The Director of the United States Patent and Trademark Office has received an application for a patent for a new and useful invention. The title and description of the invention are enclosed. The requirements of law have been complied with, and it has been determined that a patent on the invention shall be granted under the law.

Therefore, this United States Patent grants to the person(s) having title to this patent the right to exclude others from making, using, offering for sale, or selling the invention throughout the United States of America or importing the invention into the United States of America, and if the invention is a process, of the right to exclude others from using, offering for sale or selling throughout the United States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2) or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the Maintenance Fee Notice on the inside of the cover.

Katherine Kelly Vidal
DIRECTOR OF THE UNITED STATES PATENT AND TRADEMARK OFFICE
A communication system performs a third-party authentication between a home service end and a foreign service end, wherein the home service end and the foreign service end each have a type of a cloud, an edge or a fog. The communication system includes a control module and a plurality of operation modules that are configured in a universal proxy, wherein the universal proxy performs communication with a cloud through a cloud relay, performs communication with an edge through an edge relay, and performs communication with a fog through a fog relay. The control module selects two of the operation modules to perform the third-party authentication according to the types of the home service end and the foreign service end.

20 Claims, 25 Drawing Sheets
<table>
<thead>
<tr>
<th>foreign</th>
<th>home</th>
<th>Cloud</th>
<th>Edge</th>
<th>Fog</th>
<th>Fog-802.1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud</td>
<td>vIdP 22</td>
<td>vRP 25</td>
<td>vUE 23</td>
<td>vIdP 22</td>
<td>vUE 23</td>
</tr>
<tr>
<td></td>
<td>vHSS 27</td>
<td>vUser 26</td>
<td>vMME 24</td>
<td>vHSS 27</td>
<td>vUser 26</td>
</tr>
<tr>
<td></td>
<td>vUE 23</td>
<td>vIdP 22</td>
<td>vUE 23</td>
<td>vIdP 22</td>
<td>vUE 23</td>
</tr>
<tr>
<td></td>
<td>vHSS 27</td>
<td>vUser 26</td>
<td>vMME 24</td>
<td>vHSS 27</td>
<td>vUser 26</td>
</tr>
<tr>
<td></td>
<td>vUE 23</td>
<td>vIdP 22</td>
<td>vUE 23</td>
<td>vIdP 22</td>
<td>vUE 23</td>
</tr>
<tr>
<td></td>
<td>vHSS 27</td>
<td>vUser 26</td>
<td>vMME 24</td>
<td>vHSS 27</td>
<td>vUser 26</td>
</tr>
</tbody>
</table>

FIG. 2(A)
UE sends service request to foreign service end, and foreign service end sends service request to universal proxy

S1

control module performs initialization phase procedure to establish communication link between operation module to be used and corresponding relay

S2

control module performs an operational phase procedure to process authentication process between the home service end and the foreign service end, and also performs entry insertion and lookup establishment procedure to record information of the home service end and the foreign service end for use in operational phase procedure

after authentication of home service end and foreign service end is completed, foreign service end provides services to UE

FIG. 2(B)
<initialization phase procedure starts>

S11: universal proxy receives service request sent by foreign service end

S12: control module identifies type of relay

Cloud Relay | Edge Relay

S13(a): control module activates communication link between VIdP and CR, and stores information related to CR

S13(b): control module determines whether universal proxy has received service request sent by other CR

Fog Relay

S15(b): control module determines whether universal proxy receives service requests from other CR

S14(a): control module activates communication link between VIdP and ER, and stores information related to ER

S14(b): control module determines whether universal proxy receives service request sent by other ER

S15(c): control module activates communication link between VHSS and ER, and stores information related to ER

S15(d): control module activates communication link between VAS and FR (802.1x), and stores information related to FR (802.1x)

End S15(d)

<FIG. 3>

End FIG. 3

End S14(b)

End S15(c)

End S15(d)

End S15(b)

End S13(b)

End S13(a)
The diagram illustrates the operational phase procedure described in the patent. The procedure starts with a universal proxy receiving a service request from a foreign relay (ER, FR). The control module identifies the type of request and activates the VAS to receive the service request (RADIUS access request).

Next, the control module provides the login option to the UE and performs the first user authentication procedure (3GPP). Then, it performs the second user authentication procedure (cloud/fog (OIDC)). Finally, the control module determines whether the universal proxy has received the UE login request and stops operation if yes, or continues if no.

Key steps include:
- RADIUS Access Request received.
- Login options provided to UE.
- First user authentication performed.
- Second user authentication performed.
- Login request received status checked.

This sequence ensures secure and efficient service request handling.
< user authentication procedure (3GPP) starts >>

S261 Cloud

control module performs fourth home service end authentication sub-procedure F when UE selects cloud as login option

S263

control module performs second foreign service end authentication sub-procedure E when UE selects edge as login option

S262

Edge

control module confirms whether communication protocol of fog is 802.1x when UE selects fog as login option

S264

Fog

providing verification to server of edge

S265

control module performs third home service end authentication sub-procedure D

S266

sending authentication success message to UE

S267

control module performs fourth home service end authentication sub-procedure F

end

end

FIG. 6

end

end

end

end

end
S302 control module performs fifth home service end authentication sub-procedure G (for cloud-to-cloud, cloud-to-fog (OIDC)) when login option is cloud.

User authentication procedure (cloud/fog (OIDC)) starts > S301 control module performs first home service end authentication sub-procedure A when login option is edge.

Cloud performs first home service end authentication S306 Fog control module sub-procedure A when determines whether yes login option is edge communication protocol S307 control module creates identity token S305 (a)

VIDP receives token S305 (b) VIDP sends token to cloud/fog end S308 control module performs third home service end authentication sub-procedure D

VIDP receives token S309 (b) VIDP sends token to foreign service end (cloud/fog) end

FIG. 7
first home service end authentication sub-procedure A

A1(a) control module activates the vUE

control module converts second format service request (UE login request) into authentication request (including IMSI)

A1

A1(b) control module controls vUE to communicate with home edge

(MME of edge verifies IMSI)

A2

control module determines whether vUE receives verification challenge returned by home edge

A3

no

yes

control module controls vUE to send verification challenge to UE

A4

control module determines whether vUE has received verification challenge response returned by UE

A5

no

yes

control module controls vUE to send verification challenge response to MME of home edge

A6

home service end authentication is completed

yes

control module determines whether vUE receives verification success message returned by MME

A7

no

sending authentication failure message to UE

A8

FIG. 8
first foreign service end authentication sub-procedure B

control module provides user records to vAS (when home service end authentication is completed)

control module controls vAS to generate RADIUS challenge

control module controls vAS to send RADIUS challenge to AP of foreign fog

(AP sends RADIUS challenge to the user equipment, UE performs challenge response)

control module determines whether vAS has received RADIUS access request from AP

no

yes (AP starts providing services to UE)

control module controls vAS to send RADIUS access accept to AP

FIG. 9
second home service end authentication sub-procedure C

C1 ~ control module generates login message (including account number and password) for user

C2 ~ control module activates vUSER

C3 ~ control module controls vUSER to send login message to home service end (cloud/fog(OIDC))

C4 ~ control module determines whether login success message returned by home service end (cloud/fog(OIDC)) is received
 no
 yes
 home service end authentication is completed

FIG. 10
third home service end authentication sub-procedure D

D1～ control module activates vUSER

D2～ control module controls vUSER to send EAPOL start request to AS of home fog(802.1x)

D3～ control module determines whether EAP-req/ID returned by home fog(802.1x) is received
 - no
 - yes

D4～ control module controls universal proxy to send EAP-req/ID to UE

D5～ control module determines whether EAP-res/ID returned by UE is received
 - no
 - yes

D6～ control module controls universal proxy to send EAP-res/ID to AS of fog(802.1x)

D7～ control module determines whether EAP-req/MD5 returned by AS is received
 - no
 - yes

D8～ control module controls universal proxy to send EAP-req/MD5 to UE

D9～ control module determines whether EAP-res/MD5 returned by UE is received
 - no
 - yes

D10～ control module controls universal proxy to send EAP-res/MD5 to AS of fog(802.1x)

D11～ control module determines whether EAP-success returned by AS is received
 - no
 - yes

D12～ home service end authentication is completed

D13～ control module controls universal proxy to send EAP authentication failure message to UE

FIG. 11
second foreign service end authentication sub-procedure E

E1(a) control module activates vMME and vHSS, and redirects UE to MME of foreign edge

E1(b) control module waits for message of MME

E2 control module receives authentication request (including IMSI) of MME

E3 control module controls vMME to send authentication request (including IMSI) to HSS of the home edge

E4 control module determines whether authentication response returned by HSS of home edge is received

E5 control module controls vHSS to send authentication response to MME of foreign edge

FIG. 12
fourth home service end authentication sub-procedure F

F1
control module activates vUSER and vHSS

F2
control module controls universal proxy to redirect UE to MME of foreign edge

F3
control module controls universal proxy 2 to receive authentication request (including IMSI) sent by MME

F4
control module converts authentication request into login request message (including IMSI)

F5
control module controls vUSER to send login request message to home service end (cloud/fog)

F6
control module determines whether authentication claim is received from home service end (cloud/fog)

no

F7
control module stops operation of vUSER

F7a
control module converts authentication claim into authentication request response

F7b
control module controls the vHSS to send authentication request response to MME of foreign edge

F7c

yes

FIG. 13
fifth home service end authentication sub-procedure G

G1 control module activates vRP

G2 control module controls vRP to send third format authentication request (authentication request passing client_id) to home cloud

G3 control module determines whether identity token of home cloud is received

G4 operation of vRP stops

FIG. 14
sixth home service end authentication sub-procedure H

H1: control module activates vUSER and vRP

H2: control module controls vRP to send third format authentication request to home fog

H3: control module determines whether authenticate user message is received from IdP of home fog

H4: control module controls vRP and vUSER to perform user authentication mechanism

