
Telecommunication Systems
https://doi.org/10.1007/s11235-021-00864-0

Analyzing vertical and horizontal offloading in federated cloud and
edge computing systems

Kohei Akutsu1 · Tuan Phung-Duc2 · Yuan-Cheng Lai3 · Ying-Dar Lin4

Accepted: 13 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Mobile Edge Computing architecture is one of the most promising architectures that can satisfy different quality of Services
required by various applications. In this paper, we model mobile edge computing architecture with queue-length thresholds at
user equipments and edges to determine whether the task is offloaded or not in federated cloud and edge computing systems.
We propose two models as vertical default & vertical (VDV) model and vertical default & horizontal shortest (VDHS) model.
The former only does vertical offloading, meaning that the edge can offload tasks to the cloud, while the latter does vertical
offloading and horizontal offloading, meaning that the edge can offload tasks to other edges. However, it is very difficult to
directly derive the performancemetrics in our models, so we approximate them. Based on these approximations, we determine
the optimal queue-length thresholds of UEs and edges. Experiment results show that analytical and simulation results match
very well. Also VDHS can reduce the mean task sojourn time by 30% at most and increase delay satisfaction ratio by 11%
at most compared with VDV.

Keywords Mobile edge computing · Vertical offloading · Horizontal offloading

1 Introduction

In the past few years, various services using wireless com-
munications such as Virtual Reality (VR) and Augmented
Reality (AR) have been developed. These services demand
massive data communication and the constraint of sojourn
time in wireless communication. 5th generation (5G) mobile

B Yuan-Cheng Lai
laiyc@cs.ntust.edu.tw

Kohei Akutsu
akutsu.kohei.sp@alumni.tsukuba.ac.jp

Tuan Phung-Duc
tuan@sk.tsukuba.ac.jp

Ying-Dar Lin
ydlin@cs.nctu.edu.tw

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

2 Faculty of Engineering, Information and Systems, University
of Tsukuba, Tsukuba, Japan

3 Department of Information Management, National Taiwan
University of Science and Technology, Taipei, Taiwan

4 Department of Computer Science, National Yang-Ming
Chiao-Tung University, Hsinchu, Taiwan

communication system networks are considered to be able
to achieve these targets [1]. Compared with earlier networks,
5G networks present enhanced Mobile Broadband (eMBB),
massiveMachine TypeCommunications (mMTC) andUltra-
Reliable and Low Latency Communications (URLLC) [2]. It
is expected that 5G networks will impact hugely on people’s
lives.

In order to realize 5Gnetworks tomeet differentQuality of
Services (QoS) required by various applications, it is neces-
sary not only to evolve wireless communication technology,
but also to create a network architecture that allows many
users to carry out simultaneous connections and low-latency
communications [3]. Nowadays, the network architecture
used in wireless communications is an architecture called
Cloud Computing. This architecture is composed of User
Equipments (UEs) such as smartphones or tablet terminals
and a cloud server. UEs which have limited computation
capacity offload their tasks to the cloud server. However, con-
sidering the distances between the UEs and the cloud server,
it takes several hundred milliseconds latency to transmit a
task from UEs to the cloud server. For that reason, it is dif-
ficult to satisfy the low latency required by URLLC services
[4].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-021-00864-0&domain=pdf
http://orcid.org/0000-0003-3695-5784

K. Akutsu et al.

To achieve such targets in 5G networks, one of the most
promising architectures is Mobile Edge Computing (MEC)
[5]. MEC has a similar architecture to Cloud Computing,
but differs from Cloud Computing in that the installation
of network edges is close to the UEs. MEC servers can
be deployed collocated with base station or be attached in
the core network of cellular system [6], which can signif-
icantly reduce the communication latency. However, MEC
has a smaller computation capacity than the cloud. There-
fore, the federation between the cloud and edges is carried
out to enlarge a system’s capacity and accommodate different
service requirements [7].

There are many earlier studies that have focused on MEC
offloading [8–18]. The authors of [8] and [9] discussedMEC
offloading in an IoT system with the objective of minimiz-
ing the sojourn time and energy. Yousefpour et al. [11] and
Lee et al. [10] considered the waiting time of tasks and
proposed an algorithm to select the edges for offloading
destinations. In these studies, the authors did not consider
transmission latency. To address the transmission latency,
Yousefpour et al. [11] proposed a new model. Taking into
consideration transmission latency, the waiting time of tasks
at edge servers and at a cloud server, these authors proposed
a model for optimally allocating computing resources. How-
ever, this research focused on the mean sojourn time of the
tasks and did not consider the QoS of the sojourn time of
each task. As noted above, in 5G networks, URLLC is set as
a critical goal. We can therefore not neglect the QoS of the
sojourn time of each task. In considering this issue, Hwang
et al. [12] derived the distribution of sojourn time inMEC. In
this paper, a method of allocating tasks was proposed, based
on the fixed probabilities at UEs and edge servers, and used
a Sub-Gradient Descent (SGD) algorithm to derive optimal
probabilities.

Some studies [13–18] used machine learning (ML) to
carry out task offloading in a cellular system. Elgendy et
al. [13] proposed an offloading and caching algorithm based
on Deep Reinforcement Learning (DRL) that would mini-
mize the sojourn time and energy use of MEC for real-time
video applications. Instead of considering the sojourn time,
the authors of [14] considered the task’s deadline by car-
rying out offloading with DRL. Wang et al. [15] extended
MECwith unmanned aerial vehicles whose trajectories were
optimized by DRL to serve offloaded traffic from UEs. The
authors of [16] allocated offloaded tasks ofmultiple clouds to
MECs and UEs to minimize the mean sojourn time by using
a multi-agent Reinforcement Learning (RL) approach. The
authors of [17] proposed anML-based offloading strategy for
an IoT-Edge system and examined offloading accuracy. Task
priority and redundancy were addressed in offloading deci-
sions that would improve the Quality of Experience (QoE) in
[18]. The authors of [13–15] only considered vertical offload-
ing from UEs to edges. The authors of [16–18] considered

cloud-edge federation, but only carried out vertical offload-
ing between edges and a cloud.

Two concerns exist in previous studies: (1) Most papers
addressed vertical offloading, but did not address horizontal
offloading; and (2) they considered many parameters and
adopted some complex mechanisms to determine whether
offloading or not. However, since each offloading decision is
a data-plane action, it must be fast enough.

