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ARTICLE INFO ABSTRACT

Keywords: OpenFlow supports internal buffering of data packets in Software-Defined Networking (SDN) switch whereby a
Sof;w;are-Deﬁned Networks fraction of data packet header is sent to the controller instead of an entire data packet. This internal buffering
Modeling

increases the robustness and the utilization of the link between SDN switches and the controller by absorbing
temporary burst of packets which may overwhelm the controller. Existing queuing models for an SDN have
focused on the switches that immediately sends packets to the controller for decisioning, with no existing models
investigating the impact of the internal buffer in SDN software and hardware switches. In this paper, we propose
a unified queueing model to characterise the performance of SDN software and hardware switches with the
internal buffer. This unified queueing model is an analytical tool for network engineers to predict a delay and
loss during SDN deployments in delay and loss sensitive environments. Our results show that a hardware switch
achieves up to 80% lower average packet transfer delay and 99% lower packet loss rate at the cost of requiring
up to 50% more queue capacity than a software switch. The proposed models are validated with a discrete event
simulation, where the error between 0.6% and 2.8% was observed for both average packet transfer delay and
average packet loss rate. Moreover, a hardware switch outperforms a software switch with increasing number
of hosts per switch suggesting that a hardware switch has better scalability. We use the insights from the model
to develop guidelines that help network engineers decide between a software and hardware switch in their SDN
deployments.

Software Switch
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Queuing Theory

1. Introduction

Software-Defined Networking (SDN) is a new networking architec-
ture that simplifies the switch by moving the forwarding decisions away
from a switch to a centralised system which is typically realised as
a software-based controller. The concept of an SDN is realised with
OpenFlow which is among the first (and most widely used) specifica-
tion to define the communication between the controller and switch in
an SDN architecture (Goransson and Black, 2014). At present, Open-
Flow is the dominant protocol for programming SDN switches (McKe-
own et al., 2008). OpenFlow handles different types of messages from
the controller-to-switch or conversely from the switch-to-controller. The
switch-to-controller messages are called asynchronous messages as they
are sent without controller solicitation (ONF, 2013).

* Corresponding author.
** Corresponding author.

In the OpenFlow specifications (ONF, 2013), an OpenFlow switch
maintains one or more flow tables to make decisions on packet
forwarding behaviour. Flow tables are linked together to form a
pipeline, where each flow table has flow table entries (FTEs) that con-
sist of match fields and actions. Incoming data packets are matched
against the match fields and if there is no matching FTE, an asyn-
chronous message called a “packet-in” is generated and sent to the con-
troller.

As SDN deployments move away from traditional data centers to
wide area SDNs, wireless access network (called SDWAN - software
defined wireless access network) and mobile SDNs, the usual assump-
tion of a reliable and highly available control channel no longer holds.
Fortunately, the OpenFlow specifications have provisions for switches
to internally buffer packet-in messages destined for the controller.
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Packet-in messages are sent by the switch when there is no match-
ing flow information for an arriving packet to the switch. Packet-in
messages are sent either with the arriving data packet or only with a
fraction of the data packet header based on the availability of mem-
ory in a switch for internal buffering. The data packet header contains
routing information which is used by the controller to make forwarding
decisions. If a switch has sufficient memory to buffer packets, then the
packet header along with a buffer ID (identifier of the buffered packet)
is sent with the packet-in message. Similarly, some switches do not sup-
port internal buffering and require full data packet (not just the header)
to be sent with the packet-in message.

1.1. Internal buffer

The internal buffer in a switch plays an important role in packet
forwarding behaviour. Data packets are internally buffered in an SDN
switch to avoid congestion and improve the throughput of the network.
The concept of internal buffering is not new to SDN switches and has
been traditionally used in Banyan switches (Ye et al., 2002). These are
a network of complex crossover switches designed to avoid blocking
between packets at the input ports. In other areas of networking such
as ATM (asynchronous transfer mode), internal buffering has been used
in ATM switches to reduce the packet loss rate due to the asynchronous
nature of ATM traffic (Hui, 2012).

In an SDN, the internal buffer helps in addressing the impact of lossy
and unreliable control plane behaviour, a scenario of increasing impor-
tance. The study in (Osman et al., 2017) showed that a lossy control
channel significantly degrades a data plane throughput and latency.
Some of the benefits of internal buffering in SDN switches are: the for-
warding delay of data packets can be decreased (Sun et al., 2015), Qual-
ity of Service can be improved with reduced packet loss (Appelman and
de Boer, 2012), and bandwidth of the control channel can be optimized
(Mao et al., 2016).

In an OpenFlow-based SDN switch, if a packet-in event is configured
to internal buffering and the switch has sufficient memory to buffer a
data packet, then the fraction of a data packet header and buffer ID
is encapsulated with a packet-in message. Otherwise, an entire data
packet is encapsulated with a packet-in message. The controller pro-
cesses a packet-in message and generates a packet-out message to the
switch updating flow information (ONF, 2013).

Most existing research in the literature analyses the performance of
SDN switches with no internal buffering (Jarschel et al., 2011; Mah-
mood et al., 2014; Mahmood et al., 2015; Miao et al., 2016; Goto et
al., 2016; Ogasawara and Takahashi, 2016; Shang and Wolter; Sood et
al., 2016; Javed et al., 2017; Singh et al., 2017; Singh et al., 2018a; Lai
et al., 2017; Fahmin et al., 2018; Azodolmolky et al., 2013; Koohanes-
tani et al., 2017; Huang et al., 2017). This is perhaps attributed to the
evolving nature of the OpenFlow specifications which in their current
incarnation leaves the buffering of a data packet as an optional feature.
However, it will be increasingly important for the next generation of
SDN switches to support internal buffering with increasing diversifica-
tion of SDN deployments. In these new diversified SDN deployments,
there may be intermittent connectivity between the SDN switch and
the controller during SDN deployments in domains such as SDWANSs,
mobile SDN and IoT.

1.2. Hardware vs. software switch

In this paper, we are concerned with the modelling of both phys-
ical SDN switches (i.e. hardware switches) and virtual switches (i.e.
software switches), both with the internal buffer. Both software and
hardware switches have strengths and weaknesses, and internal buffer-
ing may affect their performance in an SDN. To identify the potential
bottlenecks that could hinder the performance of an SDN, the trade offs
between choosing a hardware versus software switch with the internal
buffer need to be studied and investigated to improve the performance
of SDN.
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An SDN-based software switch with the internal buffer maintains
the flow table in SDRAM (synchronous dynamic random access mem-
ory) where the incoming packet is matched against the FTE using a CPU
(central processing unit) (Rygielski et al., 2016). If there is no match-
ing FTE, a data packet is internally buffered and a packet-in message
is sent to the controller which feeds back forwarding information to
the switch and updates the software flow table. The packet process-
ing logic in a software switch is implemented in software (Gorans-
son and Black, 2014) usually with the help of optimized software
libraries. Open vSwitch (OVS) (Open vSwitch), Pantou/OpenWRT (Pan-
tou), ofsoftswitch13, Indigo running on commodity hardware (e.g.
desktops with several network interface cards) are few examples of SDN
software switches.

Similarly, in an SDN-based hardware switch with the internal
buffer, a packet processing function is embedded in the specialised
hardware. This specialised hardware includes layer two forwarding
tables implemented using content-addressable memories (CAMs), layer
three forwarding tables using ternary content-addressable memories
(TCAMs) (Goransson and Black, 2014) and application specific inte-
grate circuits (ASICs). In a hardware switch, FTEs are stored in CAMs
and TCAMs of the specialised hardware and packets are processed by
ASICs. Hardware switches are also equipped with SDRAM and CPU
allowing a hardware switch to maintain flow tables in both TCAM
and SDRAM (Rygielski et al., 2016). Similar to software switches in
an SDN, the CPU in a hardware switch internally buffers data packets
when there is no matching FTE.