H5: control module determines whether identity token is received

H6: control module controls vIdP to send identity token to foreign service end (cloud/fog) / sending user authentication failure message

FIG. 15
<table>
<thead>
<tr>
<th>home</th>
<th>foreign</th>
<th>home module</th>
<th>foreign module</th>
<th>mapping from</th>
<th>mapping to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud</td>
<td>vRP</td>
<td>vIdP</td>
<td>Auth Request passing client_id from SP</td>
<td>Auth Request passing client_id as RP</td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td>vUser</td>
<td>vHSS</td>
<td>Auth Request (IMSI)</td>
<td>Login with IMSI</td>
<td></td>
</tr>
<tr>
<td>Fog</td>
<td>vRP</td>
<td>vIdP</td>
<td>Auth Request passing client_id from SP</td>
<td>Auth Request passing client_id as RP</td>
<td></td>
</tr>
<tr>
<td>Fog-802.1x</td>
<td>vUser</td>
<td>vAS</td>
<td>RADIUS Access Request</td>
<td>Login Request</td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td>vUE</td>
<td>vIdP</td>
<td>Login with IMSI</td>
<td>Auth Request (IMSI)</td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td>vMME</td>
<td>vHSS</td>
<td>Auth Request (IMSI)</td>
<td>Auth Request (IMSI) as MME</td>
<td></td>
</tr>
<tr>
<td>Fog-OIDC</td>
<td>vUE</td>
<td>vIdP</td>
<td>Login with IMSI</td>
<td>Auth Request (IMSI)</td>
<td></td>
</tr>
<tr>
<td>Fog-802.1x</td>
<td>vUE</td>
<td>vAS</td>
<td>Login with IMSI</td>
<td>Auth Request (IMSI)</td>
<td></td>
</tr>
<tr>
<td>OIDC</td>
<td>Cloud</td>
<td>vUser+RP</td>
<td>vIdP</td>
<td>Auth Request passing client_id from SP</td>
<td>Auth Request passing client_id as RP</td>
</tr>
<tr>
<td>Edge</td>
<td>vUser</td>
<td>vHSS</td>
<td>Auth Request (IMSI)</td>
<td>Login with IMSI</td>
<td></td>
</tr>
<tr>
<td>Fog-OIDC</td>
<td>vUser+RP</td>
<td>vIdP</td>
<td>Auth Request passing client_id from SP</td>
<td>Login + Auth Request passing client ID as RP</td>
<td></td>
</tr>
<tr>
<td>Fog-802.1x</td>
<td>vUser</td>
<td>vAS</td>
<td>RADIUS Access Request</td>
<td>Login Request</td>
<td></td>
</tr>
<tr>
<td>802.1x</td>
<td>Cloud</td>
<td>vUser</td>
<td>vIdP</td>
<td>Auth Request passing client_id from SP</td>
<td>EAPOL start request</td>
</tr>
<tr>
<td>Edge</td>
<td>vUser</td>
<td>vHSS</td>
<td>Auth Request (IMSI)</td>
<td>EAPOL start request</td>
<td></td>
</tr>
<tr>
<td>Fog-OIDC</td>
<td>vUser</td>
<td>vIdP</td>
<td>Auth Request passing client_id from SP</td>
<td>EAPOL start request</td>
<td></td>
</tr>
<tr>
<td>Fog-802.1x</td>
<td>vUser</td>
<td>vAS</td>
<td>RADIUS Access Request</td>
<td>EAPOL start request</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 16
The image contains a diagram illustrating the flow of an authentication process. The diagram is labeled "FIG. 18." It shows various stages and components of the authentication process, including request, response, and confirmation stages. The diagram includes flowchart arrows and labels indicating different actions and states, such as 'Home,' 'ER,' 'IdP & UE,' 'foreign fog,' and 'CR.' The process involves steps like 'Auth Request,' 'Auth Challenge,' and 'Authenticate End User,' with various instructions and conditions for authentication and session management. The specific details of the process are represented through interconnected boxes and arrows, indicating the sequence and conditions under which each step is executed.
null
The diagram illustrates the flow of actions in an authentication process involving a foreign fog (OIDC) scenario.

Request Stage

1. **Login Request**: Redirect to PC
2. **Login Request**: Login via Cloud
3. **Login Request**: Login via Edge or Fog
4. **Activate IdP, RP Auth Request**
5. **Auth Request**: Passing client_id

Response Stage

- **Id token**
- **Authenticate End User**
- **Session**

Confirmation Stage

- **End**
when universal proxy receives service request from foreign relay>

control module finds corresponding foreign service end from pre-stored data according to format of service request message and type of foreign relay ~ S401

control module provides foreign ID to foreign service end, and records foreign ID in foreign service data field of lookup data form ~ S402

control module generates foreign connection entry and provides foreign connection ID to foreign connection entry, and foreign connection ID is recorded in foreign connection data field of lookup data form ~ S403

control module provides User ID to UE and records User ID in user data field of lookup data form ~ S404

<UE selects home service end >

control module provides home ID to home service end and records home ID in home service data field of lookup data form ~ S405

control module generates home connection entry and provides home connection ID to home connection entry, and home connection ID is recorded in home link data field of lookup data form ~ S406

control module records message conversion mapping between home service end and foreign service end in message mapping data field of lookup data form ~ S407

<waiting for completion of home service end authentication>

control module performs a lookup sub-procedure when the home service end authentication is completed ~ S408

FIG. 23
control module obtains foreign connection ID related to cross-border service S408(a)

control module finds foreign connection entry according to foreign connection ID, and obtains data required for authentication of foreign service end S408(b)

control module finds related foreign ID according to lookup data form S408(c)

control module finds related User ID according to lookup data form S408(d)

control module finds related message conversion mapping according to lookup data form S408(e)

<message conversion>

control module eliminates message conversion mapping in message mapping data field when message conversion is completed S408(f)

<waiting for foreign service end authentication to be completed>

control module destroys home connection entry and foreign connection entry when authentication is completed S408(g)

FIG. 24
COMMUNICATION SYSTEM AND METHOD FOR PERFORMING THIRD-PARTY AUTHENTICATION BETWEEN HOME SERVICE END AND FOREIGN SERVICE END

BACKGROUND

1. Field of the Disclosure

The present disclosure relates to the technical field of communication and, more particularly, to the technical field of communication authentication.

2. Description of Related Art

With the development of communication technology, cloud communication services have been in widespread use, and fog communication services are also rising. However, the speed of cloud communication and fog communication is usually not as fast as that of local telecom services (or known as edge services). Therefore, when requiring high-bandwidth or low-delay transmission quality, users still need to use the telecommunication services provided by local operators. At present, if users want to use cloud services, fog services, and edge services, they not only must have an account in the cloud, but also must have an account in the fog or edge, and they have to switch accounts to use the three services, which will cause inconvenience. In order to access all three with one account, there must be some sort of third-party authentication and communication mechanism between cloud, edge, and fog. In addition, currently the cloud, fog, and edge use different communication protocols, and thus it is difficult to communicate between the three systems.

In view of this, the present disclosure provides an improved communication system and communication method to solve the aforementioned problems.

SUMMARY

Based on the aforementioned objective, the present disclosure provides a communication system for performing a third-party authentication between the home service end (where a user has an account) and the foreign service end (where a user does not have an account), wherein the types of the home service end and the foreign service end include cloud, edge or fog. The communication system includes: a control module and a plurality of operation modules disposed in a universal proxy. The universal proxy communicates with the cloud through a cloud relay, communicates with the edge through an edge relay, and communicates with the fog through a fog relay. The control module selects at least two of the operation modules for performing third-party authentication according to the types of the home server and the foreign server.

In addition, the present disclosure also provides a communication method that is executed through a communication system to perform third-party authentication between the home server and the foreign server, wherein the types of the home server and the foreign server include cloud, edge and fog, and the communication system includes a control module and a plurality of operation modules. The communication method includes the step of using the control module to select at least two of the operation modules for performing third-party authentication according to the types of the home server and the foreign server, wherein the control module and the operation modules are disposed in the universal proxy and the universal proxy communicates with the cloud through the cloud forwarding terminal, communicates with the edge through the edge forwarding terminal, and communicates with the fog terminal through the fog forwarding terminal.

Other objects, advantages, and novel features of the disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system architecture diagram of the communication system according to an embodiment of the present disclosure;

FIG. 2(A) is a schematic diagram of the operation modules corresponding to the home service end and the foreign service end according to an embodiment of the present disclosure;

FIG. 2(B) is a flow chart illustrating the steps of the communication method according to an embodiment of the present disclosure;

FIG. 3 is a flow chart illustrating the steps of the initial stage procedure of the communication method according to an embodiment of the present disclosure;

FIG. 4 is a flowchart illustrating the main steps of the operational phase procedure of the communication method according to an embodiment of the present disclosure;

FIG. 5 is a flow chart illustrating the steps of the first user authentication procedure according to an embodiment of the present disclosure;

FIG. 6 is a flow chart illustrating the steps of the second user authentication procedure according to an embodiment of the present disclosure;

FIG. 7 is a flowchart illustrating the steps of the third user authentication procedure according to an embodiment of the present disclosure;

FIG. 8 is a flowchart illustrating the steps of the first home service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 9 is a flow chart illustrating the steps of the first foreign service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 10 is a flowchart illustrating the steps of the second home service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 11 is a flowchart illustrating the steps of the third foreign service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 12 is a flowchart illustrating the steps of the second foreign service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 13 is a flowchart illustrating the steps of the fourth home service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 14 is a flowchart illustrating the steps of the fifth home service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 15 is a flowchart illustrating the steps of the sixth home service end authentication sub-procedure according to an embodiment of the present disclosure;

FIG. 16 schematically illustrates the forwarding table of a universal proxy according to an embodiment of the present disclosure;
FIG. 17 schematically illustrates the transmission of an edge-to-cloud authentication process according to an embodiment of the present disclosure;

FIG. 18 schematically illustrates the transmission of an edge-to-fog (OIDD) authentication process according to an embodiment of the present disclosure;

FIG. 19 schematically illustrates the transmission of an edge-to-fog (802.1lx) authentication process according to an embodiment of the present disclosure;

FIG. 20 schematically illustrates the transmission of a cloud-to-edge authentication process according to an embodiment of the present disclosure;

FIG. 21 schematically illustrates the transmission of a cloud-to-fog (OIDD) authentication process according to an embodiment of the present disclosure;

FIG. 22 schematically illustrates the transmission of a cloud-to-fog (802.1lx) authentication process according to an embodiment of the present disclosure;

FIG. 23 is a flow chart illustrating the steps of an entry insertion and lookup establishment procedure according to an embodiment of the present disclosure; and

FIG. 24 is a flowchart illustrating the steps of a lookup sub-procedure according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

The following embodiments describe the implementation and operation principles of the present disclosure. Those skilled in the art to which the present disclosure pertains may understand the features and effects of this disclosure through the above-mentioned embodiments, and may perform combination, modification, replacement or adaption based on the spirit of the present disclosure.

