
C O M P U T E R   0 0 1 8 - 9 1 6 2 / 2 3 © 2 0 2 3 1 E E E 	 P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y   D E C E M B E R  2 0 2 3 � 65

Ying-Dar Lin , National Yang Ming Chiao Tung University

Yuan-Cheng Lai , National Taiwan University of Science and Technology

Didik Sudyana  and Ren-Hung Hwang , National Yang Ming Chiao Tung University

We propose a generic framework for mapping the training 

and federation tasks of three artificial intelligence for Internet 

of Things as a service (AIoTaS) systems to multiple cloud–

edge–fog paradigms. A total of 31 possible mappings are 

identified as possible reference designs for AIoTaS providers. 

Digital Object Identifier 10.1109/MC.2023.3303370
Date of current version: 13 November 2023

Artificial Intelligence 
for Internet of Things 
as a Service: Small or 
Big Data, Private or Public 
Model, Centralized or 
Federated Learning?

COVER FEATURE EMERGING DISRUPTIVE TECHNOLOGIES

The Internet of Things (IoT) has been perva-
sively deployed in recent years and enables the 
collection of massive amounts of data from a 
wide variety of sources. However, these data 

must be properly processed and analyzed to identify the 
emerging patterns and formulate appropriate subsequent 
actions. Due to the sheer volume of the data involved, 

this task is best performed by combining the IoT infra-
structure with artificial intelligence (AI) technology. 
This combination, referred to as artificial intelligence of 
things (AIoT), integrates the decision-making power 
of AI with the connectivity of IoT and has significant 
advantages for improving efficiency.1

INTRODUCTION
IoT owners and developers that employ IoT applications, 
have many tasks to perform. For example, they must not 
only develop their IoT applications, but also put them on 
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the devices and manage them. These 
tasks impose a significant burden 
on the capabilities of the owners and 
developers,2 particularly when AI tech-
nology is involved. Consequently, great 
interest exists in outsourcing some (or 
all) of these tasks to service providers, 
thereby introducing the paradigms of 
IoT and AIoT as a service (that is, IoTaS 
and AIoTaS, respectively).

In implementing AIoT, one of the 
most crucial issues is that of the data 
required to train the machine learning 
(ML) model. Broadly speaking, these 
data can be classified as either small or 
big data, depending on the owner and 
the nature of the model being trained. 
In particular, small data are owned 
by a tenant and are used to train a 
private model, whereas big data are 
owned by all or some of the tenants 
and are used to train a public model. 
Public models have a higher accuracy 
than private models since they acquire 
global knowledge from all of the data 
received from all tenants.3 However, 
private models have superior privacy 

since the data that are trained are not 
shared.4 Furthermore, tenants can 
improve the accuracy of these models 
by leveraging federated learning to 
generate global models based on the 
aggregated private models of different 
tenants. Notably, such small-public 
configurations retain the advantage 
of small-private configurations in that 
the original data are still kept private.

Another important consideration 
when deploying AIoT platforms is the 
service architecture to be employed.5 
Several computing paradigms can 
be utilized to support AIoT services, 
including cloud, edge, fog, and a feder-
ation of two or more of them. The fed-
eration between these computing par-
adigms can be considered as a bigger 
computing platform that enables them 
to collaborate despite being decoupled 
and operated individually.6 Note that 
the concepts of federation and federation 
learning (FL) are different, where the for-
mer forms the integration at the lower 
platform level through the federation 
of cloud–edge–fog paradigms while the 

latter integrates the upper-level ML pro-
cess. They don’t need to coexist. Never-
theless, it is possible to combine both by 
running FL for AIoTaS over the feder-
ated cloud–edge–fog platform. Figure 1 
illustrates the general system architec-
ture employing a multitier approach to 
deliver AIoTaS to tenants.

This article develops a generic frame-
work to guide service providers in 
determining an appropriate cloud–
edge–fog paradigm on which to per-
form specific AIoTaS services. Three 
possible service modes are considered, 
namely big public, small private, and 
small public. For each service, the cor-
responding learning and federation 
tasks are mapped to multiple cloud–
edge–fog paradigms. A total of 31 pos-
sible mappings are identified. The 
various mappings are introduced and 
described, and the open challenges fac-
ing the commercialization of AIoTaS 
are then briefly discussed.

