
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018 923

Three-Tier Capacity and Traffic Allocation for Core,
Edges, and Devices for Mobile Edge Computing

Ying-Dar Lin , Fellow, IEEE, Yuan-Cheng Lai , Jian-Xun Huang, and Hsu-Tung Chien

Abstract—In order to satisfy the 5G requirements of ultra-low
latency, mobile edge computing (MEC)-based architecture, com-
posed of three-tier nodes, core, edges, and devices, is proposed. In
MEC-based architecture, previous studies focused on the control-
plane issue, i.e., how to allocate traffic to be processed at different
nodes to meet this ultra-low latency requirement. Also important
is how to allocate the capacity to different nodes in the manage-
ment plane so as to establish a minimal-capacity network. The
objectives of this paper is to solve two problems: 1) to allocate the
capacity of all nodes in MEC-based architecture so as to provide
a minimal-capacity network and 2) to allocate the traffic to sat-
isfy the latency percentage constraint, i.e., at least a percentage of
traffic satisfying the latency constraint. In order to achieve these
objectives, a two-phase iterative optimization (TPIO) method is
proposed to try to optimize capacity and traffic allocation in
MEC-based architecture. TPIO iteratively uses two phases to
adjust capacity and traffic allocation respectively because they
are tightly coupled. In the first phase, using queuing theory calcu-
lates the optimal traffic allocation under fixed allocated capacity,
while in the second phase, allocated capacity is further reduced
under fixed traffic allocation to satisfy the latency percentage
constraint. Simulation results show that MEC-based architec-
ture can save about 20.7% of capacity of two-tier architecture.
Further, an extra 12.2% capacity must be forfeited when the
percentage of satisfying latency is 90%, compared to 50%.

Index Terms—Iterative optimization, mobile edge comput-
ing (MEC), three-tier architecture, capacity allocation.

I. INTRODUCTION

AS THE volume of data grows rapidly, 5G wireless com-
munication has been proposed [1]. The aim of 5G is to

provide very high data rates and ultra-low latency in the order
of ms [2], [3]. The performance requirements of latency in
5G networks are a 1 ms limit for data-plane latency, a 10 ms
limit for control-plane latency [4], and a 1000 times faster

Manuscript received October 13, 2017; revised April 6, 2018; accepted
June 25, 2018. Date of publication July 3, 2018; date of current version
September 7, 2018. This work was supported in part by H2020 collabora-
tive Europe/Taiwan research project 5G-CORAL (grant number 761586), and
Ministry of Science and Technology, Taiwan for financially supporting this
research under Contract No. MOST 106-2218-E-009-018. The associate edi-
tor coordinating the review of this paper and approving it for publication was
G. Bianchi. (Corresponding author: Yuan-Cheng Lai.)

Y.-D. Lin and H.-T. Chien are with the Department of Computer
Science, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
ydlin@cs.nctu.edu.tw; hsutung@cs.nctu.edu.tw).

Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
laiyc@cs.ntust.edu.tw).

J.-X. Huang was with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
hibari180505@gmail.com).

Digital Object Identifier 10.1109/TNSM.2018.2852643

data rates than 4G networks [5]. Thus, one of the most impor-
tant challenges of 5G is to address a contradiction between the
increasing complexity of mobile applications and its limited
latency [6].

Traditional wireless architecture is two-tiered and consists
of a core and devices. These provide specific functions for
the services required by a user, such as a user playing
a multimedia game using a mobile device. In this case, the
device is responsible for the encoding/decoding functions,
while the core is responsible for the calculating the game’s
operations. However, there is usually a long distance between
core and devices, resulting in a long propagation delay which
cannot meet the latency limitation of 5G networks.

Thus, MEC-based architecture, based on the concept of
fog computing, has been proposed [7]. In this architecture,
some equipment, termed “edge”, located as an intermediate
tier, is deployed between the core and devices: it is a three-
tiered network architecture with core, edges, and devices. The
edges carry out functions of both core and devices. Thus, in
MEC-based architecture, for functions required by traffic, the
computation of functions in devices and core can be offloaded
to that in edges. Computation offloading from core to edges
can avoid the propagation delay between core and edge. Also,
since edges are closer to users’ devices than the core, when
services are served in the nearer edge, the propagation delay
will be significantly reduced [4]. Thus MEC-based architec-
ture is thus very suitable for 5G networks because the latency
limitation is more likely to be satisfied. On the other hand,
computation offloading from devices can reduce devices’ load-
ing, so that the cost of devices and their power consumption
can be reduced [5].

Most previous research on offloading was designed for
two-tier architecture which consists only of a core and
devices [8]–[16], where offloading was essentially one
way, from devices to core. The research [17] designed for
MEC-based architecture mainly handled two-way offloading.
However, offloading, covered in [8]–[17], addresses the issue
of traffic allocation in the control plane. To the best of our
knowledge, no current research considers capacity allocation
in the management plane. In fact, capacity allocation and
traffic allocation are mutually affected: if for example more
capacity is allocated to edges, more traffic will be served in
them. Thus, capacity allocation and traffic allocation should
be considered simultaneously. The objective of this paper
is to address two problems: (1) to allocate the capacity of
all nodes in MEC-based architecture to create a minimal-
capacity network; and (2) to allocate the traffic to satisfy

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5226-4396
https://orcid.org/0000-0003-3695-5784
https://orcid.org/0000-0002-0074-9770

924 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

the latency percentage constraint, i.e., at least a percentage
of traffic satisfying latency constraint. Note that this work
uses a latency percentage constraint, rather than a latency con-
straint, because the former is more suitable to users’ Quality
of Experiences (QoE).