The terms “connected” as used herein refers to aspects such as direct connection or indirect connection, and is not limited thereto. The term “when . . .” herein may denote “during the time that . . . “, “before . . . “, or “after . . . “ and is not limited thereto.

The ordinals recited herein such as “first”, “second” and so on are intended only to describe the elements claimed and imply or represent neither that the claimed elements have any preceding ordinals, nor that sequence between one claimed element and another claimed element or between steps of a manufacturing method. The use of these ordinals is merely to differentiate one claimed element having a certain designation from another claimed element having the same designation.

When multiple effects (or elements) are described herein, if the term “or” is used between the multiple effects (or elements), it means that the effects (or elements) may exist independently, but it does not exclude that the multiple effects (or elements) may coexist. In other words, as long as the description is reasonable, the term “or” may involve the meaning of “and”.

FIG. 1 is a system architecture diagram of the communication system 1 according to an embodiment of the present disclosure. As shown in FIG. 1, the communication system 1 of the present disclosure may execute the third-party authentication between the home service end and the foreign service end through a control node 21 of a universal proxy 2, wherein the home service end may be a cloud service end 3a (hereinafter referred to as the home cloud 3a), an edge service end 4a (hereinafter referred to as the edge cloud 4a), or a fog service end 5a (hereinafter referred to as the fog service 5a), and the foreign service end may be a cloud service end 3b (hereinafter referred to as foreign cloud 3b), an edge service end 4b (hereinafter referred to as foreign edge 4b) or a fog service end 5b (hereinafter referred to as foreign fog 5b). The purpose of the present disclosure is to adopt the account of the home service end to directly use the services of the foreign service end without having to register with the foreign service end. The home service end can be defined as the registered service end for the account, and the foreign service end can be defined as the service end that the account has not yet been registered. The account of the home service end can obtain various communication services provided by the home service end or foreign service end through a user equipment 6.

In one embodiment, the communication system 1 of the present disclosure may include hardware devices and at least part of software of the universal proxy 2. In another embodiment, the communication system 1 of the present disclosure may include at least part of software of the universal proxy 2, for example, only the control module 21.

In an embodiment, the user equipment 6 may be, for example, an electronic device with Internet of Things (IoT) functions, such as a notebook computer, a tablet computer, a desktop computer, a smart phone, and various smart portable devices, but the present disclosure is not limited to this.

In one embodiment, the home cloud 3a and the foreign cloud 3b may be, for example, communication service systems of different e-commerce companies such as Google, Amazon, and T-Mobile, and the services of the home cloud 3a and the foreign cloud 3b may be, for example, various cloud services provided by these e-commerce companies, such as infrastructure as a service (IaaS), software as a service (SaaS), or platform as a service (PaaS), etc., but the present disclosure is not limited to this. In addition, the home edge 4a and the foreign edge 4b may be, for example, communication service systems of different telecommunication companies, such as Hinet, PFTnet, AT&T mobile, T-Mobile, Verizon, etc. The services of the home edge 4a and the foreign edge 4b are services provided by various telecommunication companies, such as the third generation partnership project (3GPP), the third generation (3G) mobile communication technology fourth generation (4G) mobile communication technology or fifth generation (5G) mobile communication technology, but the present disclosure is not limited to this. In addition, the home fog 5a and the foreign fog 5b may be, for example, different fog computing communication service systems, such as Veniam, Embotech GmbH, Shield AI, SONM, FogForn Systems, etc., but the present disclosure is not limited to this.

In one embodiment, the communication protocol used by the home cloud 3a and the foreign cloud 3b is open identity connect (hereinafter abbreviated as OIDC). In order to perform OIDC related authentication, the home cloud 3a and the foreign cloud 3b may each include an open identity provider (hereinafter abbreviated as IdP), a relying party (hereinafter abbreviated as RP) and/or an information endpoint (not shown), wherein IdP, RP and information endpoint are already known to those skilled in the art and thus a detail description is deemed unnecessary.

In one embodiment, the communication protocol used by the home edge 4a and the foreign edge 4b is 3GPP, and the authentication and key agreement protocol (EPS-AKA) of the evolved packet system is used as its authentication mechanism. In order to perform EPS-AKA related authentication, the home edge 4a and the foreign edge 4b each include a mobility management entity (hereinafter abbreviated as MME) and/or a home subscriber server (hereinafter abbreviated as HSS) (not shown). The MME and HSS are
known to those skilled in the art and thus a detailed description thereof is deemed unnecessary.

In one embodiment, the communication protocol used by the home fog $5a$ and the foreign fog $5b$ may be OIDC or IEEE 802.1x (hereinafter directly referred to as 802.1x). When the home fog $5a$ and the foreign fog $5b$ use OIDC, in order to perform OIDC-related authentication, the home fog $5a$ and the foreign fog $5b$ may include IdP, RP and/or information endpoints (not shown). When the home fog $5a$ and the foreign fog $5b$ use 802.1x, in order to perform 802.1x-related authentication, the home fog $5a$ and the foreign fog $5b$ may include an authentication server (AS) and/or an access point (AP) (not shown). The AS and AP are known to those skilled in the art and thus a detailed description thereof is deemed unnecessary.

In addition, for the convenience of explanation, in the following description, the cross-border service that the account of home service end uses the foreign service end through the user equipment 6 will be directly expressed in the form of "home-to-foreign". For example, when the account of home cloud $3a$ wants to use the services of unregistered foreign edge $4b$, such a cross-border service will be directly expressed as "cloud-to-edge", and when the account of home cloud $3a$ wants to use the services of unregistered foreign fog $5b$ and the communication protocol used by the foreign fog $5b$ is OIDC, such a cross-border service will be directly expressed as "cloud-to-fog(OIDC)". Similarly, the cross-border services that the communication system 1 of the present disclosure can support include at least cloud-to-edge, cloud-to-fog(OIDC), cloud-to-fog($802.1x$), cloud-to-cloud, edge-to-edge, edge-to-fog(OIDC), edge-to-fog($802.1x$), edge-to-cloud, fog(OIDC)-to-edge, fog(OIDC)-to-fog(OIDC), fog(OIDC)-to-fog($802.1x$), fog(OIDC)-to-edge, fog($802.1x$)-to-fog(OIDC), fog($802.1x$)-to-fog($802.1x$) and fog($802.1x$)-to-cloud. In addition, the present disclosure may also be expanded to support more communication service systems with different communication protocols.

As shown in FIG. 1, in order to achieve third-party authentication for various cross-border services, the communication environment of the communication system 1 of the present disclosure can be implemented by a universal proxy 2, at least one home service end (home cloud $3a$, home edge $4a$ and/or home fog $5a$), at least one relay service (cloud relay $7a$, edge relay $8a$ and/or fog relay $9a$), at least one foreign service end (foreign cloud $3b$, foreign edge $4b$ and/or foreign fog $5b$), at least one relay foreign service end (cloud relay $7b$, edge relay $8b$ and/or fog relay $9b$), and a user equipment 6. Furthermore, each communication path between each service end (home and foreign) and the universal proxy 2 is provided with a relay for forwarding the message between the service end and the universal proxy 2, wherein the type of the relay may include a cloud relay (hereinafter abbreviated as CR) $7a$, an edge relay (hereinafter abbreviated as ER) $8a$, or a fog relay (hereinafter abbreviated as FR) $9a$, and the type of the foreign relay may include a CR (cloud relay) $7b$, an ER (edge relay) $8b$, or an FR (fog relay) $9b$.

It is noted that the communication system 1 of the present disclosure may operate in the case that there are a single home service end and a single foreign service end, or in a case that there are multiple home service ends and multiple foreign service ends.

In addition, the communication system 1 further has a plurality of operation modules $22-28$. The operation modules $22-28$ can be disposed in the universal proxy 2, wherein the control module 21 may control the operation modules $22-28$ to perform operations required for third-party authentication of various cross-border services. In addition, the control module 21 may select at least two of the operation modules $22-28$ according to the types of the home service end and the foreign service end to perform the operations required for third-party authentication. In other words, for different cross-border services, different operation modules $22-28$ are used.

In one embodiment, the types of the operation modules $22-28$ may include a virtual open identity provider (hereinafter abbreviated as vIdP) 22, a virtual user equipment (hereinafter abbreviated as vUE) 23, a virtual mobility management entity (hereinafter abbreviated as vMME) 24, a virtual relying party (hereinafter abbreviated as vRP) 25, a virtual user (hereinafter abbreviated as vUSER) 26, a virtual home subscriber server (hereinafter abbreviated as vHSS) 27, and a virtual authentication server (hereinafter abbreviated as vAS) 28. For the convenience of explanation, the abbreviation will be used to directly represent each operation module in the following description. In addition, as long as it is applicable, the operation modules $22-28$ in the universal proxy 2 may be arbitrary increased or decreased according to the actual requirements.