The primary motivation for this 
research is to explore the various service 
models within the AIoT framework 
and understand their rationality and 
implications. By examining the small-
private, big-public, and small-public ser-
vice models, as well as their integration 
with various computing paradigms, 
we aim to provide a comprehensive 
analysis of the tradeoffs among data 
privacy, accuracy, and collaboration 
in the context of AIoTaS. This research 
addresses a gap in existing literature, 
where the focus has primarily been on 
ML models for IoT7,8,9,10,11 or optimiz-
ing IoT architectures through resource 
management.12,13,14,15,16,17 We seek to 
provide a generic AIoTaS framework 
to service providers across various 
domains by exploring and discuss-
ing the service tradeoffs that have not 
been adequately covered in previous 
research or survey papers.18,19,20,21

FIGURE 1. Multitier architecture for AIoT system. M: number of edge nodes; N: number of 
fogs under each edge.
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The remainder of this article is orga-
nized as follows. The “Related Works” 
section reviews previous work in the 
field. The “AIoT Dimension” section 
explains the main dimensions of AIoT. 
The “Services on AIoT” section describes 
three service modes of AIoTaS. The “Mul-
titier Architectures” section discusses 
the multitier architectures to support 
AIoTaS, followed by a section present-
ing the service-architecture mapping 
results. The “Open Challenges” section 
describes the open challenges facing the 
AIoTaS field, and we end with some brief 
concluding remarks.

RELATED WORKS
This section presents an overview of 
the existing research conducted in 
the field of AIoT systems, and Table 1 
provides a comprehensive summary 
of existing research on this field. The 
majority of these studies focus on the 
investigation of specific ML models 
or architectures that can support the 
complex operations of AIoT, while oth-
ers provide a survey of the field.

In terms of ML models, research-
ers have investigated techniques to 
enhance the accuracy, robustness, the 
convergence time and the communi-
cation efficiency of FL in the context 
of AIoT.7,8,9,10,11 These studies have 
explored approaches to improve not 
only FL accuracy, but also the conver-
gence time and address the challenges 
related to model training and data pri-
vacy in distributed AIoT environments.

There has also been significant work 
on the optimization and implementa-
tion of architectures suitable for AIoT. 
These studies primarily consider pub-
lic models with centralized learning, 
focusing on issues such as the scalability 
of AIoT for microservices,12 offloading 
optimization to minimize delay,13 task 
scheduling optimization to minimize 

the energy consumption,14 the develop-
ment of scalable frameworks to support 
AIoT services,15 the intelligence orches-
tration for AIoT,16 and the platform for 
autodeploying AIoT applications.17

Additionally, several survey papers 
have taken a broader view of the AIoT 
field. These works have reviewed the 
ML algorithms used in AIoT,18 explored 
recent approaches and technologies 
supporting AIoT,19 considered the use 
of edge and cloud collaboration modes 
to facilitate AIoT,20 and discuss the 
progress, challenges, and opportuni-
ties of AIoT systems.21

Despite these valuable contributions, 
the existing literature fails to address 
AIoTaS, an emerging paradigm that 
combines the as-a-service model with 
AIoT technologies to offer scalable, flexi-
ble, and efficient solutions. Furthermore, 
a substantial gap remains in terms of a 
robust examination of the data, model, 
and job dimensions of AIoT, and the 
mapping of these dimensions to suit-
able architectures within the context 
of AIoTaS. Our work aims to bridge this 
gap and contribute to the growing body 
of knowledge in this important area.

AIoT DIMENSION
AIoT comprises three main dimensions: 
the data used to train the ML models, 
the ML models themselves, and the jobs 
used to provide the AIoT service.

Data
AIoT service providers need to properly 
manage their tenants’ data in order to 
carry out the training process. Thus, in 
the context of AIoTaS, a service provider 
might collect data from all tenants and 
use these big data to train the model, 
which would be categorized as a big 
dimension of data.

However, such an approach raises 
important privacy concerns. In certain 

situations, tenants may be unwilling to 
share their data in the public domain. 
This then would be classified as a small 
dimension of data, possibly only one 
tenant’s data. Consequently, service 
providers should also offer the means to 
train models specific to individual ten-
ants using only the small data belong-
ing to them.

ML models
ML models for AIoT can be categorized 
as either public models or private mod-
els. In the former case, the model is 
shared by several tenants and is gen-
erated by aggregating all of their data 
through centralized learning, or aggre-
gating their local models through FL to 
produce a global model. In the case of 
private models, the model is reserved 
for the use of one tenant only.

Jobs
ML applications consist of two jobs: 
learning and inference. In AIoT, the learn-
ing process may be performed using 
either a centralized approach or a fed-
erated approach. In the case of central-
ized learning, training is performed on 
a single server using the data uploaded 
from the tenants. In FL, there are two 
types of jobs: training of local models and 
aggregation. In particular, the FL pro-
cess generates multiple local (or private) 
models using only the data of the corre-
sponding tenant, and these local models 
are then aggregated to produce a global 
model, which is later used to update the 
local models.22 Furthermore, to perform 
inference in AIoT, it can be done at fog, 
edge, or cloud by using the global model.

