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AUTOMATIC PROTOCOL TEST METHOD
BY REVERSE ENGINEERING FROM
PACKET TRACES TO EXTENDED FINITE
STATE MACHINE

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present disclosure generally relates to an auto-
matic protocol test method, and in particular, to the auto-
matic protocol test method to obtain a protocol specification
by reverse engineering from packet traces to an Extended
Finite State Machine (EFSM).

2. Description of the Related Art

[0002] The protocol specification is helpful to the network
detection systems and is essential for the development of
protocol fuzzer and test case generation tools. The intrusion
detection systems typically rely on the parser to perform
deep packet inspection based on the protocol specification.
In testing domain, the smart fuzzers need to have knowledge
to generate right messages at right states. The vulnerability
discovery tools also leverage on the protocol behavior
models to produce illegitimate and unexpected patterns.
However, obtaining protocol specification is a tedious and
time-consuming task. Even for the open protocols, it takes
times to analysis and translate the open document to for-
mulate the behavior model. Therefore, automated protocol
reverse engineering has been proposed recently with inten-
tion of specification inference.

[0003] The methods of protocol reverse engineering can
be classified into two directions based on the input, execu-
tion trace (application inference), and network trace (net-
work inference). The application inference is hard to per-
form due to the un-availability of source codes. Most of the
time, only network traffic is available for the analysis of the
malware and botnet at Internet Service Provider’s side. The
network inference method can only rely on the protocol
traces to actively reconstruct the behavior model and infer
protocol message formats with significant accurate results.
However, the conventional reverse engineering only focus
on the control flow without considering the data flow.
[0004] The known protocol reverse engineering tech-
niques have the limitation and shortcomings. Hence, the
inventor provides the automatic protocol test method by
reverse engineering from packet traces to extended finite
state machine, so as to resolve the drawbacks and promote
the industrial practicability.

SUMMARY OF THE INVENTION

[0005] In view of the aforementioned technical problems,
one objective of the present disclosure provides an auto-
matic protocol test method by reverse engineering from
packet traces to extended finite state machine, which is
capable of considering both the control layer and the data
layer of the protocol messages, so as to provide the more
powerful and suitable models for security and testing appli-
cation.

[0006] In accordance with one objective of the present
disclosure, an automatic protocol test method by reverse
engineering from packet traces to extended finite state
machine (EFSM) is provided. The automatic protocol test
method includes the following steps of inputting traffic
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traces containing a plurality of packets in sequence; parsing
the plurality of packets to extract a plurality of sessions and
reconstructing the plurality of sessions to obtain protocol
messages; conducting a keyword analysis and a clustering
algorithm to the protocol messages to identify a plurality of
message types; initializing the protocol messages to form
initial session sequences and merging equivalent states to
obtain a finite state machine (FSM) with a set of states, a set
of transitions, a set of inputs and a set of outputs; extracting
fields and values of the protocol messages to obtain a
plurality of sub-datasets and adding constraints on the fields
to generate a data guard, the data guard and set of memories
being inferred on the finite state machine to obtain the
extended finite state machine.

[0007] Preferably, the plurality of packets may be parsed
according to a source address, a source port, a destination
address, a destination port and a type of transport layer
protocol.

[0008] Preferably, the keyword analysis may include an
Apriori keyword analysis to find high frequency and close
sequence string.

[0009] Preferably, the clustering algorithm may include a
K-means clustering algorithm based on distances.

[0010] Preferably, the initial session sequences may be
arranged with different paths by a Prefix Tree Acceptor.
[0011] Preferably, the equivalent states may be merged by
same k-tail transitions.

[0012] Preferably, the protocol messages may be pro-
cessed by a Needleman and Wunch sequence alignment to
extract the fields.

[0013] Preferably, the values of the fields in the protocol
messages may be hold over by a Daikon algorithm to infer
the constraints

[0014] Preferably, the constraints on the fields may
include checking valid value of the fields, intra-message
dependencies and inter-message dependencies.