In this paper, we use queuing theory to derive a first order esti-
mate of an OpenFlow switch’s performance and to identify potential
trade-offs between an SDN-based software and hardware switch with
the internal buffer. Queueing models are useful in predicting switch
performance trends as parameterized functions and link the cause to
effect relationships of the switch performance. The main contributions
of this paper are as follows:

e It proposes a unified queueing model to characterise the perfor-
mance of hardware and software switches with the internal buffer
in an SDN.

o It identifies the benefits and trade-offs of hardware switch vs. soft-
ware switch with the internal buffer in an SDN.

e It validates a unified queueing model with a discrete event
simulation.

e It investigates the performance of software and hardware switches
for a scalable SDN with increasing number of hosts connected to the
switch.

The remainder of this paper is structured as follows. Section 2 dis-
cusses the related work and background theory of SDN-based software
and hardware switches, and internal buffering. Section 3 presents the
queueing model for an SDN-based software switch with the internal
buffer which is followed by the queuing model for an SDN-based hard-
ware switch with the internal buffer in Section 4. Section 5 discusses
buffer dimensioning. Section 6 discusses the analytical and validation
results in detail. Finally, Section 7 concludes the paper with a discussion
of the results and conclusion.

2. Related work & theory

While internal buffering has been well studied in a traditional
switch, the buffering of asynchronous messages over a separated
control-data plane remains unexplored. The separation of the data plane
and control plane in SDN brings a different set of challenges for switch
designers working with SDN switches. For example the control deci-
sions from the controller may take up to 1 ms to reach the switch.

The internal buffering for software-based SDN switches can be easily
realised by configuring packet-in events to support buffering of pack-
ets. However, for hardware-based SDN switches, there are very few
commodity switches that support internal buffering. Pica8 switches are
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among the few that support OpenFlow’s feature to configure temporary
buffering of packets (PicOS Support), while other commodity switch
manufacturers like Cisco (Cisco Plug-in), HP enterprise (HPE Switch
Software), Juniper (OpenFlow Support), Arista network (Arista EOS
OpenFlow), and Extreme network (ExtremeXOS) still do not support
internal buffering. The reason behind fewer commodity switches sup-
porting internal buffering is due to hardware limitations in hardware
switches. This is also the reason why there is almost no experimen-
tal research conducted on SDN commodity switches to analyse internal
buffering.

In (Mizuyama et al., 2017), the authors adopted an SDN for wireless
mesh networks and show that the delay variability and limited band-
width over the wireless induces throughput and packet losses. However,
no internal buffering was considered. The use of internal buffering in
(Mizuyama et al., 2017) could have improved the channel utilization in
the SDN-enabled wireless networks for increasing control traffic. Earlier
studies (Sun et al., 2015; Mao et al., 2016) suggest that the smoothing
of control traffic via the internal buffer would reduce the losses during
periods of poor wireless connectivity or sudden burst of new flows to a
mesh router. However, these studies have not explored the drawbacks
of internal buffering in an SDN.

For SDWAN applications, a multi-path OpenFlow channel for
resilience and scalability in wireless environments was proposed in
(Nguyen et al., 2017). In SDWANSs, the control path may incur failure
due to many reasons, such as deep fading, mobility, etc. In such cases,
buffering packets in the internal buffer of the switch allows the switch
to continue operating momentarily while the control channel recovers
back to its stable state.

Hu et al. (2017) take a radically different approach whereby the
control packets are neither buffered nor sent to the controller imme-
diately but sent through a looping path - inducing delay to allow the
control messages to be processed and the feedback from the controller.
The internal buffering in (Hu et al., 2017) could have reduced the delay
at the cost of extra memory.

From a performance modelling perspective, queueing theory has
been widely used to model and predict the performance of an SDN
(Jarschel et al., 2011; Mahmood et al., 2014; Mahmood et al., 2015;
Miao et al., 2016; Goto et al., 2016; Ogasawara and Takahashi, 2016;
Shang and Wolter; Sood et al., 2016; Javed et al., 2017; Singh et al.,
2017; Singh et al., 2018a; Lai et al., 2017; Fahmin et al., 2018; Singh
et al., 2018b). Most of these studies have modelled a software switch
except for (Sood et al., 2016; Singh et al., 2018a) which are among
the first to model a hardware switch in an SDN. Similarly, the model
presented in (Singh et al., 2018b) is among the first to model an SDN
switch with the internal buffer.

The above mentioned models use the generic models as shown in
Fig. 1 for a software switch and Fig. 2 for a hardware switch where
the input buffer of the CPU is modelled either as a single shared queue
or two-priority queue. In the single shared queue model (Jarschel et
al., 2011; Mahmood et al., 2014; Mahmood et al., 2015; Shang and
Wolter; Sood et al., 2016; Javed et al., 2017; Lai et al., 2017; Fah-
min et al., 2018), the data traffic and control traffic shares a single
queue with FIFO service discipline. While in a two-priority queue model
(Miao et al., 2016; Goto et al., 2016; Ogasawara and Takahashi, 2016;
Singh et al., 2017, 2018a, 2018b), control traffic goes to a high priority
class queue and data traffic goes to a low priority class queue where
data traffic is served without preemption. The single shared queue
model is not suitable for modelling internal buffers because there is
no packet level distinction between data and control traffic. This dif-
ferentiation is easily modelled in the two-priority queue model and
thus is the most relevant starting point for our work presented in this
paper.

Moreover, a key finding from previous modelling work on SDN
switches shows that the use of two-priority queue in the output buffer
of a switch better reflects the SDN behaviour. Analytical and simula-
tion studies in (Singh et al., 2017) show that the time to install FTE
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Fig. 1. Generic model for an SDN with Software Switch.
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Fig. 2. Generic model for an SDN with Hardware Switch.

is significantly lower in a priority queue compared to a single shared
queue.

The model presented in (Singh et al., 2018b) shows the benefit of
the internal buffer which significantly reduces the delay and loss rate
but at the cost of the higher memory required by the CPU for inter-
nal buffering. However, this model considers internal buffering in a
software switch and cannot model the dynamics of a faster hardware
switch that has dual service rates (i.e. specialised hardware service rate
and CPU service rate) — thus producing estimates that are less accurate
for hardware switches.

The model presented in (Sood et al., 2016) assumes that the input
buffer of a switch as a single shared buffer but have not accounted
the switch-controller interaction. The analysis in this work does not
map the workings of a hardware switch such as the flow matching and
dedicated packet processing to the queueing model as shown in Fig. 2.
These limitations of (Sood et al., 2016) have been addressed in (Singh
et al., 2018a) through a unified queueing model with both software and
hardware switches. However, a unified queueing model in (Singh et al.,
2018a) has not considered the internal buffering capabilities of an SDN
switch.