SERVICES ON AIoT
AIoTaS can be implemented in three basic 
services: small-private, big-public, and 
small-public services offer different 
approaches to data ownership, model 
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training, and the tradeoff between pri-
vacy and accuracy.

Small private
In the small-private service, the models 
are trained using the “small” data belong-
ing to a single tenant and the model is 

reserved for the use of that tenant only. 
This service model grants tenants exclu-
sive control over their AI model, reducing 
the risks associated with data exposure 
and unauthorized access. The rationale 
behind the small-private service lies 
in offering a solution that prioritizes 

privacy concerns and empowers tenants 
to maintain full ownership of their data 
and models.

Big public
In the big-public service, the model is 
trained using the “big” data acquired 

TABLE 1. Related works on AIoT systems.

Paper Category

Data Model Job Architecture

PurposeS B Pr Pb CL FL I D F E C

Liu et al.7 ML model —  —  —   — — —  Efficient and accurate FL model for AIoT applications

Zhang et al.8 —  —  —    — —  Efficient FL for IoT–cloud collaborations

Liu et al.9 —  —  —   — — —  Robust FL for AIoT with malicious model detection

Dong et al.10 —  —  —    —   Faster the convergence time of FL for AIoT with an 
adaptive privacy parameter

Liu et al.11 —  —  —    —   Improve the communication efficiency of FL in 
edge–cloud for AIoT

Chen and Liu12 Architecture 
optimization a 
implementation

— — —   — — —   — Scalable architecture for AIoT with microservices

Hao et al.13 — — —   — — — —   Offloading optimization to minimize delay in AIoT

Zhu et al.14 — — —   — — — —   Optimizing task scheduling in AIoT to minimize 
energy consumption

Raj et al.15 — — —   — — — —   Framework for a fully automated and scalable 
process in managing AIoT data in edge

Ramos et al.16 — — —   — — — —   Framework for intelligence orchestration in AIoT

Rong et al.17 — — —   — — — —   Platform for deploying an AIoT application to  
edge–cloud efficiently

Lei et al.18 Survey paper — — —   — — —    Comprehensive survey on deep learning for AIoT

Chang et al.19 — — —    — —    Survey on the recent approaches and technologies 
for supporting AIoT environment

Jiang et al.20 — — —    — — —   Survey on collaboration modes in edge–cloud 
intelligence for AIoT

Zhang and Tao21 — — —         Survey of the progress, challenges, and 
opportunities in AIoT

Ours Framework        —    AIoT job mapping to multitier architecture

B: big; C: cloud; CL: centralized learning; D: device; E: edge; F: fog; I: Inference; Pb: public; Pr: private; S: small.
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from multiple tenants and is subse-
quently available to all of the tenants 
for their own use. In this service, all 
tenants will share their data to be 
trained together. Through such a ser-
vice, the tenants gain access to a model 
with greater knowledge and accuracy, 
but at the expense of revealing their 
data in the public domain. The ratio-
nale behind the big-public service lies 
in leveraging the collective intelli-
gence of a community of tenants, pro-
viding access to a high-quality model 
that can deliver superior performance 
and generalization.

Small public
The rationale behind the small-pub-
lic service model combines the bene-
fits of privacy and collaboration. Ten-
ants who prioritize data privacy can 
still benefit from the knowledge and 
accuracy of a global model. By shar-
ing the parameters of their local mod-
els, tenants can collectively construct 
a global model without revealing the 
specifics of their individual data-
sets. This rationale allows tenants to 
retain control over their data while 
contributing to the development of a 
more accurate and powerful model. 
The small-public service strikes a bal-
ance by enabling tenants to enjoy the 
advantages of collaborative learning 
and a global model without compro-
mising the privacy and security of 
their sensitive data.

MULTITIER ARCHITECTURES
Previously, service providers primar-
ily used centralized cloud computing 
architectures, which offered limited 
support for delay-sensitive services. 
With the advent of 5G, there’s growing 
interest in distributed multitier archi-
tectures incorporating cloud, edge, 
and fog computing paradigms.

Cloud–edge–fog computing
Cloud computing provides power-
ful computing and storage capabil-
ities through the use of centralized 
resources. However, the cloud is far 
from the end users, and hence signifi-
cant delays are introduced, which may 
be unacceptable for delay-sensitive 
applications, such as IoT.23

Edge computing was introduced by 
ETSI under the name of multiaccess edge 
computing with the aim of virtualizing 
cloud capabilities into mobile network 
providers. Edge computing offers the 
same services as the cloud but with less 
computing capacity and is managed by 
mobile network operators. Notably, the 
edge servers can be deployed and collo-
cated with a base station.