In order to achieve these objectives, we proposed a “two-
phase iterative optimization” (TPIO) algorithm to try to
optimize capacity and traffic allocation: one phase for adjust-
ing capacity allocation and the other for adjusting traffic
allocation. The amount of inputted traffic is proportional to
computation workload because all packets are assumed to be
homogenous, i.e., they require the same computation work-
load. The first phase fixes the allocated capacity and adjusts the
traffic allocation to satisfy the latency percentage constraint.
The second phase fixes the allocated traffic and adjusts the
capacity allocation to minimize the total capacity of all nodes.
The two phases take turns until the total capacity has been min-
imized and the latency percentage constraint has been satisfied.

Note that the problem we address is an optimization
problem, that is, constructing a minimal-capacity network
under satisfying the latency percentage constraint. However,
to avoid too high complexity, our proposed algorithm, TPIO,
is actually a heuristic solution to achieve near-optimal results.

To the best of our knowledge, our research is the first to
overcome capacity allocation and traffic allocation in MEC-
based architecture. Our contributions are as follows: (1) we
derive end-to-end latency distribution and the percentage of
the traffic satisfying latency constraint; (2) we design a new
system model where the offloading can only happen from
devices to edges and from core to edges, but not from devices
to core; (3) we propose the TPIO method, which allocates
the capacity of all nodes in MEC-based architecture, so as to
provide a minimal-capacity network and allocate the traffic to
satisfy the latency percentage constraint; and (4) we conduct
extensive simulations to demonstrate the benefits of MEC and
investigate the effects of different parameters in MEC-based
architecture.

The rest of this work is organized as follows:
Section II covers some background and reviews related
work; Section III defines the problem statement and
Section IV describes the details of the TPIO algorithm;
Section V evaluates TPIO by some simulations and
Section VI concludes the work.

II. BACKGROUND

A. MEC-Based Architecture

The ETSI (European Telecommunication Standard Institute)
has proposed MEC-based architecture within a radio access
network which is in close proximity to mobile users [7]. MEC-
based architecture introduces several advantages, including:

• QoE improvement: MEC can improve the QoE of users
by pushing data-intensive tasks towards an edge and
locally processing data in proximity to the users instead
of at a remote core.

• Rapidly deployment: because MEC-based architecture
is an extension of 4G networks, Mobile Network
Operators (MNOs) can rapidly deploy new services to

consumer and enterprise business segments which can
help them differentiate their service portfolios [7].

• Traffic bottleneck reduction: MNOs can reduce traffic
bottlenecks at the core and backhaul networks, while
assisting in the offloading of heavy computational tasks
from power-constrained user devices to an edge.

B. Related Work

Most previous work investigated computation offloading in
two-tier architecture. Some of this research discussed the case
where only one service is provided [8]–[12]. Tang et al. [8]
designed a socially-aware mobile network and modeled the
offloading problem as a socially-aware computation offload-
ing game. Chen [10] considered the multi-user computation
offloading problem in a single-channel wireless setting, so that
each user has a binary decision variable (i.e., to offload or not).
The same authors in another paper [9] considered the same
multi-user computation offloading problem, but extended it
from single to multiple channels (i.e., to offload which wireless
channel or not).

Other researchers discussed the case where multiple services
exist [14]–[16]. Since the complexity of cases for multiple
services is very high, these studies made different additional
assumptions so as to reduce time complexity. For exam-
ple, [14] assumed that only one device appears; [16] assumed
that different data-center operators offer different specific ser-
vices, and each user is allowed to subscribe a specific service
from a certain data-center operator.

For computation offloading problems, there may be dif-
ferent objectives: latency minimization, energy saving, over-
head minimization. For latency minimization [11], [12], [17]
attempted to minimize the latency under the constraint of
energy consumption, while for energy saving [8], [13]–[15]
attempted to reduce energy consumption under the constraint
of latency or execution time.

Recent research discussed the offloading problem in MEC-
based architecture [17], where the offloading can take place
from the core to edges and from the devices to edges. However,
there are some major differences between this and our research.
First, it only considered traffic allocation as a problem in the
control plane. However, we consider not only traffic allocation in
the control plane, but also capacity allocation in the management
plane. Second, it only considered one service in the network
while we include two services, one in core or edges, and the
other in devices or edges. Third, it assumed that the traffic
arrives simultaneously from devices. In our study, on the other
hand, the arrival of packets follows a Poisson process, which
is closer to the real environment. Finally, it only considered
the nodes’ workload to carry out the traffic allocation, but our
study considers the latency percentage constraint.

Table I shows the comparisons between earlier studies and
our work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce our system model, the notations
used and the problem statement. Table II lists the notations and
their meanings.

LIN et al.: THREE-TIER CAPACITY AND TRAFFIC ALLOCATION FOR CORE, EDGES, AND DEVICES FOR MEC 925

TABLE I
SUMMARY OF THE RESEARCH ON OFFLOADING

Fig. 1. Three-tier hierarchical MEC-based architecture.

A. System Model

We consider a three-tier hierarchical MEC-based architec-
ture composed of a core, NE edges and ND devices, as shown
in Fig. 1. C denotes the core, a single network device. E
denotes edges and ei ∈ E denotes the i-th edge. D denotes
the set of the set of devices and di ,j ∈ D denotes the j-th
device connecting to the i-th edge. Each node has its own
capacity, denoted by the symbol μ : μC , μEi , and μDi ,j rep-
resent the capacity of the core, of edge ei , and of device
di ,j , respectively. Let N1 denote the link between the device
and the edge, and N2 denote the link between the edge and
the core. μN1 and μN2 represent the link bandwidth of links
N1 and N2, respectively. The propagation delays of links N1
and N2 are denoted as ZN1 and ZN2, respectively. The traf-
fic (in units of packets) arrival rate from each device follows