[0015] As mentioned previously, the automatic protocol
test method by reverse engineering from packet traces to
extended finite state machine in accordance with the present
disclosure may have one or more advantages as follows.
[0016] 1. The automatic protocol test method is capable to
infer the behavior models of network protocols by leverag-
ing efficient reverse engineering technique and only requires
the network traces to reconstruct the faithful models, so that
the method can be widely used in different finds of network
protocols.

[0017] 2. The automatic protocol test method may cover
both the control flow and the data flow of the protocol
messages to improve the quality of protocol fuzzers or test
case generation tool, so as to provide the more powerful and
suitable models for security and testing application.

[0018] 3. The automatic protocol test method may con-
sider the inter message dependencies and intra message
dependencies, so that the memory size for saving the mes-
sage data can be reduced to provide the efficient operation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is a schematic diagram illustrating the
processing model of the automatic protocol test method in
accordance with the present disclosure.

[0020] FIG. 2 is a flow chart of the automatic protocol test
method in accordance with the present disclosure.

[0021] FIG. 3 is a flow chart of FSM construction model
in accordance with the present disclosure.
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[0022] FIG. 4 is a schematic diagram illustrating the initial
FSM obtained from session sequences in accordance with
the present disclosure.

[0023] FIG. 5 is a flow chart of the merging algorithm in
accordance with the present disclosure.

[0024] FIG. 6 is a flow chart of the Semantic deduction
module in accordance with the present disclosure.

[0025] FIG. 7 is a schematic diagram illustrating the
Needleman and Wunsch sequence alignment algorithm in
accordance with the present disclosure.

[0026] FIG. 8 is a schematic diagram illustrating the
Daikon algorithm in accordance with the present disclosure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0027] In order to facilitate the understanding of the
technical features, the contents and the advantages of the
present disclosure, and the effectiveness thereof that can be
achieved, the present disclosure will be illustrated in detail
below through embodiments with reference to the accom-
panying drawings. On the other hand, the diagrams used
herein are merely intended to be schematic and auxiliary to
the specification, but are not necessary to be true scale and
precise configuration after implementing the present disclo-
sure. Thus, it should not be interpreted in accordance with
the scale and the configuration of the accompanying draw-
ings to limit the scope of the present disclosure on the
practical implementation.

[0028] In accordance with the embodiment(s) of the pres-
ent invention, the components, process steps, and/or data
structures described herein may be implemented using vari-
ous types of operating systems, computing platforms, com-
puter programs, and/or general purpose machines. In addi-
tion, those of ordinary skill in the art will recognize that
devices of a less general purpose nature, such as hardwired
devices, field programmable gate arrays (FPGAs), applica-
tion specific integrated circuits (ASICs), or the like, may
also be used without departing from the scope and spirit of
the inventive concepts disclosed herein. Where a method
comprising a series of process steps is implemented by a
computer or a machine and those process steps can be stored
as a series of instructions readable by the machine, they may
be stored on a tangible medium such as a computer memory
device (e.g., ROM (Read Only Memory), PROM (Program-
mable Read Only Memory), EEPROM (Electrically Eras-
able Programmable Read Only Memory), FLASH Memory,
Jump Drive, and the like), magnetic storage medium (e.g.,
tape, magnetic disk drive, and the like), optical storage
medium (e.g., CD-ROM, DVD-ROM, paper card and paper
tape, and the like) and other know types of program memory.
[0029] FIG. 1 is a schematic diagram illustrating the
processing model of the automatic protocol test method in
accordance with the present disclosure. As shown in the
figure, The processing model includes data pre-processing
module 100, message type identification module 200, FSM
construction model 300 and semantic deduction module
400. The above modules may be programed and saved in the
memory device of the computer or in the cloud server. When
conducting the automatic protocol test method, the proces-
sor may execute the command and access the above models
to process the present method.