The models in (Singh et al., 2018b) and (Singh et al., 2018a) have
paved the way for building a new unified queueing model for inter-
nal buffering within SDN switches. A summary of existing queueing
models for SDN switches with and without the internal buffer is shown
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Table 1
Summary of queueing models for SDN switches with and without the internal buffer.
Model Internal Buffering CPU Analysis Switch Type
Yes No model Exact Approximate Software Hardware
Jarschel et al. (2011) v M/M/1 v v
Mahmood et al. (2014) v M/M/1 v v
Miao et al. (2015) 4 M/M/1 4 4
Shang and Wolter, v M/H,/1 4 v
Sood et al. (2016) v M/Geo/1 v v
Miao et al. (2016) v MMAP v v
Goto et al. (2016) v GI/M/1/K v v
Javed et al. (2017) v M/G/1 v v
Singh et al. (2017) v GI/M/1/K v v
Lai et al. (2017) 4 MMPP/M/1 v 4
Singh et al. (2018b) 4 4 GI/M/1/K v 4
Fahmin et al. (2018) v M/M/1 v v
Singh et al. (2018a) 4 GI/M/1/K v v v
Our Analysis v v GI/M/1/K v v v
Table 2 dleware layer on the switch (KuZniar et al., 2015; Pan et al., 2013) to
Notations used for performance analysis. avoid duplicate entries and to ensure consistent forwarding behaviour.
— There are four important phases an SDN model of a hardware switch
Parameters Description ) .
- - must capture. Phase (1), the first packet of a flow arrives at the spe-
A External arrival rate at the switch cialised hardware in the switch that maintains hardware FTEs and there
He Service rate of the controller processor X X )
Hy Service rate of the CPU processor is no matching FTE for the packet. Phase (2), a packet with the match-
Hsn Service rate of the hardware processor ing FTE in the TCAM is serviced by the ASIC and forwarded to the desti-
s Table miss probability nation, otherwise a packet without a matching FTE in TCAM is matched
BER Bit Error Rate against the FTE in SDRAM and processed by the CPU for forwarding to
PER Packet Error Ratio the destinati In oh 3) ket without tching FTE in th
n Number of bits in the packet e destination. n'p ase (3), a packet without any matching in the
N Number of hosts connected to the switch TCAM or SDRAM is forwarded to the controller. In phase (4), the con-
p) Server utilization at the queue troller feeds the forwarding information back to the switch, updates the
T Throughput of the queue flow tables in both TCAM and SDRAM. Finally, the packet is serviced
¢ Mean sojourn time of packets at the queue by the CPU and forwarded to the destination. A hardware switch has
E[L] Total number of data packets in the system . ) . .
PL Average packet loss rates been studied and analysed in (Singh et al., 2018a) based on the generic
Konin Minimum queue capacity for a switch block model shown in Fig. 2.
m, Controller to CPU Processing Ratio (u./ug) Based on these generic models, this paper investigates SDN software
ms Specialised hardware to CPU Processing Ratio (4g./ 1) and hardware switches that support internal buffering with the help of
€x Relative minimum capacity . th Additi 1 iorit . truct . d f
o Relative average delay queuing theory. itionally, a priority queueing struc ure'z is us'e 'or
€ Relative packet loss rate the CPU that handles data and control packets, and buffer dimensioning

in Table 1. Similarly, Table 2 lists the notations used for performance
analysis in this paper.

In the following subsection, generic models for SDN software and
hardware switches are discussed.

2.1. Packet flow in software and hardware SDN switches

A generic block diagram of an SDN-based software switch where
the external data packet arrives at the switch which is connected to the
controller is shown in Fig. 1. There are three important phases an SDN
model of a software switch must capture. Phase (1), the first packet of
a flow arrives at the switch and there is no matching FTE for the packet
in SDRAM. Phase (2), the packet without a matching flow entry is for-
warded to the controller or a packet with the matching FTE is serviced
by the switch and forwarded to the destination. All packet processing
and forwarding in the switch is executed on the CPU and the SDRAM.
Finally, Phase (3), the controller feeds the forwarding information back
to the switch and updates the flow table. Software switches have been
studied and analysed in (Jarschel et al., 2011; Mahmood et al., 2014;
Mahmood et al., 2015; Miao et al., 2016; Goto et al., 2016; Ogasawara
and Takahashi, 2016; Shang and Wolter; Javed et al., 2017; Singh et al.,
2017; Singh et al., 2018a; Lai et al., 2017; Fahmin et al., 2018; Singh et
al., 2018b) based on the generic block model shown in Fig. 1.

Fig. 2 shows the block diagram of an SDN-based hardware switch
where the switch maintains flow tables in both hardware and software.
The hardware and software flow tables are synchronised through a mid-
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is performed to calculate the minimum queue capacity for the switch
which is discussed in the following subsection.

2.2. Buffer dimensioning

The concept of buffer dimensioning in queueing network is to deter-
mine the buffer size (K) for a given desired loss probability, hence to
ensure losses due to queueing are below desired loss probability. In an
SDN queuing network, it is of prime importance to provide no losses
to control packets that carry the updated flow table information. The
desired loss probability for the outgoing link is given in bit error rate
(BER), which is 10712 for 1 Gbps link according to IEEE 802.3 stan-
dard (ISO/IEC/IEEE International Standard for Ethernet, 2014). In this
paper, we use this value of BER for buffer dimensioning.

For buffer dimensioning, the buffers are first assumed to be an infi-
nite queue, and the queue is truncated at some finite integer K, such
that the desired loss probability is achieved (Simcoe and Pei, 1995;
Liew, 1994). The required buffer space is measured in packets.

The minimum queue capacity for a switch (denoted by K;,) can be
derived using an infinite queue model (i.e. M/M/1 queue). However,
losses in queues are typically expressed as Packet Error Ratio (PER)
while losses in outgoing links are expressed by BER. The relationship
between BER and PER is given as:

PER =1 — (1 —BER)", (@]

where n is the number of bits in the packet. In an M/M/1 queue,
the probability the queue length (L) exceeds K;, is given by P.{L >
Kppin } = pKmin, where pKmin is the server utilization at the queue for
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given K ;. The value of K;;, is calculated as

log[PER]
min = log[mein] . (2)

In this paper, K,;, determines the minimum queue capacity of the
switch in the queueing model.

2.3. Quasi-Birth-Death process

In queueing theory, Quasi-Birth-Death (QBD) process has been
widely used to model a computer network due to the flexibility it pro-
vides to account a larger amount of details (Ost, 2013; Takagi, 1990).
For this reason, the modelling approach in this paper is based on QBD
processes. Hence, this subsection is devoted to describe the notation
and concepts behind QBD processes.

A QBD process is a continuous-time Markov chain with multidimen-
sional state spaces that can be partitioned into disjoint levels (Dayar
et al., 2011). A continuous-time QBD process is a two-dimensional
Markov chain represented as {(X,,Y,).t > 0} with the state space
S={@j e {0,1,...,K}x{0,1,...,L}} where i and j denotes level
and phase variables of the process, respectively (Motyer, 2011). Sim-
ilarly, K and L determines the queue capacities of level and phase vari-
ables respectively which can be finite or infinite.

In queueing networks, a QBD process can be multi-dimensional with
one level variable and multi-dimension phase variables, whereby the
phase variables denote the number of the nodes or queues in the net-
work. For N number of queues, the state of the network can be rep-
resented by the vector n = (n;,n,,...,ny) where n; is the number of
packets in queue L If queue 1 is the queue of interest for analysis, then
packets at queue 1 are represented by the level variable and packets at
queues other than queue 1 are represented by phase variables as the
vector r = (ny, N, ... ,ny) (Latouche and Ramaswami, 1999).

In QBD process, the transitions between the state are limited within
the level or between two adjacent levels. If the transitions of QBD
process are independent of the level, then such type of QBD process
is homogenous or level-independent. Similarly, if the transitions are
dependent of the level, then QBD process is nonhomogenous or level-
dependent (Kharoufeh).

For an SDN switch with the internal buffer, the level variable tracks
the number of packets in the internal buffer of the switch and the phase
variable tracks the number of packets in the switch (excluding the inter-
nal buffer) and the controller. Due to the dependency of packets in the
controller and the switch with temporarily buffered packets in the inter-
nal buffer, QBD process for an SDN switch with the internal buffer is
non-homogeneous.

Using standard QBD notation (Neuts, 1994), the transition rate
matrix of non-homogenous QBD process is given by infinitesimal gen-
erator matrix denoted as G with a repetitive block structure expressed
as:

B AY o0
RGO )
AP AP A .
@ 4@ O
0 AP AP A

>

where Ag), A(li), and A(Zi) are non-negative sub-matrices for i > 0.
The sub-matrices Ag), A(li), and A(zi) represent phase variable distribu-
tion when the level variable increases by 1 (i.e. i — i+ 1), remains
unchanged (i.e. i » i), and decreases by 1 (i.e. i—»>i—1 for i > 0),
respectively. Note that the use of Aj, A;, A,, and B, are standard
QBD notations (Goto et al., 2016; Latouche and Ramaswami, 1999;
Kharoufeh). The sub-matrices B; and A; represent phase distribution
when level variable remains unchanged. The sub-matrix B; or A(lo) rep-
resents the state of the network when the level variable is “0” (i.e. the
internal buffer has no packets in its queue), while A; represents the net-
work with the internal buffer having at least one packet in its queue.
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Fig. 3. SPQ-An SDN software switch with the internal buffer.