Therefore, in this paper, we adopt queue-length-based
offloading strategy, which does the offloading when the
queue length exceeds a threshold. To address a queue-
length-based offloading strategy, we modelled MEC with a
threshold of the number of tasks at UEs and edge servers
using queueing models. Our model consists of three layers,
UEs, edge servers, and the cloud server. We consider trans-
mission latency and computation time at UEs, edge servers
or the cloud server. The sum of transmission latency and
computation time is regarded as the task’s sojourn time.
We propose two models, Vertical Default & Vertical (VDV)
model and Vertical Default & Horizontal Shortest (VDHS)
model, which differ in the offloading selection of edges and
the cloud. VDV only does vertical offloading, meaning that
the edge can offload tasks to the cloud, while VDHS not only
does vertical offloading, but also does horizontal offloading,
meaning that the edge can offload tasks to the targeted edge
which owns the shortest queue. Analyzing these models, we
derive the performance metrics (mean and distribution of the
sojourn time) and find the optimal queue-length thresholds
at UEs and edge servers in these models.

One of the closest references to our work is [21] in which
the authors consider the same architecture and also handle
the optimization problem. However, there are three main dif-
ferences between [21] and our paper: (1) they assume that
each component is an M/M/1 or an M/M/c queue while we
consider all processing components in a three-tier architec-
ture as a single stochastic process and thus the dependency
between components is considered; (2) they use probability
offloading, meaning that the offloading decision is according
to a pre-calculated probability while we use queue-length
offloading, meaning that each device (UE or edge) offloads
its tasks when its current queue length exceeds a threshold;
and (3) they calculate only the mean sojourn time while we
also calculate the sojourn time distribution, which is diffi-
cultly obtained but can be used to calculate an important
performance metric, the delay satisfaction ratio.

The rest of this paper is organized as follows. In Sect. 2,
we explain the architectures and behaviors of our models.
Section 3 presents stability conditions and stationary distri-
butions in the models. Performance metrics in our models
are provided in Sect. 4 and we compare them and simulation
results in Sect. 5. Section 6 concludes the paper.

123

Analyzing vertical and horizontal offloading in federated cloud and edge computing systems

Fig. 1 Architecture in the VDV model, M = 2 and N = 4

Fig. 2 Architecture in the VDHS model, M = 2 and N = 4

2 Model

2.1 Architecture

First, we assume that the cloud server is associated with M
edge servers and each edge server is associated with N UEs.
Figures 1 and 2, taking M = 2 and N = 4 as an exam-
ple in each model, represent the VDV and VDHS models,
respectively. We can analyze these models as a continuous-
time Markov chains. However, it is difficult to express the
infinitesimal generators of these models for arbitrary M and
N . Therefore, we assume that the cloud server is associated
with 2 edge servers and each edge server is associated with 1
UE when we analyze these models. We furthermore assume
that the UEs and edge servers have thresholds of the number
of existing tasks in their queues.

2.2 Behaviors

At the beginning, a computation task is generated at a UE.
The number of existing tasks at the UE determines either the
task is served locally or offloaded to an edge or the cloud.
If the number of tasks at the UE is less than a threshold, the
task is served at the UE. On the other hand, if the number of

tasks reaches the threshold of the UE, the task is offloaded
to the edge. When the tasks are offloaded, two models differ
in which edge handles the task (this edge is called as the
targeted edge). In the VDV model, a task is offloaded to the
targeted edge server, which is associated with the UEs. In
the VDHSmodel, the task is offloaded to the edge associated
with UEs. If the number of existing tasks at this edge reaches
its threshold, and the number of tasks at other edges has not
reached their threshold, the task is offloaded to the targeted
edge, which is the edge with the shortest queue. In these
models, if the number of tasks at the targeted edge is less
than its threshold, the task is served at that edge; otherwise,
the task is offloaded to the cloud to be served there.

Using queueing models, we can express the behaviors in
these models. Tasks arrive at UEs according to the Poisson
processwith parameterλ. If, on arrival, the number of tasks at
the UE is less than its threshold, T H (U), the task is served at
the UE for an exponentially distributed time with parameter
μ(U). After completion of the service at the UE, the task
leaves the system.Otherwise, when the number of tasks at the
UE equals T H (U) upon arrival of a task, the task is offloaded.
The time spent on the uplink transmission from a UE to an
edge is d(UE). After the transmission has been completed,
the task arrives at the edge. Note that, if horizontal offload
takes place in the VDHS model, the transmission latency is
given by d(EE).

After the horizontal offloading in VDHS or no horizontal
offloading in VDV, the targeted edge is determined. If the
number of existing tasks at the targeted edge does not exceed
the threshold, T H (E), the task is served at the edge for an
exponentially distributed time with parameter μ(E). After
the computation at the edge has been completed, the task
is sent back to the UE via the downlink. The latency in the
downlink from an edge to a UE is d(EU). After transmission
has been completed, the task leaves the system. By contrast,
if the number of existing tasks at the targeted edge reaches
T H (E), after spending the transmission latency d(EC), the
task is offloaded from the edge to the cloud, and is then
served at the cloud for an exponentially distributed time with
parameter μ(C). After the computation has been completed,
the task is sent back through the downlink from the cloud
to the UE, spending the transmission latency d(CE) + d(EU).
Figures 3 and 4 show the processing flows when tasks arrive
at UE1 in the VDV and VDHS models, respectively, when
M = 2 and N = 1. Table 1 shows the parameters used in
our models.

3 Analysis

In this section, we derive the performance metrics of the
models developed in the Sect. 2. As mentioned in Sect. 2,
we assumed that the cloud server is associated with 2 edge

123

K. Akutsu et al.

Fig. 3 Flow in the VDV model, M = 2 and N = 1

Fig. 4 Flow in the VDHS model, M = 2 and N = 1

servers and each edge server is associated with 1 UE. I and
O are the identity matrix and the zero matrix of an appro-
priate dimension, and e and 0 represent the column vectors
of an appropriate dimension of 1’s and 0’s, respectively. Fur-
thermore, we define the element in the matrix as follows:

Y := (Y (i, j)) =

⎛
⎜⎜⎜⎜⎜⎝

Y (0,0) Y (0,1) Y (0,2) · · ·
Y (1,0) Y (1,1) Y (1,2) . . .

Y (2,0) Y (2,1) Y (2,2) . . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

where Y (i, j) can be either a matrix or a scalar.

3.1 Random variables

The random variables are defined as follows. Let NU1(t),
NU2(t), NE1(t), NE2(t) and NC(t) denote the number of tasks
at UE1, UE2, edge1, edge2 and cloud at time t , respec-
tively. Note that each random variable includes the task in
service. In the current setting, without considering transmis-
sion latency, i.e., dUE = dEC = dEU = dCE = dEE = 0, we
can construct the continuous-time Markov chain X(t) :=
{(NU1(t), NU2(t), NE1(t), NE2(t), NC(t))|t ≥ 0} on the state
space S := S ′ ×N0, where S ′ := SU ×SU ×SE ×SE ,N0 :=
N ∪ {0}, SU := {0, 1, . . . , T HU},SE := {0, 1, . . . , T H E}.