[0030] At first, data pre-processing module 100 collects
the traffic traces and saves in the trace memory 101. The
traffic traces of a particular protocol have to be preprocessed
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by steps of message reassembling 102 and session recon-
struction 103 including extracting and cleaning. The mes-
sage type identification module 200 uses a keyword analysis
201 to extract protocol keywords and uses a message
clustering 202 to cluster message into groups by a distance
based algorithm. Each group is considered as a different
message type 203. The results are further fed to FSM
construction module 300 to infer the finite state machine
(FSM) 303 by using the initialization 301 and state merging
302 algorithms. After the correct FSM 303 is inferred, the
semantic deduction module 400 provides field extraction
401 to extract sub-datasets containing values of message
fields in observed messages. Further analysis is performed
by dependencies inference 402 to search correlation of fields
in messages and deduce to form the data guards on each
transition. The data guards on each transition and the set of
the memory are merged in the FSM 303 to obtain an
extended finite state machine (FFSM) 403. The detail
description of each model will be presented by the following
embodiments.

[0031] FIG. 2 is a flow chart of the automatic protocol test
method in accordance with the present disclosure. As shown
in the figure, the method includes the following steps
(S1-S5).

[0032] Step S1: Inputting traffic traces containing a plu-
rality of packets in sequence. Please referring the process
models mentioned in FIG. 1, the data pre-processing module
100 can process traffic traces in various forms such as TCP
dump files or pcap, pcapng. In the present embodiment, the
module takes traffic traces from TCP dump files as input.
The traffic traces may be collected and saved in the memory
of the computer for the following analysis.

[0033] Step S2: Parsing the plurality of packets to extract
a plurality of sessions and reconstructing the plurality of
sessions to obtain protocol messages. The messages are
parsed to extract sessions based on 5-tuple: source address,
source port, destination address, destination port and type of
transport layer protocol. Then, the fragmented messages are
assembled if needed, the duplicates and retransmissions are
removed as well. The time-gaps heuristic can be used in case
of missing fragmentation information. The remaining mes-
sages continue to be parsed to ignore the unrelated message,
only the payloads which containing the information of target
application protocol are kept to further analysis.

[0034] Step S3: Conducting a keyword analysis and a
clustering algorithm to the protocol messages to identify a
plurality of message types. To increase the quality of mes-
sage type identification, the message type identification
model 200 hybrid keyword analysis based approaches and
distance-based approaches with the purpose of taking advan-
tages to overcome the limitations of each other. The issues
of threshold and keyword misperception are solved by an
iterative k-means clustering based on the distance metric.
The limitation of having the number of clusters in advance
of k-means is attempted by extracted keyword series.
[0035] The keyword analysis 201 is performed first to
discover the keywords of protocols which are frequent
occurring strings. In the present embodiment, this compo-
nent can employ an Apriori algorithm. However, the key-
word based method is not limited in such algorithm. The
Kohnogorov-Smimov test, Statistical t-test and Distribution
of Variances can be included in the present method. The
Apriori keyword analysis is based on the modification of
AutoReEngine to identity the keywords. Basically, the algo-
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rithm iteratively finds the high-frequent and close-sequence
of bytes (or string) with stable position variance by the
Apriori method. In each iteration, only closed sequences
with frequency higher than a pre-defined threshold are
retained and deliberated as keywords.

[0036] After the keywords extraction process, the key-
word series observed in the dataset can be used as the
distinguished format of message types. Each keyword series
is a group. And the number of clusters is also determined
before the k-means algorithm is performed. The distance
metric is based on the Jaccard index defined as

| _land
la Ul

where a, b are character array of messages.

[0037] The k-means clustering algorithm helps to calibrate
the keyword extraction in first step. For instance, the string
of “CWD /7 is detected as a keyword because of the
operation of a Linux file system. (most commands are
having the form of “CWD /pub”, “CWD /root”, “CWD
/conference” . . . Since “CWD /” is a keyword, the message
“CWD 1ib” and “CWD acld.tar.gz” h are grouped into
incorrect cluster and should be calibrated by the k-means
clustering algorithm. In order to overcome the issue of
missing keyword, the step keeps the undecided messages
sets and repeats this process. Because the size of dataset is
reduced, the keywords which have low frequency in the
original dataset can be revealed.