Fog computing was introduced by 
the OpenFog consortium. Fog nodes 
can be located anywhere between the 
cloud and the end devices, making them 
potentially the closest facility to the 
users. Unlike edge, which are deployed 
by mobile network operators, fog com-
puting can be deployed by either indi-
viduals or businesses. Fog platforms typ-
ically consist of multiple heterogeneous 
nano servers, such as mobile users, 
vehicular fogs, and road side units.

Federation
AIoT requires significant computa-
tional power and storage capacity to 
process the massive amounts of data. 
A single computing paradigm is insuf-
ficient to meet this demand, since the 
capacity and coverage capabilities of 
the cloud, edge, and fog paradigms are 
all limited to a certain extent. Thus, to 
meet the needs of AIoT, some form of 
federation is needed to satisfy tenant 
demands. By federating these com-
puting paradigms and establishing 
a multitier architecture based on a 
cloud–edge–fog hierarchy as defined 

in 5G-CORAL architecture,24 a flexible 
and powerful approach for handling a 
wide variety of services with different 
characteristics is enabled.25,26

SERVICE-ARCHITECTURE 
MAPPING
This section presents the structured 
framework developed for guiding AIo-
TaS service providers in determining 
where to allocate each job, where to 
perform FL, and how many ML models 
to construct when implementing the 
services on multitier architectures.

In mapping the ML tasks to the 
cloud–edge–fog paradigms, the frame-
work considers the use of a hierarchi-
cal FL approach with one-, two-, or 
three-federations, respectively. In the 
case of one-federation FL, FL is per-
formed only once after creating the local 
models. In contrast, in two-federation 
FL, FL is performed first to aggregate 
the parameters of the local model to cre-
ate partial-global models and then once 
again to aggregate these partial-global 
models to create a global model. Finally, 
in three-federation FL, FL is performed 
twice to generate partial-global models 
and is then performed a third time to 
create a global model. Previous studies 
have shown that hierarchical FL pro-
vides significant benefits in terms of a 
shorter model training time and lower 
energy usage than conventional FL.27

The mapping process results in 31 pos-
sible service-architecture assignments, 
as shown in Table 2, where these assign-
ments are organized by the number of 
federations, the tiers at which FL is per-
formed, and the number of ML models 
generated by each FL. It is noted that the 
mappings relate only to the training task 
since the inference task can be performed 
in either the cloud, the edge, or the fog.

As shown in Table 2, the entries are 
expressed as a string of symbols. “S” 
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and “B” denote small data and big data, 
respectively, while “C,” “E,” “F,” “M,” “N,” 
and “K” denote cloud, edge, fog, num-
ber of edge nodes, number of fogs under 
each edge, and number of tenants, 
respectively. The backslash symbol (“\”) 
denotes the federation of ML models 
belonging to the same tenant, that is, 
FL is performed on the local models of 
a single tenant. In contrast, the forward 
slash symbol (“/”) denotes federation 
among different tenants, that is, FL is 
performed on the local models belong-
ing to multiple tenants. Each mapping 

is individually annotated for ease of 
identification. For example, the nota-
tion SF\E\C/C indicates that small (S) 
data are learned into private models 
in the fog (F), then models of the same 
tenant are then federated (\) in the edge 
(E) and then in the cloud (C), and finally 
federated once again among all tenants 
(/) to produce a global model.

Small-private services
Small-private services can utilize 
either centralized or FL, with FL being 
performed in various tiers.

Centralized. Centralized learning is per-
formed in the cloud. The tenant data are 
sent directly to the cloud and are used to 
generate K models (one model per tenant), 
with SC as the abbreviation in Table 2.

One-federation. Small-private ser-
vices with one federation can be per-
formed at the fog–cloud, edge, or 
edge–cloud. When utilizing the fog–
cloud, local training is performed in 
the fog to generate local models for 
K tenants at MN fog nodes. All of the 
local models for each tenant are then 

TABLE 2. Service-architecture mapping results.

Service

Centralized One-federation Two-federation Three-federation

Dimension No. of models Dimension No. of models Dimension No. of models Dimension No. of models

