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A B S T R A C T

This work compares the performance of different combinations of data sources for intrusion detection in depth.
To learn and distinguish between normal and malicious behavior, we use machine learning algorithms and
train three typical models on three kinds of datasets: system logs, packet flows and host statistics. Unlike
other studies, our study captures and monitors the behavior from multiple data sources in order to catch
security attacks. Our aim is to figure out how to build the most effective dataset for machine learning with a
combination of multiple sources. However, since there are no such datasets which have been generated from
multiple sources for given attacks, we show how to build and generate a dataset with three data sources. We
then compare the F1 score of the detection by applying machine learning algorithms for various combinations
of the data sources. Our evaluation results show that the dataset of host statistics results in better performance
(0.91) than traffic flows (0.63) and system logs (0.44) because it has the highest average F1-score in the three
stages of attacks, while the other datasets may have poor F1-scores in some of the stages, particularly in the
stage of impact. However, in the initial access stage of attacks, the dataset of logs performs the best (0.94), and
the packet flows are suitable for detecting network DoS attacks (0.82). Furthermore, running this detection
with all three data sources results in minor overheads of at most 2.1% CPU utilization. Finally, we analyze the
important features of each model, such as the number of logs generated by apache-access, in.telnetd
and postfix in the dataset of logs, SrcBytes and TotBytes in the dataset of flows, and MINFLT, VSTEXT and
RSIZE in the dataset of statistics.
. Introduction

The rapid development of networking technology in recent years
as seen a significant boom in connected devices. However, this also
oses threats to network infrastructure because widespread connected
evices also increase the surfaces for attackers to exploit numerous
ulnerabilities over a wide area. For example, many of such connected
evices are low-cost ones that are subsumed under Internet of Things
IoT). Because they are often engineered for a dedicated purpose and
ay have limited resources such as energy and computation allocated

o sufficient security protection, they are likely to become good tar-
ets for attackers [1]. The existence of vulnerabilities in a large-scale
etwork of connected devices exacerbate the havoc that attackers can
reak [2]. Damages to the connected frameworks, such as critical

nfrastructure like power plants, may sometimes even cost lives [3]. To
itigate such security issues, deploying an intrusion detection system

IDS) is the most common practice.

∗ Corresponding author.
E-mail address: pclin@cs.ccu.edu.tw (P.-C. Lin).

As its name suggests, IDS refers to a security system that detects
intrusions into a protected network or system. There are two major
detection approaches: signature-based and anomaly-based detection.
The former looks for known signatures of intrusions, while the latter
looks for anomaly deviated from the normal model. As a result of
fast mutation of malware and attack variants, signature-based methods
eventually fail to identify a large number of new attacks, particularly
zero-day ones. Anomaly-based methods can identify attacks by mon-
itoring exceptions or significant deviation of activities from a given
normal profile [4]. However, the challenge is how to sufficiently de-
fine a normal profile, given the diversity and complexity of computer
networks. Machine learning (ML) promises to be the tool to tackle the
problem because of its ability to learn the complexity of a system and
network activities [5–7].
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Machine learning typically needs a representative dataset to train
a specified model. In the context of ML-based intrusion detection, the
dataset can be derived from two major sources: external and internal
activities of the hosts. External activities are observed primarily from
packet flows, while internal activities are recorded in the system logs
generated from the services running on the host’s system and the host’s
statistics of process activities. Such system logs contain a sequence
of commands and actions carried out by the users or processes, and
the host statistics include numeric data about the resource usage on
the system. These internal activities provide useful information that
cannot be found in network traffic, such as memory exploitation, and
leveraging such information on a host-based IDS (HIDS) can comple-
ment the detection on a network-based IDS (NIDS). Thus, both IDS
types can work together. An NIDS can be deployed at the network
border to protect the hosts in the network, and can correlate the alerts
from different hosts for a global view of malicious activities (e.g., to
detect port sweeping). An HIDS is good at detecting malicious system
activities at the host level, such as disk wipe.

Because attacks may involve various exploitation techniques, to
increase the reproducibility of this work, we will describe each attack
scenario precisely, so that others can reproduce our work. We use
a set of definitions termed ATT&CK matrix [8], which involves pre-
defined tactics and techniques organized by the MITRE cooperation and
help to structure the attacks accurately. For example, in the ATT&CK
definition, the attack patterns of a Mirai botnet [9] can be split into
three stages, initial access, command and control, and impact. Note
that a separate data source is preferred for each stage. For example, in
the initial access stage, system logs are preferred, but in the command-
and-control stage, packet flows are the priority selection. Finally, in the
attack stage, statistics data are dominant. The goal of this work is to
investigate whether detecting attacks from a combination of different
data sources is better than from a single source or not in a realistic
environment. For this purpose, we create a dataset from multiple data
sources, and propose an ML-based detection approach that can feed
and process data from the sources to empirically evaluate the detection
performance.

The process of ML-based multi-datasource IDS is at the early stage
of development. Some anomaly-based IDSs target either external be-
haviors [5,10] or internal behaviors [6,7]. However, using only a
single data source in such studies may not help much in the case of
complicated attacks, which may not leave key footprints in that data
source. We believe that multiple data sources can reveal important
information about sophisticated attacks, e.g., an abnormal transition
of behavior or a repetition of a suspect source over time. Although the
idea of combining network and host information for intrusion detection
is not novel [11], to the best of our knowledge, there is no previous
work dedicated to assessing the detection with multiple empirical data
sources in various attack stages.

In this work, we also analyze each ML model to determine the
effective features and how they influence predictions. We also aim
to determine the optimal tuning parameters that enhance system per-
formance. By collecting three datasets and applying ML to them, we
determine the most preferable combination of datasets for each attack
stage. Note that, for fair comparison, we align and extract the data
sources by timestamp, and then use our pre-trained models for a voting
ensemble. Once we calculate the F1-scores of all the combinations, the
evaluation results are compared in detail.