Similarly, A, and A, represent phase distribution when number of pack-
ets in the internal buffer increases or decreases by 1 respectively.

The exact distribution probabilities or the stationary state distribu-
tion (x) for QBD process is obtained by solving the system, #G = 0
and we = 0, where e is the column vector with all elements as one.
These distribution probabilities can be used to determine various per-
formance metrics of the queueing network like average delay and
throughput.

Throughout this paper, we assume the controller has an infinite
capacity queue with M/M/1 distribution, and the CPU of a switch has a
finite capacity GI/M/1/K queue to represent independent arrivals with
general distribution (Serfozo, 2009). The total number of hosts con-
nected to the switch is denoted as N. External packets arriving at the
switch from each connected hosts are assumed to arrive according to
a Poisson distribution with parameter A. If there is no matching FTE
in the switch, an external packet is temporarily buffered in the inter-
nal buffer and packet-in message is generated and sent to the controller
with a probability f. The service rates of the CPU and the specialised
hardware in the switch, and the controller are denoted by ug,, pg,, and
U, respectively. The average packet transfer delay and loss rate are
primary performance metrics to compare SDN software and hardware
switches with the internal buffer.

3. Software switch with the internal buffer: SPQ

We have named our queueing model for a software switch with
the internal buffer as Model SPQ, where “S” refers to the switch with
a software data plane, “P” refers to use of a two-priority queueing
structure, and “Q” refers to queueing of data packets in the internal
buffer.

As seen in Fig. 3, the switch supports internal buffering and the
input buffer of the switch is modelled as a finite capacity with non-
preemptive two-priority class queues, Class ES (low priority class for
data packets) and Class CS (high priority class for control packets) like
“SPE” in (Singh et al., 2017).

The packet processing in SPQ can be explained in four steps as
shown in Fig. 3: (1) external data packets arrive at Class ES of the
switch from N number of hosts connected to the switch, (2) data pack-
ets are temporarily buffered in the internal memory and a fraction of
data packets are forwarded to the controller encapsulated with “packet-
in” control messages if the switch does not have matching FTE or suc-
cessfully forwarded to the destination through an output port, (3) the
controller feedback the forwarding information with packet-out mes-
sage to Class CS of the switch, (4) switch process the control packets
in Class CS, update the flow table with forwarding information, tem-
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Table 3
Permissible transitions for Model SPQ.
Event From To Rate
One packet arrives to Class ES. (M, N, Mg, ) (s Mgy Mg, Mg + 1) N4
One packet departs from Class ES to out of the system (SPQ). (ny,n,,0,n, > 0) (ny,n.,0,n, — 1) Uyl = B)
One packet departs from Class ES to the internal buffer and (ny,n,,0,n, > 0) (ny + 1,n, + 1,0,n,, — 1) Ugpb
subsequently one packet-in message is sent to controller.
One packet-out serviced by Controller to Class CS. (ny,n, > 0,ng,n,) (ny,n, — 1,n, + 1,n,) He
One packet in Class CS is processed and subsequently one packet (n, > 0,n,,n, > 0,n,) n, — 1,n.,n, — 1,n,) Hsp

departs from the internal buffer to out of the system (SPQ).

porarily buffered data packets are extracted from the internal buffer
and forwarded to the destination through an output port.

SPQ is modelled as a continuous time Markov process with four state
variables, {(n,(t), n.(t), n.s(t), nes(t)),t > 0}. The state variables denoted
by ny(t), n.(t), n.(t), and n,(t) represent the number of packets in the
internal buffer, controller, Class CS, and Class ES respectively. Let the
Markov process at time t be defined as:
{nb(t)7nc(t)’ncs(t)7nes(t)} = {W,X,.)’,Z} (3)
where w € ZerB, Xe€EZ,,y€E Zerl and z € Zf_Kz. The number of pack-
ets in the controller and Class CS is dependent on the number of packets
in the internal buffer. Therefore, the state space of the controller and
Class CS can be rewritten as, x € Zf", and y = (w — x) subject to
w - x) < K;.

For example, if the number of packets in the internal buffer at some
instant t is 1, i.e. my(t) = 1, then the permissible state space for con-
troller and Class CS are n.(t) = {0,1} and n.(t) = {1, 0} respectively.
Due to this dependency, Markov process in SPQ is nonhomogenous QBD
process (Latouche and Ramaswami, 1999) with the internal buffer as
a level variable; while the number of packets in the controller, Class
CS and Class ES are phase variables. The permissible transitions for
the Markov chain {(n(t), n.(t), n.(t), n.(t))} are shown in Table 3 and
these help us to derive sub-matrices (denoted by Ay,A;,B; and A,) of
transition generator matrix (G) for SPQ. These sub-matrices are inputs
to the matrix geometric solution for computing the stationary distribu-
tion probability (z) which is used to determine performance metrics for
SPQ.

3.1. Elements of matrix Ay

The sub-matrix A, for SPQ represents the phase distribution of the
controller, Class CS, and Class ES when the number of packets in the
internal buffer (i.e. n,(t) or w in Eq. (3)) increases by 1:

Aoty = {

where,

X' =x+1,

otherwise,

AOO(X)
0,

Y =y=0,
otherwise,

where,

A001(0)(z,z') = {

3.2. Elements of matrix A;

uph, #=2-1,

0, otherwise.

The sub-matrix A; for SPQ represents the phase distribution of the
controller, Class CS, and Class ES when the number of packets in the
internal buffer remain unchanged and there are some packets in the
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internal buffer (i.e. ny(t) or w in Eq. (3) is a positive integer that remain
unchanged):

All(x), X/ =X,
Ajpeay =4412%, X =x-1,
0, otherwise,
where,
A,y =y,
0, otherwise,
and
A, Y =y+1,
0, otherwise,
where,
2 =241,
AV = .Msp(l y=0,7=2-1,
otherwise,
and
A ) = Hes Z/ =z,
1207 @ 0, otherwise.

The diagonal elements of A;7;Y
distinct cases:

(zz/) Where z is equal to 2’ has four

(i) When there is no packet in the controller (i.e. n.(t) or x in Eq. (3)
is equal to 0),

—N/l—ﬂsp, 0<z<Kjy;
»  _ .
A1 gy = ~Hp: z=Kj;
0, otherwise,

(ii)) When the number of packets in the controller is less that the
number of packets in the internal buffer i.e. 0 < x < w and

w < K3,

—NA—pgp—H, 0=2z<Ky;
Alll(y)(z,z’) = "Hsp — Hes z=Kpy;

0, otherwise,

(iii) When the number of packets in the controller is equal to that in
the internal buffer which is not full i.e. x = wandw < Kj,

—NAi—pu,, z=0;
A ) _ —NA—pgp—He, 0<2<Ky;
1117 (z.2/) _ )
_ﬂsp — Hes z= KZ’
0, otherwise,
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(iv) When the number of packets in the controller and the inter-
nal buffer are equal to the queue size of the internal buffer i.e.
x =w = Ka,

—Ni—u,, z2=0;
A111(y)(zzr) _ —NA—pyp(1=B)—pe, 0<z<Ky,
| _/’lsp(]- _ﬂ)_ﬂc’ Z:KZ’
0, otherwise,

3.3. Elements of matrix B;

The sub-matrix B; for SPQ represents the phase distribution of the
controller, Class CS, and Class ES when the number of packets in the
internal buffer is unchanged and there is no packet in the internal buffer
(i.e. my(t) or w in Eq. (3) is equal to 0):

B1®, x'=x=0,
Bl(x,x’) = .
0, otherwise,
where,
B.O . _ BinY, ¥ =y=o,
1 gy = .