Table 2 summarizes the notations that are frequently used
in our analysis.

3.2 Infinitesimal generator in VDV

First, we analyze the VDVmodel: the infinitesimal generator
of this model is given as

QR =

⎛
⎜⎜⎜⎜⎜⎝

H R AR O . . .

DR SR AR

. . .

O DR SR

. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (1)

where DR, SR, AR and H R are square matrices of order
(T HU + 1)2(T H E + 1)2, as

H R = (H(i, j)
R)i, j∈SE

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K R, i = j − 1,

H R, 1, i = j = 0,

H R, 2, i = j �= 0,

μE I, i = j + 1,

O, otherwise,

DR = μC I, SR = H R − DR,

AR = diag(AR, 1, . . . , AR, 1, AR, 2).

Table 1 The parameters in our
model

Indicator Definition

λ Arrival rate of task at each UE

μX Service rate at X where X is either U (UE), E (edge) or C (cloud).

dUE Transmission latency from a UE to an edge

dEC Transmission latency from an edge to the cloud

dEE Transmission latency from an edge to an other edge

dCE Transmission latency from the cloud to an edge

dEU Transmission latency from an edge to a UE

T HU Threshold of the number of existing tasks at UE

T H E Threshold of the number of existing tasks at the edges

123

Analyzing vertical and horizontal offloading in federated cloud and edge computing systems

Table 2 The notations in our
analysis

Indicator Definition

NU1(t) The number of tasks at UE1 at time t

NU2(t) The number of tasks at UE2 at time t

NE1(t) The number of tasks at edge1 at time t

NE2(t) The number of tasks at edge2 at time t

NC(t) The number of tasks at the cloud at time t

I Identity square matrix with an appropriate dimension

O Zero square matrix withan appropriate dimension

e Column vector of ones with an appropriate dimension

0 Column vector of zeros with an appropriate dimension

R The subscript for notations of the VDV model

H The subscript for notations of the VDHS model

TR Sojourn time in the VDV model

TH Sojourn time in the VDHS model

fR(x) Probability density function of TR
fH (x) Probability density function of TH
FR(x) Cumulative distribution function of TR
FH (x) Cumulative distribution function of TH

AR, 1, AR, 2, K R, H R, 1 and H R, 2 are squarematrices of order
(T HU + 1)2(T H E + 1), as

AR, 1 = diag(O, . . . , O, L R, 1),

AR, 2 = diag(L R, 2, . . . , L R, 2, L R, 1 + L R, 2),

K R = diag(L R, 2, . . . , L R, 2),

H R, 1 = (H (i, j)
R, 1)i, j∈SE

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L R, 1, i = j − 1,

GR, 0, i = j = 0,

GR, 1, i = j �= 0,

μE I, i = j + 1,

O, otherwise,

H R, 2 = (H(i, j)
R, 2)i, j∈SE

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L R, 1, i = j − 1,

GR, 1, i = j = 0,

GR, 2, i = j �= 0,

μE I, i = j + 1,

O, otherwise.

L R, 1, L R, 2, GR, 0, GR, 1 andG R, 2 are squarematrices of order
(T HU + 1)2, as

L R, 1 = diag(L R, 11, . . . , L R, 11), L R, 2 = diag(O, . . . , O, L R, 21),

GR, 0 = (G(i, j)
R, 0)i, j∈SU

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λI, i = j − 1,

M R, i = j = 0,

M R − μU I, i = j �= 0,

μU I, i = j + 1,

O, otherwise,

GR, 1 = GR, 0 − μE I, GR, 2 = GR, 0 − 2μE I .

L R, 11, L R, 21 and M R are square matrices of order (T HU +
1), as

L R, 11 = diag(0, . . . , 0, λ), L R, 21 = λI,

M R = (M(i, j)
R)i, j∈SU

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ, i = j − 1,

−2λ, i = j = 0,

−2λ − μU , i = j �= 0,

μU , i = j + 1,

0, otherwise.

3.3 Infinitesimal generator in VDHS

The infinitesimal generator QH is derived as

QH =

⎛
⎜⎜⎜⎜⎜⎝

H H AH O · · ·
DH SH AH

. . .

O DH SH

. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (2)

where DH , AH , SH and H H are square matrices of order
(T HU + 1)2(T H E + 1)2, as

DH = μC I, SH = H H − DH ,

AH = diag(O, . . . , O, LH , 1 + LH , 2),

123

K. Akutsu et al.

H H = (H(i, j)
H)i, j∈SE

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K H , i = j − 1,

H H , 0, i = j = 0,

H H , 1, i = j, 1 ≤ i ≤ T H E − 1,

H H , 2, i = j = T H E ,

μE I, i = j + 1,

O, otherwise.

K H , H H , 0, H H , 1 and H H , 2 are square matrices of order
(T HU + 1)2(T H E + 1), as

K H = diag(LH , 1, . . . , LH , 1, LH , 1 + LH , 2),

H H , 0 = (H(i, j)
H , 0)i, j∈SE =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

LH , 2, i = j − 1,

GH , 0, i = j = 0,

GH , 1, i = j, 1 ≤ i ≤ T H E,

μE I, i = j + 1,

O, otherwise,

H H , 1 = (H(i, j)
H , 1)i, j∈SE =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

LH , 2, i = j − 1,

GH , 1, i = j = 0,

GH , 2, i = j, 1 ≤ i ≤ T H E,

μE I, i = j + 1,

O, otherwise,

H H , 2 = (H(i, j)
H , 2)i, j∈SE

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LH , 2, i = j − 1, 0 ≤ i ≤ T H E − 2,

LH , 1 + LH , 2, i = T H E − 1, j = T H E,

GH , 1, i = j = 0,

GH , 2, i = j, 1 ≤ i ≤ T H E,

μE I, i = j + 1,

O, otherwise.

LH , 1, LH , 2, GH , 0, GH , 1 and GH , 2 are square matrices of
order (T HU + 1)2, as

LH , 1 = diag(O, . . . , O, LH , 11),

LH , 2 = diag(LH , 11, . . . , LH , 11, λI),

GH , 0 = (G(i, j)
H , 0)i, j∈SU =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λI, i = j − 1,

M H , i = j = 0,

M H − μU I, i = j �= 0,

μU I, i = j + 1,

O, otherwise,

GH , 1 = GH , 0 − μE I, GH , 2 = GH , 0 − 2μE I .

LH , 11 and M H are square matrices of order (T HU + 1), as

LH , 11 = diag(0, . . . , 0, λ),

M H = (M(i, j)
H)i, j∈SU =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ, i = j − 1,

−2λ, i = j = 0,

−2λ − μU , i = j �= 0,

μU , i = j + 1,

0, otherwise.

