
68 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

RESEARCH FEATURE

Network architects often
rely on a software-defined
network (SDN) to decou-
ple the control plane from

the data plane for higher program-
mability.1 They can then use net-
work function virtualization (NFV)
to extend the data plane to outsource
service functions (SFs), which allows
service providers to deploy virtual
SFs on commodity servers instead of
on specialized hardware. Virtualiza-
tion facilitates the dynamic instantiation of SFs to meet
resource requirements from input traffic, which effec-
tively lowers deployment cost.

However, this strategy puts an extreme burden on
the centralized controller in a large datacenter network,
which manages a set of switches through a southbound
interface such as that defined by the Open Networking
Foundation’s OpenFlow specification.2 An SDN provides
flexible connectivity between switches and hosts, but
providing value-added services exclusively through the

controller is not a scalable solution, and passing packets
from the switches to the controller will incur excessive
communication overhead.3,4 The controller can chain
SFs—order their sequence and bind them together in a
group—by configuring the data plane to support NFV.
However, load balancing with SF chains can rapidly
overwhelm the controller in such a large network.

To address this issue, we developed Balanced Hash
Tree (BHT), a load-balancing mechanism for SF chain-
ing, service routing, and traffic steering. Rather than

Balanced Hash Tree (BHT) is a mechanism for

service function (SF) chaining, service routing,

and traffic steering that enables switches to

select SF instances for load balancing without

involving the controller. In an experimental

evaluation, BHT decreased packet-in message-

processing time by 92.5 percent and achieved

near-perfect load-balancing performance.

Balanced Service Chaining
in Software-Defined
Networks with Network
Function Virtualization
Po-Ching Lin, National Chung Cheng University

Ying-Dar Lin and Cheng-Ying Wu, National Chiao Tung University

Yuan-Cheng Lai, National Taiwan University of Science and Technology

Yi-Chih Kao, National Chiao Tung University

RESEARCH FEATURE

 N O V E M B E R 2 0 1 6 69

relying on the controller, BHT imple-
ments load balancing on the switches
through the select group table, as
described in the OpenFlow specifica-
tion, which requires processing to be
based on a switch-computed selec-
tion algorithm.2 In BHT, switches use
a hashing-based algorithm to deter-
mine the output port for load balancing
among an SF’s instances, and the switch
uses the select group type to assign each
flow to an action bucket. Flow distribu-
tion is similar to the well-known equal-
cost multipath routing (ECMP) strategy,
which balances loads using multiple
equal-cost paths between two neigh-
boring hops (en.wikipedia.org/wiki
/Equal-cost_multi-path_routing). How-
ever, BHT is different because it also con-
siders service chaining between SFs and
can assign weights to different paths.

BHT has proven to be a successful
alternative to load balancing through
the controller—an approach taken by
many existing load-balancing schemes.
In a performance evaluation, BHT
reduced packet-in message- processing
time by 92.5 percent and its load-
balancing performance was within 2.4
to approximately 5 percent of perfect.

SERVICE FUNCTION CHAINING
AND LOAD BALANCING
A service chain, which is an ordered
sequence of SFs, is typically used to
build a required network service. For
example, to configure web traffic to
go through a firewall, an administra-
tor can use SF chaining to combine
and order intrusion-prevention and
load-balancing functions; the control-
ler can then instruct the switches to
redirect traffic through the SFs in that
chain.5 The Internet Engineering Task
Force (IETF) defines the architecture for

SF chaining,6 but in simple terms, for
each SF chaining path, a tunnel is estab-
lished between the roots of the trees of
any two successive SFs—meaning that
the entire SF chaining path consists of
multiple tunnels.

Balancing through switches
OpenFlow switches process incom-
ing traffic through a pipeline of one
or more flow tables and determine the
actions on a packet by matching the
entries in the flow tables. If a switch
cannot match any of the flow entries,
it either drops the packet or sends a
packet-in message to the controller to
ask how to process the packet. In the
latter case, the controller sends the
switch a packet-out or a flow-modify
message telling it how to process the
packet and configure the flow table.
The multipart message has the added
benefit of allowing the controller to
collect information from the switches,
such as port statistics.

When a matched flow entry’s actions
specify that a packet should go to a
specific group entry, the packet must
be processed according to the actions
specified in the group entry’s action
buckets, which are determined by the
entry’s group type. OpenFlow sup-
ports four group types: all, indirect, fast
failover, and select. For the select type,
one bucket in the group entry is exe-
cuted, depending on the selection algo-
rithm, but the algorithm’s configura-
tions and states are left unspecified.