We conducted the experiments on a Python-based platform to verify
our proposed method. The workflow was as follows. First, we tested
seven combinations of data sources to see which combination yielded
the best performance. Second, we tuned various hyper-parameters to
enhance the performance and accelerate the speed of the overall sys-
tem. Finally, we analyzed the features in the models to understand how
they affected predictions.
2

The main contributions of this work are as follows:
• We are the first to empirically assess the performance of intrusion
detection from multiple data sources, and also design the ML
method that can effectively combine the features from these
sources for the detection.

• The detection performance was evaluated in multiple attack
stages, and the most effective features in individual stages were
also investigated and underlined.

• The source codes and the created datasets are released for future
studies in the research community.1

The rest of this paper is organized as follows. Section 2 reviews the
background knowledge related to this work and provides a compar-
ison between earlier works and our proposed solution. The problem
statement is formulated in Section 3. Section 4 describes in detail
our core multi-datasource ML solution. Section 5 presents a sequence
of configurations and implementation. The experimental results and
analysis are given in Section 6. The final section concludes this paper
and considers future work.

2. Background and related work

In this section, we review the staged attack scenarios for collecting
system behaviors. Then we briefly review XGBoost and ensemble,
which are the algorithms for evaluating our datasets. Finally, we discuss
earlier papers using ML and IDSs to predict anomalous behavior.

2.1. ATT&CK

Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK) [8] is a knowledge base designed by the MITRE corporation.
It is aimed at describing the behavior of attacks, as well as their target
platforms, and provides a taxonomy for both offense and defense. It
can also help people to emulate adversarial scenarios and test defenses
against common attack techniques. This project involves some core
components such as tactics and techniques. The tactics depict the
goals of the stages of attack, and the techniques indicate ways to
achieve those goals. Some tactics of ATT&CK are applied in this work,
e.g., initial access, command and control, and impact. We adopt these
tactics and techniques to design attack scenarios, and reproduce them
on our testbed to collect various attack behaviors.

2.2. Attack scenarios

The ATT&CK model precisely defines the attack scenarios. The
design of such scenarios should follow two principles: popularity and
reproducibility. In the former, the scenarios should take place in the
real-world; in the latter, the attacks can be replayed and give similar
results.

Table 1 summarizes the five attack scenarios used in this work,
which we separate into three main stages: initial access, command and
control (C&C), and impact. Initial access is the first attempt to get into
a target, and then we attempt to install a backdoor or create accounts
to deliver commands to control the target for further usage. Finally, we
force the compromised target to execute various commands that impact
on itself or infect more targets. Each attack scenario is briefly described
as follows.

• Botnet. A bonet consists of compromised connected devices,
namely bots, which are controlled by external bot herders via the
command and control (C&C) channel. Botnets are still common
in the Internet. To replay this attack, we select the open-source
malware, Mirai, which consists of the scanner/loader and the
C&C server. The scanner uses telnet brute force to scan and
try to access those devices with weak passwords. Once it logs

1 The datasets and source code are available at https://bit.ly/3rbTbiN.

https://bit.ly/3rbTbiN
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Table 1
Attack scenarios.

Attack scenario Initial access C&C Impact

Botnet Telnet brute force C&C network Network DoS
Ransomware Vulnerability exploitation Backdoor Data encrypted for impact
Resource hijacking Vulnerability exploitation Backdoor Monero mining
Disk wipe Vulnerability exploitation Backdoor Disk wipe
Endpoint DoS Vulnerability exploitation Create accounts Endpoint DoS
into the devices, it will use the loader to download a malicious
binary executable. After the binary has been executed, the C&C
server will deliver commands and control the injected devices.
The victims may further be used to make some impact, such
as launching network denial-of-service (DoS) attacks or infecting
more targets in the network.

• Ransomware. As the scalability of connected devices or hosts
becomes greater and the services they provide are closer to daily
life, ransomware poses a serious threat to computer systems.
Ransomware often encrypts sensitive files with cryptographic
algorithms, and users need to spend an amount of money to
retrieve their data.

• Resource hijacking. Resource hijacking leverages the resources
of a victim’s machine to obtain benefits. The most common sit-
uation is to garner virtual currency. Resource hijacking usually
consumes significant system resources, and then degrades normal
usage.

• Disk wipe. Disk wipe aims to delete important or sensitive files
and directories on a target machine, and it may have serious
impact if the wiped content such as master boot record (MBR)
is related to core system functionality.

• Endpoint DoS. Endpoint denial of service aims to block the
availability of normal service to users by exhausting a system’s
resources. Different from network DoS, endpoint DoS attacks
may affect the normal usage of a service without saturating the
network used to access the service.

2.3. XGBoost and ensemble

Once we have completed reproducing attacks and acquiring the
datasets, we can build the ML models from these datasets. We select
XGBoost as the training algorithm for its proven effectiveness and
scalability. After the training phase, the ensemble will continue to
predict anomalies, so that we can compare the performance of each
combination of datasets. The following details XGBoost and ensemble.

• XGBoost [12] XGBoost, the abbreviation of eXtreme Gradient
Boosting, is an advanced version of a gradient boosting algorithm
for solving classification problems. Like its original version, XG-
Boost uses gradient descent to minimize loss errors, generates
multiple weak prediction models, and combines them into an es-
timator. However, it enhances the original version by adding tree
pruning and sparsity-aware split fitting for high computational
efficiency. It also supports parallelization and is cache-aware.
Furthermore, XGBoost uses shrinkage and column subsampling to
further prevent over-fitting. It is also a scalable algorithm, so that
more attack scenarios as well as data in the future can be added.
By using XGBoost, we expect to be able to build robust models for
three network or system behaviors, and use them for the further
ensemble process.

• Ensemble [13] Ensemble is another common technique in ML. It
combines multiple models for making decisions; it will thus min-
imize errors and obtain better prediction results. Despite many
ensemble algorithms, we just focus on two of them in this work,
boosting and stacking. Boosting generates multiple weak models,
assigns them different weights, and sequentially combines them
3

just like XGBoost. Stacking is much more intuitive since it collects
the predictions from each model, and then combines them to
make the ultimate decision. In this work, we use boosting to
build the models and stacking with the decision strategy to make
predictions. The reason for using boosting is to leverage multiple
models to minimize errors and increase prediction accuracy. As
for stacking, we use three models to represent three system or
network behaviors to predict anomalies because we wish to test
each type of behavior and compare the accuracy of each dataset
combination.