Small 
private

SC K SF\C MNK → K SF\F\E MNK → MK → K

SE\E MK → K SF\E\E MNK → MK → K

SE\C MK → K SF\E\C MNK → MK → K

Big  
public

BC 1 BF\C MN → 1 BF\F\E MN → M → 1

BE\E M → 1 BF\E\E MN → M → 1

BE\C M → 1 BF\E\C MN → M → 1

Small 
public

SC/C K → 1 SF/F\C MNK → MN → 1 SF\F\E/E MNK → MK → K → 1

SF\C/C MNK → K → 1 SF\F/E\E MNK → MK → M → 1

SF/C\C MNK → MN → 1 SF/F\E\E MNK → MN → M → 1

SE\E/E MK → K → 1 SF\E\E/E MNK → MK → K → 1

SE/E\E MK → M → 1 SF\E/E\E MNK → MK → M → 1

SE\C/C MK → K → 1 SF/E\E\E MNK → MN → M → 1

SE/C\C MK → M → 1 SF\E\C/C MNK → MK → K → 1

SF\E/C\C MNK → MK → M → 1

SF/E\C\C MNK → MN → M → 1

B: big data; C: cloud; E: edge; F: fog; K: number of tenants; M: number of edge nodes; N: number of fogs under each edge; and S: small data. The backslash symbol (“\”) denotes 
the federation of ML models belonging to the same tenant; the forward slash symbol (“/”) denotes federation among different tenants. 
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sent to the cloud for federation, gen-
erating one private model for each 
tenant (abbreviation SF\C).

When utilizing only the edge, tenant 
data are sent there to create local mod-
els for K tenants at M edge nodes. These 
local models are aggregated at the 
same tier into K private models (SE\E). 
I n t h is one-t ier a rch itec t u re, t he 
server that aggregates all local mod-
els is at an edge node. Similarly, local 
model aggregation can occur in the 
cloud (SE\C).

Two-federation. Small-private ser-
vices can also be performed with two 
federations. When utilizing the fog–
edge, local training is performed in 
the fog. Each fog under the same edge 
then first performs FL to aggregate 
MNK local models, resulting in MK 
partial-private models. All of the par-
tial-private models belonging to the 
same tenant are then forwarded to the 
edge for a second FL, resulting in K pri-
vate models (abbreviation SF\F\E).

In the arrangements above, vari-
ous options are available for FL. For 
example, the first FL might alterna-
tively be performed at the edge (abbre-
viation SF\E\E). Similarly, the second 
FL might be performed in the cloud 
(abbreviation SF\E\C).

Big-public services
Big-public services can utilize either 
centralized or FL, with federations 
performed in various tiers.

Centralized. The data from all of the 
tenants is sent directly to the cloud to 
perform centralized learning and gen-
erate a public model (abbreviation BC).

One- and two-Federation. Big-pub-
lic services with one- and two-feder-
ation can be configured in the same 

manner as small-private services with 
the same federation. However, the two 
services differ in terms of the data 
collection method and ML model. In 
particular, in big-public services, the 
tenants share their data to the service 
provider for training. As a result, just 
one ML model, referred to hereafter as 
a partial-global model, is generated at 
each tier node. In the final federation, 
all of these partial-global models are 
aggregated to form a global model for 
all tenants. For example, in the BF\C 
service, the data from all of the tenants 
at a fog node are used to perform local 
training, resulting in one local model 
for each fog node. The local models 
belonging to the different fog nodes 
are then aggregated in the cloud to 
generate a global model.

Small-public services
In small-public services, an ML model 
is trained for each tenant using their 
own data, and the models are then 
aggregated to produce a global model 
for use by all of the tenants. Notably, 
the federation process may either be 
performed within the same tenant (\) 
or among different tenants (/).

One-federation. In one-federation, 
a local model is produced for each 
tenant in the cloud, resulting in the 
generation of K local models. The 
local models from all tenants are then 
aggregated to create a global model 
(abbreviation SC/C).

Two-federation. In two-federation, 
small-public services may utilize var-
ious tiers. When utilizing the fog–
cloud, a local model is trained for 
each tenant in the fog, and first FL 
is per for med on t he loca l models 
from all tenants at each fog node to 
produce MN partial-global models. 

The partial-global models at the dif-
ferent fog nodes are then sent to the 
cloud for a second FL, resulting in a 
global model (abbreviation SF/F\C). 
Alternatively, the first FL can be per-
formed in the cloud with a similar 
configuration to that of the SF/F\C 
service, with the exception that both 
federations are performed in the 
cloud (abbreviation SF/C\C). Finally, 
the first FL for each tenant may also 
be performed directly in the cloud, 
resulting in the K partial-global mod-
els. These K partial-global models are 
then further aggregated in the cloud 
to generate a public model (abbrevia-
tion SF\C/C).

When using the edge for train-
ing, tenants initially send their data 
to the edge to create a local model. 
These local models are then aggre-
gated into K partial-global models and 
further combined into a global model 
(SE\E/E). Alternatively, an initial FL 
may aggregate local models from mul-
tiple tenants at each edge, producing 
M partial-global models. A second FL 
process then generates a global model 
by aggregating these partial-global 
models (SE/E\E).