a Poisson process. The packet arrival at device di ,j has rate
λi .j . Each packet requires two services, one provided by the
core and the other by the devices. According to MEC-based
architecture, core and devices can offload their computation
to edges, i.e., the edges deliver services provided by both
the core and devices. Therefore, depending where the packet
obtains these two services, traffic coming from device di ,j ,
denoted as gi ,j , can be classified as four types. First, the traf-
fic is served by devices and core, that is, no offloading. We
denote the traffic as gDC

i ,j , with rate λDC
i ,j . Second, the traf-

fic obtains services from devices and edges, denoted as gDE
i ,j ,

with rate λDE
i ,j . Third, the traffic obtains services from edges

and core, denoted as gECi ,j , with rate λECi ,j . Last, traffic obtains
both services from edges, gEEi ,j , with rate λEEi ,j . For simplicity,
according to the classification above, these various traffics are
termed DC-type traffic, EC-type traffic, DE-type traffic, and
EE-type traffic.

The constrained latency is L. However, previous studies
have always focused on achieving the goal where the aver-
age latency is less than this constraint. In fact, if such a goal
is achieved, it represents that about a half traffic satisfies this
constraint, and that about a half traffic exceeds the constraint.
In this study, we use a more appropriate metric, termed the
latency percentage constraint, i.e., the percentage of the latency
constraint satisfied must exceed a threshold, ThL. For exam-
ple, ThL = 80% means that at least 80% traffic has satisfied
the latency constraint.

926 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

TABLE II
USED NOTATIONS

B. Problem Statement

Our objective for the system model considered in this paper
is to minimize total capacity and to satisfy latency percentage
constraint. To achieve this, we have to allocate capacity and
traffic appropriately. The problem statement is then defined as
follows.

Input: The topology composed of a core, NE edges, ND
devices, the propagation delay of links (ZN1, ZN2), link band-
width (μN1, μN2), traffic arrival rate λi .j , latency constraint
L, and the threshold ThL.

Output: The allocated traffic vector [λDC
i ,j , λDE

i ,j , λECi ,j , λEEi ,j]
and the allocated capacity [μC , μEi , μDi ,j].

Objective: Minimize μtotal = μC +
∑

i μ
E
i +

∑
i

∑
j μ

D
i ,j

Constraint: The percentage of traffic required to satisfy the
latency constraint L must exceed the threshold ThL, that is,
P(t<L)≥ ThL, where t is the traffic latency.

As given in the problem statement, the allocated capacity
and allocated traffic vector of four types are outputs. Thus, the
problem is solved by an algorithm in the management plane,
and our algorithm runs in a management computer, rather than
devices, edges, or core. After determining the allocated traffic
vector of four types, the values will be adopted by the devices,
edges, and core, which execute suitable algorithms to route
these packets in the control plane and schedule them in the
data plane. However, these algorithms are beyond the scope
of this paper.

IV. TWO-PHASE ITERATIVE OPTIMIZATION

TPIO has two interleaved phases for adjusting the capacity
and traffic allocation in order to minimize the total capacity
under satisfying the latency percentage constraint. In order
to achieve this, we must derive an appropriate formula for
latency. First, we derive the equations for latency distribution,
then describe the TPIO concept, and finally provide a flow
chart to show how the system operates.

A. Latency Distribution

When considering one server which may be a node or a link,
it is assumed that packet arrivals follow a Poisson process with
rate λ. Packet service time is an exponential distribution with
a mean 1/μ. Under an M/M/1 queuing model, the probability
density function (PDF) of the latency, t, and its cumulative
distribution function (CDF) can be represented as

f (t) = (μ− λ)e−(μ−λ)×t , (1)

F (L) = P(t ≤ L) =

{
1− e−(μ−λ)×L, L ≥ 0
0, L < 0

}

. (2)

However, the traffic in MEC-based architecture requires
many servers and different types of traffic need to be served
by different servers. Below we calculate the latency percentage
constraint for each type of traffic.

1) DC-Type Traffic: First, we consider DC-type traffic
which is served by a device and the core. DC traffic must
travel to N1 link and N2 link, and is regarded as being served
by four servers: device, N1 link, N2 link, and core. The prop-
agation delay in N1 link is fixed as ZN1 and the propagation
delay in N2 link is fixed as ZN2. Since constrained latency
is L, the latency spent in these four servers must be less than
L′ = L−ZN1−ZN2, where L′ is constrained latency L with-
out the propagation delay of any links. The CDF of latency
for DC-type traffic arriving in di ,j can be expressed by

FDC
i,j (L) = P(t ≤ L) =

L′
∫
0

L′−t1∫
0

L′−t1−t2∫
0

f Di,j (t1)× f C (t2)

× f N2(t3)

×
(

1− e
−
(
μN1−λN1

i

)
×(L′−t1−t2−t3)

)

dt3dt2dt1,

where f Di,j =
(
μD
i,j − λDi,j

)
× e

−
(
μD
i,j−λD

i,j

)
×t

,

f C (t) =
(
μC − λC

)
× e

−
(
μC−λC

)
×t

,

f N2(t) =
(
μN2 − λN2

)
× e

−
(
μN2−λN2

)
×t

. (3)

fDi ,j (t), fC (t), fN2 (t) are the PDF of the latency for
device di ,j , core, and the N2 link, respectively. In Eq. (3)
the latency spent in the device di ,j is t1, the latency spent in
the core is t2, the latency spent in the N2 link is t3, and the
residual latency spent in the N1 link. To obtain the PDF of
each server, we must calculate the arrival rate of this server,
which is the sum of its arrival rates, i.e., λDi ,j = λDC

i ,j + λDE
i ,j ,

λC =
∑

i

∑
j (λ

DC
i ,j + λECi ,j). The arrival rate of the link

is the total traffic rate going through this link, which is,
λN1
i =

∑
j λi ,j and λN2 =

∑
i

∑
j (λ

DC
i ,j + λECi ,j). Note that

LIN et al.: THREE-TIER CAPACITY AND TRAFFIC ALLOCATION FOR CORE, EDGES, AND DEVICES FOR MEC 927

TABLE III
ALLOCATING TRAFFIC GUIDELINE

only the propagation delay of links is assumed as a fixed value.
However, we actually consider the packet arrival rate and link
bandwidth to calculate the transmission delay. As the network
latency in the link includes transmission delay and propaga-
tion delay, the network latency is actually dependent of the
link bandwidth and the packet arrival rate.