3.4 Stability condition and stationary distribution

Based on the above results, the stability condition and station-
ary distribution in each model are given as follows. From (1)
or (2), it can be seen that X(t) becomes a continuous time
quasi birth-and-death process by taking NC(t) as the level
and (NU1(t), NU2(t), NE1(t), NE2(t)) as the phase. We define
BX := DX + SX + AX . Note that X expresses R or H . From
the results in Latouche and Ramaswami [19], we can obtain
the stationary distribution ηX satisfying ηX BX = 0, ηXe = 1.
Using ηX , we then obtain the stability condition as

ηX(AX − DX)e < 0. (3)

Assuming that (3) holds, we can then obtain the stationary
distribution of X(t) [19]. For each state (i1, i2, j1, j2, k) ∈ S,
we define the stationary distribution of {X(t) | t ≥ 0} as

π X
i1,i2, j1, j2,k := P(X(t) = (i1, i2, j1, j2, k)).

Furthermore, we define π X
k and π X below.

π X
k := (π X

i1,i2, j1, j2,k)(i1,i2, j1, j2)∈S ′, π X := (π X
k)k∈N0 .

Using [19], we can obtain π X
k as

π X
k =

{
π X
0 , k = 0,

π X
1 Rk−1

X , k ∈ N,
(4)

where RX is the minimal non-negative solution of

AX + RX SX + R2
X DX = O. (5)

Using the method in [20], we can compute RX and π X
0

numerically.

4 Approximation of performancemetrics

We then derive the performance metrics with transmis-
sion latency. However, it is difficult to derive them directly
because the transmission latency is constant and thus we can-
not directly construct Markov chains for our models. We
approximate them as follows: First, we derive performance
metrics of the models without transmission latency which

123

Analyzing vertical and horizontal offloading in federated cloud and edge computing systems

are Markov chains presented in Sect. 3. Second, applying
the performancemetrics, and assuming communication links
are infinite-server queues, we approximate the performance
metrics with transmission latency. In particular, we derive
the following performance metrics:

– Mean sojourn time.
– Probability Density Function (PDF) of the sojourn time.
– Cumulative distribution function of the sojourn time.

Our models in this paper are symmetry. Therefore, by
focusing on the tasks arriving at UE1, we can obtain perfor-
mancemetrics for an arbitrary task (at UE2 also). To simplify
the formulas, we define

dE1 := dUE + dEU,

dE2 := dUE + dEE + dEU ,

dC := dUE + dEC + dCE + dEU .

4.1 Performancemetrics in VDV

We then derive the performance metrics of the VDV model.
We define the state space as

SR,U := {i ∈ SU |i �= T HU},
SR, E := { j ∈ SE | j �= T H E},
SR,U(i1) := {(i1, i2, j1, j2) ∈ S ′|i1 �= T HU},
SR, E(j1) := {(i1, i2, j1, j2) ∈ S ′|i1 = T HU , j1 �= T H E},
SR,C := {(i1, i2, j1, j2) ∈ S ′|i1 = T HU , j1 = T H E}.

Note that, in the above state space, we pay attention to
the tasks which arrive at the UE1 and classify the situa-
tions. Based on the classifications, we define the row vectors
eR,U(i1), eR, E(j1), eR,C ∈ {0, 1}(T HU+1)2(T HE+1)2 as

eR,U(i1) := (1SR,U (i1)(i1, i2, j1, j2))
′
(i1,i2, j1, j2)∈S ′ ,

eR, E(j1) := (1SR, E (j1)(i1, i2, j1, j2))
′
(i1,i2, j1, j2)∈S ′ ,

eR,C := (1SR,C
(i1, i2, j1, j2))

′
(i1,i2, j1, j2)∈S ′,

where 1A(i) represents the indicator function on set A.
First, we derive the mean sojourn time E[TR]. In this sys-

tem, tasks can be served at UEs, edges or cloud. Hence, we
can represent E[TR] as

E[TR] = TR,U + TR, E + TR,C, (6)

where TR,U , TR, E and TR,C represent the mean of the sojourn
time at UEs, edges and the cloud respectively, as

TR,U :=
∑

i∈SR,U

TR,U(i)P(NU1(t) = i), (7)

TR, E :=
∑

j∈SR, E

TR, E(j)P(NU1(t) = T HU , NE1(t) = j), (8)

TR,C :=
∑
k∈N0

TR,C(k)P(NU1(t) = T HU , NE1(t) = T H E,

NC(t) = k). (9)

TR,U(i) shows the mean sojourn time that are experienced
by a task that sees i tasks at UE1 upon arrival. Similarly,
TR, E(j) and TR,C(k) represent the mean sojourn time experi-
enced by as task that sees j tasks at edge1 or k tasks at the
cloud upon arrival to edge1 or the cloud, as

TR,U(i) := E[TR|NU1(t) = i],
TR, E(j) := E[TR|NU1(t) = T HU , NE1(t) = j],
TR,C(k) := E[TR|NU1(t) = T HU , NE1(t) = T H E, NC(t) = k].

We consider the case where there are i existing tasks at
UE1 upon the arrival of a task and the task is served at UE1.
The service time of each task at UE1 follows an i.i.d. expo-
nential distributionwith parameterμU . Therefore, the sojourn
time follows an Erlang distribution with parameter i + 1 and
μU . Thus, we obtain

TR,U(i) = i+1
μU

, i ∈ SR,U . (10)

In the same way, we obtain

TR, E(j) = j+1
μE

+ dE1, j ∈ SR, E, (11)

TR,C(k) = k+1
μC

+ dC, k ∈ N0. (12)

Furthermore, using (4), we can obtain each probability as

P(NU1(t) = i) = (π R
0 + π R

1(I − RR)
−1)eR,U(i), i ∈ SR,U ,

(13)

P(NU1(t) = T HU , NE1(t) = j)

= (π R
0 + π R

1(I − RR)
−1)eR, E(j), j ∈ SR, E, (14)

P(NU1(t) = T HU , NE1(t) = T H E, NC(t) = k)

=
{

π R
0eR,C, k = 0,

π R
1R

k−1
R eR,C, k ∈ N.