When employing the edge–cloud for 
training, the configurations are similar 
to the mappings that utilize fog–cloud. 
For example, SE\C/C and SE/C\C con-
figurations are similar to SF\C/C and 
SF/C\C, respectively, with the exception 
that the local model is  trained at edge 
nodes instead of fog nodes.

Three-federation. In three-federation, 
small-public services perform local 
training in the fog. First, FL may be 
performed in either the fog or the edge, 
while the second and third FL may be 
performed in the edge or the cloud.

In one case, FL in fog generates MK 
partial-global models from tenant 
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local models. Then, either the models 
are aggregated into K partial-global 
models in a second FL and finally into 
a global model in a third FL (SF\F\E/E), 
or a second FL aggregates local mod-
els at each edge into M partial-global 
models, which are then aggregated 
into a global model in a third FL 
(SF\F/E\E).

First, an FL may also be performed 
among all tenants at each fog node, 
aggregating local models to yield MN 
partial-global models. Second, an FL 
then combines these models under 
the same edge node. Finally, a third FL 

aggregates public models across differ-
ent edge nodes to form a global model 
(denoted as SF/F\E\E).

The mapping described previously is 
also close to the case where the second 
FL is carried at the edge. For example, 
the mappings of SF\E\E/E, SF\E/E\E, 
and SF/E\E\E are similar to SF\F\E/E, 
SF\F/E\E, and SF/F\E\E, respectively. 
On the other hand, the mappings differ 
in terms of the tier location for carrying 
out the second FL.

For the initial and second FL per-
formed in the edge and cloud, each 
tenant’s local models first aggregate 
at the edge, creating MK partial-global 
models. The SF\E\E/E and SF\E/E\E 
processes are similar, but both FL stages 
happen in the cloud instead (SF\E\C/C 
and SF\E/C\C). Alternatively, edge FL 

could involve all tenants, with second 
and third FLs taking place in the cloud 
(SF/E\C\C).

Inference
The inference task can be performed in 
the cloud, edge, or fog. However, if the 
inference task and final FL are handled 
by different tiers, the model obtained 
from the final FL must be delivered to 
the tier assigned to perform inference. 
For example, if the inference task is 
performed on the edge in the SF\C/C, 
the global model generated in the 
cloud must be transferred to the fog 

and edge to update the local models 
and inference models, respectively.

Mapping examples
Figure 2 illustrates three typical map-
ping results for small-private, big-pub-
lic, and small-public services, in which 
local training and first FL are per-
formed in the fog and edge, respec-
tively; In every case, the second and 
third FLs are performed either in the 
edge or in the cloud.

Figure 3 presents a detailed sche-
matic of the BF\E\C system operation 
flow for illustration purposes, with the 
inference process assigned to the fog. 
The training data are sent to the fog 
by the IoT devices, and local training 
is performed to generate a local model 
for each fog node. Each local model has 

a set of model parameters for saving 
the model characteristics. The model 
parameters are then sent to the edge for 
first FL with the model parameters of the 
other fog nodes. After the first FL, the 
new model parameters are pushed back 
to all of the fogs to update the respec-
tive local models. The model parame-
ters are additionally forwarded to the 
cloud for the second FL to generate a 
global model. Finally, the global model 
is pushed back to all the fogs to update 
the local models.

Service comparisons
In providing AIoTaS, the operational 
costs, including computation and com-
munication, are a major concern for ser-
vice providers. Computing cost refers to 
the cost of operating the running serv-
ers, whereas communication cost refers to 
the cost of transmitting data from user 
equipment (UE) to servers. To offer ser-
vice providers a better understanding of 
the services in AIoTaS, we compare the 
costs of all 31 mappings in Figure 4. We 
then discuss the tradeoff between these 
computing and communication costs 
when utilizing the services.

Figure 4(a) shows the comparisons 
for small private and big public. The 
most recommended way to run those 
two services with a balanced cost is 
to use only edge. Edge computing 
has lower operational costs than fog. 
The more distributed the servers, the 
higher the corresponding costs for 
cooling systems, maintenance staff, 
and other applications. Furthermore, 
delivering data to the edge network is 
also cheap because the link is close to 
the UEs. Using the cloud, on the other 
hand, is expensive because all of the 
data have to travel a great distance. 
Such a distance is particularly unsuit-
able for some AIoT applications that 
demand real-time response, as it will 

NOTABLY, SUCH SMALL-PUBLIC 
CONFIGURATIONS RETAIN THE 

ADVANTAGE OF SMALL-PRIVATE 
CONFIGURATIONS IN THAT THE ORIGINAL 

DATA ARE STILL KEPT PRIVATE.
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take up to 2 s to transmit the data to 
cloud, delaying the decision-making 
process. Using fog as the closest thing 

to the UEs, on the other hand, results 
in higher operational costs than using 
the edge.