[0038] Step S4: Initializing the protocol messages to form
initial session sequences and merging equivalent states to
obtain a finite state machine with a set of states, a set of
transitions, a set of inputs and a set of outputs. The goal of
this module is to infer the conventional FSM model with
4-tuple: (S, I, O, o) before identifying the data guards with
transition to complete the EFSM. The proposed methodol-
ogy consists of two parts: FSM initialization from traces and
states merging by GK-tail merging mechanism. The step
may construct two FSMs, one for client and one for server.
In this section, the process of the FSM model inference in
the server side and client side is provided.

[0039] FIG. 3 is a flow chart of FSM construction model
in accordance with the present disclosure. As shown the
figure, the FSM construction model includes the following
steps (S401-S404):

[0040] Step S401: Labeling step. To achieve a better result
of the FSM construction, dataset labeling and cleaning are
conducted before processing. Since messages are grouped
into isolated cluster, the labeling component names its
cluster and represents the session as a sequence of label. If
the message is requested by a client (i) and response
message (0,) is from a server, (i, 0,1 where T is set of
message types) the session can be represented as a sequence
of: Ses={(i;, 01), (i 05) - . . (i, 0,0}

[0041] Step S402: Adjustment step. Because traces are
adopted from real world traffic, some sessions are incom-
plete (ex. packet loss) and some messages have ordering
issues due to packet swapping and network delay. Thus,
cleaning data techniques such as reorder sequence, missing
value inference are applied to fix the missing messages.
Taking an incomplete FTP session {(USER, 331), (PASS, x),
... (QUIT, 500)} as an example, we can easily infer the
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missing value of “230” message base on the high frequency
of pair (PASS, 230) in the dataset.

[0042] Step S403: PTA initialization step. In this step of
processing, dataset is fed to the initialization module to build
a Prefix Tree Acceptor (PTA) accepting all session
sequences. For every session sequence, the process starts
from the root and simply travels down along the tree. A new
path is created if there are no existing paths. The PTA nodes
set can be initial set of states, the label of messages are set
of inputs and outputs. The initial set of transitions is col-
lection of PTA transitions. Please refer to FIG. 4, which is a
schematic diagram illustrating the initial FSM obtained from
session sequences in accordance with the present disclosure.
The sessions (Ses,-Ses,,) are arranged by different paths by
the PTA method.

[0043] Step S404: Merging step. The initial FSM is itera-
tively refined by merging equivalent states based on the
K-tail mechanism. The intuition is that the protocol state
machine always exposes the same behaviors at the same
state. In other words, the machine will produce same outputs
if same inputs are submitted at a certain state. Due to the
deterministic characteristic of protocol state machines, the
next states in k-tail of two equivalent states can be merged.
Please refer to FIG. 5, which is flow chart of the merging
algorithm in accordance with the present disclosure. The
procedural is defined as following steps (S411-S415):
[0044] Step S411: Calculate k-tails(s) as the set of next
transitions. For each every state s&S, we define k-tails(s) as
the set of next transitions.

[0045] Step S412: Initialize {E,} a list set consists of
equivalent states.

[0046] Step S413: Compare k-tails of pairs of states to
initialize a list set consists of equivalent states.

[0047] Step S414: Merge B,UE, Taking above list as
input, two sets are merged iteratively if the two sets share at
least one element until no two sets can be merged. At the end
of this step, we obtain a list of sets consisting of equivalent
states and no two sets consist of same state.

[0048] Step S415: Final set of states. For every set, a new
state is created as representative of all states in the set. Then
for every original transition, new transition is added between
two new states which correspondingly are representative of
from and end states of initial FSM.