In one embodiment, the control module 21 may be a control chip of the universal proxy 2, in another embodiment, the control module 21 may be a computer program product (software) or firmware executed by a microprocessor or a microcontroller of the universal proxy 2. In one embodiment, the operation modules $22-28$ may be implemented by hardware components of the universal proxy 2 in cooperation with software or firmware. In another embodiment, the operation modules $22-28$ themselves are software or firmware. When the control module 21 and the operation modules $22-28$ are all software, the control module 21 and the operation modules $22-28$ can be integrated together. For example, the control module 21 is the main program, and the operation modules $22-28$ are subroutines. However, the present disclosure is not limited to this. As a result, the implementation of the control module 21 and the operation modules $22-28$ can be understood.

Next, the functions of the operation modules $22-28$ are described as follows:

vIdP (virtual open identity provider) 22, which is used to communicate with a foreign service end using OIDC, for example, to communicate with a foreign cloud $3b$ through CR $7b$, or to communicate with a foreign fog $5b$ using OIDC through FR $9b$;

vUE (virtual user equipment) 23, which is used to communicate with the edge $4a$ of home service end, for example, to communicate with the MME of the home edge $4a$ through the ER $8a$;

vMME (virtual mobility management entity) 24, which is used to communicate with the vHSS of the universal proxy 2, or to communicate with the edge $4a$ of the home service end, such as the HSS of the home edge $4a$ through ER $8a$;

vRP (virtual relying party) 25, which is used to communicate with the home service end using OIDC, for example, to communicate with the IdP of the home cloud $3a$ through CR $7a$, or to communicate with the IdP of the home fog $5a$ through FR $9a$;

vUSER (virtual user) 26 can be used to communicate with the home server using OIDC and 802.1x, for example, to communicate with the information endpoint of the home cloud $3a$ through CR $7a$, or to communicate with the information endpoint of the home fog $5a$ through FR $9a$;

vHSS (virtual home subscriber server) 27, which is used to communicate with the vMME 24 of the universal proxy 2.
2, or to communicate with the foreign service end using 3GPP, for example, to communicate with the vMME of the foreign edge 46 through ER 86; and

vAS (virtual authentication server) 28, which is used to communicate with the foreign service end using 802.1x protocol, for example, to communicate with the AS of the foreign fog 56 through ER 96.

In addition, according to the difference between the home service end and the foreign service end, the control module 21 will use different operation modules for third-party authentication. FIG. 2(A) is a schematic diagram of the operation modules corresponding to the home service end and the foreign service end according to an embodiment of the present disclosure.

As shown in FIG. 2(A), when the cross-border service is cloud-to-edge, the control module 21 activates vHSS 27 and vUSER 26.

When the cross-border service is edge-to-edge, the control module 21 activates vHSS 27 and vMME 24.

When the cross-border service is fog (OIDC)-to-edge, the control module 21 activates vHSS 27 and vUSER 26.

When the cross-border service is fog (802.1x)-to-edge, the control module 21 activates OBS 27 and vUSER 26.

When the cross-border service is cloud-to-cloud, the control module 21 activates vLP 22 and vRP 25.

When the cross-border service is edge-to-cloud, the control module 21 activates vLP 22 and vUE 23.

When the cross-border service is fog (OIDC)-to-cloud, the control module 21 activates vLP 22, vRP 25 and vUSER 26.

When the cross-border service is fog (802.1x)-to-cloud, the control module 21 activates vLP 22 and vUSER 26.

When the cross-border service is fog (OIDC), the control module 21 activates vLP 22 and vUSER 26.

When the cross-border service is edge-to-fog (OIDC), the control module 21 activates vLP 22 and vRP 25.

When the cross-border service is edge-to-fog (802.1x), the control module 21 activates vLP 22 and vRP 25.

When the cross-border service is fog (OIDC)-to-fog (802.1x), the control module 21 activates vLP 22 and vRP 25 and vUSER 26.

When the cross-border service is fog (802.1x)-to-fog (OIDC), the control module 21 activates vLP 22 and vUSER 26.

When the cross-border service is fog (802.1x), the control module 21 activates vLP 22 and vUSER 26.

In view of the aforementioned description, it can be seen that the communication system 1 must recognize the type of cross-border service in order to activate the appropriate operation modules 22–28. Therefore, one of the technical focuses of the present disclosure is “how to identify the types of the home service end and the foreign service end”. In order to enable the universal proxy 2 to identify the types of the home service end and the foreign service end for performing different authentication processes, the communication system 1 may execute a special communication method.

It should be noted that, in order to make the process simpler and clearer, in the various process steps below, it may omit the steps of forwarding messages between each service end and the universal proxy 2 through the relay, but in fact the messages between the home service end and the universal proxy 2 and the messages between the foreign service end and the universal proxy 2 have to be forwarded through the corresponding relays as intermediate media.

FIG. 2(B) is a flowchart illustrating the steps of the communication method according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 2(A) at the same time. As shown in FIG. 2(B), when the account of the home service end wants to use the services of the foreign service end, the user equipment 6 sends a service request to the foreign service end, and the foreign service end further sends the service request to the universal proxy 2. When the universal proxy 2 receives the service request, step S1 is executed, in which the control module 21 performs an initialization phase procedure to establish the communication link between the operation module 22–28 to be used and the corresponding relay. Then, step S2 is executed, in which the control module 21 performs an operational phase procedure to process the authentication process between the home service end and the foreign service end. In addition, the control module 21 may also perform the entry insertion and lookup establishment procedure to establish a lookup data form, wherein the lookup data form can record the information of the home service end and the foreign service end for use in the operational phase procedure. After the authentication of the home service end and the foreign service end is completed, the foreign service end may provide services to the user equipment 6, so that the account of the home service end may use the services of the foreign service end. It is noted that the aforementioned sequence of the initialization phase procedure, the operational phase procedure, and the entry insertion and lookup establishment procedure is for illustrative purpose only and, for example, it is applicable that the initialization phase procedure and the operational phase procedure can be executed at the same time.

Next, the details of each procedure will be explained as follows.

First, the details of the “initialization phase procedure” will be explained. FIG. 3 is a flowchart illustrating the steps of the initialization phase procedure of the communication method according to an embodiment of the present disclosure, and please refer to FIG. 1 to FIG. 2(B) at the same time.

In the initialization phase procedure, step S11 is first executed, in which the universal proxy 2 receives a service request sent by a service end through a relay.

Then, step S12 is executed, in which the control module 21 identifies the type of the relay. In one embodiment the universal proxy 2 may pre-record the connection path between each home relay and each foreign relay. Therefore, the control module 21 only needs to match the current connection path with the pre-recorded data, so as to identify the type of

When the control module 21 identifies that the relay is CR 7b, step S13(a) is executed, in which the control module 21 activates the communication link between vLP 22 and CR 7b, so that vLP 22 may send messages to and receive message from CR 7b, and store information related to CR 7b. In one embodiment, the related information of the relay (for example, CR 7b) may include assigned cloud ID, cloud relay ID and mapping information. In one embodiment, the control module 21 may receive service requests from multiple CR 7b at the same time. Therefore, step S13(b) may be executed, in which the control module 21 may determine whether the universal proxy 2 receives service requests from other CR 7b. If received, step S13(a) is executed again; otherwise, the initialization phase procedure is completed.
When the relay is ER 8b, step S14(a) is executed, in which the control module 21 activates the communication link between vHSS 27 and ER 8b, so that vHSS 27 can send messages to and receive messages from ER 8b, and store the information related to ER 8b. In one embodiment, the related information of the relay (for example, ER 8b) may include assigned fog ID, fog relay ID and mapping information; while the invention is not limited thereto. In one embodiment, step S14(b) may be executed, in which the control module 21 may determine whether the universal proxy 2 receives the service request sent by other ER 8b and, if yes, execute step S14(a) again; otherwise the initialization phase procedure is completed.

When the relay is FR 9b, since the communication protocol used by the corresponding foreign fog 5b may be OIDC or 802.1x, step S15(a) is thus executed first, in which the control module 21 identifies the communication protocol used by the foreign fog 5b, where the method of identifying the communication protocol may be implemented by, for example, “trying to login”. For example, if the login method is performed through an access point, the control module 21 may identify that the communication protocol is 802.1x, and if the login method is performed through a web page, the control module 21 may identify that the communication protocol is OIDC.

When the communication protocol is OIDC, step S15(b) is executed, in which the control module 21 activates the communication link between vLD 22 and FR 9b, so that vLD 22 can send messages to and receive messages from with FR 9b, and store information related to FR 9b. In one embodiment, the related information of the relay (for example, FR 9b) may include assigned fog ID, fog relay ID and mapping information; while the invention is not limited thereto. Then, step S15(c) may be executed, and the control module 21 may determine whether the universal proxy 2 has received the service request sent by other FR 9b and, if yes, execute step S15(b) again; otherwise, the initialization phase procedure is completed.

When the communication protocol is 802.1x, step S15(d) is executed, in which the control module 21 activates the communication link between vAS 28 and FR 9b, and stores information related to FR 9b. Then, step S15(c) is executed, in which the control module 21 may determine whether the universal proxy 2 has received the service request sent by other FR 9b and, if yes, execute step S15(d) again; otherwise, the initialization phase procedure is completed. In this way, the details of the initialization phase procedure can be understood.

Next, the details of the operational phase procedure will be explained as follows. FIG. 4 is a flowchart illustrating the main steps of the operational phase procedure of the communication method according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 3 at the same time.

First, step S21 is executed, in which the universal proxy 2 receives the service request from the foreign relay (CR 7b, ER 8b, FR 9b).