2.4. SHAP [14]

SHAP (SHapley Additive exPlanations) is a game-theoretic method
to explain models, and it can help understand why a model makes a
particular prediction. SHAP assigns each feature a value of importance
for a certain prediction, so that one can analyze the values to interpret
the models. It also provides data visualization tools for generating a
summary plot of a model. For an overview of the feature’s importance,
we can plot the SHAP value of every feature for every data point in the
dataset. The colors of the data points represent the feature value, and
a feature with a higher SHAP value tends to have a higher prediction
value. We can calculate the mean absolute value of the SHAP value for
each feature to obtain its importance value.

2.5. Related works

Table 2 summarizes the current solutions to intrusion detection with
network or system behaviors by ML. The approaches are separated into
three main categories based on the input of the model. For packet flows,
we summarize some state-of-the-art solutions to traffic classification
problems as well as their datasets and algorithms [5,10,15]. These
ML-based algorithms have different ways of selecting features. Some
works use pre-defined features such as packet statistics [16–18], while
the others prefer to extract the features automatically. For example,
Wang et al. [19] use CNN to learn the special features and then apply
LSTM to learn temporal features. Hwang et al. [5] also uses CNN to
extract such features and an autoencoder to learn benign traffic. These
related studies use different algorithms to make predictions; some apply
supervised learning algorithms like random forest [17] or SVM [18],
while the others use unsupervised deep learning algorithms such as
autoencoder [20].

The most significant works that leverage system logs preprocess raw
logs in a similar way: parsing the logs into log templates and combining
them into a sequence of templates based on the time or sequence
number. The main difference between each work is the algorithms used.
Some focus on unsupervised learning. For example, Xu et al. [21]
uses principal component analysis to analyze feature vectors. Otomo
et al. [23] applies CVAE to log time series data and derive latent
variables, and then use them to predict anomaly, while Zhang et al.
and Du et al. [6,24] leverage LSTM to learn the temporal information
of a log sequence. Many approaches try to develop supervised learning
methods. For example, Sheluhin et al. [22] apply three methods:
decision-tree, k-NN, and SVM. By contrast, Du et al. [6] prefer to
use a previous log sequence to predict the most likely next sequence.
For host statistics, few papers discuss this topic because of the paucity
of supported datasets. The most closely-related work is from Ham
et al. [7], which vectorizes collected data as features and uses SVM

to detect malware on an Android system.
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Table 2
ML-based anomaly detection methods.

Data source Paper Dataset Algorithm Performance

Packet flow

[16] Self-collected Autoencoder 100% (TPR)
0.007 ± 0.01 (FPR)

[20] NSL-KDD
CICID 2017

Autoencoder 99% (Acc)

[17] ISCX 2012 Word embedding, CNN, RF 99% (Acc)

[19] DARPA 1998
ISCX 2012 FPR

CNN+LSTM 99% (Acc)

[18] KDD99 Autoencoder+SVM 95% (Acc)
[15] UNSW-NB15 Random forest 99.34% (Acc)

[5] USTC-TFC201
Self-collected

CNN+Autoencoder 0.99 (F1)

[10] CICIDS2017 Autoencoder + VAE 0.62 ∼ 0.98 (AUC)

System Log

[21] HDFS, Darkstar PCA, Decision Tree 69.6% (Acc)
[22] HDFS SVC, DT, KNN 92% ∼ 99% (Acc)
[23] SINET4 CVAE + clustering 84.6% (Pre)

[24] HDFS
Microsoft industrial dataset

Attention-based Bi-LSTM 0.81 ∼ 0.99 (F1)

[6] HDFS, OpenStack LSTM 0.96 ∼ 0.98 (F1)
[25] HDFS, BGL LSTM 0.95 ∼ 0.96 (F1)
[26] BGL word2vec + RF 0.88 (F1)

Host statistics [7] Self-collected SVM 99.9% (TPR)
0.4% (FPR)

All Ours Self-collected XGBoost Up to 0.99 (F1)
Historically, there are various favored datasets such as HDFS and
DD99 that feature in many studies. An HDFS dataset is a collection
f system logs generated by applications running on Hadoop-based
istributed file systems. It is labeled by domain experts and contains
round 3% of abnormal data [27]. KDD99 is a widely-used dataset for
valuating intrusion detection methods [28]. It contains 41 features
elated to network traffic and records four kinds of attacks. We are
lso aware that there are several advanced techniques of feature char-
cterization, representation and extraction presented in recent research
tudies [29–32]. Despite a number of existing datasets and methods,
t is a challenge to figure out which combination of datasets yields
he best detection results. Furthermore, no existing dataset satisfies our
equirement of collecting datasets from multiple sources. In this work,
e will not only build models to test three datasets simultaneously but
lso generate those datasets.

. Problem on multi-source dataset comparison

In this section, we outline the notations used in this work and
ormalize the problem we wish to address.

.1. Notations

Table 3 lists the notations applied in this work. We assume that
n HIDS is able to monitor the packet flows, system logs, and host
tatistics on a system simultaneously, and detect attacks from the data
ith machine learning. Therefore, we collect three kinds of datasets

n this work: packet flow dataset 𝑃 , system log dataset 𝐿, and host
statistics dataset 𝑆. Suppose that the data will be preprocessed and fed
into the ML models for training and testing. We generate a dataset 𝑋
by aligning and extracting the data points from the above three sources
in combination, and separate the flows/rows by the timestamps of the
data points in this combined dataset. The three pre-trained models are
denoted by 𝑀𝑃 ,𝑀𝐿, and 𝑀𝑆 , and are derived from the ML-based
lgorithm, i.e., XGBoost in this work, in order to learn the behavior
n the three datasets. Finally, we use a detection table to record the
1-scores of each data source for an attack scenario.
4

Table 3
Notation table.