Figure 4(b) shows the comparisons 
of small-public services. Similarly to 
the previous discussion, in providing 
small-public mode, using just edge 
computing, such as SE\E/E or SE/E\E 
mapping, is the most preferred config-
uration. Moreover, using fog–cloud or 
edge–cloud federation can be another 
option. Although those federations are 
more expensive, they offer a more scal-
able and flexible method for accom-
modating tenants’ needs.

Our comparisons have been vali-
dated by the findings in Lai et al.,28 where 
extensive experiments were conducted to 
identify the best multitier architecture 
configurations in providing the ser-
vices. While the services employed dif-
fer from our work, the underlying prin-
ciples of the optimization approaches 
and results can be applicable and 
adopted in our context. The research 
clearly demonstrated that allocating 
all tasks to the edge resulted in the best 
performance among the evaluated con-
figurations. This outcome supports our 
analysis, highlighting the benefits of 
leveraging edge computing for opti-
mizing AIoTaS services. By referencing 
these validated results, we enhance the 
credibility of our discussion and provide 
a robust foundation for our AIoTaS ser-
vice comparison.

OPEN CHALLENGES
A lt houg h A IoTa S prov ides ma ny 
exciting opportunities for tenants and 
service providers, several key chal-
lenges must be addressed before it can 
be commercialized.

Architecture optimization
Architecture optimization is an essen-
tial activity aimed at minimizing 
the resources required while satis-
fying the AIoT latency constraints. 
As described previously, a total of 31 

FIGURE 3. Operational flow of illustrative BF\E\C system.
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possible services with the compari-
sons of each service have been identi-
fied. However, further optimization 
studies are still required to determine 
the optimal services, which have the 
minimum delay and/or capacity.

Security
When implementing AIoTaS, the net-
work and architecture have to be pro-
tected. For example, when utilizing cen-
tralized learning, it is essential to protect 
the data as it is transmitted from the 
tenant(s) to the server. While the data 
can be protected through encryption, 
this increases both the computational 
burden on the system and the delay. 
Thus, alternative methods for securing 
the data transmissions must be found. 
Furthermore, it is also necessary to pro-
tect the ML algorithm. In practice, ML 
models are vulnerable to a wide range of 
attacks. For example, a malicious third 
party may seek to attack the FL process 
by sending adversarial local models to 
the aggregation server, thereby increas-
ing the convergence time and degrading 
the model performance.

AI-based next-generation 
computing for AIoTaS
The articles by Iftikhar et al.29 and Gill 
et al.30 provide valuable insights into 
emerging trends and future directions 
in AI for next-generation computing. 
Expanding upon the insights from 
these articles, we deepen the conver-
sation on AI-based next-generation 
computing for AIoT as a service. We 
specifically examine future paths and 
research challenges, enriching the dis-
cussion on previously addressed topics.

AI for AIoTaS. The integration of 
AI with IoT technologies presents 
a t ra n sfor mat ive oppor t u n it y to 
enhance the functionality, efficiency, 

and intelligence of IoT systems. The 
development of AI algorithms specif-
ically designed for IoT applications 
is an area of significant interest and 
importance in the field.

Currently, combining FL with rein-
forcement learning (RL) can be a prom-
ising approach to improving the qual-
ity of AI models for AIoTaS. FL can be 
employed to train a global model using 
data from multiple IoT devices, while 
RL can be used to optimize and fine-
tune the global model based on the 
specific requirements and objectives 
of the AIoT service.

This approach combines the bene-
fits of diverse data sources and adap-
tive learning. It leverages distributed 
devices for a more comprehensive 
dataset, boosting model accuracy. 
RL further refines the global model 
through continuous feedback, enhanc-
ing adaptability to dynamic conditions 
in AIoT service.

However, this combination pres-
ents exciting research directions and 
challenges, as outlined below.

›› Efficient model aggregation: 
Developing more efficient 
algorithms for aggregating FL 
and RL models from distributed 
architectures in AIoT environ-
ments. This includes exploring 
techniques to minimize com-
munication overhead, improve 
convergence speed, and handle 
heterogeneity across devices.

›› Exploration–exploitation 
tradeoffs: Balancing exploration 
and exploitation in RL within 
the FL framework, considering 
that different edge devices may 
have varying levels of explo-
ration capability; developing 
algorithms that can adap-
tively balance exploration and 

exploitation to improve the 
overall performance and con-
vergence of the FL–RL models.

›› System-level optimization: Con-
sidering the system-level opti-
mization of FL–RL in AIoTaS. 
This includes optimizing the 
allocation of computational 
resources, communication 
bandwidth, and energy con-
sumption across multiple fog–
edge–cloud nodes to maximize 
the overall performance and 
efficiency of the AIoT system.