2) EC-Type Traffic: EC-type traffic is served by an edge and
the core, so that it must travel to links N1 and N2. Similar to
DC-type traffic, the CDF of latency for EC-type traffic arriving
in di ,j can be expressed by

FEC
i,j (L) = P(t ≤ L) =

L′

∫
0

L′−t1∫
0

L′−t1−t2∫
0

f Ei (t1)× f C (t2)

× f N2(t3)

×
(
1− e−(μ

N1−λN1
i)×(L′−t1−t2−t3)

)
dt3dt2dt1,

where f Ei (t) =
(
μE
i − λEi

)
× e−(μ

E
i −λE

i)×t . (4)

fEi (t) is the PDF of the latency for edge ei . Its arrival rate
can be calculated as λEi =

∑
j (λ

DE
i ,j + λECi ,j + 2λEEi ,j). fC (t)

and fN2 (t) are the same as in Eq. (3).
3) DE-Type Traffic: DE-type traffic only travels to N1 link,

but not to N2 link. It is thus regarded as being served by three
servers: device, link N1, and edge. Since constrained latency
is L, the latency spent in these three servers must be less than
L′ = L− ZN1, where L′ is constrained latency L without the
propagation delay of N1 link. The CDF of latency for DE-type
traffic arriving in di ,j can be expressed by

FDE
i ,j (L) = P(t ≤ L) =

L′
∫
0

L′−t1∫
0

f Di ,j (t1)× f Ei (t2)

×
(
1− e−(μ

N1−λN1
i)×(L′−t1−t2)

)
dt2dt1. (5)

4) EE-Type Traffic: Similar to DE-type, EE traffic only
travels to link N1, but not to link N2. Thus, the CDF of latency
for EE-type traffic arriving in di ,j can be expressed by

FEE
i ,j (L) = P(t ≤ L) =

L′
∫
0

L′−t1∫
0

f Ei (t1)× f Ei (t2)

×
(
1− e−(μ

N1−λN1
i)×(L′−t1−t2)

)
dt2dt1. (6)

Fig. 2. The TPIO concept.

From Eqs. (3)∼(6), we can derive the CDF of latency for
traffic arriving in di ,j by

Fi,j (L)

=
FDC
i,j (L)λDC

i,j + FEC
i,j (L)λEC

i,j + FDE
i,j (L)λDE

i,j + FEE
i,j (L)λEE

i,j

λi,j
.

(7)

Also we can derive the CDF of latency for all traffic as

F (L) =

∑
i

∑
j Fi ,j (L)λi ,j

λ
. (8)

After obtaining F(L), the objective is to satisfy F(L)≥ ThL.

B. The TPIO Concept

TPIO has two iterative phases for adjusting capacity and
traffic allocation. As shown in Fig. 2, in Phase 1 we adjust
traffic allocation based on current allocated capacity to satisfy
the latency percentage constraint. In Phase 2, we adjust capac-
ity allocation based on current allocated traffic to minimize
total capacity.

1) Phase 1 (Low-Latency Traffic Allocation): Using
Eqs. (3)∼(6), we determine the traffic types which do not
satisfy the latency constraint in each device. For such traffic
types, latency should be lowered. Thus, TPIO determines to
shift the traffic types which do not satisfy latency percentage
constraint to other types. The decision is based on the node
with the maximum latency. Table III shows this in outline. For
example, the traffic gDC

i ,j does not satisfy the latency percent-
age constraint, meaning that we should shift some of gDC

i ,j to
another type. If the core now experiences maximum latency,
TPIO will shift some gDC

i ,j to gDE
i ,j to prevent over-congestion

in the core. Thus, λDC
i ,j will decrease and be more likely to

satisfy its latency percentage constraint after the shift.
When it is known which traffic should be shifted, TPIO

determines how much traffic is to be shifted. In order to
achieve rapid converge in phase 1, the amount of traffic being
shifted is determined according to the appropriate equation
of Eqs. (3)∼(6). Thus, we can then determine the amount of
traffic to be shifted to satisfy the latency percentage constraint.

For example, if we want to shift some gDC
i ,j to gDE

i ,j , we
select the corresponding Eq. (3) and set FDC

i ,j (L) = ThL to
determine the new λDC

i ,j and λDE
i ,j .

2) Phase 2 (Low-Capacity Allocation): Traffic allocation
has thus been determined after phase 1. However, under cur-
rent traffic allocation, the capacity may be further reduced to
reduce overall capacity. To do so we select the node which

928 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

Fig. 3. Flow chart of TPIO.

has the highest capacity reduction to reduce total capacity. For
example, if reducing device capacity can generate the largest
capacity reduction while satisfying the latency percentage con-
straint, TPIO will adjust the devices’ capacity to rapidly reach
the objective of minimum capacity.

C. The TPIO Algorithm

The TPIO algorithm is shown in Fig. 3. Initially, depend-
ing on the number of devices and edges, TPIO constructs
the hierarchical MEC-based architecture by almost uniformly
mapping the devices to edges. Each edge is thus responsible
for �ND/NE � devices except the last one. The device j has
the parent edge i = �j/�ND/NE ��. For clarity, we use the
index (i, j), rather than (�j/�ND/NE ��, j) for used notations.