[0049] Step S5: extracting fields and values of the protocol
messages to obtain a plurality of sub-datasets and adding
constraints on the fields to generate a data guard, the data
guard and set of memories being inferred on the finite state
machine to obtain the extended finite state machine. Since
the FSM with 4 tuple (S, I, O, o) is defined, we start to
generate the data guards and memories (8, M) on each
transition to complete the EFSM with 6 tuple (S, I, O, o, 9,
M) of protocol. To this end, we investigate how the protocol
implementation process the coming messages at certain state
to produce responses. At first, the protocol implementation
identifies the type of message and decomposes the messages
into fields (or data). Then it checks the validation of values
of each field to decide whether it performs further actions or
not. For instance, the message “PORT 65, 240, 180, 205, 56,
56, the F IP server identifies that the request command is
PORT then parses to get data (arguments) (“65, 240, 180,
205, 56, 56”) including first four numbers are encoding of IP
address and the remaining are encoding of port number. The
FTP server checks the constraints hold over these number is
range of (0, 255) hold over these numbers. A field extraction
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is adopted to then build the sub-dataset containing all values
of fields before EFSM uses Daikon to infer the constraints
hold over all values of certain field.

[0050] Please refer to FIG. 5, which is a flow chart of the
Semantic deduction module in accordance with the present
disclosure. The process includes the following steps (S501-
S505):

[0051] Step S501: Format extraction. The format extrac-
tion step is to infer the message formats of protocols from
message clusters. The format of each message type is
inferred to obtain fields and prepared the sub-dataset con-
sisting of valid value for each field. An exemplary imple-
mentation of automatic reverse engineering of messages
format is the multiple Needleman and Wunsch (N&W)
sequence alignment algorithm. Due to the high computa-
tional complexity of original Multiple N&W, a progressive
alignment based on a pre-built guide tree to decide the order
is used fir the alignment process. The results are composed
of a consensus string, reveals dynamic fields and static
fields. The static fields are mostly like protocol keyword
series which we extracted before.

[0052] Step S502: Sub-dataset builder. The sub-dataset
builder step is to build the sub-dataset for each field which
contains the valid values by extracting from original traces.

[0053] The sub-dataset for each dynamic field is built by
obtaining all observed values in the traces and grouping by
the response message type. An illustrated example of PORT
message alignment is given in FIG. 7, which is a schematic
diagram illustrating the Needleman and Wunsch sequence
alignment algorithm in accordance with the present disclo-
sure. As shown in the figure, the left hand side are messages
in traces and the N&W alignment progress, the right hand
side are sub-dataset of each field according from traces
corresponding response code of “200”. Hereafter, sub-data-
sets of fields are mined to deduce the protocol semantic.

[0054] Step S503: Data guard inference. The data guard
inference step can take the sub-dataset as input to deduce the
constraints on each field. These constraints are considered as
parts data guard on the transition of EFSM model. An
exemplary algorithm for this component is Daikon. Daikon
can deduce a large set of values in sub-dataset into a simpler
invariant which can be utilized as a data guard.

[0055] Since messages are dissected, we assume that the
message i consists of field f, i=[f,, f,, . . . f,]. As mentioned
before, the data guards act as predicates on input message.
Then we can approximately define data guard function as
follow:

i, m) =

8fis forooe foom) SAPRAD & P\ Tratfio S &\ Hey(fiom)
1 1

[0056] The parameters are listed as follows:

[0057] Pr(f)—{0, 1} is a data predicate of field f, for
data validations. This function checks whether the value of
field is valid or not. It partly represents the syntax of the
field.

[0058] Itr, (f,, f,)—={0, 1} is a constraint between values
of two fields f,, f,, or intra-message dependencies.

> v
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[0059] TIte,(f, m)—{0, 1} is a constraint between value of
field £, and the memories m which are stored in previous
message. It is the inter-messages dependencies.

[0060] To better understand the process, we look at some
examples of each category of constraint. The IP address and
port number format in the argument of FTP’s PORT com-
mand are regular expressions of the first type. The check-
sum and direction fields such as length and offset are the
intra-messages dependencies, and the cookies (in HTTP
protocol) are inter-messages dependencies. Since data guard
is reformed approximately, the proposed method generally
spawns the data predicate of a field and search for inter/intra
messages dependencies bases on the traces.