(15)

Substituting (10)–(15) to (7)–(9), we can represent

TR,U =
∑

i∈SR,U

i+1
μU

(π R
0 + π R

1(I − RR)
−1)eR,U(i), (16)

TR, E =
∑

j∈SR, E

(
j+1
μE

+ dE1)(π
R
0 + π R

1(I − RR)
−1)eR, E(j),

(17)

123

K. Akutsu et al.

TR,C = [1
μC

[π R
0 + π R

1{(I − RR)
−1 + {(I − RR)

−1}2}]
+ dC(π

R
0 + π R

1(I − RR)
−1)]eR,C . (18)

Next, we derive the PDF fR(x). In the same way as we
derived the mean sojourn time, we focus on the tasks which
arrive at UE1 and can derive fR(x) as

fR(x) = fR,U(x) + fR, E(x) + fR,C(x), x ≥ 0, (19)

where fR,U(x), fR, E(x) and fR,C(x) represent the PDF of the
sojourn time at UEs, edges and the cloud respectively, as

fR,U(x) :=
∑

i∈SR,U

fR,U(x, i)P(NU1(t) = i), (20)

fR, E(x) :=
∑

j∈SR, E

fR, E(x, j)P(NU1(t) = T HU , NE1(t) = j),

(21)

fR,C(x) :=
∑
k∈N0

fR,C(x, k)P(NU1(t) = T HU ,

NE1(t) = T H E, NC(t) = k).
(22)

fR,U(x, i) shows the PDF of the sojourn time of a task
at UE1 that sees i tasks at UE1 upon arrival. Similarly,
fR, E(x, j) and fR,C(x, k) represent the PDF of the sojourn
time that there are j tasks at edge1 or there are k tasks at the
cloud when the task arrives at edge1 or the cloud, respec-
tively, as

fR,U(x, i) := fR(x |NU1(t) = i),

fR, E(x, j) := fR(x |NU1(t) = T HU , NE1(t) = j),

fR,C(x, k) := fR(x |NU1(t) = T HU , NE1(t) = T H E,

NC(t) = k).

In the same way as we derived the mean sojourn time,
using RR, we can express the PDF of the sojourn time. How-
ever, the numerical analysis of this method is unstable. We
therefore truncate the infinite vectors (π R

k)k∈N0 to the vector
of their first (k∗

R +1) elements. The constant k∗
R is determined

as

k∗
R := inf{n ∈ N0|1 −

n∑
k=0

|π R

k | < 10−6}, (23)

where |π R

k | := ∑
(i1,i2, j1, j2)∈S ′ π R

i1,i2, j1, j2,k
. If the sum of

(π R

k)k≥k∗
R+1 is sufficient small, we use (π R

k)k∈{0,1,...,k∗
R} to

approximate the PDF of the sojourn time. We define KR :=
{0, 1, . . . , k∗

R }.
First, we derive fR,U(x, i). As noted in the derivation of

the mean sojourn time, when there are i tasks at a UE on the
arrival of a task, the sojourn time at the UE of the arriving

task follows the Erlang distribution with parameters i+1 and
μU . The same discussion could be applied to the task arriving
at the edge or the cloud. Thus, we can express

fR,U(x, i) = (μU x)i

i ! μUe
−μU x , i ∈ SR,U , x ≥ 0, (24)

fR, E(x, j) = (μE (x−dE1))
j

j ! μEe
−μE (x−dE1), j ∈ SR, E, x ≥ dE1,

(25)

fR,C(x, k) = (μC (x−dC))k

k! μCe
−μC (x−dC), k ∈ KR, x ≥ dC .

(26)

Furthermore, using (π R∗,k)k∈KR
, we can express

P(NU1(t) = i) =
∑
k∈KR

π R∗,keR,U(i), i ∈ SR,U , (27)

P(NU1(t)=T HU , NE1(t) = j)=
∑
k∈KR

π R∗,keR, E(j), j ∈ SR, E,

(28)

P(NU1(t) = T HU , NE1(t) = T H E, NC(t) = k) = π R∗,keR,C1,

k ∈ KR. (29)

Using the results in (24)–(29),we can get (20)–(22).More-
over, substituting (19) with (20)–(22), we can get the PDF of
the sojourn time in the whole system.

Finally, using the PDF in (19), we obtain the cumulative
distribution function for the sojourn time in VDV as

FR(α) = P(TR ≤ α) =
∫ α

0
fR(x)dx . (30)

FR(α) represents the delay satisfaction ratio (DSR) of the
VDVmodel, i.e., the ratio of tasks that have the sojourn time
within a delay constraint, α. The performance metric, DSR,
is important for providing service level agreement between
the provider and customers.

4.2 Performancemetrics in VDHS

Toderive performancemetrics in theVDHSmodel,we define
the state space as

SH ,U := {i ∈ SU |i �= T HU},
SH , E := { j ∈ SE | j �= T H E},
SH ,U(i1) := {(i1, i2, j1, j2) ∈ S ′|i1 �= T HU},
SH , E1(j1) := {(i1, i2, j1, j2) ∈ S ′|i1 = T HU , j1 �= T H E},
SH , E2(j2) := {(i1, i2, j1, j2) ∈ S ′|i1 = T HU , j1 = T H E,

j2 �= T H E},
SH ,C := {(i1, i2, j1, j2) ∈ S ′|i1 = T HU , j1 = j2 = T H E}.

Aswith theVDVmodel, in the above state space, we focus
on the tasks which arrive at UE1 and classify the situations.

123

Analyzing vertical and horizontal offloading in federated cloud and edge computing systems

Based on classification, we define the row vectors eH ,U(i1),
eH , E1(j1), eH , E2(j2), eH ,C ∈ {0, 1}(T HUE+1)2(T HE+1)2 as

eH ,U(i1) := (1SH ,U (i1)(i1, i2, j1, j2))
′
(i1,i2, j1, j2)∈S ′,

eH , E1(j1) := (1SH , E1(j1)(i1, i2, j1, j2))
′
(i1,i2, j1, j2)∈S ′ ,

eH , E2(j2) := (1SH , E2(j2)(i1, i2, j1, j2))
′
(i1,i2, j1, j2)∈S ′,

eH ,C := (1SH ,C
(i1, i2, j1, j2))

′
(i1,i2, j1, j2)∈S ′ .

First, we derive the mean sojourn time E[TH]. In the same
way, we can represent E[TH] as

E[TH] = TH ,U + TH , E + TH ,C, (31)

where

TH ,U :=
∑

i∈SH ,U

TH ,U(i)P(NU1(t) = i), (32)

TH , E :=
∑

j1∈SH , E

TH , E1(j1)P(NU1(t) = T HU , NE1(t) = j1)

+
∑

j2∈SH , E

TH , E2(j2)P(NU1(t) = T HU , NE1(t) = T H E,

NE2(t) = j2), (33)

TH ,C :=
∑
k∈N0

TH ,C(k)P(NU1(t) = T HU , NE1(t) = NE2(t)

= T H E, NC(t) = k),

TH ,U(i) := E[TH |NU1(t) = i],
TH , E1(j1) := E[TH |NU1(t) = T HU , NE1(t) = j1],
TH , E2(j2) := E[TH |NU1(t) = T HU , NE1(t) = T H E,

NE2(t) = j2],
TH ,C(k) := E[TH |NU1(t) = T HU , NE1(t) = NE2(t)

= T H E, NC(t) = k]. (34)

We obtain

TH ,U(i) = i+1
μU

, i ∈ SH ,U , (35)