First, the percentages of four types are initially set to be the
same, i.e., λDC

i ,j = λDE
i ,j = λECi ,j = λEEi ,j = 1

4λi ,j . Thus we
can determine the arrival rate of each node as

λDi ,j = λDC
i ,j + λDE

i ,j ,

λEi =
∑

j

(
λDE
i ,j + λECi ,j + 2λEEi ,j

)
,

λC =
∑

i

∑

j

(
λDC
i ,j + λECi ,j

)
. (9)

TPIO then determines the initial capacity of each node,
μC , μEi , μDi ,j . It assumes the traffic takes the same time in each
node and ignores the latency spent in links to let the allocated
capacity be enough. That is, the latency in each node is L/2.
Thus, according to Eq. (2), the initial allocated capacity for
the core, edges, and devices is

μC = λC −
(
loge(1− ThL)

L/2

)

,

μEi = λEi −
(
loge(1− ThL)

L/2

)

,

μDi ,j = λDi ,j −
(
loge(1− ThL)

L/2

)

. (10)

Fig. 4. Flow chart of phase 1.

Next, a loop for iteratively calculating traffic and capacity
allocation is repeated until a satisfactory result is obtained. In
Fig. 3, phase 1 adjusts traffic allocation and phase 2 adjusts
capacity allocation. We compute Fi ,j (L), the percentage of
traffic satisfying the latency constraint in device di ,j according
to Eq. (7). Then we calculate F(L) to determine the percent-
age of all traffic satisfying L. Comparing F(L) with ThL to
determine whether current traffic allocation can satisfy the
latency percentage constraint. If F(L)≥ ThL, i.e., the traffic
allaocation satisfies the latency percentage constraint, TPIO
will enter phase 2 to reduce the allocated capacity. However,
phase 1 might not get the proper traffic allocation when the
allocated capacity is too small. To solve this problem, we count
the number of iterations in phase 1, i.e., count1. If this number
is larger than a threshold, TH1, it means that current allocated
capacity cannot satisfy the latency percentage constraint, and
so TPIO enters phase 2.

The stop criteria is when Δμtotal/μtotal is less than a tiny
value, ε, where Δμtotal is the capacity variation and μtotal is
the total capacity. In this case, the capacity reduction ratio is
less than a tiny value. Also a threshold, TH2, is used to limit
the number of iterations of phase 2, count2.

1) Phase 1 (Low-Latency Traffic Allocation): The detailed
flow chart for phase 1 is shown in Fig. 4. We first compute
Fi ,j (L), the percentage of traffic that satisfies the latency con-
straint in device di ,j according to Eq. (7). As currently F(L) is
smaller than ThL, there are some devices with Fi ,j (L)<ThL.

LIN et al.: THREE-TIER CAPACITY AND TRAFFIC ALLOCATION FOR CORE, EDGES, AND DEVICES FOR MEC 929

Fig. 5. Flow chart of phase 2.

Which we select as the victims, and then calculate the prob-
ability that these victims will adjust their traffic allocation.
The probability of changing traffic allocation in device di ,j ,
denoted as pi ,j , is calculated as

pi ,j = max

(

1− Fi ,j (L)

ThL
, 0

)

. (11)

If Fi ,j (L) is much less than ThL, it is more likely to
shift the traffic in device di ,j . According to the probabil-
ity pi ,j , if a victim determines it necessary to adjust traffic
allocation, TPIO adjusts the traffic according to the guide-
lines in Table III, and computes the amount of shifted traffic
by the corresponding equation among Eqs. (3)∼(6). For
example, if the shifted traffic is DC-type traffic, TPIO uses
FDC
i ,j (L) = ThL to reduce this and thus obtains a changed traf-

fic allocation (λ′DC
i ,j , λ′DE

i ,j , λ′ECi ,j , λ′EEi ,j). After adjusting the
traffic for each victim, we compute a new F(L) and determine
whether it is better than the old F(L). If so, TPIO replaces
(λDC

i ,j , λDE
i ,j , λECi ,j , λEEi ,j) with (λ′DC

i ,j , λ′DE
i ,j , λ′ECi ,j , λ′EEi ,j). On

the other hand, if the new F(L) is worse than the old one, TPIO
retains (λDC

i ,j , λDE
i ,j , λECi ,j , λEEi ,j) without making any changes.

2) Phase 2 (Low Capacity Allocation): The detailed flow
chart for phase 2 is shown in Fig. 5. Here we reduce the node
which has the maximum capacity reduction to reduce the total
capacity. First, TPIO computes the new capacity μ′C with
current μEi and μDi ,j after satisfying the latency percentage
constraint according to Eq. (8). Similarly, TPIO computes the
new μ′Ei with current μC and μDi ,j , and computes the new
capacity μ′Di ,j with current μC and μEi . Comparing the capacity
reduction, where ΔμC = (μC − μ′C), ΔμE =

∑
i (μ

E
i −

μ′Ei), and ΔμD =
∑

i

∑
j (μ

D
i ,j − μ′Di ,j), phase 2 determines

which capacity should be reduced. TPIO selects the maximum
capacity reduction to carry out the adjustment. For example, if

Fig. 6. Simulation scenario.

the core’s capacity can be reduced the most, TPIO will reduce
its capacity, so that capacity allocation is changed to (μ′C ,
μEi , μ

D
i ,j). To determine the terminiation conditon, phase 2 also

calculates Δμtotal = max(ΔμC ,ΔμE ,ΔμD) and μtotal =
μC +

∑
i μ

E
i +

∑
i

∑
j μ

D
i ,j .