Then, step S22 is executed, in which the control module 21 identifies the type of the foreign service end according to the format of the service request (for example, the communication protocol). In one embodiment, based on the communication protocols, the types of service requests can be distinguished into first format service request, second format service request, and third format service request, wherein the first format service request is remote authentication dial in user service access request (hereinafter abbreviated as RADIUS access request), which may correspond to the communication protocol 802.1x; the second format service request is user equipment login request (hereinafter abbreviated as UE login request), which may correspond to the communication protocol 3GPP; the third format service request is authentication request passing client_id (hereinafter abbreviated as auth request passing client_id), which may correspond to the communication protocol OIDC. The aforementioned message format is for illustrative purpose only, and the present disclosure is not limited to this.

When the service request is the first format service request (RADIUS access request), step S23(a) is executed, in which the control module 21 activates the vAS 28 to receive the service request and enables the vAS 28 to enter the waiting state. In addition, step S23(b) is also executed, in which the control module 21 provides a login option to the user equipment 6 through the FR 9b and the foreign fog 5b, so that the user equipment 6 may select the home service end to perform authentication. Then, step S24 is executed, in which the control module 21 performs a first user authentication procedure according to the login option returned by the user equipment 6. The first user authentication procedure is defined as, when the foreign service end is a foreign fog 5b using 802.1x, the authentication procedure required to be performed by the home service end and the foreign service end (also referred as user authentication for 802.1x fog). After the first user authentication process is completed, the foreign fog 5b may provide services to the account of the home service end.

When the service request is the second format service request (UE login request), step S25(a) is executed, in which the control module 21 activates the vHSS 27 to receive the service request and enables the vHSS 27 to enter the waiting state. In addition, step S25(b) is also executed, in which the control module 21 provides a login option to the user equipment 6 through the ER 8b and the foreign edge 4b, so that the user equipment 6 may select the home service end for authentication. Then, step S26 is executed, in which the control module 21 performs a second user authentication procedure according to the login option returned by the user equipment 6. The second user authentication procedure is defined as, when the foreign service end uses the edge 4b of 3GPP, the authentication procedure required to be performed by the home service end and the foreign service end (also referred as user authentication for 3GPP edge). After the second user authentication procedure is completed, the foreign edge 4b may provide services to the account of the home service end.

When the service request is the third format service request (RTH Request passing client_id), step S27 is executed, in which the control module 21 activates the vLD 22 to receive the service request. The OICD authentication mechanism still requires the user equipment 6 to return the second format service request (UE login request) for enabling the vLD 22 to perform subsequent operations, and thus step S28 is executed, in which the control module determines whether the universal proxy has received the user equipment login request. If it is not received, the control module 21 stops the operation of the universal proxy 6. If it is received, step S29 is executed, in which the control module provides login options to the user equipment 6 through the CR 7b and the foreign cloud 3b (or the FR 9b and the foreign fog 5b (communication protocol is OIDC). Then, step S30 is executed, in which the control module 21 performs a third user authentication procedure according to the login option returned by the user equipment 6, which is defined as, when the foreign service end is a foreign cloud.
3b or a foreign fog 5b using OIDC, the authentication process required to be performed by the home service end and the foreign service end, so that the third user authentication process can also be referred to as user authentication for OIDC cloud/fog. After the third user authentication process is completed, the foreign cloud 3b or the foreign fog 5b may provide services to the home service account.

Next, the details of the first user authentication procedure, the second user authentication procedure, and the third user authentication procedure will be explained.

The first user authentication procedure (that is, the details of step S24) will be explained first. FIG. 5 is a flowchart illustrating the steps of the first user authentication procedure according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 4 at the same time.

As shown in FIG. 5, step S241 is executed first, in which the universal proxy 2 receives the login option returned by the user equipment 6.

When the user equipment 6 selects the home edge 4a as the login option (that is, the home service end is the home edge 4a), step S242 is executed, in which the control module 21 performs a first home service end authentication sub-procedure A, that is, the authentication procedure performed by the home edge 4a when the home service end is the home edge 4a (the details can be seen with reference to FIG. 8). When the first home service authentication sub-procedure A is executed, step S243 is executed, in which the control module 21 performs a first foreign service end authentication sub-procedure B, that is, the authentication procedure performed by the control module 21 and the foreign fog 5b when the foreign service end is a foreign fog 5b using 802.1x, (the details can be seen with reference to FIG. 9). After executing step S243, the edge-to-fog(802.1x) authentication is completed, and the foreign fog 5b may provide services to the account of the edge 4a.

When the user equipment 6 selects the home cloud 3a as the login option (that is, the home service end is the home cloud 3a), step S244 is executed, in which the control module 21 performs a second home service end authentication sub-procedure C. The second service end authentication sub-procedure C is defined as the authentication procedure performed by the control module 21 and the home cloud 3a (or the home fog 5a) when the home service end is the home cloud 3a or the home fog 5a using OIDC (the details can be seen with reference to FIG. 10). When the second home service end authentication sub-procedure C is executed, step S245 is executed, in which the control module 21 performs the first foreign service end authentication sub-procedure B. After executing step S245, the cloud-to-fog(802.1x) authentication is completed, and the foreign fog 5b may provide services to the account of the home cloud 3a.

When the user equipment 6 selects the home fog 5a as the login option (that is, the home service end is the home fog 5a), step S246 is executed, in which the control module 21 confirms whether the communication protocol of the home fog 5a is 802.1x or not.

When the communication protocol of the home fog 5a is 802.1x, step S247 is executed, in which the control module 21 performs a third home service end authentication sub-procedure D, that is, the authentication procedure performed by the control module 21 and the home fog 5a when the home service end is the home fog 5a using 802.1x (the details can be seen with reference to FIG. 11). When step S247 is completed, step S249 is executed, in which the control module 21 confirms whether the communication protocol of the home fog 5a is 802.1x or not.

If the communication protocol of the home fog 5a is not 802.1x but OIDC, step S248 is executed, in which the control module 21 performs the second home service end authentication sub-procedure C. When step S248 is completed, step S249 is executed, in which the control module 21 confirms whether the communication protocol of the home fog 5a is 802.1x or not.

As a result, the details of the first user authentication procedure can be understood.

Next, the details of the second user authentication procedure (that is, the details of step S26) will be described. FIG. 6 is a flowchart illustrating the steps of the second user authentication procedure according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 4 at the same time.

As shown in FIG. 6, step S261 is executed first, in which the universal proxy 2 receives the login option returned by the user equipment 6.

When the user equipment 6 selects the home edge 4a as the login option (that is, the home service end is the home edge 4a), step S262 is executed, in which the control module 21 performs a second foreign service end authentication sub-procedure E. The second foreign service end authentication sub-procedure E is defined as, when the home service end is the home edge 4a and the foreign service end is the foreign edge 4b, the authentication procedure required to be performed by the control module 21, the home edge 4a and the foreign edge 4b (the details can be seen with reference to FIG. 12). After executing step S262 and also completing the EPS-AKA authentication required by the foreign edge 4b, the edge-to-edge authentication is completed, and the foreign edge 4b may provide services to the account of the home edge 4a. In one embodiment, the control module 21 may control the vHSS 27 to provide the authentication vector required for EPS-AKA authentication, and the foreign edge 4b and the user equipment 6 will use this authentication vector to perform EPS-AKA authentication. For example, the foreign edge 4b may issue a verification challenge to the user equipment 6 according to the authentication vector, and the user equipment 6 may make an authentication response.

When the user equipment 6 selects the home cloud 3a as the login option (that is, the home service end is the home cloud 3a), step S263 is executed, in which the control module 21 performs a fourth home service end authentication sub-procedure F. The fourth home service end authentication sub-procedure F is defined as, when the home service end is the home cloud 3a or the home fog 5a using OIDC, and the foreign service end is the foreign edge 4b, the authentication procedure performed by the control module 21 and the home cloud 3a (or the home fog 5a) (the details can be seen with reference to FIG. 13). After executing step S263 and also completing the EPS-AKA authentication required by the foreign edge 4b, the cloud-to-edge authentication is completed, and the foreign edge 4b may provide services to the account of the home cloud 3a.

When the user equipment 6 selects the home fog 5a as the login option (that is, the home service end is the home fog 5a), step S264 is executed, in which the control module 21 confirms whether the communication protocol of the home fog 5a is 802.1x or not.
When the communication protocol of the home service end (fog 5a) is 802.1x, step S265 is executed, in which the control module 21 performs the third home service end authentication sub-procedure D. After executing step S265 and also completing the EPS-AKA authentication required by the foreign edge 4b (S266(a), S266(b)), the fog(802.1x)-to-edge authentication is completed, and the foreign edge 4b may provide services to the account of the home fog(802.1x) 5a.

When the communication protocol of the home fog 5a is OIDC, step S267 is executed, in which the control module 21 performs the fourth home service end authentication sub-procedure F. After executing step S267 and also completing the EPS-AKA authentication required by the foreign edge 4b, the fog(OIDC)-to-edge authentication is completed, and the foreign edge 4b may provide services to the account of the home fog(OIDC) 5a.

As a result, the details of the second user authentication procedure can be understood.

Next, the details of the third user authentication procedure (that is, the details of step S302) will be described. FIG. 7 is a flowchart illustrating the steps of the third user authentication procedure according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 4 at the same time.

As shown in FIG. 7, step S301 is executed first, in which the universal proxy 2 receives the login option returned by the user equipment 6.

When the login option is the home cloud 3a, step S302 is executed, in which the control module 21 performs a fifth home service-end authentication sub-procedure G. The fifth home service-end authentication sub-procedure G is defined as, when the home service end is the home cloud 3a, and the foreign service end is a foreign cloud 3b or a foreign fog 5b using OIDC, the authentication procedure performed by the control module 21 and the home cloud 3a (the details can be seen with reference to FIG. 14). After executing step S302, step S303(a) is executed, in which the control module 21 provides an identity token to the vldIP 22, and then step S303(b) is executed, in which the control module 21 executes the vldIP 22 to send the identity token to the foreign cloud 3b (or foreign fog 5b), while the foreign cloud 3b (or foreign fog 5b) may grant access right to the account of the home cloud 3a through the identity token and thus provide services. As a result, cloud-to-cloud/fog(OIDC) authentication is completed.