TH , E1(j1) = j1+1
μE

+ dE1, j1 ∈ SH , E, (36)

TH , E2(j2) = j2+1
μE

+ dE2, j2 ∈ SH , E, (37)

TH ,C(k) = k+1
μC

+ dC, k ∈ N0, (38)

and

P(NU1(t) = i) = (π H
0 + π H

1 (I − RH)
−1)eH ,U(i), i ∈ SH ,U ,

(39)

P(NU1(t) = T HU , NE1(t) = j1)

= (π H
0 + π H

1 (I − RH)
−1)eH , E(j1), j1 ∈ SH , E, (40)

P(NU1(t) = T HU , NE1(t) = T H E, NE2(t) = j2)

= (π H
0 + π H

1 (I − RH)
−1)eH , E(j2), j2 ∈ SH , E, (41)

P(NU1(t) = T HU , NE1(t) = NE2(t) = T H E, NC(t) = k)

=
{

π H
0 eH ,C, k = 0,

π H
1 R

k−1
H eH ,C, k ∈ N.

(42)

Substituting (32)-(34) with (35)-(42), we can represent

TH ,U =
∑

i∈SH ,U

i+1
μU

(π H
0 + π H

1 (I − RH)
−1)eH ,U(i), (43)

TH , E =
∑

j1∈SH , E

(
j1+1
μE

+ dE1)(π
H
0 + π H

1 (I − RH)
−1)eH , E(j1)

+
∑

j2∈SH , E

(
j2+1
μE

+ dE2)(π
H
0 + π H

1 (I − RH)
−1)eH , E(j2),

(44)

TH ,C = 1
μC

[π H
0 + π H

1 {(I − RH)
−1 + {(I − RH)

−1}2}]eH ,C

+ dC(π
H
0 + π H

1 (I − RH)
−1)eH ,C . (45)

From (43)-(45), we obtain E[TH]. We next derive the PDF
fH(x), which we can express in the same way as the VDV
model:

fH(x) = fH ,U(x) + fH , E(x) + fH ,C(x), x ≥ 0, (46)

where

fH ,U(x) :=
∑

i∈SH ,U

fH ,U(x, i)P(NU1(t) = i), (47)

fH , E(x) :=
∑

j∈SH , E

{ fH , E1(x, j)P(NU1(t) = T HU , NE1(t) = j)

+ fH , E2(x, j)P(NU1(t) = T HU ,

NE1(t) = T H E, NE2(t) = j)}, (48)

fH ,C(x) :=
∑
k∈N0

fH ,C(x, k)P(NU1(t) = T HU , NE1(t)

= NE2(t) = T H E, NC(t) = k), (49)

fH ,U(x, i) := fH(x |NU1(t) = i), (50)

fH , E1(x, j) := fH(x |NU1(t) = T HU , NE1(t) = j), (51)

fH , E2(x, j) := fH(x |NU1(t) = T HU ,

NE1(t) = T H E, NE2(t) = j), (52)

fH ,C(x, k) := fH(x |NU1(t) = T HU , NE1(t) = NE2(t)

= T H E, NC(t) = k). (53)

We then define the constant k∗
H as

k∗
H := inf{n ∈ N0|1 −

n∑
k=0

|π H

k | < 10−6}. (54)

123

K. Akutsu et al.

Using (π H

k)k∈{0,1,...,k∗
H }, we can approximate the PDF of

the sojourn time. We define KH := {0, 1, . . . , k∗
H}. First, we

derive fH ,U(x, i), fH , E1(x, j), fH , E2(x, j), fH ,C(x, k). In the
same way as the VDV model, we can then express

fH ,U(x, i) = (μU x)i

i ! μUe
−μU x , i ∈ SH ,U , x ≥ 0, (55)

fH , E1(x, j)= (μE (x−dE1))
j

j ! μUe
−μU (x−dE1), j ∈ SH , E, x ≥ dE1,

(56)

fH , E2(x, j)= (μE (x−dE2))
j

j ! μUe
−μU (x−dE2), j ∈ SH , E, x ≥ dE2,

(57)

fH ,C(x, k) = (μC (x−dC))k

k! μCe
−μC (x−dC), k ∈ KH , x ≥ dC .

(58)

And, using (π H

k)k∈KH
, we can express

P(NU1(t) = i) =
∑
k∈KH

π H∗,keH ,U(i), i ∈ SH ,U , (59)

P(NU1(t)=T HU , NE1(t)= j)=
∑
k∈KH

π H∗,keH , E1(j), j ∈ SH , E,

(60)

P(NU1(t) = T HU , NE1(t) = T H E, NE2(t) = j)

=
∑
k∈KH

π H∗,keH , E2(j), j ∈ SH , E, (61)

P(NU1(t) = T HU , NE1(t) = NE2(t) = T H E, NC(t) = k)

= π H∗,keH ,C, k ∈ KH . (62)

Using the results in (55)–(62),we can get (47)–(49).More-
over, substituting (46) with (47)–(49), we can get the PDF of
the sojourn time in the whole system.

Finally, using the PDF in (46), we obtain the cumulative
distribution functions for the sojourn time in VDHS as

FH (α) = P(TH ≤ α) =
∫ α

0
fH (x)dx . (63)

FH (α) represents the DSR of the VDHS model, i.e., the
ratio of tasks that have the sojourn time within a delay con-
straint, α.

5 Evaluations

In this section, we give analytical results of the performance
metrics for each model as derived in the above section. The
performance metrics investigated in the evaluation include
the mean sojourn time and DSR. We calculated the mean
sojourn time based on (6) for VDV and (31) for VDHS. We
calculated DSR based on (30) for VDV and (63) for VDHS.

To verify the accuracy of the derivations, we also car-
ried out simulations. The simulation is needed because we

Table 3 Parameter setting

μU μE μC dUE dEC dCE dEU dEE

3 7 100 0.05 0.5 0.5 0.05 0.05

could not incorporate the uplink transmission latency and
the downlink transmission latency in our stochastic models.
The latency is fixed and thus it does not have the Markovian
property. We only model the stochastic behaviors of tasks at
a UE, an edge and the cloud and compute the sojourn time
distribution in these three components. Using these sojourn
time distributions, we approximate the sojourn time distribu-
tion in the whole system by adding the uplink and downlink
transmission latency. That is, in our stochastic process, once
a task is offloaded from a UE to an edge, the task immedi-
ately enters the edge. However, in a realistic environment,
that task must spend an uplink transmission latency before
it reaches the edge. To verify our approximation, we carried
out simulation that considers the real behaviors of tasks. The
simulator is our developed program which is a Monte Carlo
simulation using Python.