D. The Time Complexity of the TPIO Algorithm

The TPIO is a two-phase algorithm. As can be seen in
Fig. 4, as the algorithm of phase 1 calculates the traffic
allocation once for each device, its complexity is O(ND).
Figure 3 shows that TPIO repeats phase 1 many times per
phase 2. Since we use a good heuristic to shift the traffic, the
average count (count1) in phase 1 is not too large, as shown in
Section IV-B. Also a threshould TH1 is set to limit the times
of its iterations. Thus for each phase 2, the time complexity
of phase 1 in the worst case is O(ND× TH1).

From Fig. 5 can be seen that the complexity of phase 2 is
O(1+NE+ND) because it calcutes the capacity reduction for
each node, including core, edges and devices. However, the
difficulty is to determine how many times of phase 2, but
we could not obtain an exact number. However, as we use
Eq. (8) to calculate how much capacity can be reduced under
current traffic allocation, the capacity reduction might be large
at first, but not subsequently. Therefore, the iteration times of
phase 2 (count2) is not large and TPIO can rapidly converge,
as shown in Section IV-B. Also, a threshould TH2 is set to
limit the number of iterations. Thus, the complexity of TPIO
in the worst case can be estimated as O(TH 2×(ND×TH 1+
(1 +NE +ND))) = O(TH 2× TH 1×ND), because ND is
always larger than NE .

V. EVALUATION

In this section we deal with some simulations to investigate
the performance of TPIO. First, we describe the simula-
tion scenario and default parameters, and then investigate the
effects of some important parameters. Finally, we give some
lessons learned.

A. Scenarios and Parameters

The simulation scenario is a three-tier hierarchical network
as shown in Fig. 6, comprising a core, 100 edges, and

930 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

TABLE IV
DEFAULT VALUES FOR SIMULATION

1000 devices. Each edge covers 10 devices and each device
has traffic arriving at a rate of 20,000 packets/sec. The distance
between the core and the devices is 10 km, so the area of the
simulation scenario is 102π km2. All devices are assumed to
be uniformly distributed. Thus, the distance between edges and
devices is determined by the number of devices that each edge
covers. If the number of edges is varied, the number of devices
that each edge covers varies and the distance between edges
and devices also varies. Thus, when the distance between the
devices and the core is XDC , the distance between the devices
and the edges, XDE , can be calcauted as

XDE × XDE
⌊
ND
NE

⌋ =
XDC × XDC

ND
,

where �ND
NE

� is the number of devices that each edge covers
except the last edge.

The latency constraint follows 5G network guidelines and is
set at 1 ms [3]. The link between core and edges is considered
as a fiber network, so that the propagation speed is 3 × 108 m/s
and the link bandwidth is 10 Gbps. The link between edges
and devices is considered as a 5G network, so that bandwidth
is set as 1 Gbps. Table IV summarizes the parameters and
default values used in this experiment.

B. Results

1) The Performance of TPIO: Figure 7 shows the com-
parison between the capacity of three-tier and two-tier archi-
tectures with different numbers of edges. The unit of Y-axis
is Mpackets/sec, i.e., 106 packets/sec. The middle tier has
edges in three-tier architecture, while the base station in two-
tier architecture has no computing capacity. The capacity in
three-tier architecture is obviously lower than that of two-tier
architecture with the same parameters. Three-tier architecture
reduced the capacity by 20.7% (50.7−40.2

50.7) at most when
NE = 50, which confirmed the necessity of edges.

With only one edge, its location is the same as that of
the core. Intuitively, three-tier architecture will be reduced to

Fig. 7. The performance comparison between three-tier(TPIO), three-
tier(optimal) and two-tier.

Fig. 8. The time complexity of TPIO.

two-tier architecture and they should have the same allocated
capacity. However, even in this case, three-tier architecture still
has lower capacity than two-tier architecture. This is because
the computation offloading from devices to edges is possible
in three-tier architecture, but offloading from devices to core
is impossible in two-tier architecture. Offloading computation
from devices to edges can significantly decrease the amount
of allocated capacity.

Figure 7 also compares the performance of TPIO and the
optimal solution, which is solved by a brute-force approach
and a time-consuming procedure, in three-tier architecture. We
observed that the optimal solutions under different numbers of
edges were almost the same. With fewer edges, the capacity of
an edge became more concentrated and thus reduced required
capacity. On the other hand, in this case the distance between
the devices and edges increased, so the capacity of this archi-
tecture grew to compensate for this increase in propagation
delay. Thus, the positive and negative effects resulted in sim-
ilar optimal solutions. TPIO also achieved very close to the
optimal solution when NE = 50 and a slightly higher capacity
by 6.2% (43.0−40.5

40.5) at most when NE = 300.
Figure 8 shows the efficiency of TPIO by giving the aver-

age number of iterations of phase 1 per phase 2 (average
count1), the number of iterations of phase 2 (count2), and
execution time. The average count1 was always less than 20
and count2 ranged between 15 and 45. Thus we set both TH1
and TH2 as 100. The specifications of the computer running

LIN et al.: THREE-TIER CAPACITY AND TRAFFIC ALLOCATION FOR CORE, EDGES, AND DEVICES FOR MEC 931

the TPIO algorithm are Intel i5-3230M CPU, 4GB RAM,
with Windows 10 operating system. The execution time of
1700 seconds at most verifies the acceptable complexity of
TPIO.

2) The Effects of the Number of Edges: From Fig. 9(a):
when fewer edges existed, TPIO generated less capacity
because the capacity of an edge became more concentrated
and thus reduced capacity. When the number of edges was too
small, for example, NE = 1, the distance between edges and
devices was far, resulting in the increase of the required capac-
ity. Thus, the number of edges should be properly selected. We
also observed that most capacity was allocated to edges, which
confirmed the necessity of edges.