0, otherwise,
where,

N2, 2 =z+1,
By @ = 1-p, Z=z-1

@2) = YHsp g g

0, otherwise.
The diagonal elements of By;® (22) Where z is equal to 2’ are expressed
as

—N4, z2=0,

—Ni—-u 0<z<K,

0 ) 25

B3O = *

_/’lsp’ z= KZ’

0, otherwise.

3.4. Elements of matrix A,

The sub-matrix A, for SPQ represents the phase distribution of the
controller, Class CS and Class ES when the number of packets in the
internal buffer (i.e. n,(t) or w in Eq. (3)) decreases by 1:

A2 n = Azl(x), X/ =X,
(x.x") 0, otherwise,
where,
/

Azl(X) = Azlzw)’ y =yl

oy 0, otherwise,
where,

) My 7 =2

=) H> ’

A ) = 0,  otherwise.

3.5. Peformance metrics for SPQ

The throughputs of Class CS (T,,) and the internal buffer (T},) for SPQ
are same because we have assumed a data packet in the internal buffer
is extracted instantaneously after a control packet in Class CS has been
processed. This assumption is reflected in the permissible transitions
table for SPQ as shown in Table 3. The throughput of the internal buffer
for SPQ is given by the sum of probabilities that the internal buffer has
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at least one data packet to forward (service rate of yis,) and this is given
by:

K3 w-1 Ky

T, =T ."‘spz Z Z”wx,yz

w=1 x=0 z=

@

overall Similarly, the throughput of the controller (T,) for SPQ is given
by the sum of probabilities that the controller has at least one control
packet to forward (service rate of u.) with the condition that there is
at least one data packet temporarily buffered in the internal buffer, and
this is given by:

w Ky

P> 2, Ty

w=1 x=1 z=0

Also, the throughput of Class ES (T,,) for SPQ is given by the sum of
probabilities that the Class ES has at least one data packet to forward
(service rate of ysp) and there is no packet in Class CS in the stationary
state, and this is given by:

(5)

w Ky

T ﬂspz Z Z”waz

w=0 x=0 z=1

(6)

The average number of data packets in SPQ is E[L]gp, where data pack-
ets travel only through the switch (the Class ES and the internal buffer).
Therefore, E[L]gp, is expressed as:

w Ky

E[L]spq = Z Z Z(W+Z)’wayz

w=0 x=0 z=0

)

Again, applying Little’s theorem to Eq. (7) yields the average packet
transfer delay in SPQ (commonly denoted by the mean sojourn time of
the packet) at the switch (denoted by tgp) which is expressed as:

tspq = ElLlspq/ Tspq (8
where Tgp, is the throughput of SPQ expressed as:
TSPQ = Tb + (l - ﬁ)Tes- (9)

Similarly, the average packet loss rate of the Class CS (PL), the
Class ES (PL,), and the internal buffer (PL;) represents the average
number of packets being blocked or dropped by the Class CS, the Class
ES, and the CPU’s internal buffer out of total incoming packets. The loss
rates PL.,, PL,,, and (PLy;,) for Model SPQ are expressed as:

PLcs = PLib =1- TCS/TC 10)

PL,=1-T,/NA.

Assuming independence between the arrival at the Class CS, the
Class ES and the internal buffer, the total packet loss rate for SPQ
(PLgpq) is the sum of packet loss rate in the Class CS, the Class ES and
the internal buffer which is given as,

PLgpq = PLys + PLg + PLy,. (11)

4. Hardware switch with internal buffer: HPQ

Similar to “SPQ” for a software switch with the internal buffer, we
have named queueing model for a hardware switch with the internal
buffer as Model HPQ, where “H” refers to a hardware data plane. HPQ
is an extension of SPQ, with one additional server and a queue for the
specialised hardware with M/M/1/K distribution.

As shown in Fig. 4, the switch has two servers, one for the spe-
cialised hardware (referred as hardware processor and denoted by )
and other one for the CPU (referred as CPU processor and denoted by
Ugp)- Similar to SPQ, CPU is modelled as a finite capacity with non-
preemptive two-priority class queues; Class HP (similar to Class ES for
SPQ) as a low priority, Class CP (similar to Class CS for SPQ) as a high
priority.
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Fig. 4. HPQ-An SDN hardware switch with internal buffer.

Switch

The packet processing in HPQ can be explained in five steps as
shown in Fig. 4: (1) external data packets arrive at the specialised hard-
ware of the switch from N number of hosts connected to the switch, (2)
data packets are forwarded to Class HP of the CPU if specialised hard-
ware in the switch does not have matching FTE or forwarded to destina-
tion through an output port, (3) data packets are temporarily buffered
in the internal memory and a fraction of data packets are forwarded to
the controller encapsulated with packet-in messages, (4) the controller
feedback the forwarding information with packet-out messages to Class
CP of the CPU, (5) finally the CPU processes control packets in Class CP,
updates and synchronises the software flow table with the flow table in
the specialised hardware, extracts temporarily buffered data packets
from the internal buffer and forwards them to the destination through
an output port.

HPQ is modelled as a continuous time Markov process with five
state variables, {(ny(t), n.(t), n(t), nes(t), ng,(t)),t > 0}. The state vari-
ables denoted by ny(t), n (t), n.(t), nes(t), and ng,(t) represent the num-
ber of packets in the internal buffer, controller, Class CP, Class HP, and
the specialised hardware respectively.

Similar to SPQ, queue capacities of the internal buffer, Class CP and
Class HP are K3, K;, and K, respectively; and the controller is assumed
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space of the internal buffer, controller and Class CP can be rewritten as,
vVE Zf_Ks, we Zf_w, andx = (v — w) subjectto (v — w) < Kj.

Due to the dependency of n.(t) and n.(t) on the internal buffer,
the process governing the number of packets in HPQ is also non-
homogenous QBD process with the internal buffer as a level vari-
able; the controller, Class CP, Class HP, and the specialised hardware
as phase variables. The permissible transitions for the Markov chain
{(ny(t), n (1), ns(t), ngg(t), ngy (1)) } are shown in Table 4. These transitions
help us derive sub-matrices (A, A;,B; and A,) of the generator matrix
(G) for HPQ. These sub-matrices are input to matrix geometric solution
to compute the stationary distribution probability (x) which is used to
determine performance metrics for HPQ.

4.1. Elements of matrix Ay

The sub-matrix A, for HPQ represents the phase distribution of the
controller, Class CP, Class HP, and the specialised hardware when the
number of packets in the internal buffer (i.e. ny(t) or v in Eq. (12))
increases by 1:

(w.w’) 0, otherwise,
where,
w) = AOOl(X)’ xl =X= 07
00 0, otherwise,
where,
Aoy @ = Ag12?, ¥ =y-1,
oy 0, otherwise,
where,
) u 7=z
(6% _ sp> = %,
Aoz at) = 0 otherwise.