[0061] EFSM relies on the Daikon algorithm to generate
the data guard of each field. Daikon deduces a large set of
values in sub-dataset into a simpler invariant which EFSM
can be utilized as a data guard. Thus, our data predicate of
a field is defined as follow:

1 if v € Daikon(f;,)

Pr,(v) = { 0

[0062] Please refer to FIG. 8, which is a schematic dia-
gram illustrating the Daikon algorithm in accordance with
the present disclosure. As shown in the figure, Daikon
worked on the sub-dataset of filed f; of PORT command data
and found that the value of f; must be in range of (0, 255).
Similarly, the arguments of TYPE command are in the
enumerable set of {“A”, “I”}. If this constraint is not
verified, the machine reply code of 500 instead code of 200.
[0063] Principally, Daikon takes the raw execution traces
or the values of variables as input and finds the best
matching properties (rules) for all observed values of vari-
ables.

[0064] Step S504: Field dependencies detector. The field
dependencies detector step searches the dependencies
between fields in same message or cross messages. The term
of inter-message dependency representing the relation of a
field regulates the property of another field in different
messages such as cookies (HTTP) and sequence number
(TCP). An intra-message dependency is a correlation
between fields within one message, for examples consis-
tency fields as check-sum or direction field as length and
offset.

[0065] In one implementation, the Pearson coefficient can
be used to measure the strength of the dependency of all pair
of attributes of fields and then apply Daikon on potential
candidates to infer the relationships.

[0066] To fulfill the data guards function, the step contin-
ues to identify relations between fields in one or two
messages. The basic idea is that we leverage the Pearson
coeflicient to measure the strength of the dependency of all
pair of attributes of fields and then apply Daikon on potential
candidates to infer the relationships.

[0067] The process consists of the field’s value, its length,
and its offset in the protocol message with the intention of
capturing different kinds of relations. Besides, other fields
such as IP address, port number are also taken into account.
All observed pairs of field attributes are computed iteratively
over sessions in traces.

[0068] Afterward, the Pearson product-moment correla-
tion coeflicient p(X, Y) is computed based on each observed
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pair of field attributes (X, Y). The absolute value of p(X, Y)
indicate the strength of the linear relationship. If Ip(X, Y)l is
closed to one, then there are generally linear relationship
between X and Y. If the value is close to 0, they are mostly
independent. For instance, the Ip| values of Content-Length
and length attribute of data in HTTP protocol and IP address
are one. This is because they are linear dependent. Finally,
the step simplifies these dependencies by applying the
Daikon algorithm such that a linear relationship of (Y=aX+
b) can be deduced. The step classifies the dependencies
between fields in same message as the Itr function. For the
dependencies between fields in two messages are classified
as the Ite function.

[0069] Step S505: Memories inference. The memories
inference step is to define the set of memories of EFSM
model. The memories can be defined as values of fields
which are kept in states for future interactions. The values of
fields, such as the Ite function are representative of inter
message dependencies. Alternatively, every field’s values of
previous message can be assigned as memories of states.
[0070] As mentioned before, we need to infer the 2-tuple
(8, M) data guard and memories on each transition of the
defined FSM. Now it is easy to infer data guard function 8
by merging the Pr, Itr and Ite functions. Based on the steps
described, we only need to update the memories in the state.
The memories can be defined as values of fields which are
kept in states for future interactions. The values of fields,
such as the Ite function are representative of inter message
dependencies. Alternatively, every field’s values of previous
message can be assigned as memories of states. However,
the size of memories set will be huge after sequence of
message. To reduce the size, we lay on the pair of inter-
message dependencies. Initially, fields’s values of every
succeeding messages including the environment fields men-
tioned above are kept in the memory. Then, those values are
eliminated if values are not used in the preceding messages.
Once one of the dual field in the inter-message dependencies
pairs appear in the future, the corresponding memory is kept.
The remaining memories are the memories of state. Then the
6-tuple of EFSM is obtained.