From Fig. 9(b): most traffic was λEEi ,j , showing that most
traffic obtained two functions in edges, which is why μEi was
large. When NE was small, as the distance between edges and
devices was large, there was some traffic belonging to λDC .
However, when NE increased, as edges were closer to devices,
λDC was shifted to λDE and λEE , resulting in the decrease
of λDC and the increases of λDE and λEE .

3) The Effects of Latency Constraint: The latency con-
straint in 5G is of the order of ms and will affect the
performance of MEC-based architecture. Figure 10(a) shows
the capacity allocation under different latency constraints.
It is reasonable that a higher latency constraint will result
in higher capacity. Note too that the latency constraint is
more likely to be satisfied when traffic is served by the
devices. Therefore, when latency constraint becomes loose,
the capacity of devices decreases to reduce the capacity.
Furthermore, the capacity of edges occupies a significantly
major portion of total capacity. The capacity ratio of edges
was always more than 70%, irrespective of the latency
constraint.

As we know, offloading computation to a higher tier can
reduce total capacity, but it may cause longer latency. Thus,
traffic should preferentially be served by a higher than by
a lower tier when latency constraint is loose, to reduce the
capacity. As shown in Fig. 10(b), λDC was shifted to λEC

by about 25% when latency constraint increased from 0.5ms
to 2.5ms.

4) The Effects of ThL: Figure 11(a) shows the capacity allo-
cation under different ThLs. The total capacity increased by
12.2% as ThL increased from 50% to 90%. It is reasonable
that a larger capacity is accompanied by a higher QoE. This
figure also shows the trade-off between capacity and QoE.

As we know, offloading computation to a higher tier can
reduce total capacity, but it may also cause longer latency.
Furthermore, when a high ThL is set, the traffic must be served
in a lower tier to allow more traffic to satisfy the latency per-
centage constraint. As shown in Fig. 11(b), the traffic type
λDC and λEC were reduced with increasing ThL. λDC and
λEC were shifted to λEE when ThL increased from 50%
to 90%.

An interesting phenomenon can be observed from
Fig. 11(a): the increase in the total capacity was mainly due
to the edge capacity when ThL changed. From Fig. 11(b) can
be seen that λDC and λEC were shifted to λEE when ThL

Fig. 9. The effects of the number of edges.

Fig. 10. The effects of latency constraint.

Fig. 11. The effects of ThL.

changed from 50% to 90%. As λEE was increased, more
capacity in edges had to be allocated.

5) The Effects of the Distance Between Devices and Core:
Figure 12(a) shows the capacity under different distances
between devices and the core, i.e., XDC . The total capac-
ity increased slightly as XDC increased from 10km to 50km
because the extra propagation delay of 0.13ms was needed. We
can see that the capacity of core decreased and the capacity
of edges increased to avoid this propagation delay. As shown
in Fig. 12(b), when XDC became longer, the traffic type λDC

was shifted to λDE or λEE . Also the traffic type λEC was also
shifted to λDE or λEE . That is, when the distance between

932 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

Fig. 12. The effects of XDC .

devices and the core was far, no traffic got its function in
the core.

C. Lessons Learned

Some interesting lessons can be learned from these results.
(1) The edges are essential for satisfying the latency per-

centage constraint and reducing the allocated capacity. If using
two-tier architecture, more capacity must be allocated.

(2) The number of edges should be properly selected.
Basically, too many edges cause more capacity, while too few
edges make the distance between devices and edges too far,
also resulting in more capacity.

(3) Most capacity, always more than 70%, is allocated to
the edges.

(4) When the latency percentage constraint becomes stricter,
however, the increase of capacity is not as large. Thus, ThL
can be set as a reasonable value, for example, 90%.

(5) When the distance between the core and devices
becomes longer, more capacity should be allocated to devices
and edges to avoid propagation delays between edges and the
core. In this case, no traffic gets its function in the core. Thus,
it is meaningless to place the core in a location too far away
from devices.

VI. CONCLUSION

This paper proposes TPIO to optimize capacity and traf-
fic allocation under the constraint of ultra-low latency in
a three-tier MEC-based network. TPIO iteratively uses two
phases to adjust capacity and traffic allocation because they
are tightly-coupled. Given fixed capacity allocation, we use
queuing theory to calculate optimal traffic allocation. On the
other hand, given fixed traffic allocation, allocated capacity is
further reduced under satisfying latency percentage constraint.
TPIO exploits queuing theory to calculate latency and its dis-
tribution to obtain the percentage of traffic that satisfies latency
constraint and decides whether or not it is below ThL.

A simulation exercise shows that MEC-based architecture
with TPIO can save up to 20.7% of capacity compared to two-
tier architecture. This result shows the necessity of a tier of
edges. The superiority of TPIO can be observed because its
performance is close to the optimal solution and it can signifi-
cantly reduce time complexity. The role of edges is necessary

because they can offload traffic originally served by the core,
devices, or both. Another important consequence is the trade-
off between the latency percentage constraint and capacity.
Additional capacity of 12.2% will be incurred when ThL is
90%, compared to that when ThL is 50%. Furthermore, λDC

and λEC are shifted to λEE when ThL is changed from 50%
to 90%. Also, the distance between the core and devices is an
important factor to affect the capacity and traffic allocation.

Despite being promising, there is much work to be done
in the future. First, instead of using two services, a scenario
with more diverse services should be considered. Second, the
wireless link bandwidth between devices and edges should be
extended to a dynamic value instead of a fixed one used in
this paper. Finally, the issue about service chain deployment
in MEC-based architecture could be further investigated.