Category Notation Description

Datasets

𝑃 Packet flow dataset
𝐿 System log dataset
𝑆 Host statistics dataset
𝑋 The dataset from three sources

Models
𝑀𝑃 Pre-trained packet flow model
𝑀𝐿 Pre-trained log model
𝑀𝑆 Pre-trained statistics model

3.2. Problem description

Given the multi-source datasets 𝑃 ,𝐿, 𝑆 and the three pre-trained ML
models 𝑀𝑃 ,𝑀𝐿,𝑀𝑆 , we aim to test on the data sources with seven
combinations in total, which involve three models from a single data
source, three models from two data sources in combination, and one
from all the data sources. Based on the results we observed, the final
task is to figure out which combination of data sources yields the best
result. To avoid the impact of data imbalance problems, we fine-tune
the parameters to balance the proportions of benign and malicious data
in each dataset. Finally, we detail the hyper-parameter selection of the
models to maximize detection performance.

4. Multi-datasource machine learning and ensemble method

In this section, we describe construction of our multi-datasource ML
model. In Section 4.1, we give an overview of our proposal. The details
of dataset preprocessing and aligned extraction are given in Sections 4.2
and 4.3. Feature importance and threshold decisions are covered in Sec-
tion 4.4, and finally, Section 4.5 summarizes the extensive discussions
about the ensemble method and the observed results.

4.1. Overview

This work develops a method to compare multiple data sources for
ML-based detection. To compare the three data resources, we replayed
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Fig. 1. Flow chart of this work.

Fig. 2. Architecture overview.

ttacks on the testbed and collected three kinds of data simultaneously.
ig. 1 presents the overview of the whole work, and Fig. 2 describes the
rchitecture of the data flow. First, we built a testbed to generate the
ataset from the three data sources, and then reproduced the attack
cenarios described in Section 2 to capture the network or system
ehaviors. After collecting the data, we preprocessed and divided them
nto three datasets, and fed them into the ML models. The testing sets
ere then extracted from these three datasets after the preprocessing

teps. We carried out multi-datasource ML and ensemble on the dataset
ith the aligned extraction (elaborated in Section 4.3) to evaluate the
erformance and efficiency of every possible combination of the data
ources.

.2. Data preprocessing

After replaying attacks on the testbed, we had three kinds of
atasets: packet flow dataset 𝑃 , system log dataset 𝐿, and host statistics

dataset 𝑆. The data then had to be preprocessed before they were fed
into the ML models. Below we will discuss in detail how this process
works.

• Packet Flow. To acquire the packet flows, we recorded the packet
information during attack reproduction and used a tool called
Argus to generate flow information and divide the flows into
subflows, based on time windows. The duration of data points in
a subflow had to be within the time window size. We recorded
and utilized only the packet headers; the header information was
still available even if the payloads were encrypted. We used the
features such as source and destination IP addresses to classify
normal and malicious data and label them2; thus, these features
could not be used in the training and thus should be filtered out.
We pre-defined a set of features from the dataset and describe
them in Section 5.3 If the flow features consisted of numeric
values such as duration, we could directly apply such values;
other features, e.g., features in strings, were transformed into
integers by hashing. It is worth noting that to ensure the values
of each feature were within the same scale, we applied min–max
normalization to transform the data into values between 0 and 1.

• System Log. The first step of system log preprocessing is to
separate the raw logs based on the hosts on which they are stored.
The separation is based on the host field in the dataset. The

2 The labeling was feasible because the IP addresses of the attackers and
he victim were known on the testbed.
5

next step is log parsing, which transforms the raw logs into log
templates (see Table 4 in Section 5.3 for examples), in order to
extract the common information from the raw logs and discard
redundant information such as IP addresses or device identifiers
in the logs. We used a tool called drain to parse the raw logs,
and assign the corresponding log templates to each raw log. The
final step is to generate counting vectors to record the number
of log templates that occur within a given time slot (5s in this
work). Each tuple of the counting vector represents the number
of a certain log template, and the number of tuples is equal to
that of unique log templates.

• Host statistics.We collected the host statistics related to the com-
mands on the system within a fixed time slot. Preprocessing the
statistics data is quite similar to that of packet flows, e.g., filtering
out unusable features, and the features with numeric values will
be directly fed to the model. We also applied normalization on the
statistics data for the same reason as that for the packet flows.

4.3. Dataset with aligned extraction

The goal of this work is to compare the ability of attack detection
for each combination of data sources. If we test each dataset separately,
differences in the time scale or the amount of data may affect the
result. Thus, we may not know how each attack stage affects the overall
detection performance; existing datasets have such key constraints. To
obtain reasonable results, we compared the datasets within the same
time scale as well as in the same attack scenario and stage. Through the
separate collection of each dataset, we have the detail with each stage
information as well as with similar timestamps. Suppose that the three
datasets 𝑃 ,𝐿 and 𝑆 are split into training sets and testing sets at a ratio
of 70–30. We align and extract the testing sets of the three data sources
by timestamp to generate a dataset, denoted by 𝑋. Fig. 3 illustrates
the concept of the aligned extraction. In this process, we can make
predictions in the time slots. If a value of some data source is missing
in a time slot (e.g., the system is under attack but no data remain in
the packet log), the missing values may degrade the performance of
the learning model. Given the accurate launch time of each attack, we
can label the attack activities by their timestamp for the ground truth
of each data point. We then use the training datasets to train the three
models 𝑀𝑃 , 𝑀𝐿, and 𝑀𝑆 . As a result of the use of XGBoost, these three
models form a tree structure that looks like a decision tree, but is more
complex. Finally, we use these models on the dataset 𝑋 to compare the
results. The detail of how to use the generated dataset for ensemble is
described in Section 4.5

4.4. Feature importance and threshold decision

After training the three models, we could evaluate the importance
of the features. We leveraged SHAP [14] to assign an importance value
to each feature to know which feature affects the prediction most and
how the features influence the predictions. Initially, we calculated the
SHAP value of each data point in each feature, and then took the mean
absolute of the values to obtain the importance value of each feature.
Then we inspected the SHAP values of the data points in the feature.
If the data points with large feature values had large SHAP values, the
features tended to be positive for the prediction.