4.2. Elements of matrix A;

The sub-matrix A; for HPQ represents the phase distribution of the
controller, Class CP, Class HP, and the specialised hardware when the
number of packets in the internal buffer remain unchanged and there
are some packets in the internal buffer (i.e. ny(t) or v in Eq. (12) is a
positive integer that remain unchanged):

P . . s (w) ) —
to have infinite capacity. The queue capacity of the specialised hard- A, wo=w,
ware is K. Let the Markov process at time t be defined as: AL ww) = Ap™, wW=w-1,
0, otherwise,
{np(0), nc(0), nes(0), nes (O, N, (O} = {v,w, x,y, 2} 12)
where
<K <K <K <K, ?
whereve z, 2, wez,,x€z, "', y€ 7z, ? and z € Z_*. The num-
ber of packets in the controller and Class CP is dependent on the number W _ Aul("), x =x,
of temporarily buffered packets in the internal buffer, therefore state Mex) — 0, otherwise,
Table 4
Permissible transitions for Model HPQ.
Event From To Rate
One packet arrives to switch hardware. (s Me, Ny Ny, ) (M, Ny Ny Mg, Mgy + 1) Ni
One packet departs from hardware to out of the system (HPQ). (M, N Mgy Mgy, Tigy) (M, Mg, Ny Mgy, Mgy, — 1) Hag (1 — p)
One packet arrives at Class HP for CPU processing. (s My N Mg, M) (M, N, Ny, + Ling, — 1) Hp P
One packet departs from Class HP to the internal buffer and (1, 0, Ny, ) (n, + 1,n. + 1,0,ny, — 1,ng) Hep
subsequently one packet-in message is sent to controller.
One packet serviced by Controller to Class CP. (ny > 0,n,ng,, Ny, ng,) (ny > 0,n, — 1,ng, + 1,ny,ng) He
One packet_out in Class CP is processed and subsequently one (ny > 0,n.,ng,, Ny, Ngy) n, — 1,n,ng — 1y, ng) Hep

packet departs from the internal buffer to out of the system (HPQ).
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and
A12(W) _ Ao, X =x+1,
(xx!) 0, otherwise,
where,
Ann®, Y =y,
Alll(X)()'.y,) — AlllO(Y)’ y' =y+1,
0, otherwise,
and
!
Aqpo®™ "= A, ¥ =y,
(A% 0, otherwise,
where,
Ni, Z/ =2zZ2+ 19
AV = a1 - ). 2 =z-1,
0, otherwise,
!
w o Juab =21,
A0 gz = {0 otherwise
and
A ) K =2
12017 (z2) = 0, otherwise.

The diagonal elements of Auu(y)(zyz,) where z is equal to 2’ has four
distinct cases:

(i) When there is no packet in the controller (i.e. n.(t) or w in Eq.
(12) is equal to 0),

_Nl_ﬂsps OS)'SKz,
z2=0;
_N/I_”sh_ﬂsp’ 0<y<Kj,
0<z<Ky;
“NA— g1 = P) = gy ¥y =Ky,
A Y e = 0<z<Ky
“Hsh — Hp» 0<y<Ky,
z=Ky;
—Hsp(1 = B) — pgp, y=Ks,
zZ= K4,
0, otherwise,

(ii) When the number of packets in the controller is less than that
the number of packets in the internal bufferi.e. 0 < w < vand

v < K3,
_Nl_ﬂsp_ﬂcs OS)’SKZ,
z2=0;
_N/l_ﬂsp_ﬂsh_/‘c’ OSy<K2’
0<2z<Ky;
“Hsp — Hsh — He» OS_)'<K2,
Allll(y)(z,z’) = z=Ky;
—NA - Hsp Yy =Ky,
—sp(1 = B) = pe, 0<z<Ky;
“Hsp — ﬂsh(l - ﬂ) y= KZy
—Hes 2= K4’
0, otherwise,
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(iii) When the number of packets in the controller is equal to that in
the internal buffer which is not fulli.e. w = vandv < Kj,

—Ni—pu,, y=2=0;
~NA = iy = i, y=0,
0<2<Ky;
“Hsh — Hes y=0,
z2=Ky;
—NA— pg — He, 0<y <Ky,
z=0;
AV ) = VAT T T e O <y < Ha
’ 0<2z<Ky;
“Hsp — Hsh — He» O<ySK2’
z2=Ky;
~NA = pgy = e y =K,
—pp(1 = B), 0<z<Ky;
—Hsp — :"{sh(l - ﬂ) y= KZ’
—Hes z2= K4;
0, otherwise,

(iv) When the number of packets in the controller and the inter-
nal buffer are equal to the queue size of the internal buffer i.e.
w=v = Ks,

~Ni =y, 0<y<Ky,
z2=0;

=NA = pgp — He, 0<y<K,
0 <z <Ky

“Hsh — Hes 0<y<Ky,

AV = z=Ky;

“NA—pu(1-p) y=Ky,

— e, 0<z<Ky;

_ﬂsh(l - ﬂ) — He» y= KZy
z=Ky;

0, otherwise,

4.3. Elements of matrix B;

The sub-matrix B; for HPQ represents the phase distribution of the
controller, Class CP, Class HP, and the specialised hardware when the
number of packets in the internal buffer remain unchanged and there is
no packet in the internal buffer (i.e. ny(t) or v in Eq. (12) is equal to 0)

B, n = Bll(W)’ w=w= 0,
(ww') 0, otherwise,
where,
() ) — g —
By ey = P x =m0
i 0, otherwise,
where,
By @, = Buu®™, ¥ =y,
oy 0, otherwise.
where,
NA, 2 =241,
BinPew) = ua(1 -0, 2 =z-1,
0, otherwise.
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The diagonal elements of By;1;, % ) Where z is equal to 2’ is expressed

(2.2
as
—NA4, y=0,2=0;
I Hshs y= 0,
0 <2z <Ky
~Hgp: y=0z=K,,
—NA— pg, 0<y<K,,
z=0;
B s = AT = e oyt
’ 0 <z <Ky
“Hsh — Hsp» 0<y< Ky,
z=Ky;
~NA= (1= P) =ty ¥y =Ky,
0<2z<Ky;
—usp(1 = B) — gy, Yy =K 2=Ky;
0, otherwise.

4.4. Elements of matrix A,

The sub-matrix A, for HPQ represents the phase distribution of the
controller, Class CP, Class HP, and the specialised hardware when the
number of packets in the internal buffer (i.e. ny(t) or v in Eq. (12))
decreases by 1:

Agywy = A21(W)v w =w,
(W) 0, otherwise,
where,
w _ JAm®™, X=x-1,
2 0, otherwise,
where,
) /
Ags® gy = A Y =Y,
v 0, otherwise.
where,
U 7=z
) _ sp> =2,
Ann e = 0 otherwise.

4.5. Peformance metrics for HPQ

Like SPQ, the throughputs of the Class CP (T,,) and the internal
buffer (T;,) for HPQ are same. The throughput of the internal buffer for
HPQ is given by the sum of probabilities that the internal buffer has
at least one data packet to forward with service rate of ug, and this is
given by:

K3 v-1 K, K4

LR R IDIDIDIPIL TR

v=1 w=0 x y=0 2z=0

aa3)

Similarly, the throughput of the controller (T,) for HPQ is given by the
sum of probabilities that the controller has at least one control packet
to forward with service rate of ., and there is at least one data packet
temporarily buffered in the internal buffer. This is given by:

K

v
Z Ty wxy.z

1 w=1 y=0 2=0

Iy

Mw

a4

v

<
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Also, the throughput of Class HP (Tj,) for HPQ is given by the sum
of probabilities that the Class HP has at least one data packet to for-
ward with service rate of pg, and there is no packet in Class CP in the
stationary state, and this is given by:

v K
Thp /’lspz Z Z Z vwaz

v=0 w=0 y=1 2=0

15)

Finally, the throughput of the specialised hardware (T) for HPQ is
given by the sum of probabilities that the specialised hardware has at
least one data packet to forward with service rate of ug and this is
given by:

v Ky

sh_ﬂshz Z Z Z”vwxyz

v=0 w=0 y=0 z=1

aae)