REFERENCES

[1] 5G Related Aspects in ITU-R Working Party 5D (Responsible Group for
Terrestrial IMT in ITU-R). Accessed: Oct. 14, 2016. [Online]. Available:
https://www.itu.int/en/membership/Documents/missions/GVA-mission-
briefing-5G-28Sept2016.pdf

[2] N. A. Johansson, Y.-P. E. Wang, E. Eriksson, and M. Hessler, “Radio
access for ultra-reliable and low-latency 5G communications,” in Proc.
IEEE ICC Workshop 5G Beyond Enabling Technol. Appl., Jun. 2015,
pp. 1184–1189.

[3] G. P. Fettweis, “The tactile Internet: Applications and challenges,” IEEE
Veh. Technol. Mag., vol. 9, no. 1, pp. 64–70, Mar. 2014.

[4] J. Zhang, W. Xie, F. Yang, and Q. Bi, “Mobile edge computing and
field trial results for 5G low latency scenario,” China Commun., vol. 13,
no. 2, pp. 174–182, Feb. 2016.

[5] T. O. Olwal, K. Djouani, and A. M. Kurien, “A survey of resource
management toward 5G radio access networks,” IEEE Commun. Surveys
Tuts., vol. 18, no. 3, pp. 1656–1686, 3rd Quart., 2016.

[6] Y. Yu, “Mobile edge computing towards 5G: Vision, recent progress, and
open challenges,” China Commun., vol. 13, no. 2, pp. 89–99, Feb. 2016.

[7] (Sep. 18, 2014). Mobile-Edge Computing Introductory Technical
White Paper. [Online]. Available: https://portal.etsi.org/portals/0/
tbpages/mec/docs/mobile-edge_computing-introductory_technical_
white_paper_v1%2018-09-14.pdf

[8] L. Tang, X. Chen, and S. He, “When social network meets mobile cloud:
A social group utility approach for optimizing computation offloading
in cloudlet,” IEEE Access, vol. 4, pp. 5868–5879, 2016.

[9] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2015.

[10] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[11] Y. Li, P. Wang, D. Niyato, and Z. Han, “A hierarchical cooperation
formation model for downlink data transmission in mobile infosta-
tion networks,” IEEE Wireless Commun., vol. 20, no. 3, pp. 144–152,
Jun. 2013.

[12] O. Muñoz, A. P. Iserte, J. Vidal, and M. Molina, “Energy-latency
trade-off for multiuser wireless computation offloading,” in Proc. IEEE
Workshops Wireless Commun. Netw. (WCNCW), 2014, pp. 29–33.

[13] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance
improvement and energy saving in mobile cloud offloading systems,”
in Proc. IEEE Conf. Commun. (ICC), Jun. 2013, pp. 728–732.

[14] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[15] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Over Netw., vol. 1, no. 2, pp. 89–103,
Jun. 2015.

[16] H. Zhang et al., “Fog computing in multi-tier data center networks:
A hierarchical game approach,” in Proc. IEEE Conf. Commun. (ICC),
2016, pp. 1–6.

[17] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud archi-
tecture for mobile computing,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jun. 2016, pp. 1–9.

LIN et al.: THREE-TIER CAPACITY AND TRAFFIC ALLOCATION FOR CORE, EDGES, AND DEVICES FOR MEC 933

Ying-Dar Lin (F’13) received the Ph.D. degree
in computer science from the University of
California at Los Angeles in 1993. He is
a Distinguished Professor of computer science with
National Chiao Tung University, Taiwan. He was
a Visiting Scholar with Cisco Systems, San Jose,
CA, USA, from 2007 to 2008, and the CEO with
Telecom Technology Center, Taipei, Taiwan, from
2010 to 2011. Since 2002, he has been the Founder
and the Director of Network Benchmarking Lab,
which reviews network products with real traf-

fic and has been an approved test laboratory of the Open Networking
Foundation (ONF) since 2014. He also co-founded L7 Networks Inc., in 2002,
which was later acquired by D-Link Corporation. He published a textbook
entitled Computer Networks: An Open Source Approach (www.mhhe.com/lin),
with R.-H. Hwang and F. Baker (McGraw-Hill, 2011). His research interests
include network security, wireless communications, and network cloudifica-
tion. His work on multihop cellular was the first along this line, and has been
cited over 800 times and standardized into IEEE 802.11s, IEEE 802.15.5,
IEEE 802.16j, and 3GPP LTE-Advanced. He is an IEEE Distinguished
Lecturer from 2014 to 2017 and an ONF Research Associate. He currently
serves on the editorial boards of several IEEE journals and magazines,
and is the Editor-in-Chief of the IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS.

Yuan-Cheng Lai received the Ph.D. degree in com-
puter science from National Chiao Tung University
in 1997. In 2001, he joined the faculty of the
Department of Information Management, National
Taiwan University of Science and Technology,
Taiwan, where he is a Distinguished Professor of
information management and has been a Professor
since 2008. His research interests include wireless
networks, network performance evaluation, network
security, and social networks.

Jian-Xun Huang received the B.S. degree in infor-
mation management from National Chung Cheng
University, Taiwan, in 2015 and the M.S. degree in
information management from the National Taiwan
University of Science and Technology, Taiwan, in
2017. He is currently fulfilling his mandatory mili-
tary service. His research interests include wireless
networks, mobile networks, and artificial intelli-
gence.

Hsu-Tung Chien received the B.S. degree in com-
puter science from Tung Hai University, Taiwan, in
2014 and the M.S. degree in computer science from
National Chiao Tung University, Taiwan, in 2017,
where he is currently pursuing the Ph.D. degree.
He is also part of an H2020 Project in 5GPPP and
5G-CORAL, to develop the edge and fog systems for
5G networks. His research interests include wireless
networks, mobile networks, and protocol design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