When the login option is the home edge 4a, step S304 is executed, in which the control module performs the first home service-end authentication sub-procedure A. When step S304 is completed, steps S305(a)–S305(c) are executed, in which the control module 21 creates an identity token and controls vldIP 22 to send the identity token to the foreign cloud 3b (or the foreign fog 5b), and the foreign cloud 3b (or the foreign fog 5b) may grant access right to the account of the home edge 4a through the identity token. As a result, the edge-to-cloud/fog(OIDC) authentication is completed.

When the login option is the home fog 5a, step S306 is executed, in which the control module determines whether the communication protocol of the home fog 5a is 802.1x or not.

If the communication protocol of the home fog 5a is not 802.1x but OIDC, step S307 is executed, in which the control module 21 performs a sixth home service end authentication sub-procedure H. The sixth home service end authentication sub-procedure H is defined as, when the home service end is the fog 5a using OIDC, and the foreign service end is a foreign cloud 3b or a foreign fog 5b using OIDC, the authentication procedure required to be performed by the control module 21 and the home fog 5a (the details can be seen with reference to FIG. 15). When completing the sixth home service end authentication sub-procedure H, the fog(OIDC)-to-cloud/fog(OIDC) authentication is completed.

If the communication protocol of the home fog 5a is 802.1x, step S308 is executed, in which the control module 21 performs the third home service end authentication sub-procedure D. After the third home service end authentication sub-procedure D, steps S309(a)–S309(c) are executed, in which the control module 21 creates an identity token and controls the vldIP 22 to send the identity token to the foreign cloud 3b (or foreign fog 5b), and the foreign cloud 3b (or the foreign fog 5b) may grant access right to the account of the home fog 5a through the identity token. As a result, the fog(802.1x)-to-cloud/fog(OIDC) authentication is completed.

Accordingly, the details of the third user authentication procedure can be understood.

In addition, in order to make the description clearer, the cross-border services applicable to the home service end authentication sub-procedure A to the sixth home service end authentication sub-procedure H are listed below.

The first home service end authentication sub-procedure A can be applied to cross-border services such as edge-to-fog(802.1x), edge-to-cloud and edge-to-fog(OIDC), but is not limited to this.

The first foreign service end authentication sub-procedure B can be applied to cross-border services such as edge-to-fog(802.1x), cloud-to-fog(802.1x), fog(OIDC)-to-fog(802.1x) and fog(OIDC)-to-fog(802.1x), and is not limited to this.

The second home service end authentication sub-procedure C can be applied to cross-border services such as cloud-to-fog(802.1x) and fog(OIDC)-to-fog(802.1x), and is not limited to this.

The second foreign service end authentication sub-procedure D can be applied to cross-border services such as fog(802.1x)-to-fog(802.1x), fog(802.1x)-to-fog(OIDC), fog(802.1x)-to-edge and fog(802.1x)-to-cloud, and is not limited to this.

The second foreign service end authentication sub-procedure E can be applied to cross-border services such as edge-to-edge, and is not limited to this.

The fourth home service end authentication sub-procedure F can be applied to cross-border services such as cloud-to-edge and fog(OIDC)-to-edge, and is not limited to this.

The fifth home service end authentication sub-procedure G can be applied to cross-border services such as cloud-to-cloud and cloud-to-fog(OIDC), and is not limited to this.

The sixth home service end authentication sub-procedure H can be applied to cross-border services such as fog(OIDC)-to-cloud and fog(OIDC)-to-fog(OIDC), and is not limited to this.

Next, the details of the application of the first home service end authentication sub-procedure A to the sixth home service end authentication sub-procedure H are given. It should be noted again that, in the following steps of the process, the step of forwarding the message at the relay may be omitted but, in fact, messages are forwarded through the relays between each service end and the universal proxy 2.

The first home service end authentication sub-procedure A will be explained first. FIG. 8 is a flowchart illustrating the steps of the first home service end authentication sub-
As a result, the details of the first home service end authentication sub-procedure A can be understood.

Next, the details of the first foreign service end authentication sub-procedure B will be explained. FIG. 9 is a flowchart illustrating the steps of the first foreign service end authentication sub-procedure B according to an embodiment of the present disclosure, and please refer to FIG. 1 to FIG. 7 at the same time.

As shown FIG. 9, step B1 is executed first, in which the control module 21 provides user records to the vAS 28, and the user records may include data such as users credentials.

Step B1: <insert details here>

Next, the home service end authentication is completed, the control module 21 controls the vAS 28 to generate a remote authentication dial in user service access challenge (hereinafter abbreviated as RADIUS challenge).

As shown FIG. 9, step B2 is executed first, in which the control module 21 controls the vAS 28 to send the RADIUS challenge to the access point (AP) of the foreign fog 56 (802.1x). When the access point receives the RADIUS challenge, the access point may convert the RADIUS challenge into an extensible authentication protocol request/Message-Digest Algorithm 5 (hereinafter abbreviated as EAP-req/MD5) required for 802.1x authentication which is then sent to the user equipment 6. According to the RADIUS challenge, the user equipment 6 may generate an extensible authentication protocol response/Message-Digest Algorithm 5 (hereinafter abbreviated as EAP-res/MD5) which is then send back to the access point. When the access point receives EAP-res/MD5 and confirms that it is correct, it may convert EAP-res/MD5 into a remote authentication dial in user service access request (hereinafter abbreviated as RADIUS access request) which is then sent to the vAS 28 of the universal proxy 2.

Next, step B3 is executed, in which the control module 21 determines whether the vAS 28 has received the RADIUS access request from AP. If it is not received, step B3 is executed again. If it is received, step B3 is executed, in which the control module 21 controls the vAS 28 to return a remote authentication dial in user service access accept (hereinafter referred to as RADIUS access accept) to the access point.

It should be noted that, when the access point (AP) receives the RADIUS access accept, the access point may send an extensible authentication protocol success (EAP-success) to the user equipment 6, and the foreign fog (802.1x) 56 may immediately provide services to the user equipment 6 according to EAP-success.

As a result, the details of the first foreign service end authentication sub-procedure C can be understood.

Next, the details of the second home service end authentication sub-procedure C will be explained. FIG. 10 is a flowchart illustrating the steps of the second home service end authentication sub-procedure C according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 9 at the same time.

As shown FIG. 10, step C1 is executed, in which the control module 21 generates a login message (including the account number and password) for an account of the home cloud 3a or the home fog(OIDC) 5a, wherein the information of the account and password may be from the service request or the authentication request previously sent by the user equipment 6, but is not limited to this.

Then, step C2 is executed, in which the control module 21 controls the vUSER 26 to send a login message to the home cloud 3a or the home fog(OIDC) 5a,
and verify whether the account number and password are correct through the home cloud 3a or the home fog (OIDC) 5a.

Then, step C4 is executed, in which the control module 21 determines whether the vUSER 26 has received a login success message returned by the home cloud 3a or the home fog (OIDC) 5a. If it is not received, step C3 is executed again. If it is received, the second home service end authentication sub-procedure C is completed, and then the authentication required by the foreign service end can be performed, such as the first foreign service end authentication sub-procedure B.

As a result, the second home service end authentication sub-procedure C can be understood.

Next, the details of the third home service end authentication sub-procedure D will be explained. FIG. 11 is a flowchart illustrating the steps of the third home service end authentication sub-procedure D according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 10 at the same time.

As shown in FIG. 11, step D1 is executed first, in which the control module 21 activates the vUSER 26.

Then, step D2 is executed, the control module 21 controls the vUSER 26 to send an extensible authentication protocol over local area network start request (EAPOL start request) to the AS of the home fog (802.1x) 5a.

Then, step D3 is executed, in which the control module 21 determines whether the universal proxy 2 has received an extensible authentication protocol request (EAP-req/ID) returned by the home fog (802.1x) 5a.

If the EAP-req/ID is not received, step D2 is executed again. If the EAP-req/ID is received, step D4 is executed, in which the control module 21 controls the universal proxy 2 to send the EAP-req/ID to the user equipment 6.

Next, step D5 is executed, in which the control module 21 determines whether the universal proxy 2 has received an extensible authentication protocol (EAP-res/ID) returned by the user equipment 6.

If the EAP-res/ID is not received, step D4 is executed again. If the EAP-res/ID is received, step D5 is executed, in which the control module 21 controls the universal proxy 2 to send the EAP-res/ID to the AS of the home fog (802.1x) 5a.

Then, step D7 is executed, in which the control module 21 determines whether the universal proxy 2 has received the EAP-req/MD5 returned by the AS of the home fog (802.1x) 5a.

If EAP-req/MD5 is not received, step D6 is executed again. If EAP-req/MD5 is received, step D8 is executed, in which the universal proxy 2 sends EAP-req/MD5 to the user equipment 6.

Next, step D9 is executed, in which the control module 21 determines whether the universal proxy 2 has received the EAP-res/MD5 returned by the user equipment 6.

If EAP-res/MD5 is not received, step D8 is executed again. If EAP-res/MD5 is received, step D10 is executed, in which the control module 21 controls the universal proxy 2 to send EAP-res/MD5 to the AS.

Then, step D11 is executed, and the control module 21 determines whether the universal proxy 2 has received the EAP-success returned by the AS.

If EAP-success is not received, step D13 is executed, in which the control module 21 controls the universal proxy 2 to send an EAP authentication failure message to the user equipment 6, and stops the operation. If EAP-success is received, the third home service end authentication sub-procedure D is completed (step D12). That is, the authentication required by the home fog 5a (802.1x) has been completed, and then the authentication required by the foreign service end may be performed, for example, the first foreign service end authentication sub-procedure B, EPS-AKA authentication, identity token, etc. As a result, the details of the third home service end authentication sub-procedure D can be understood.