Network function virtualization
NFV supports running virtualized
SFs on commodity servers and makes
it easier to deploy SF instances on the
virtualization layer, increasing both
scalability and flexibility.7 The NFV

infrastructure includes management
and orchestration components, which
determine the service chain for spe-
cific traffic. The controller is then pro-
grammed to enforce the orchestration.

When queried from the ingress
switch that classifies incoming traffic,
the controller runs service routing and
then configures the switches to enforce
the SF chain by traffic steering. Service
routing is responsible for finding the
optimal path through a particular ser-
vice chain, given available resources in
the NFV infrastructure. In traffic steer-
ing, the switches steer incoming traffic
according to the flow entries set by the
controller.

Network service header
The European Telecommunications
Standards Institute (ETSI) specification
on OpenFlow-based traffic steering8
describes it as the process of matching
five tuples in each incoming packet to
set entries in the flow table. However,
per-flow matching incurs a large num-
ber of flow entries because the same
SF chaining path must be set multiple
times for each group of five tuples.

To address that problem, the IETF
has proposed using the network service
header (NSH),9 which enables traffic
steering and service chaining to be car-
ried out in the service plane.10 The NSH
carries two critical fields: the service
path identifier (SPI), which identifies an
SF chaining path; and the service index
(SI), which identifies the SF’s location in
the path. The SI decreases by 1 each time
a packet travels through an SF (after the
SF is finished). The combination of SPI
and SI determines the tunnels through
which the packets will pass.

The NSH efficiently reduces the
number of entries for traffic steering

BHT BALANCES CHAINING BY REDIRECTING
INCOMING FLOWS TO THE OPTIMAL

SERVICE FUNCTION WHILE MITIGATING THE
CONTROLLER’S WORKLOAD.

70 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

because multiple SF chaining paths
share the tunnels. The tunnel to be
transformed for the next SF might con-
sist of multiple equivalent instances for
load balancing. The IETF draft does not
specify the exact balancing method.

Controller-based balancing
Several proposed systems balance the
load among SF instances, but all involve
using the controller. One strategy
implements multiple load- balancing
algorithms on the controller, such as
random, round-robin and load-based
methods.10 When it receives a packet-in
message, the controller selects an SF
instance according to the algorithms
and then sets the flow entries. Another
approach uses a dedicated controller
for each service network to monitor SF
instance loads for load balancing.11 Yet
another system monitors the server
loads and the network status for process-
ing packet-in messages when some flows
request services.12 A system for resource
management and load balancing sets
flow entries to divide incoming traffic.13

In all these systems, when the con-
troller receives a packet-in message,
it must track the loads of SF instances

to select the appropriate one and then
set the flow entries accordingly—tasks
that greatly increase its workload.

HOW BALANCED
HASH TREE WORKS
BHT has two main objectives: to bal-
ance SF chaining in a way that redirects
incoming flows to the desired SFs, and
to mitigate the controller’s workload.

As Figure 1 shows, BHT establishes
a tree of SFs and uses group entries to
split incoming traffic among the SF
instances. We assume that the data-
center network provides the NFV infra-
structure, the network has a fat-tree
topology, and the controller has infor-
mation about both the network topol-
ogy and the SF instances’ locations. In
this design, a service chain is mapped
to a single service-chaining path that
interconnects the roots of trees of SFs
based on the NSH.

In Figure 1, SF locations are hetero-
geneous (different instances in the
same pod), but BHT works equally well
with homogenous locations (identi-
cal instances in the same pod). The
intratree path is through the entries in
the select group type, and the packets

are redirected back to the root when
an SF is finished. Thus, when the con-
troller receives a packet-in message, it
needs only to establish an intertree tun-
nel; it does not have to specify which
instances will provide SFs.

Traffic steering
After classification to determine its
traffic type (such as HTTP), a packet is
mapped to the desired service chain
according to the configured policy. It is
then tagged with the NSH, which car-
ries SPI and SI for traffic steering. SPI
carries the service-chaining path iden-
tifier, and SI is initialized to the length
of service chain.