The average number of data packets in HPQ is E[L]yp, where data pack-
ets travel only through the specialised hardware (i.e. TCAM) and the
CPU (i.e the Class HP and the internal buffer). Therefore, E[L]yp, is
expressed as:

v Ky
E[L] HPQ = Z Z z Z(V+y+z)”vwx,yz

v=0 w=0 y=0 2=0

a7

Again, applying Little’s theorem to Eq. (17) yields the average
packet transfer delay in HPQ (commonly denoted by the mean sojourn
time of the packet) at the switch (denoted by tapqQ) which is expressed
as:

tupq = ElLlupq/ Thpq» (18)
where Tpp, is the throughput of HPQ expressed as:
Typq=Tp+ (1 — ATy, (19)

Similarly, assuming independence of packet arrivals between the
Class CP, Class HP, internal buffer and the specialised hardware queue,
the average packet loss rate of the Class CP (PLCP), Class HP (Pth),
internal buffer (PL) and the specialised hardware queue (PLg,) repre-
sents the average number of packets being blocked or dropped by the
Class CS, Class ES, internal buffer and the specialised hardware queue
out of total incoming packets in respective queue. The packet loss rates
PLy, PLy,, PLy, and PLy, for HPQ are expressed as,

Tcp/ch

Pth = l - Thp/Tsh’

cp>

PL,=PLy=1-

(20)
PLsh =1- Tsh/Nl

Therefore, the total packet loss rate for HPQ (PLypq) is the sum of
packet loss rate in the Class CP, Class HP, internal buffer and the spe-
cialised hardware queue of the switch which is given as,

PLypq = PLgy + PLy, + Py, +PLy,. (21)

In the following section, we will discuss buffer dimensioning for SPQ
and HPQ.

5. Buffer dimensioning for SPQ and HPQ

In this section, to perform buffer dimensioning for SPQ and HPQ, we
assume that the switch queues are M/M/1 (see Section 2.2) as opposed
to GI/M/1/K (used for the CPU in both SPQ and HPQ) and M/M/1/K
(used for the specialised hardware in HPQ).

The minimum capacity for the switch in SPQ is denoted by (K )spq
which is the sum of K; (i.e. minimum queue capacity required for the
Class CS), K, (i.e. minimum queue capacity required for the Class ES),
and K5 (i.e.minimum queue capacity required for the internal buffer)
which are calculated using Eq. (2) as:

log[PER] log[PER] log[PER]

s > , 22
1 Toglpel 2 % Togipe.] loglpy] 2)
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Table 5

Parameter used for Numerical Simulation for both SPQ and HPQ.
Parameter Value
Table miss probability, 01~1
CPU processing rate, ug, (packets/sec) 1000
Controller to CPU Processing Ratio (u./pg,), m, 01~2
Specialised hardware to CPU Processing Ratio (4, / gy), m 1~ 1000
Arrival rate, A (packets/sec) 12, 24
Bit Error Rate, BER 10712
MTU TCP packet size (byte) 1500
Number of hosts per switch, N 1~80

where pg, pes, and py are the server utilization at the Class CS, Class
ES, and the internal buffer, respectively, which are defined as:
_ PNA _Ni PN A

Pes = > es = ’ ib = .

ﬂsp /’lsp ﬂsp

Therefore, (K;,)spq can be expressed as

(Kmin)spq = K1 + Kz + K3. (23)

Likewise, for HPQ, the minimum queue capacities for the Class CP, Class
HP, internal buffer, and the specialised hardware are denoted as Ky, K,
K3, and K, respectively, and can be calculated using Eq. (2) as:

log[PER] log[PER] log[PER]
1= loglpg,] T2 T loglpp,] T2 T loglpp]
249
log[PER]
42 T o
log[/’sh]

where p.,, prys P, and py, are the server utilization at the Class CP,
Class HP, internal buffer of the CPU, and the specialised hardware,
respectively, which are defined as:

_ Npi Npi _ NpA

p Php = P pa = N4
— - s Pib — sPsh — — -
P Hsp ks Hsp ! Hsp * Hsh

Therefore, the minimum queue capacity for the switch in HPQ is the
sum of minimum queue capacity for the Class CP, Class HP, internal

buffer, and the specialised hardware:
(Kmin)upq = K1 + Ky + K3 + K. (25)

In this paper, the minimum queue capacity of the switch for SPQ and
HPQ are (Kpyi,)spq and (Kyin)ppq- Tespectively.

m, = 1, A = 24 pkts/sec, N = 20
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6. Results

This section presents the analytical and discrete event simulation
results of the unified queueing model for SDN software and hardware
switches with the internal buffer (i.e. SPQ and HPQ respectively). This
section is divided into the following subsections:

e Validation:

- Validation of analytical models where analytical results are compared
with discrete event simulation results.

e Performance Characterisation:

— Relative minimum capacity where the total minimum queue capacity
for SPQ and HPQ is compared.

— Relative average delay where average packet transfer delay of SPQ
and HPQ is compared.

— Relative packet loss rate where packet loss rate of SPQ and HPQ is
compared.

— Effect of varying number of hosts connected to the switch is investigated
and compared between SPQ and HPQ.

— Effect of varying ug, in a hardware switch where the effect of varying
hardware processing capacity (i.e. ug,) in HPQ is investigated.

The parameters used for analysis and simulation is shown in Table 5.
From Table 5, the table miss probability f varies from 0.1 to 1, the
switch processor or CPU processing rate (ug,) is assumed to be 1000
packets/sec, the controller to switch processing ratio (m,) varies from
0.1 to 2, and the specialised hardware to CPU processing ratio (m)
varies from 1 to 1000. The external arrival rate (4) at the switch from
each host is assumed to be 24 or 48 packets/sec and we assume an
Ethernet network for which the BER is assumed to be 10712, We use
TCP as the transport protocol with maximum transmission unit (MTU)
of 1500 bytes. Thus, the PER is 1.2 x 10~8 (using Eq. (1)). The number
of hosts per switch (N) is varied from 1 to 80.

The simulations are repeated hundred times and the 95% confidence
intervals (CI) are computed on the basis that the errors are normally
distributed.

In the following subsections, to take the packet loss rate into consid-
eration, we assume queue capacities of the Class ES (in SPQ), the Class

m, = 1, A = 24 pkts/sec, N =20
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Fig. 5. Validation of SPQ for (a) average packet transfer delay; (b) packet loss rate.
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(18)). This comparison helps to investigate the effect of the internal
buffer in a software and hardware switch with reference to average

packet transfer delay.
The relative average packet transfer delay (denoted by €¢4) between

HP (in HPQ) and the specialised hardware queue (in HPQ) to be half of
their minimum queue capacities determined from buffer dimensioning
(using Eq. (23) and Eq. (25)). The queue capacities of the Class CS (in

SPQ), the Class CP (in HPQ) and the internal buffer (in both SPQ and
HPQ) are minimum queue capacities determined from buffer dimen-
sioning where there is no packet loss. This buffer sizing ensures no loss

of control packets.

6.1. Validation of analytical models

The validation of analytical results for SPQ and HPQ is done by com-
paring them with discrete event simulation results. Figs. 5 and 6 show
the validation results for SPQ and HPQ respectively for increasing f
with m, = 1 and my = 1000. The error percentage between analysis
and simulation predictions for both average packet transfer delay and
packet loss rate is between 0.6% and 2.8% as shown in Figs. 5 and 6.
This range of error is acceptable for analysis as computation of z dis-
tributions for nonhomogenous QBD process is prone to inaccuracy due
to the possibility of singular matrix becoming nonsingular in machine

precision (Dayar et al., 2011).

6.2. Relative minimum capacity

In this subsection, we compute the relative minimum queue capacity
between SPQ and HPQ denoted as ex which is defined as,

ex = (Kmin)SPQ - (Kmin)HPQ
Kinin)spo

A positive value of ex means HPQ requires less capacity than SPQ, while

a negative value implies HPQ requiring more capacity than SPQ.

Fig. 7 shows the ey curve for increasing f. From Fig. 7, we can
observe that HPQ requires upto 50% more buffer capacity than SPQ.
This is because the switch in HPQ requires queue capacities for the CPU,
the specialised hardware, and the internal buffer. While, the switch in
SPQ requires queue capacities for the CPU and its internal buffer only.