Next, the details of the second foreign service end authentication sub-procedure E will be described. FIG. 12 is a flowchart illustrating the steps of the second foreign service end authentication sub-procedure E according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 11 at the same time.

As shown in FIG. 12, step E1(a) is executed first, in which the control module 21 activates the vMME 24 and vHSS 27, and redirects (e.g. reconnects) the user equipment 6 to the MME of the foreign edge 4b. Then, step E1(b) is executed, in which the control module 21 waits for the message sent by the MME.

Then, step E2 is executed, in which the control module 21 receives the authentication request (including the IMSI) sent by the MME, where the authentication request may be, for example, a service request sent from the user equipment 6.

Then, step E3 is executed, in which the control module 21 controls the vMME 24 to send an authentication request to the HSS of the foreign edge 5a to confirm whether the IMSI is legal. When the IMSI is legal, the home edge 5a may immediately generate the authentication vector required for EPS-AKA authentication, and return an authentication response including the authentication vector.

Then, step E4 is executed, in which the control module 21 determines whether the universal proxy 2 receives the authentication response returned by the home edge 5a.

If it is not received, step E3 is executed again. If it is received, step E5 is executed, in which the control module 21 controls the vHSS 27 to send the authentication response to the MME of the foreign edge 5a.

In one embodiment, when the MME of the foreign edge 5a receives the authentication response, it may generate an authentication challenge to the user equipment 6 according to the authentication vector. When the user equipment 6 returns a correct authentication challenge response, the foreign edge 5b may immediately provide services to the user equipment 6.

As a result, the second foreign service end authentication sub-procedure E can be understood.

Next, the details of the fourth home service end authentication sub-procedure F will be explained. FIG. 13 is a flowchart illustrating the steps of the fourth home service end authentication sub-procedure F according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 12 at the same time.

As shown in FIG. 13, step F1 is executed, first, in which, when the user equipment 6 selects the home cloud 3a or the home fog 5a (OIDC) as the login option, the control module 21 activates the vUSER 26 and vHSS 27.

Then, step F2 is executed, in which the universal proxy 2 redirects the user equipment 6 to the MME of the foreign edge 4b. After that, the user equipment 6 may send a connection request with IMSI to the MME of the foreign edge 4b, and the MME of the foreign edge 4b may convert the connection request into a verification request with IMSI information, and send the verification request to universal proxy 2.

Then, steps F3 and F4 are executed, the universal proxy 2 receives the authentication request sent by the MME, and the control module 21 converts the authentication request
into general website login message readable to the home cloud 3a or home fog 5a (OIDC) (for example, the mechanism of logging in with an account number and password).

Then, step F5 is executed, in which the control module 21 controls the vUSER 26 to send the general website login message to the home cloud 3a or the home fog 5a (OIDC). In one embodiment, the home cloud 3a or the home fog 5a (OIDC) will verify whether the account number and password are correct and, if correct, an authentication claim including the authentication vector will be returned; otherwise, the operation stops.

Therefore, step F6 is executed, in which the control module 21 determines whether the universal proxy 2 has received the authentication claim.

If it is not received, step F5 is executed again. If it is received, steps F7(a)-F7(c) are executed, in which the connection request is sent to the vUSER 26 and converts the authentication claim into an authentication request response including the authentication vector for use as a response to the authentication request sent by the MME of the foreign edge 4b in step F3, and controls the vHSS 27 to send the authentication request response to the MME of the foreign edge 4b. After that, when the MME of the foreign edge 4b receives the authentication request response, the foreign edge 4b itself may perform EPS-AKA authentication on the user equipment 6 according to the authentication vector, and determine whether to provide services to the user equipment 6 according to the authentication result.

As a result, the details of the fourth home service end authentication sub-procedure F can be understood.

Next, the details of the fifth home service end authentication sub-procedure G will be explained. FIG. 14 is a flowchart illustrating the steps of the fifth home service end authentication sub-procedure G according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 13 at the same time.

As shown in FIG. 14, step (31) is executed first, in which, when the foreign service end is the foreign cloud 3b or the foreign fog 5b (OIDC), and the user equipment 6 selects to use the home cloud 3a as the login option, the control module 21 activates vRP 25.

Then, step G2 is executed, in which the control module 21 controls the vRP 25 to send the third format authentication request to the home cloud 3a. Since the home cloud 3a and the foreign cloud 3b (or the foreign fog 5b) both use OIDC, the home cloud 3a may directly read the third format authentication request and, when the home service end determines the user information in the third format authentication request, the identity token is returned.

Then, step G3 is executed, in which the control module 21 determines whether the universal proxy 2 has received the identity token sent by the home cloud 3a.

If it is not received, step G2 is executed again. If it is received, step G4 is executed, in which the control module 21 stops the operation of the vRP 25, and controls the universal proxy 2 to send the identity token to the foreign cloud 3a or the foreign fog 5a (OIDC). After that, the foreign cloud 3a or the foreign fog 5a (OIDC) may determine whether to provide services to the user equipment 6 according to the identity token.

As a result, the details of the fifth home service end authentication sub-procedure G can be understood.

Next, the details of the sixth home service end authentication sub-procedure H will be explained. FIG. 15 is a flowchart illustrating the steps of the sixth home service end authentication sub-procedure H according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 14 at the same time.

As shown in FIG. 15, step H1 is executed first, in which, when the foreign service end is the foreign cloud 3b or the foreign fog 5b (OIDC), and the user equipment 6 selects the home fog 5a (OIDC) as the login option, the control module 21 activates vUSER 26 and vRP 25.

Then, step H2 is executed, in which the control module 21 controls the vRP 25 to send the third format authentication request to the home fog 5a (OIDC). Since the home fog 5a and the foreign cloud 3b (or foreign fog 5b) both use OIDC, the home fog 5a may directly read the third format authentication request and, when the home fog 5a determines that the user information in the third format authentication request is correct, the IdP of the home fog 5a may return an authenticate user message.

Then, step H3 is executed, in which the control module 21 determines whether the authenticate user message is received.

If it is not received, step H2 is executed again. If it is received, step H4 is executed, in which the control module 21 controls the vRP 25 and vUSER 26 to perform a user authentication mechanism with the user equipment 6 and the IdP of the home fog 5a. For example, vRP 25 will send the third format service request (auth request passing client_id) to the IdP of the home fog 5a and authenticate the user with the assistance of vUSER 26, thereby providing an ID token according to the authentication result. Therefore, when the user authentication mechanism is completed (for example, the authentication is successful), the IdP of the home fog 5a will send the identity token to the universal proxy 2.

Next, step H5 is executed, in which the control module 21 determines whether the universal proxy 2 has received the identity token.

If it is not received, the control module 21 notifies the user equipment that the authentication fails. If it is received, step H6 is executed, in which the control module 21 controls the vDIP 22 to send the identity token to the foreign cloud 3b or the foreign fog 5b (OIDC). After that, the foreign cloud 3b or the foreign fog 5b (OIDC) may determine whether to provide services to the user equipment 6 according to the identity token.

As a result, the sixth home service end authentication sub-procedure H can be understood.

In addition, the universal proxy 2 may establish a forwarding table according to the logic flow to determine which operation modules 22-28 need to be activated and which mappings need to be completed under various cross-border authentication conditions.

The logic flow and forwarding table are described as follows. In one embodiment, the logic flow starts with the connection between the universal proxy 2 and the relays. Next, the universal proxy 2 must find out the identities of the home relay and the foreign relay. If the home relay is the fog relay 9a, the control module 21 must determine whether the communication protocol used by the home fog 5a is OIDC and, if not, activate vUSER 36 to correspond to the home fog 5a. If the home relay is the cloud relay 7a, the control module 21 determines to activate the vUSER 26 or vRP 25 according to the identity of the foreign relay so as to correspond to the home cloud 3a. If the home relay is the edge relay 8a, the control module 21 will determine to activate the NAME 24 or vUE 23 according to the identity of the foreign relay so as to correspond to the home edge 4a.
The control module 21 must also determine the identity of the foreign relay. If the foreign relay is the edge relay 8b, the control module 21 activates the OBS 27 to correspond to the foreign edge 4b. If the foreign relay is the cloud relay 7b, the control module 21 activates the vldP 22 to correspond to the foreign edge 5b. If the foreign relay is the fog 9b, the control module 21 must determine whether the foreign fog 5b uses OIDC, and activate vldP 22 to correspond to the foreign fog 5b if yes, or activate vAS 28 if no.

In addition, the control module 21 must also determine the mapping to be performed so as to convert the message from one communication protocol to another communication protocol. For example, in the case of edge-to-cloud, the universal proxy 2 may perform the mapping between 3GPP EPS-AKA and OIDC by converting the “Login with IMSI” message to the “Auth Request (IMSI)” message, thereby communicating with the edge.

FIG. 16 schematically illustrating the forwarding table of the universal proxy 2 according to an embodiment of the present disclosure. Through the forwarding table, the control module 21 may quickly get the operation modules 22-28 required to be activated for various cross-border authentications and the mappings required to be performed.

In addition, in one embodiment, the function of the universal proxy 2 may be expanded to respond to newly added communication protocols. When a new communication protocol is added, the logic flow and forwarding table of the universal proxy 2 can be adjusted accordingly. As a result, the details of the logic flow and the forwarding table can be known.

In addition, in order to make the contents of the aforementioned sub-procedure (FIG. 8-FIG. 15) clear, message flows for six commonly used cross-border authentications are provided in FIG. 17 to FIG. 22 for reference. FIG. 17 schematically illustrates the transmission of an edge-to-edge authentication process according to an embodiment of the present disclosure. FIG. 18 schematically illustrates the transmission of an edge-to-fog(OIDC) authentication process according to an embodiment of the present disclosure. FIG. 19 schematically illustrates the transmission of an edge-to-fog(802.1x) authentication process according to an embodiment of the present disclosure. FIG. 20 schematically illustrates the transmission of a cloud-to-edge authentication process according to an embodiment of the present disclosure. FIG. 21 schematically illustrates the transmission of a cloud-to-fog(OIDC) authentication process according to an embodiment of the present disclosure. FIG. 22 schematically illustrates the transmission of a cloud-to-fog(802.1x) authentication process according to an embodiment of the present disclosure.