Once SPI and SI determine the tun-
nels through which the packets will
pass, BHT establishes the tunnels by
imposing the NSH between the origi-
nal packet and the Multi-Protocol Label
Switching (MPLS) transport encapsu-
lation in the outer network. We chose
MPLS over a virtual extensible LAN
(VXLAN) or generic routing encapsu-
lation because its label format is sim-
ple and sufficient for our use. In an
operation similar to that in MPLS, the
switches in both ends of a tunnel will

Root1 Root2 Root3 Root4

Intertree tunnel

Intratree path

Flow table

VMVM

Software
switch

sv1 sv1 sv3 sv4sv1sv3 sv3 sv3 sv4sv4 sv2 sv4 sv2 sv2
sv2sv1

Flow table

FIGURE 1. How Balanced Hash Tree (BHT) balances service functions (SFs). In this design, each physical server has one OpenFlow software
switch, which runs two identical SF instances on two virtual machines (VMs), as shown in the enlarged box at far right. Multiple SFs make up
an SF chain, represented as sv1, sv2, sv3, … svi. In the example, one server processes one chain. The SF path through the network is divided
into an intertree tunnel, which interconnects the roots of successive SF trees through the flow entries (lines above the horizontal line), and
the intratree path for distributing traffic (lines below the horizontal line). The arrows to the left represent packet-forwarding directions: up
(solid), down (dashed), and both ways (double arrow).

 N O V E M B E R 2 0 1 6 71

distribute a locally unique label, and
through repeated label switching the
packets will move through the tun
nel. After an SF processes a packet, the
packet goes back to the root switch,
which will change the tunnel and re
direct the packet to the next SF depend
ing on the SPI and SI.

The BHT module on the controller
contains two functions related to traffic
steering: Packet-In_processing() and
Service_chain_setting(). We assume
the controller knows the locations of
the SF instances in terms of the attached
switches and ports. It determines the
group entries for each intermediate
switch in the tree and then adds the
group entries with the select group type
(whether the SF locations are hetero
geneous or homogeneous).

When the Packet-In_processing()
function receives a packetin message

from the ingress switch, the controller
assigns an SF chain to the flow specified
in the message and checks whether the
SF chain has been set. If it has, the con
troller sets a flow entry on the ingress
switch to tag the flow’s packets with the
NSH. If it has not been set, the packetin
processing function calls the Service
_chain_setting() function and assigns
the new SF chain to the specified flow.

BHT assigns a unique path identifier
to the SF chaining path and then checks
whether every tunnel between any two
successive SFs has been established. If
it has, BHT uses SPI and SI as the match
fields to set the entries on the root
switch for changing the tunnel when
the packets return to the root switch
from a finished SF. Otherwise, it estab
lishes a tunnel by distributing a locally
unique label for the tunnel and then
setting the entries for label switching.

Figure 2 shows a trafficsteering
example for SF chain sc = [sv1, sv2, sv3].
After an SF is finished, the correspond
ing root switch will change the tunnels
(by changing the labels)—Root1 for the
tunnel from Root1 to Root2, Root2 for
the tunnel from Root2 to Root3, and
Root3 for the tunnel from Root3 to the
egress switch. The SF chain intercon
nects only the SF root switches, not the
physical servers.

Load balancing
Because the controller knows the loca
tions of SF instances, it can construct
the tree for each SF and set the group
entries according to the number of
instances and their locations. In addi
tion to the two trafficsteering func
tions, the BHT module on the controller
contains the Load_balancing() func
tion, which performs three tasks:

sc = [sv1, sv2, sv3]
path= [ingress, root1, root2, root3, egress]

path_id = 1 Match �elds
SPI = 1, SI = 2 Output = Group table

SPI = 1, SI = 1
Label = 25

Output = sw2

sv2 sv2

dst_port = 80
Tag SPI = 1, SI = 3

Label = 5
Output : sw1

Label = 5 Output = root1

Label = 10
Label = 10 à 15

Output = sw2

Label = 35 Output = root3

Label = 40 Output = egress

Root2

sw1 sw2Ingress Egress

SPI = 1, SI = 3 Output = Group table

SPI = 1, SI = 2
Label = 10

Output = sw1

Tunnel ingress, root1
Tunnel root1, root2

Tunnel root2, root3
Tunnel root3, egress

Root3

sv3 sv3
sv1

sv1

sw3

Match �elds
Label = 15 Output = root2

Label = 25
Label = 25 à 35

Output = sw3

Root1

sv tunnel

Actions

Actions

Match �elds Actions

Match �elds Actions Match �elds Actions

Match �elds Actions

Intertree tunnel
Intratree path

FIGURE 2. An example of traffic steering for an SF chain in which Root1, Root2, and Root3 are the root switches for SFs sv1, sv2, and sv3.
The ingress switch first classifies incoming packets and initializes the service path identifier (SPI) and service index (SI) in the network
service header as well as the label in the Multi-Protocol Label Switching (MPLS) transport encapsulation. The flow tables on the three
root switches are in charge of changing the tunnel with a new label according to SPI and SI, while the other switches (sw1, sw2, and sw3)
perform label switching and forward packets. The egress switch removes the network service header and forwards the packets to their
original destination.