The simulation results are an average of 30 identical exper-
iments with random numbers. In each experiment, we ran
110,000 tasks and discarded the first 10,000 tasks for sta-
tionary behavior. The parameter setting is given in Table 3.
The unit of service rates, μU , μE , and μC , is 1/ms while the
unit of the delay, dUE , dEC , dCE , dEU , and dEE , is ms.

5.1 Analysis versus simulation

This subsection covers the verification of the analysis by
simulation. Figure 5 shows the mean sojourn time for the
VDV and VDHS models with analysis and simulation when
the task arrival rate λ is changed. It is very reasonable that the
mean sojourn time increases as the task arrival rate increases.
The results show that there is little difference between the
analytical and simulation results in the VDV model while
there is an observable gap in the VDHS model. In addition,
it can be easily seen that the mean sojourn time in VDHS is
less than that in VDV when setting up the same threshold.
The main reason is that VDV can only carry out vertical
offloading, i.e., a heavily-loaded edge only offloads tasks to
the cloud. However, other than the vertical offloading, VDHS
can also carry out horizontal offloading, that is, a heavily-
loaded edge can offload tasks to another lightly-loaded edge.
When the arrival rate is 5, the improvement on the mean
sojourn time of VDHS can achieve 30%, compared with that
of VDV.

Figure 6 shows DSR when the task arrival rate λ is
changed. We observe that DSR decreases as the arrival rate λ

increases.We also confirm that VDHS has a higher DSR than
VDV, representing that VDHS outperforms VDV in terms of

123

Analyzing vertical and horizontal offloading in federated cloud and edge computing systems

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

so
jo

ur
n

 ti
m

e
VDHS, cal, THE=2
VDV, cal, THE=2
VDHS, sim, THE=2
VDV, sim, THE=2

Fig. 5 Analytical and simulation results concerning the mean sojourn
time

Fig. 6 Analytical and simulation results concerning DSR

2 4 6 8 10
Arrival Rate

1

2

3

4

5

6

O
pt

im
al

 T
hr

es
ho

ld

VDV, THUE

VDV, THE

VDHS, THUE

VDHS, THE

Fig. 7 The optimal threshold vs. arrival rate

satisfying the delay constraint. When the arrival rate is 5, the
improvement on DSR of VDHS can achieve 11%, compared
with that of VDV. Also the results show that the analytical
and simulation results match well for the VDV and VDHS
models, verifying that the correctness of our analysis onDSR.

Fig. 8 The mean sojourn time and DSR vs. arrival rate

5.2 The effects of task arrival rate

Figure 7 shows the optimal threshold when the task arrival
rate λ is changed. We can see that the optimal threshold
T HUE is always equal to one, no matter what model is
adopted. That is, a newly-arriving task which encounters a
busy UE should be offloaded to the edge/cloud, because the
UE has low service capacity. Thus, the sojourn time, which
is composed of the waiting time and the service time, in this
busy UE will be longer than the time to be offloaded to the
edge/cloud. On the other hand, bothmodels have high thresh-
olds in edges, T HE . However, the optimal threshold T HE

of VDV decreases while that of VDHS increases as the task
arrival rate increases. For VDV, when the task arrival rate
is low, the edge can serve its tasks without the helps of the
cloud, resulting in a high threshold T HE . When the task
arrival rate is high, the edge can not accommodate the load
of many arriving tasks, so it will try to offload some tasks
to the cloud, resulting in the decrease of T HE . On the other
hand, for VDHS, when the task arrival rate is low, and if an
edge’s load is higher than the load of other edges, tasks can
be offloaded to other edges for a better sojourn time, result-
ing in a low threshold. When the task arrival rate increases,
all edges become heavily-loaded, so it is very unlikely to
offload tasks to other edges and more likely to offload tasks
to the cloud. Therefore, in this case, VDHS will behave like
VDV, resulting in the same optimal threshold T HE . This
causes VDV to have a higher T HE than VDHS when the
task arrival rate is low, and they have the same T HE when
it is high.

Figure 8 shows the mean sojourn time and DSR as the
task arrival rateλ is changedwhen optimal thresholds (Fig. 7)
are given. As a result the mean sojourn time of both models
increases as the task arrival rate increases because the overall
system load increases. The mean sojourn time of VDV is
larger than that of VDHS because the former only carries out
vertical offloading while the latter carries out vertical and
horizontal offloading. VDHS can offload some tasks to other

123

K. Akutsu et al.

Fig. 9 The mean sojourn time and DSR vs. delay constraint

Table 4 Offloading ratio and mean sojourn time at each server in VDV
and VDHS

Model Role
UE Default edge Targeted edge Cloud

VDV(simulation) 13% 34% 0% 53%

0.334 0.460 NA 1.114

VDV(analysis) 13% 34% 0% 53%

0.333 0.459 NA 1.114

VDHS(simulation) 13% 25% 10% 52%

0.335 0.620 0.656 1.123

VDHS(analysis) 13% 21% 14% 52%

0.333 0.624 0.681 1.115

lightly-loaded edges to reduce the mean sojourn time. We
observe that the DSR decreases as the arrival rate increases.
It means that a higher task arrival rate generates a smaller
DSR because more tasks cause more serious congestion.

5.3 The effects of delay constraint

Figure 9 shows the mean sojourn time and DSR when the
delay constraint α is changed. We observe that the mean
sojourn time of VDV and VDHS are stable, no matter which
value of the delay constraint. It is reasonable because the
delay constraint will not affect the mean sojourn time. How-
ever, it is obvious that DSR increases as the delay constraint
increases because more tasks can satisfy a higher delay con-
straint. Also DSR of VDHS is higher than that of VDV,
representing that VDHS outperforms VDV in terms of DSR.
The reason is the same as that mentioned in Figs. 5 and
6. Furthermore, Fig. 9 shows an interesting jump in both
VDV and VDHS models at α = 1.00. This is due to the
tasks that are processed in the cloud. These tasks need an
uplink transmission latency from an edge to the cloud and
a downlink transmission latency from the cloud to an edge.
The total transmission latency for uplink and downlink is
dEC + dCE = 1.00 ms in our parameter setting. Thus, when

the delay constraint exceeds 1, some tasks can be offloaded
to the cloud, so DSR has a big jump around α = 1.00.

5.4 Offloading ratios

Table 4 shows the offloading ratio and the mean sojourn
time at each server in the VDV and VDHS models, derived
by analyses and simulations. We set the arrival rate as λ =
20 and the threshold of the VDHS model (T HU , T HE) =
(1, 4), and the queue-length threshold of the VDV model
(T HU , T HE) = (1, 3). In each cell of the table, the upper
left is the offloading ratio, and the lower right is the mean
sojourn time at each server. From this table, we can see that
the offloading ratios in each layer of a UE, an edge, and the
cloud are almost the same in the two models. It can also be
seen that the mean sojourn time at the server in the upper tier
is larger than that in the lower tier.