X 100%.

6.3. Relative average delay

We compare the average packet transfer delay between SPQ
(denoted by tspq as in Eq. (8)) and HPQ (denoted by tgpq as in Eq.

SPQ and HPQ (both with finite capacity) is calculated as:

t. -t
¢ = spa = turd) ) . 1009,
tspq
A positive value of e; means HPQ has lower average delay for packet

to travel in the network compared to SPQ.

Fig. 8 shows the relative average packet transfer delay between SPQ
and HPQ in percentile. Fig. 8(a) and (b) show the relative average delay
for increasing f and m,, respectively with m; = 1000. From Fig. 8(a),
we can observe that HPQ exhibits up to 80% reduction in average delay
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Fig. 7. Relative K;, between SPQ and HPQ in % i.e. ey for increasing f

33



D. Singh et al.

Journal of Network and Computer Applications 136 (2019) 22-37

B=0.5N=20

65

55

50

45

35

Relative Average Packet Transfer Delay in %

—e— Analysis for A = 12 pkts/sec
--0--  Analysis for A = 24 pkts/sec

30

s
'3
o
o
-
9
o
7
°

0.0 05 . 10 . 15, 200
Controller processing rate/Switch processing rate(m;)

(b

Fig. 8. Relative average delay between SPQ and HPQ in % i.e. ¢, for increasing: (a) m, = 1; (b) # = 0.5.

m,=1,N=20
++t"+
b,
% oy,
o
X g o
R= %, %"'ﬁ
o
[} 5 Q‘\,’\
o
<8 ",
1 o
g ",
5 %o, ,
= 0, *,
%6 °u° ++
2 o, %
3] 05, *
gj 9.- i %°"o¢ +++
) 0, %
o
& g %
= 0 +
g o, %
< 0, %
0; < °o°°° +*
i 0, £
g o
= ) 0, %
o —6— Analysis for A = 12 pkts/sec °°o°° %
--0-- Analysis for A = 24 pkts/sec o 5
o
(=3 cﬂs
00 02 04 06. 08 10
Table miss probability ()
(a)
m,=1,N=20
=
=
;:: :t’
O+*++
o, +++
% %
%,
& 1 %%
° %
%
bt
A
8%
3
(=3 o\
° \J‘
b
4
%

Relative Packet Loss Rate in %
40

20

—6— Analysis for A = 12 pkts/sec
--0--  Analysis for A = 24 pkts/sec

00 02 04 06, 08
Table miss probability (B)

()

B=0.5,N=20
& -
2
oo | —o— Analysis for A = 12 pkts/sec
& --0-- Analysis for A = 24 pkts/sec

99.5 99.6 99.7

Relative Packet Loss Rate in %

99.4

99.3

0—o.q

0.0 05 . 10 . 15 200
Controller processing rate/Switch processing rate(m,)

(b)
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of the packet compared to SPQ for increasing f. Similarly, Fig. 8(b)
shows the relative average packet transfer delay between SPQ and HPQ
for increasing m,, where HPQ exhibits up to 60% reduction in average
delay of the packet.

This is because the specialised hardware of the switch processes
external packets arriving at the switch much faster than the CPU which
reduces the overall average delay of the packet. However, this reduc-
tion in average delay diminishes with the increasing number of pack-
ets being forwarded to the CPU with increasing f as seen in Fig. 8(a).
Similarly, with the increasing controller processing capacity, the aver-
age delay of packet reduces. The relative reduction in average packet
transfer delay reaches saturation when m, is greater than 1 as seen in
Fig. 8(b).

This shows the benefit of a hardware switch with the internal
buffer over a software switch with the internal buffer, that significantly
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reduces the overall average delay of the packet for lower f and higher

m,.

6.4. Relative packet loss rate

We compared the average packet loss rate between SPQ (denoted by
PLgpq as in Eq. (11)) and HPQ (denoted by PLypg, as in Eq. (21)). This
comparison helped us to investigate the effect of the internal buffer in
a software and hardware switch with reference to the average packet
loss rate.

The relative average packet loss rate (denoted by ¢;) between SPQ
and HPQ (both with finite capacity) is calculated as:

o= (PLgpg — PLypq)

X 100%.
PLgpq
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A positive value of ¢; means HPQ has lower packet loss rate compared

to SPQ.

Fig. 9 shows the relative average packet loss rate between SPQ

and HPQ in percentile. Fig. 9(a) and (b) show the relative average
packet loss rate for increasing f and m,, respectively with m; = 1000.

From Fig. 9(a) and (b), HPQ exhibits up to 100% reduction in aver-
age packet loss rate compared to SPQ increasing f and m,, respec-
tively.

This reduction in average packet loss rate is because average waiting
time of packets in the specialised hardware queue of the switch is less
than the CPU. Due to the lower waiting time, the packet loss rate in

specialised hardware queue is also lower than the CPU.
This shows the benefit of a hardware switch with the internal

buffer over a software switch with the internal buffer, that significantly

reduces the packet loss rate.
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6.5. Effect of varying number of hosts connected to the switch

In this subsection, the effect of varying number of hosts for both SPQ
and HPQ is presented by varying N from 1 to 80. Fig. 10 shows the effect
of varying number of hosts form, = 1and § = 0.5. Fig. 10(a) and (b)
show the effect of varying number of hosts on average packet trans-
fer delay and packet loss rate respectively. From Fig. 10(a), with the
increase in number of hosts, HPQ exhibits much lower average packet
transfer delay than SPQ. Similarly, from Fig. 10(b), the packet loss rate
for both SPQ and HPQ is identical and increases with the increase in
the number of switches.

This increase in the packet loss rate is because with the increase
in number of hosts, the net arrival of packets at both SPQ and
HPQ increases exponentially. The specialised hardware of HPQ pro-
cesses these incoming packets at line rate that results into relatively
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lower average delay than SPQ which has slower processing via the
CPU.

6.6. Effect of varying ug, in a hardware switch

In this subsection, the effect of varying ug, in a hardware switch
with the internal buffer is presented. This is done by varying m, (i.e.
ratio of specialised hardware to CPU processing) from 1 to 1000.

Fig. 11 shows the results for varying pg, in HPQ with m, = 1 and
f = 0.5. Fig. 11(a) and (b) show the effect of varying g, in HPQ for
average packet transfer delay and packet loss rate, respectively. From
Fig. 11(a) and (b), both average packet transfer delay and packet loss
rate becomes steady for m, greater than 100.

From this investigation, the processing capacity of specialised hard-
ware should be atleast 100 times of the CPU to have optimum reduction
in packet transfer delay and almost zero packet loss rate.

7. Conclusion

In this study, we have proposed a unified queueing model for soft-
ware and hardware switches with the internal buffer. Internal buffering
in SDN-based software and hardware switches has not been investi-
gated much, especially from the analytical modelling aspect. Therefore,
a unified queueing model is a useful tool for network analysts to get
quick insights into SDN-based software and hardware switches with the
internal buffer.

The impact of the internal buffer in both software and hardware
switches is investigated and the summary of our analysis is as follows:

e A hardware switch significantly reduces the average packet transfer
delay (almost by 80%) than a software switch.

e A hardware switch requires additional buffer (almost 50% more)
than a software switch, which is the tradeoff for the gains mentioned
in the previous point — this insight is not provided by any of the
existing models in the literature.

e A hardware switch significantly reduces the packet loss rate (almost
by 99%) compared to a software switch.

e For an increasing number of hosts connected to the switch, a hard-
ware switch exhibits significantly lower delay compared to a soft-
ware switch.

Lastly, the model also suggests that the processing power of the switch
and the controller are intrinsically tied. Our results show that no
improvements in packet loss occurs after the specialised hardware to
CPU processing ratio (m,) exceeds 0.2.
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