Other than feature importance, we also had to decide the thresh-
olds for the three models. Because the objectives of these models are
logistic regressions, their outputs are probabilities of whether the input
is positive or not to the prediction. For this purpose, we mapped a
logistic regression value to a binary category. If the output value was
larger than the specified threshold, the data point was considered being
from malicious behavior. Moreover, the proportion of benign data and
malicious data in the training dataset can significantly influence the
value of threshold. Also, since the amount of training data is different
for each data source, the threshold of prediction for each model may be
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Fig. 3. Dataset with aligned extraction, where × in red means missing values.

different. For a fair comparison, we determined the thresholds which
made the most accurate predictions with the best F1-score for each
model by using grid-search on the pre-trained models and the training
dataset. The search will try multiple threshold values and determine
which threshold yields the optimal F1-score on the training dataset.

4.5. Ensemble

Each data point in the dataset after the aligned extraction involves
the values from the three data sources in each time slot. We fed the val-
ues from each data source into its corresponding pre-trained model and
recorded the prediction value. If the value was larger than the threshold
for this model, the prediction result would be regarded as malicious,
meaning that the value is related to malicious behavior. If there was
any malicious prediction within a time slot, the whole data point in
the time slot would be from malicious behavior; otherwise, it was from
normal behavior. If a data source was missing in a time slot, we marked
the prediction of this data source in that time slot as normal. Thus,
each data point would result in up to three prediction results in the
three models, and we used the ensemble method to determine the final
result. For each combination of data sources, if one data source yielded
malicious prediction, then the whole data point would be classified as
malicious. For example, as Fig. 4 shows, for the three data sources in
time slot 2, the prediction of the data point in the dataset was marked as
malicious if one of the data sources produced malicious prediction. This
design is so because we consider false negatives (i.e., malicious data
points predicted as normal ones) as more serious than false positives
(i.e., normal data points predicted as malicious ones). After getting all
the prediction results, we used these values and the ground truth to
evaluate the F1-scores, which are recorded in a detection table. In this
table, each row represents a combination of data sources, and each
column represents an attack stage. From this table, we can then identify
the ability of each combination of data sources to detect the attack
stages.

5. Implementation

In this section, we describe the implementation of this work in
detail. In Section 5.1, we detail our testbed and the way to reproduce
attacks on it. The data collection and preprocessing methods are de-
scribed in Section 5.2. In Section 5.3, we interpret how to use the
datasets to train the ML models. The open-source tools and modules
used in this work are explained in Section 5.4
6

Fig. 4. The ensemble approach for each time slot.

5.1. Attack reproduction

Fig. 5 is the overview of our testbed. An attacker server is responsi-
ble for launching attacks and sending commands to the victims, and a
vulnerable target server is under attack. We also have some vulnerable
devices that can be exploited by attacks and some non-vulnerable
devices that are immune to attacks. All the systems of the devices are
Unix-based. To simulate benign data, we have a benign server running
normal services such as a web application and an email service that
interact with both vulnerable and non-vulnerable devices. Finally, a
data logger server aggregates the three data sources from each device,
and carries out data-preprocessing and ML. All the machines are virtual
ones for better reproducibility in this work.

After preparing the testbed, we then replayed the following attacks
on it. The attack scenarios are introduced as follows:

• Botnet. First, we created a C&C server of the Mirai botnet on
the attacker server, and then scanned the vulnerable devices
with weak telnet passwords. Once the credentials of devices were
found, Mirai then injected a malicious binary and executed it.
When enough bots have been exploited, the attack server would
give commands to those bots to launch a DDoS attack on the
target machine. We recorded the timestamp of each attack stage
and labeled the system behaviors under attacks.

• Ransomware. We ran open-source Bash-ransomware to emu-
late the attack. First, we exploited a vulnerability by unix/
unreal_ircd_3281_backdoor, a Metasploit module, on an
IRC service to access the target, and then exploited a docker dae-
mon vulnerability by linux/local/docker_daemon_
privilege_escalation to perform privilege escalation. We
inserted a backdoor after obtaining a root account. Finally, we
transferred and executed the malicious binary code to encrypt
files based on the pre-defined file extensions. After the encryption
phase, users on the victim machines would receive a website link
for paying the ransom.

• Resource hijacking. In this scenario, we first exploited a vul-
nerability on the Apache Continuum service by linux/http/
apache_continuum_cmd_exec to obtain access to the target,
and then inserted a backdoor by linux/local/service_
persistence into it. Finally, we transferred and execute the
mining program to dig Monero currency.

• Disk Wipe. In this scenario, we exploited the existing Ruby on
Rails web application vulnerability by multi/http/rails_
secret_deserialization on the target machine to obtain
access to it with the root privilege, and then inserted a back-
door by linux/local/service_persistence for further
control. Finally, we downloaded the disk wipe program and then
executed it to delete some important files and directory. In this
case, we deleted the entire /boot directory.
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Fig. 5. The testbed architecture.
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• Endpoint DoS. In this case, we exploited a vulnerability on the
IRC service by unix/unreal_ircd_3281_backdoor and
the docker daemon by linux/local/docker_daemon_
privilege_escalation again to get the root account. After
obtaining this account, we created an account on the victim
machine, posed as a normal user, and executed a malicious fork
bomb to hinder the normal process.

Note that it is possible to select different exploits and malware in
he above attack scenarios (e.g., different types of botnets), and the
bove selections inevitably lead to some bias in the generated datasets.
owever, given numerous exploits and malware samples in the wild,

t is difficult to exhaustively try them all. Despite this limitation, we
elieve that our selections can still represent certain common types
n the attack scenarios, and it is definitely beneficial to cover more
xploits and malware in the future work.

.2. Data collection and extraction

When launching attacks on the testbed, we used existing tools to
ollect both benign and malicious data. For packet flows, we collected
i-directional session flows in the PCAP format to avoid duplication
n both flow directions. We collected the system logs from multiple
evices or hosts, and aggregated them into one machine. The host
tatistics were derived from the information of each process in a time
lot.