Intelligent service framework man-
agement for AIoTaS. A critical aspect 
of delivering efficient and effective 
AIoTaS is the development of an intel-
ligent service management framework 
that acts as an orchestrator, manag-
ing the federation of cloud, edge, and 
fog devices, and proxy as the helper 
to manage the nodes for orchestrator. 
Figure 5 shows the illustration of the 
service framework with the orches-
trator that may be used to manage and 
control the whole system.

Equipped with an intelligent autode-
velopment feature, the framework uti-
lizes AI to seamlessly deploy the AIoT 
service from a tenant to the distrib-
uted architectures, including cloud, 
edge, and fog. AI helps in the automatic 
scheduling of such large-scale AIoT sys-
tems, taking into account factors such 
as resource availability, latency require-
ments, and workload characteristics to 
optimize the deployment process.

The framework also incorporates 
intelligent autoscaling, using AI to 
dynamically adjust resources based on 
real-time demand. Traditional autoscal-
ing methods rely on predefined thresh-
olds or simple prediction models, which 
may not adapt quickly enough to sud-
den changes in demand or efficiently 
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handle the complex dependencies 
between different resources. However, 
AI-driven autoscaling employs more 
sophisticated prediction models that 
can adapt to varying demand patterns 
and manage resource interdependen-
cies, improving system responsiveness 
and resource efficiency.

Furthermore, the framework includes 
intelligent auto-offloading, where AI 
plays a crucial role in determining 
how and when to offload tasks from 
one device or layer (for example, edge) 
to another (for example, cloud) based 
on factors such as task characteristics, 
network conditions, and device capaci-
ties. This helps in minimizing latency, 
reducing bandwidth usage, and bal-
ancing load across devices.

Despite these advantages, there are 
several future directions and chal-
lenges to realize such a service frame-
work. Developing AI models that can 

effectively handle the complexity 
and dynamics of large-scale, heteroge-
neous AIoT systems is a significant chal-
lenge. Finally, ensuring the robustness 
and reliability of AI-driven decisions 
in the face of uncertainties and anom-
alies in real-world AIoT environments 
is another crucial challenge.

Quantum computing for AIoTaS. As 
highlighted by Gill et al.,30 quantum 
computing holds the potential to funda-
mentally reshape AI. Similarly, it could 
significantly impact the realm of AIoT 
as a service system, especially in con-
texts demanding large-scale computa-
tion and data analysis. It could speed up 
certain calculations, including complex 
optimization and ML tasks, thus poten-
tially enhancing the speed, efficiency, 
and capabilities of AI algorithms in AIoT 
systems. Moreover, the large volume 
of data generated by IoT devices could 

potentially be processed more efficiently 
using quantum computers, given their 
capacity for parallel computation and 
superior computational power.

However, despite its potential, quan-
tum computing is still in its early stages 
of development and faces significant 
technical challenges, as outlined below.

›› Technical difficulties: One of the 
key challenges lies in overcom-
ing technical issues related to 
quantum bit (qubit) stability and 
error correction. Quantum com-
puting still needs significant 
advancements to ensure the con-
sistent and error-free operation 
of quantum computers.

›› Integration with existing technol-
ogies: The task of integrating 
quantum computing with the 
existing technologies utilized 
in AIoTS systems remains a 

FIGURE 5. Illustrative service framework architecture.
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considerable challenge and 
an active area of research. 
The development of a robust 
framework capable of accom-
modating these varied tech-
nologies presents significant 
difficulties.

›› Applicability in AIoT systems: Not 
all AIoT systems will require the 
computational power offered by 
quantum computing. For many 
IoT applications, traditional com-
puting technologies may still be 
sufficient, when combined with 
techniques such as fog or edge 
computing to reduce data trans-
mission and cloud computing for 
scalable storage and processing.

This study has presented a generic 
framework for constructing 
three possible services of AIo-

TaS: small private, big public, and small 
public. By mapping the training and 
federation tasks to the cloud–edge–
fog paradigms, 31 possible mappings 
have been identified, comprising seven 
small-private services, seven big-pub-
lic services, and 17 small-public ser-
vices. Therefore, it is expected that the 
majority of AIoTaS applications might 
be deployed as big-public services, 
with only the most sensitive applica-
tions being deployed as small-private 
services. In terms of operational costs, 
employing only the edge is preferable 
for running services on architecture. 
However, further optimization studies 
are required to determine the optimal 
mapping for each service, which mini-
mizes the service delay to the user and 
the capacity cost to the provider. Fur-
thermore, additional work is needed to 
develop an effective service framework 
for managing the operations of the dis-
tributed AIoTaS architecture. 
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