6 Conclusion

In this paper, we modelled MEC architecture with the
queue-length thresholds at UEs and edges considering the
transmission latency. It is difficult to directly derive the per-
formance metrics in our models. We therefore approximated
them. Based on the approximation, we evaluated the optimal
thresholds of UEs and edges.

We can summary some interesting observations from
results: (1) The analytical and simulation match well, so the
correctness of our analysis can be verified; (2) VDHS always
has lower sojourn time than VDV since the former does both
vertical and horizontal offloading while the latter only does
vertical offloading. VDHS can improve 30% at most on the
mean sojourn time and 11% at most on DSR; (3) The thresh-
old T HU is always 1, no matter which model, because the
UE’s capacity is low in our experiment, so the task will be
offloaded to an edge if it encounters a busy UE; and (4) T HE

in VDHS is always less than T HE in VDV because VDHS
can earlier offload the tasks to other lightly-loaded edges.

In futureworks,we look to proposing other approximation
methods for our models. In this paper, we analyzed MEC
using a matrix analysis method. However, it is difficult to
analyze as the number of dimensions in the Markov chain
increases. We then need to find other approximation method.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

123

Analyzing vertical and horizontal offloading in federated cloud and edge computing systems

References

1. Hu, F., Deng, Y., Saad, W., Bennis, M., & Aghvami, A. H.
(2020). Cellular-connected wireless virtual reality: Requirements,
challenges, and solutions. IEEE Communications Magazine., 58,
105–111.

2. Ahmadi, S. (2019). 5G NR: architecture, technology, implemen-
tation, and operation of 3GPP new radio standards (pp. 22–32).
Cambridge: Academic Press.

3. Chataut, R., & Akl, R. (2020). Massive MIMO systems for 5G and
beyond networks-overview, recent trends, challenges, and future
research direction. Sensors, 20, 2753.

4. Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., &
Ding, Z. (2020). A survey of multi-access edge computing in 5G
and beyond: Fundamentals, technology integration, and state-of-
the-art. IEEE Access, 8, 116974–117017.

5. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015).
Mobile edge computing-A key technology towards 5G.ETSIWhite
Paper. pp. 1–16.

6. Giust, F., Verin, G., Antevski, K., Chou, J., Fang, Y., Featherstone,
W., & Zhou, Z. (2018). MEC deployments in 4G and evolution
towards 5G. ETSI White paper. pp. 1–24.

7. Kar, B., Lin, Y. D., & Lai, Y. C. (2020). OMNI: Omni-directional
dual cost optimization of two-tier federated cloud-edge systems.
In ICC 2020-2020 IEEE International Conference on Communi-
cations (ICC). pp. 1–7.

8. Rafiq, A., Ping, W., Min, W., Hong, S. H., & Josbert, N. N. (2021).
Optimizing energy consumption and latency based on computa-
tion offloading and cell association in MEC enabled Industrial IoT
environment. In 2021 6th International Conference on Intelligent
Computing and Signal Processing (ICSP) (pp. 10–14). IEEE.

9. Qin, M., Cheng, N., Jing, Z., Yang, T., Xu, W., Yang, Q., & Rao, R.
R. (2020). Service-oriented energy-latency tradeoff for iot task par-
tial offloading in mec-enhanced multi-rat networks. IEEE Internet
of Things Journal, 8, 1896–1907.

10. Lee, G., Saad, W., & Bennis, M. (2017). An online secretary
framework for fog network formation with minimal latency. In
Proceedings of 2017 IEEE International Conference on Commu-
nications. pp. 1–6.

11. Yousefpour, A., Ishigaki, G., Gour, R., & Jue, J. P. (2018). On
reducing IoT service delay via fog offloading. IEEE Internet of
Things Journal, 5, 998–1010.

12. Hwang, R., Lai, Y., & Lin, Y. Offloading Optimization with Delay
Distribution in the 3-tier Federated Cloud, Edge, and Fog Systems.
preprint.

13. Elgendy, I. A., Zhang, W. Z., He, H., Gupta, B. B., & Abd El-Latif,
A. A. (2021). Joint computation offloading and task caching for
multi-user and multi-task MEC systems: Reinforcement learning-
based algorithms. Wireless Networks, 27, 2023–2038.

14. Li, Z., Chang, V., Ge, J., Pan, L., Hu, H., & Huang, B. (2021).
Energy-aware task offloading with deadline constraint in mobile
edge computing. EURASIP Journal on Wireless Communications
and Networking, 56, 1–24.

15. Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N., & Hanzo, L.
(2020). Multi-agent deep reinforcement learning based trajectory
planning for multi-UAV assisted mobile edge computing. IEEE
Transactions on Cognitive Communications and Networking, 7,
73–84.

16. Zhang, Y., Di, B., Zheng, Z., Lin, J., & Song, L. (2019). Joint data
offloading and resource allocation for multi-cloud heterogeneous
mobile edge computing using multi-agent reinforcement learning.
In 2019 IEEEGlobal Communications Conference (GLOBECOM)
pp. 1–6.

17. Sun, W., Liu, J., & Yue, Y. (2019). AI-enhanced offloading in edge
computing: When machine learning meets industrial IoT. IEEE
Network, 33, 68–74.

18. He, X., Lu, H., Huang, H., Mao, Y., Wang, K., & Guo, S. (2020).
QoE-based cooperative task offloading with deep reinforcement
learning inmobile edge networks. IEEEWireless Communications,
27, 111–117.

19. Latouche, G., & Ramaswami, V. (1999). Introduction to matrix
analytic methods in stochastic modeling (5). New Delhi: SIAM.

20. Takine, T. (2014). Beyond M/M/1—invitation to quasi-birth-and-
death processes. Communications of the Operations Research
Society of Japan, 59(4), 179–184. (in Japanese).

21. Thai, M. T., Lin, Y. D., Lai, Y. C., & Chien, H. T. (2019). Workload
and capacity optimization for cloud-edge computing systems with
vertical and horizontal offloading. IEEE Transactions on Network
and Service Management, 17(1), 227–238.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Analyzing vertical and horizontal offloading in federated cloud and edge computing systems
	Abstract
	1 Introduction
	2 Model
	2.1 Architecture
	2.2 Behaviors

	3 Analysis
	3.1 Random variables
	3.2 Infinitesimal generator in VDV
	3.3 Infinitesimal generator in VDHS
	3.4 Stability condition and stationary distribution

	4 Approximation of performance metrics
	4.1 Performance metrics in VDV
	4.2 Performance metrics in VDHS

	5 Evaluations
	5.1 Analysis versus simulation
	5.2 The effects of task arrival rate
	5.3 The effects of delay constraint
	5.4 Offloading ratios

	6 Conclusion
	References