After the collection, we extracted useful information from the raw
ata. For packet flows, we used existing tools to transform PCAP files
nto 5-tuple information. For logs, we used a log parser to transform the
aw logs into log templates for further usage. For host statistics, because
he collection tool already provided the features, we skipped further
reprocessing to generate the dataset. During the attack reproduction,
e recorded timestamps in each attack stage, and then used the infor-
ation to label data. Other than the timestamp, we also referred to

arious features such as IP addresses in the packet flows or commands
n the host statistics to label data points because we reproduced attacks
n our testbed, and knew which IP addresses or commands generate the
bnormal data. Note that the features used to label data points would
ot be involved in the training phase because the model would learn
he ground truth and predict perfectly.

.3. Feature selection for machine learning

The selection of input features depends on the dataset and should
e determined beforehand. We make the raw logs structural, and
erge multiple logs into a sequence to make them contain temporal
7

information. The input features of the logs are the number of each log
template. Table 4 lists only some examples of log templates and their
descriptions as there are 88 log templates in total. Because the other
two datasets already have temporal information and numeric values,
the only thing we do is pre-defining a set of features and transforming
those features with non-numeric values into numeric ones. Tables 5
and 6 show the features for packet flows and host statistics. For these
two datasets, we used almost every feature from the output of the
data extraction phase to reduce the manual intervention of selection,
and we also wanted to explore which features contributed more to the
prediction.

5.4. Open source tools

Table 7 summarizes the five categories of open source tools in
this work. For the data collection, we used tcpdump to capture the
acket information and rsyslog as well as atop to aggregate the

logs and accounting information on each machine. After collecting
the data, we extracted meaningful features from the raw data by
Argus to preprocess the raw packet flows in the PCAP format, and
by drain [33] as the log parser to transform the raw logs into the
log templates. We also used existing tools to build the environment for
launching the attacks. For example, we leveraged Metasploit [34],
which contains hundreds of modules for exploiting vulnerabilities of
the target machines. Because it is beyond this work to find out the latest
vulnerabilities on the existing applications or systems, we just used a
system with existing vulnerabilities (see Table 8). Metasploitable
is suitable for this purpose. It has Linux and Windows versions that
provide many built-in vulnerabilities. Another tool, pymetasploit,
can provide an interface to manipulate Metasploit by Python scripts.
We used it to automate the process of attack reproduction, and this tool
helped us to record the timestamp and label the data automatically. The
next category is related to ML-related tools. We used existing functions
in the scikit-learn modules to manipulate data such as splitting
the training and testing datasets, and build the ML models with the
XGBoost library. After training the models, we could leverage SHAP to
analyze the features per model. Finally, we modified and compiled the
malicious source codes such as Mirai botnet, Bash ransomware, XMRig
and wipe at our custom configuration to obtain the malicious binaries.

6. Experimental results

In this section, we present the experimental results of this work. In
Section 6.1, we cover the configurations of the experiments, and com-
pare the internal and external behaviors in Section 6.2, and detail the
important features and the SHAP values in each model in Sections 6.3

and 6.4.
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Table 4
Examples of log templates.

Log template Description

‘‘GET ⟨*⟩ HTTP/1.1’’ 200 ⟨*⟩ ‘‘-’’ ‘‘python-requests/2.16.0’’ Generated when apache-access receives requests
Connect from ⟨*⟩ (⟨*⟩) Generated when in.telnetd is successfully connected
Connect from unknown [⟨*⟩] Generated when postfix is successfully connected

FAILED LOGIN ⟨*⟩ on ⟨*⟩ from ‘⟨*⟩’ FOR ⟨*⟩ Generated when the login fails to authenticate
Authentication failure
Table 5
Features of packet flows.

TotPkts TotBytes Dur Mean StdDev Sum Min Max

SrcPkts DstPkts SrcBytes DstBytes Rate SrcRate DstRate

Table 6
Features of host statistics.

PID RDDSK WRDSK WCANCL DSK MINFTL MAJFTL VTEXT

VSIZE RSIZE VGROW RGROW MEM TRUN CPU

Table 7
List of open-source tools.

Category Name Functionality

Data
collection

tcpdump Collect packet flow data
rsyslog Collect raw log data
atop Collect statistics data

Feature
extraction

argus Extract packet features
drain Parse raw logs into log templates

Attack
framework

Metasploit Provide modules to exploit vulnerabilities
Metasploitable3 Provide service with built-in vulnerabilities
pymetasploit Provide an interface to control Metasploit

ML
framework

xgboost A framework to train and test ML models
scikit-learn Python module for machine learning
SHAP Game-theoretic method to explain ML models

Malicious
code

Mirai Famous botnet source code
Bash ransomware Simple bash cryptoware
XMRig High-performance Monero miner
wipe Erase files from magnetic media

6.1. Parameter configurations

The configurations of this work are as follows: the time slot of the
dataset with aligned extraction, the hyper-parameters, and the predic-
tion threshold of each model. The time slot length of the dataset 𝑋 is set
to 5 s. Table 9 summarizes the parameters for the model training in this
work. The training in XGBoost is carried out over 100 epochs. To reduce
the model’s complexity and avoid over-fitting, we set the maximum
depth of the model as 2. We assign a learning rate of 1. The objective
is to use logistic regression for binary classification, and the output
is the probability of abnormality. Finally, we also specify a built-in
parameter in the XGBoost framework, 𝑠𝑐𝑎𝑙𝑒_𝑝𝑜𝑠_𝑤𝑒𝑖𝑔ℎ𝑡, which controls
the balance of normal and abnormal training weights by scaling the
gradient for the malicious data points relative to normal ones. Here we
set it as 10 to address the data-imbalance problem.

After training with each data source, we get three models and
need to assign the best thresholds for each model. Table 10 shows the
threshold and the corresponding F1-score of each model. We use grid
search on the training dataset to evaluate the thresholds. For each type
of model, the highest F1-score can reach almost 0.99, showing that all
the models can learn from data and detect abnormality very well.

