK do not modify the W,, when using ACK-pacing,
among the n ACKs released to the n TCP senders on an
ACK-pacing timeout of class ¢, slow-start TCP sender i € ¢
will be triggered out two data packets while congestion-
avoidance TCP sender j € ¢ may be triggered out one or
two data packets, as discussed in Section 2.4.2. Thus, flow ¢
and j may not get the same share of bandwidth during this
round of ACK-pacing (the interval between two consecutive
ACK-pacing timeouts) because, during this time interval,
only n data packets in PCDQ),. can be scheduled out. To
retain fairness among flows, whenever seeing k (k > 1) data
packets of flow i entering the edge gateway after releasing
an ACK of flow i, PostACK stops the pacing of flow i's ACK
for the next k — 1 times. During this silent period, flow i’s
feedback ACKs still come in from the WAN pipe and get
queued, resulting in the delaying of ACKs. Intelligent
stopping and resuming ACK-pacing of flow i € class ¢
guarantee that BW; = BW,/n.

3.2.2 Efficient Implementation: Relocating the
Queuing Delay

To determine the number of ACK-pacing timeouts to skip
for flow 4 (the k—1 in the above example), Per-Flow
Accounting (i.out in Fig. 4 and PFA in Fig. 5) of additionally
enqueued packets is introduced. Whenever PFA finds
additionally enqueued packets of flow i, QueueRelocator
(line 03 in Fig. 4 and QR in Fig. 5) quench the pacing of flow
i’'s ACK (PFAQ); in Fig. 5) to relocate the queuing at
PCDQ,. to the PFAQ);. Namely, when the first shaping
point (PCDQ,) discovers that flow ¢ is over its share,
instead of queuing data packets at the first shaping point,
the PostACK queues additional packets in PFAQ; as ACKs
by temporarily quenching the pacing of flow i’s ACKs. As
implied in Fig. 4, i.out is always nonnegative because a
sender always emits a packet into the PCDQ. first (ie.,
i.out = i.out + 1 in Fig. 4) before its corresponding ACK is
released (i.e., i.out =4.0out — 1 in Fig. 4). Similar to TCR,
generally, PostACK expects one data packet (i.e,

WEI ET AL.: ASSESSING AND IMPROVING TCP RATE SHAPING OVER EDGE GATEWAYS

Initialization:
ACK-pacing timeout interval for class ¢ A. = Aéft%
ACK-pacing timeout function for class ¢ = OnClassTimeout
i.out = 0 /* number of additionally enqueued packets +1 */
Algorithm:
01 OnClassTimeout(class c){ /* per-class timer for ACK-pacing */
02 for each flow i in class ¢{
03 if (i.out > 1) /* QR: skip this pacing of ACK for flow i */
04 1.out = t.out — 1
05 else
06 release an ACK
07 i.out = t.out — 1
10 }
11 PCDQ_Enqueue(pkt m, class ¢){ /* enqueue m to PCDQ. */
12 t=PerFlowClassify(m) /* find m’s state information */
13 t.out = t.out + 1
14 /* original PCDQ_Enqueue code for m and ¢ goes here */
15 }

Fig. 4. Efficient PostAck implementation: on-off variant of ACK-pacing.

t.out = i.out + 1) after releasing an ACK of flow ¢ (ie.,
t.out = i.out —1). However, if two data packets enter
PCDQ); (i.e., i.out = i.out + 1 for two times) after releasing
an ACK, one additionally enqueued data packet (i.out > 1)
triggers the QR to stop the next ACK-pacing of flow .

4 MODELING AND ANALYSIS OF ACK CONTROL
SCHEMES

This section analyzes the microscopic behaviors of TCR/
PostACK-applied TCP flows. A packet-level model, time
series snapshot (TSS) model is presented to model the
CWND evolution. This facilitates the modeling of TCP
goodput (i.e., effective throughput) and buffer requirement
at the edge gateway.

4.1 Time-Series Snapshots Model
4.1.1 Description of Time Series Snapshots (TSS)
Model

The behaviors of a TCP flow i bounded by bandwidth BWV;
are modeled in a queuing model (Fig. 6a). The model
indicates the packets ready to be sent by the sender, queued
at the edge gateway, and sent by the edge. Fig. 6b displays a

Traffic Source

265

sample snapshot of the model taken at the end of a D,,
(assumed to be a constant). Each tiny diamond stands for a
packet, with the bounding rectangle specifying the packet
size in the vertical axis and the time at which the packet is
sent by the edge gateway within that D,, in the horizon
axis. Each diamond is also accompanied by a number
indicating its sequence within its CWND round (defined in
Section 2.4.2). Packets one to four can be scheduled out
within the D,, and are evenly distributed across the D,, if
the scheduler clocks out packets using a fine granularity.
Packets five to eight are not allowed to be forwarded within
the D,, and, thus, are queued at the edge; packets with
numbers above eight are queued by the sender if the
window size (= min(W,,,W,,)) is eight (W, = 11, W,, = 8).
Queued packets (i.e., numbered 5 to 11) are aligned to the
right of the D,,.

The time series of snapshots (TSS) model (Fig. 6c) is
comprised of consecutive snapshots. TSS is a packet-level
model analogous to the mode