[0071] In addition, a test sequence generation and a test
data generation can be added to the automatic protocol test
method. To generate conformance test cases, a simple test
case generation prototype which takes the inferred EFSMs
model as input is developed. In one embodiment, the unique
input/output (UIO) can be used to generate the set of test
sequences which guarantee that every state is checked at
least one time. Since internal states observability are major
issues, the unique input/output (UIO) sequence was widely
used in testing domain. This technique generates the
sequence of input and corresponding output which distin-
guishes a designated state from remaining states. The UIO
method is used to generate the test sequences for every states
of EFSM which are able to translate to test steps (or test
scenario) later.

[0072] To test the data flow, the test suite for each state is
generated by data value mutation on each input messages of
UIO sequences. The value of each field (of the input
messages) is designed to suffer possible case of the data
guards (allow or does not allow the transition). The test data
can be assigned to states or transitions in test sequences to
complete the test case.

[0073] Inorderto evaluate the present extended finite state
machine, four protocols of FTP, SMTP, and Bittorent are
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selected. The datasets of network traces are collected from
publicly available and self-capture sources. The network
traces consist of more than 210,000 messages of 1,800
sessions. However, these traces still contain malformed
messages. Extra steps to eliminate illegal messages are
needed. In order to measure the effectiveness of the pro-
posed EFSM, several metrics are developed. Both of the
pair-wise Precision and Recall values are used to evaluate
the effectiveness of clustering algorithms for message type
identification. For quality of inferred EFSM, the process
uses the correctness arid coverage score and proposes a new
one to capture the powerfulness of EFSM compare to
conventional FSM.

[0074] In the keywords analysis of the FTP protocol, the
proposed EFSM detected all of the 26 commands in the
server side. The remaining commands (total 33 commands
according to those in RFC 959) cannot be extracted due to
their absence in traces. The keywords analysis result of
SMTP leads to the ideal precision score. However, the score
of recall is 97% because there are two isolated clusters of
EHLO and HELO messages miss-classified from the same
cluster. On the contrary, the messages of BITFIELD and
REQUEST in Bittorent protocol are similar and our method
is unable to find the keywords to distinguish and merged
them into one cluster. Thus, the precision is only 94% while
recall is nearly perfect.

[0075] To compare with the existing works. AutoReEn-
gine has been selected. AutoReEngine is applied with dif-
ferent thresholds on our dataset and kept the best results to
compare. The result shows that the accuracy of the present
method is improved. For all protocols, the values of pairwise
precision and recall of EFSM are higher than those of
AutoReEngine. The iterative keyword analysis is helpful to
find the missing keywords of FTP. The K-means clustering
algorithm is helpful to calibrate the issue of over-specific
extracted keywords. Thus, both precision and recall values
of FTP are considerably improved. For SMTP and Bittorent,
EFSM still remains the same accuracy with AutoReEngine.
It is because both of them share the main idea of keyword
analysis and K-means does not help much in these cases.
Even so, the present method outperforms AutoReEngine for
most protocols in message type identification.

[0076] To evaluate the quality of the inferred EFSM, the
impact of k-tails parameters on the conciseness of final
EFSM is examined to discuss the correctness, coverage
scores and behavior accuracy score. The number of states of
our EFSM for each protocol dataset with the k-tails param-
eter shows that the EFSM models with our EFSM with
k-tails=1 are concise at all protocols. The number of states
in the ideal models of FTP, SMTP, Bittorent are 5, 8, 5 and
9. The k-tail merging mechanism significantly reduces num-
ber of states. The k-tail parameter impacts only to the
conciseness, not to the quality of inferred models.