6.2. External vs. Internal behavior

After training three models, we then tested various combinations of
the models on the dataset 𝑋. Fig. 6 shows the result of each F1-score on
the stage basis. We used all the data from five attacks and three stages
8

to train and test the models in the comparison. For each of the stages,
we extracted the data from the stage in the five attacks and carried out
the same procedure to get the results.

The first observation was that if we took more data sources as a
reference, we got higher F1-scores (overall 0.97). As shown in the eval-
uation results (Fig. 6), the host statistics performed better (0.91) than
the packet flows (0.63) and the system logs (0.44) because it has the
highest average F1-score in the attack stages, while the other datasets
may have poor F1-scores in some stages, particularly in the stage of
impact. The result can be influenced by the number of malicious data
points in the dataset 𝑋. From Tables 11 and 12, we can see that the
caught malicious data points in the system logs were fewer than those
in the packet flows and host statistics. In our evaluation metric, if
there are no data from a data source in the dataset 𝑋, the model will
predict normal. As a result, many false negatives occur on packet flows
and logs. This is why we use the ensemble method as presented in
Section 4.5 to avoid such false negatives. Fig. 6 also manifests the
importance of combining the models from multiple data sources, which
is a key contribution of this work.

Furthermore, we considered the overhead of each data source. As
Fig. 7(a) shows, the statistics and flows generated the most data per
second (192.34 KB/s and 172.4 KB/s, respectively). Although the total
data volume was more than that from a single data source, the overhead
in storage was negligible, since it was not necessary to keep the data
after detection. The overhead of the CPU utilization in dealing with
more data was also affordable. As presented in Fig. 7(b), the CPU usage
of detection with each data source was at most 2.1%; thus, the data
sources can be all used in the intrusion detection with ML. Another
observation from the result is in the initial access stage, where the logs
have the best performance (0.94) of the three data sources because the
attack performs anomalous usages and triggers software or systems that
generate logs in this phase.

Other than stage-based comparison, we also carried out an attack-
based comparison. Fig. 8 shows the results of the five attacks. The
outcome of this comparison is similar to the stage-based comparison.
Although the F1-scores of the logs and the flows look low, the results
are still acceptable. The low rate is inevitable because of the lack of
malicious data points in the dataset 𝑋 rather than the problem of their
learning models. However, from the results, we can see that except
statistics, packet flows perform well on the network DoS attacks from
Mirai (0.82).

6.3. Important features in each model

After obtaining three models for each data source, we calculated and
displayed the important features in each model. These are evaluated
according to the absolute value of the SHAP values of the data points.
SHAP can interpret the models and show which feature affects the
prediction largely. If the importance value of a feature is larger than
that of another, then the former feature is more important than the
latter.

Fig. 9 (left) shows the feature importance of the log model. Be-
cause we used the number of log templates as features, the important
features mean that the number of certain log occurrences can help
predict anomalies. Both benign and malicious log templates can influ-

ence the prediction results. The three most important features in the
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Table 8
List of Metasploit modules.

Category Name Functionality

Exploit

unix/unreal_ircd_3281_backdoor Exploit a backdoor on unreal ircd
linux/local/docker_daemon_privilege_escalation Get root privileges from accounts accessing the docker daemon
linux/http/apache_continuum_cmd_exec Perform a command injection on Apache Continuum application
linux/local/service_persistence Insert a backdoor on target, and make it auto-restart
multi/http/rails_secret_deserialization Perform remote command execution on Ruby on Rails applications
multi/handler Generic payload handler

Payload

cmd/unix/reverse_perl Create an interactive shell via Perl
cmd/unix/reverse_python Connect back and create a command shell via Python
linux/x86/meterpreter/reverse_tcp Remotely control the compromised system
ruby/shell_reverse_tcp Connect back and create a command shell via Ruby

Post multi/manage/shell_to_meterpreter Upgrade a command shell to meterpreter
Fig. 6. Stage-based comparison.
Fig. 7. Overhead of each data source.
Fig. 8. Attack-based comparison.
Table 9
Model configuration.

Algorithm Maximum depth Learning rate Objective scale_pos_weight Epochs

XGBoost 2 1 Logistic 10 100
9

log model are the number of log templates generated by apache-
access, in.telnetd and postfix in each time slot.

Fig. 10 (left) shows the order of important features in the packet
flow model. We observed that only two features, ScrByte and TotByte,
outperformed the others. This particular result means that many data
points are related to network DoS attacks, and the flow model can
inspect the two features to make predictions.
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Fig. 9. Important features and SHAP values in the log model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 10. Important features and SHAP values in the flow model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Table 10
Model threshold.

Model Threshold Best F1-score

System log 0.59 0.99
Packet flow 0.88 0.99
Host statistics 0.49 0.93

Table 11
Data points of the dataset with aligned extraction.

Initial access C&C Impact All

Mirai 85 60 15 160
Ransomware 4 11 17 32
Resource hijacking 2 9 12 23
Disk wipe 1 12 18 31
End point DoS 3 9 13 25

All 95 101 75 271

Fig. 11 (left) shows that important features in the statistics models
are related to memory usages such as virtual memory (VSTEXT) or
resident memory usage (RSIZE) on a system. It is worth noting that
a special feature called MINFLT represents the number of page faults
caused by a process, and the statistics model takes this information as
a reference to make predictions.
10
6.4. SHAP value of features in each model

Once we know the important features of each model, we further
inspect the features and see whether they are positive or negative to
detection. We dump the SHAP value of each data point to know how
the features impact the predictions. Fig. 9 (right) shows the summary
plot of the overall log model. Each row represents one feature, and it
has the same order as the feature importance on its left. The yellow
points in each row are the data points with high importance values in
that feature, and those imply more confidence that an attack occurs.
If the SHAP value of a data point is positive, it means that the data
are likely to be malicious. We can conclude that, if the yellow points
in a feature are more likely to be positive, this feature may tend to be
malicious. In this case, most benign features are the ones with their
yellow points tending to be negative. The malicious features such as
the logs in initial access or impact indicate that their yellow points are
on the right-hand side.