Those skilled in the art may better understand the process steps of FIG. 3 to FIG. 15 in view of the aforementioned message flows.

Then, the entry insertion and lookup establishment procedure will be described. The entry insertion and lookup establishment procedure is used to establish a lookup data form, and use the lookup data form in the authentication process.

FIG. 23 is a flowchart illustrating the steps of an entry insertion and lookup establishment procedure according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 22 at the same time. This process can be applied to various cross-border services.

First, step S401 is executed, in which, when the universal proxy 2 receives the service request message from the foreign relay, the control module 21 finds the corresponding foreign service end from the pre-stored data according to the format of the service request message and the type of the foreign relay. In one embodiment, step S401 may be executed after the initialization phase procedure of FIG. 1, so that the control module 21 may find the corresponding foreign service end through stored information related to the foreign relay in step S13(a), step S14(a), step S15(b) or step S15(d).

Then, step S402 is executed, in which the control module 21 provides an identity information (hereinafter referred to as foreign ID) to the foreign service end, and records the foreign ID in a foreign service data field of a lookup data form.

Then, step S403 is executed, in which the control module 21 generates a foreign connection entry based on the information required by the foreign server for authentication, and provides an identity information (hereinafter referred to as foreign ID) to the foreign connection entry, and the foreign connection ID is recorded in a foreign connection data field of a lookup data form. In one embodiment, the foreign connection entry includes the information of the operation modules required by the foreign service end for authentication, the connection relationship between the operation modules and the relays, the connection relationship between the operation modules, etc., and is not limited to this.

Then, step S404 is executed, in which the control module 21 provides identity information (hereinafter abbreviated as User ID) to the user equipment 6, and records the User ID in a user data field of the lookup data form.

Then, the control module 21 waits for the user equipment 6 to return the login option (please refer to step S241). When the user equipment 6 returns the login option, that is, when the home service end is selected, step S405 is executed, in which the control module 21 provides identity information (hereinafter abbreviated as home ID) to the home service end, and records the home ID in a home service data field of the lookup data form.

Then, step S406 is executed, in which the control module 21 generates an home connection entry based on the information required by the home service end for authentication, and provides identity information (hereinafter referred to as home connection ID) to the home connection entry, and the home connection ID is recorded in a home link data field of the lookup data form. In one embodiment, the home connection entry includes information of the operation modules required by the home service end for authentication, the connection relationship between the operation modules and the relays, the connection relationship between the operation modules, information (such as IMSI) provided by the user equipment 6, etc., and is not limited to this.

Then, step S407 is executed, the control module 21 records the message conversion mapping between the home service end and the foreign service end in a message mapping data field of the lookup data form. As a result, the lookup data form required for this cross-border service can be established.

Then, the control module 21 may control the appropriate operation modules to participate in the authentication required by the home service end according to the home service data field, the home link data field, or the message mapping data field in the lookup data form and wait for completion of the home service end authentication. When the authentication required by the home service end is completed, step S408 is executed, in which the control module 21 performs a lookup sub-procedure, wherein the lookup sub-procedure may be used for the authentication required by the foreign service end. As a result, the entry insertion and lookup establishment procedure is completed.
Next, the details of the lookup sub-procedure will be explained. FIG. 24 is a flowchart illustrating the steps of the lookup sub-procedure according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 23 at the same time.

First, step S408(a) is executed, in which the control module 21 obtains the foreign connection ID related to this cross-border service. In one embodiment, the control module 21 may find the corresponding lookup data form from the home service end, and then find the foreign connection ID from the lookup data form.

Then, step S408(b) is executed, in which the control module 21 finds the foreign connection entry according to the foreign connection ID, and obtains the data required for the authentication of the foreign service end.

Then, step S408(c) is executed, in which the control module 21 finds the related foreign ID according to the lookup data form.

Then, step S408(d) is executed, in which the control module 21 obtains the related User ID according to the lookup data form.

Then, step S408(e) is executed, in which the control module 21 finds the related message conversion mapping according to the lookup data form.

Then, the control module 21 may control the appropriate operation modules to perform the authentication required by the foreign service end according to the foreign connection entry, User ID and foreign ID, and convert the messages in the authentication process to the format of the communication protocol supported by the foreign service end according to the data in the message mapping data field.

Then, step S408(f) is executed, in which, when the message conversion is completed, the control module 21 eliminates the message conversion mapping in the message mapping data field.

Then, the control module 21 waits for the authentication required by the foreign service end to be completed. When the authentication is completed, step S408(g) is executed, in which the control module 21 destroys the home connection entry and the foreign connection entry.

As a result, the lookup sub-procedure is completed.

In addition, the communication system 1 of the present disclosure can continue to establish alliance relationships with different communication systems so that the cross-border services capable of being used by a single account may continue to increase.

Accordingly, through the communication system and communication method of the present disclosure, users are able to access cloud, edge and fog with only a single account. In comparison with the prior art, the communication system of the present disclosure is superior to the prior art in that the communication method of the present disclosure is provided with a complete authentication mechanism so as to have higher security.

The aforementioned embodiments are examples only for convenience of description. The scope of the present disclosure is claimed hereinafter in the claims and is not limited to the embodiments.

What is claimed is:

1. A communication system for performing a third-party authentication between a home service end and a foreign service end, wherein type of the home service end or the foreign service end is cloud, edge, or fog, the communication system comprising:
 a universal proxy including a microprocessor, wherein the universal proxy communicates with a cloud through a cloud relay, the universal proxy communicates with an edge through an edge relay, and the universal proxy communicates with a fog through a fog relay;
 a control module disposed in the universal proxy; and
 a plurality of operation modules disposed in the universal proxy,

 wherein, the control module and the operation modules are implemented by the microprocessor executing one or more computer program products stored in a non-transitory computer readable medium, and the control module selects at least two of the operation modules to perform the third-party authentication according to the types of the home service end and the foreign service end.

2. The communication system of claim 1, wherein the operation modules include a virtual home subscriber server and, when the foreign service end is a foreign edge, the control module activates the virtual home subscriber server to communicate with the foreign service end.

3. The communication system of claim 2, wherein the operation modules further include a virtual mobility management entity and, when the home service end is a home edge, the control module activates the virtual mobility management entity to communicate with the home service end through the virtual mobility management entity.

4. The communication system of claim 1, wherein the operation modules include a virtual open ID provider and, when the foreign service end is a foreign cloud or a foreign fog, and communication protocol used by the foreign service end is an open identity connect, the control module activates the virtual open ID provider, and communicates with the foreign service end through the virtual open ID provider.

5. The communication system of claim 4, wherein the operation modules further include a virtual relying party and, when the home service end is a home cloud or a home fog, and communication protocol used by the home service end is an open ID connect, the control module activates the virtual relying party and communicates with the home service end through the virtual relying party.

6. The communication system of claim 1, wherein the operation modules include a virtual user and, when the home service end is a home fog or a home cloud, the control module activates the virtual user, and communicates with the home service end through the virtual user.

7. The communication system of claim 1, wherein the operation modules include a virtual user equipment and, when the home service end is an edge and the foreign service end is a foreign cloud or a foreign fog, the control module activates the virtual user equipment and communicates with the home service end through the virtual user equipment.

8. The communication system of claim 1, wherein the operation modules include a virtual authentication server and, when the foreign service end is a foreign fog and communication protocol used by the foreign service end is 802.1x, the control module activates the virtual authentication server (vVAS) to communicate with the foreign service end.

9. The communication system of claim 1, wherein the control module performs an initialization phase procedure and an operational phase procedure, in which, in the initialization phase procedure, the control module establishes a communication link between the cloud relay, the edge relay or the fog relay corresponding to the foreign service end and one of the operation modules and, in the operational phase procedure, the control module determines the type of the foreign service end according to type of a request message sent by the cloud relay, the edge relay or the fog relay, so as to determine the type of the home service end according to
The communication system of claim 9, wherein the control module further performs a lookup data establishment procedure to record information of the home service end and the foreign service end in a lookup data form.

The communication method of claim 14, further comprising the step of: when the home service end is a home cloud or a home fog and communication protocol used by the foreign service end is open ID connect, using the control module to activate a virtual relying party in the operation modules and communicate with the home service end through the virtual relying party.

The communication method of claim 11, further comprising the step of: when the home service end is a home fog or a home cloud, using the control module to activate a virtual user in the operation modules and communicate with the home service end through the virtual user.

The communication method of claim 11, wherein, when the home service end is a home edge and the foreign service end is a foreign cloud or a foreign fog, the control module activates a virtual user equipment among the operation modules, and communicates with the home service end through the virtual user equipment.

The communication method of claim 11, wherein, when the foreign service end is a foreign fog and uses communication protocol of 802.1x, the control module activates a virtual authentication server in the operation modules, and communicates with the foreign service end through the virtual authentication server.

The communication method of claim item 11, further comprising the step of: using the control module to execute an initialization phase procedure and an operation phase procedure, wherein, in the initialization phase procedure, the control module establishes a communication link between the cloud relay, the edge relay or the fog relay corresponding to the foreign service end and one of the operation modules and, in the operation phase procedure, the control module determines the type of the foreign service end according to type of the request message sent by the cloud relay, the edge relay or the fog relay, and determines the type of the home service end according to a selection message sent by a user equipment thereby selecting the operation modules.

The communication method of claim 19, further comprising the step of: using the control module to perform a lookup establishment procedure to record information of the home service end and the foreign service end in a lookup data form.

* * * *