[0077] To judge coverage and correctness, the parameter
of k-folds=5 is applied. It means that 20% of sessions are
hold in traces to test. The ratio of accepted and rejected is
4:1. The results, confirm the quality of our FSM part of
EFSM. The simplicity of SMTP and the richness of dataset
are the reasons such that our inferred model can cover nearly
100% of specification and all valid sessions are accepted by
the inferred model. Similarly, the coverage of Bittorrent is
also high. The reasonable complexity of FTP with large set
of commands lead to the lowest coverage of 91%. There are
some commands (transitions) in test set randomly being
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neglected in training set so that the EFSM is not able to
learn. The correctness score is never below 90% which
guarantees that the learned models are close to the true
models.

[0078] In the same way, k-folds=5 is used to calculate the
behavior accuracy. Essentially, the EFSM relies on Daikon
to generate the data guard including the valid syntax of data
and the dependencies. Among many data constraints of FTP,
the constraints on PORT command’s arguments are signifi-
cant. The first four numbers spitted by colon character
should be mapped to IP address of server and the port
number should be higher than 255. One of the detected data
guards of Bittorrent is that the first 20 bytes of hash_id
should be consistent in both HANDSHAKE message.
[0079] In average, 89% of generated outputs of inferred
EFSMs for FTP protocol match the expected outputs. In the
meantime, the FSM without data guard and memories only
correctly produce 78% of outputs. It means that the behavior
of inferred model is nearly comparable to the true model on
each state. The remaining errors are related to the informa-
tion that is absent in traces.

[0080] The present disclosure adopted the EFSM, a static
analysis methodology that infers the behavior models of
protocols in the form of EFSMs from network traces. The
inferred models have been equipped with the constraints on
data values (as known as data guards). Those constraints are
deduced by Daikon from samples and memories which are
derived by correlation analysis technique. Furthermore, the
EFSM leverages the K-tail mechanism to enhance the accu-
racy of classical FSM (control flow) operation.

[0081] While the means of specific embodiments in pres-
ent disclosure has been described by reference drawings,
numerous modifications and variations could be made
thereto by those skilled in the art without departing from the
scope and spirit of the disclosure set forth in the claims. The
modifications and variations should be in a range limited by
the specification of the present disclosure.

What is claimed is:

1. An automatic protocol test method by reverse engi-
neering from packet traces to extended finite state machine,
the automatic protocol test method comprising following
steps of:
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inputting traffic traces containing a plurality of packets in

sequence;

parsing the plurality of packets to extract a plurality of

sessions and reconstructing the plurality of sessions to
obtain protocol messages;

conducting a keyword analysis and a clustering algorithm

to the protocol messages to identify a plurality of
message types;

initializing the protocol messages to form initial session

sequences and merging equivalent states to obtain a
finite state machine with a set of states, a set of
transitions, a set of inputs and a set of outputs;
extracting fields and values of the protocol messages to
obtain a plurality of sub-datasets and adding constraints
on the fields to generate a data guard, the data guard and
set of memories being inferred on the finite state
machine to obtain the extended finite state machine.

2. The automatic protocol test method of claim 1, wherein
the plurality of packets are parsed according to a source
address, a source poll, a destination address, a destination
port and a type of transport layer protocol.

3. The automatic protocol test method of claim 1, wherein
the keyword analysis comprises an Apriori keyword analysis
to find high frequency and close sequence string.

4. The automatic protocol test method of claim 1, wherein
the clustering algorithm comprises a K-means clustering
algorithm based on distances.

5. The automatic protocol test method of claim 1, wherein
the initial session sequences are arranged with different
paths by a Prefix Tree Acceptor.

6. The automatic protocol test method of claim 1, wherein
the equivalent states are merged by same k-tail transitions.

7. The automatic protocol test method of claim 1, wherein
the protocol messages are processed by a Needleman and
Wunch sequence alignment to extract the fields.

8. The automatic protocol test method of claim 1, wherein
the values of the fields in the protocol messages are hold
over by a Daikon algorithm to infer the constraints.

9. The automatic protocol test method of claim 1, wherein
the constraints on the fields comprises checking valid value
of the fields, intra-message dependencies and inter-message
dependencies.