Fig. 10 (right) is the summary plot in the overall flow model. We see
that only two important features are in this model. SrcBytes is positive
because its yellow points are likely to be positive. It means that if a
data point has a large value of SrcBytes, it is likely to be predicted as
positive. This is reasonable because many network DoS flows are in
our dataset, and such an attack tends to generate a large number of
bytes from the source to the destination during an attack. Contrary to
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Table 12
Proportion of malicious data points caught per stage in attacks.

Initial access C&C Impact

Logs Flows Statistics Logs Flows Statistics Logs Flows Statistics

Mirai 85
85

72
85

68
85

4
60

42
60

57
60

12
15

15
15

13
15

Ransomware 2
4

3
4

4
4

1
11

5
11

10
11

0
17

2
17

17
17

Resource hijacking 1
2

2
2

2
2

1
9

6
9

8
9

1
12

2
12

11
12

Disk wipe 0
1

1
1

1
1

2
12

10
12

11
12

0
18

5
18

17
18

End point DoS 2
3

3
3

3
3

1
9

5
9

7
9

1
13

2
13

12
13

All 90
95

81
95

78
95

9
101

68
101

93
101

14
75

26
75

70
75
Fig. 11. Important features and SHAP values in the statistics model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
the SrcBytes value above, because we run many benign services on the
testbed, if a data point with a large value of TotBytes and a small value
of SrcBytes, then it then tends to be normal data. As a result, we mark
the TotBytes feature as normal.

For the SHAP value in the statistics model, as we see in Fig. 11
(right), the yellow points spread widely and this is hard to interpret.
We do, though, make the following observations. For example, MINFLT
and MAJFLT are both features related to malicious behavior. If a
process causes too many page faults, it is likely an abnormal process.
For example, in this work, the attack scenarios such as mining, data
encryption and disk wipe, use tools to consume system resources and
impact on the victim machine. If the requested file or data is not in the
memory, the system will cause page faults and move data from the disk
to the memory, and the number of page faults will increase. The second
important feature in the statistics model is VSTEXT, which means that
the virtual memory is used by the shared text of a process. We observed
that the benign services such as proftpd and apache2 running in the
testbed had larger shared text than the malicious binaries, and they had
a larger value in this feature. As a result, VSTEXT is more likely to be
a normal feature. Moreover, RSIZE means the resident memory usage
of a program is regarded as a malicious feature. Because we found that
when the malicious binaries such as mining or data encryption were
executed, they would remain in the memory for a long time to process
the data on the system and then increase the usage of the resident
memory.

To summarize the relationships between attacks and features, we
mapped each attack stage onto its related malicious features. As Fig. 12
shows, we describe which malicious features affect the predictions most
in each stage per attack. For the system logs, we found that the mali-
cious features were the log templates generated in each attack stage,
11
e.g., connect from <*> (<*>) occurred frequently in the initial
access stage of Mirai and <*> docker0: port 2(veth61255d9)
entered <*> state appeared in the C&C stage of the ransomware
attack. For packet flows, the main malicious features are SrcBytes
and SrcRate. If the attack stage invoked large file transfers, such as
the initial access stage of resource hijacking or the impact stage of
Mirai, the SrcBytes values tended to be large. Because the backdoor
needed to communicate with the server frequently, the SrcRate values
in these stages could increase. As for the host statistics, we observed
that MINFLT and RSIZE were the malicious features in almost all the
stages because these attack techniques issued page faults or included
data processing, and increased the memory usage. For the impact
stage, there are more malicious features related to the predictions. For
example, the values of the DSK feature may increase in the impact stage
of the ransomware because of the encryption of files, and the values of
the WRDSK feature may be high when the disk wipe is executed. As a
result, the malicious features will be different when applying different
attack techniques.

7. Conclusions and future work

In this work, we designed a Python-based framework and used
ML to test for three data sources, i.e., system logs, packet flows, and
host statistics, to know which combination of the data sources perform
best when detecting anomalies in both stage-based and attack-based
aspects. We wanted not only to determine comparable results but also
to interpret which features influence the prediction most and whether
the important features affect the malicious or normal prediction.

To answer these questions, we first designed a Unix-based testbed,
applied five attacks, and collected three kinds of data simultaneously.
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Fig. 12. Mapping from the attack scenarios to the malicious features.
After collecting all the data, we preprocessed and split them into
training and testing datasets. We used the training dataset as well
as the XGBoost algorithm to train the three models corresponding to
the three data sources, and the F1-scores of each model can reach
around 0.99. We then compiled the testing dataset with a fixed time
slot by aligned extraction, and used the ensemble method to evaluate
seven combinations of the three models to obtain the results. We
conclude that combining multiple data sources can effectively improve
the accuracy of ML-based detection in different attack stages with an
affordable overhead. Taking more data sources as a reference, the F1-
score can increase to 0.97 for the combined data sources, and the
overhead of detection with each data source was affordable (at most
2.1% CPU usage). This ensemble approach is particularly important
because different attacks in the different stages may manifest different
volumes of clues in different data sources. The F1-score for each
combination can be affected by the number of its corresponding data
points. We also found that the F1-score of the host statistics (0.91) is
better than the flows (0.63) and the logs (0.44).

We also highlight the important features from the individual data
sources. From the evaluation results, we found that the numbers of log
templates could be important features. The logs generated by malicious
behaviors tended to have larger SHAP values, implying more malicious
features, while the logs generated from normal behaviors may have
12
smaller SHAP values. In the model from packet flows, if the data point
had a large SrcBytes value, it was likely to indicate malicious behavior.
By contrast, if a flow had a large TotBytes value and a rather small
SrcBytes value, it tended to be normal. Finally, the host statistics model
favored using features such as resident memory usage (RSIZE) or the
number of page faults (MINFLT) to make predictions. If a data point
caused too many page faults or used too much resident memory, it
tended to be malicious.

Three aspects in this work can be further improved in the future.
First, we can add more attack scenarios and system statistics into our
framework to cover more scenarios and enhance the ability of the
models. Second, it would certainly be useful to evaluate and validate
the performance of the system in a real-world situation, instead of
using synthetic datasets. Third, the impact of adversarial attacks on the
ML-based detection models [35] can be also evaluated in the future.
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