72 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

 › For each SF, it calculates the paths
from the switches to those SF
instances attached to the ingress
switch and leverages this infor-
mation to find the SF’s root switch
(the switch nearest the ingress
switch on the paths).

 › It counts the number of instances
to which an output port is
attached for each intermediate
node on the tree and records it as
tree information.

 › On the basis of the tree informa-
tion obtained, it determines the
actions and weights in the action
buckets and sets the entries in the
select group type.

Figure 3 shows an example of load
balancing in BHT.

Selection mechanism
of Open vSwitch
We assume that the network shown in
Figure 2 uses Open vSwitch (openvswitch
.org). The default selection mechanism
on Open vSwitch is to calculate a score
for each action bucket and have the
switch select the action bucket with
the highest score for the enforced

action. When an incoming packet is
assigned to an entry in the select group
type, the first step is to retrieve the
packet’s destination media access con-
trol (MAC) address and then hash it to
generate the basis value in the score
calculation. The second step is, for
each action bucket, hash its basis with
index i and multiply the hashing result
and the weight. The result is the action
bucket’s score. The score calculation is
formulated as

basis = hash_mac(dst_mac)
score = (hash_int(i,basis) & 0xffff) *
 bucket→weight

The default selection calculation
has a flaw, however. The hash func-
tions are the same on every switch, so
the packets with the same destination
MAC address will get the same result
with the same group entry, even on dif-
ferent switches. In other words, they
will be all forwarded to the same port,
and no packets will go through the
other ports.

For that reason, BHT uses a modified
calculation in which the destination
MAC address and the switch’s data path

identifier (dpid)—which allows the
controller to manage switches—are
hashed first to produce dpbasis, and
dpbasis and the action bucket’s index
are hashed next. With this modifica-
tion, selection varies with the switches
even with the same group entry, but the
selection for packets in the same flow is
still uniform. The modification is for-
mulated as

basis = hash_mac(dst_mac)
dpbasis = hash_int(dpid,basis) & 0xffff
score = (hash_int(i,dpbasis) & 0xffff) *
 bucket→weight

SAMPLE IMPLEMENTATION
To evaluate BHT’s performance, we
implemented it on the Ryu controller
(osrg.github.io/ryu) using our modi-
fication of the Open vSwitch’s default
selection algorithm.

The BHT module on Ryu con-
tained the Load_balancing(), Packet

-In_ processing(), and Service_chain

_ setting() functions. As implemented,
the first function uses Dijkstra’s algo-
rithm14 to calculate the SF trees and a
list to store tree information. We applied
parser.OFPGroupMod()—a function from

VM-A × 1 VM-A × 2 VM-A × 3 VM-A × 2

Port2 Port3

Port2

Port3

Port2 Port3

Ingress

select1

Index Weight Actions

Index Weight Actions

1 3

5

Output: 2

Output: 3

Output: 2

Output: 3

Output: 2

Output: 3

2

1 3

22

1 1

22

Action buckets

Index Weight Actions

Action buckets

Group ID Type

Group ID TypeGroup ID Type

select1

Action buckets

select1

Server
1 Server2 Server3 Server4

sw2 sw3

sw1 (Root1)

FIGURE 3. Load balancing in BHT. Physical servers can launch multiple VMs as SF instances, for example, SF-A in this case. After the tree
has been established, the Load_balancing() function sets the group entries with multiple action buckets. The buckets consist of vari-
ous forwarding ports, which are generated according to node branches. The corresponding weights are determined by the number of SF
instances (VM–A × n) on the physical servers reachable from the output ports.

 N O V E M B E R 2 0 1 6 73

the Ryu APIs—to set group entries
according to that information.

We had a packet-in message trig-
ger the Packet-In_processing() as
a thread, and used the packet_in

_handler() function to process the
message. If necessary, we could have
the packet-in message trigger the Ser-
vice_chain_setting() function, which
relies on Dijkstra’s algorithm to set a
new SF chaining path.

We did not include the NSH in our
implementation. Rather, we inserted
VLAN tags to carry the SPI and SI fields,
which simulated NSH use, and estab-
lished tunnels in the transport encap-
sulation using the label value in the dif-
ferentiated services code point (DSCP)
field—a six-bit field in the IP header
that specifies the per-hop behavior for a
given packet flow.

EVALUATION RESULTS
We used two servers in our experi-
ments. The first is an Intel Core i5-4590
running the Debian 7.7 OS at 3.30 GHz
on a VMware workstation with the
Ryu 3.15 controller and OpenFlow 1.3
switching protocol. The other server
is an Intel Core i7-4790K also running

Debian 7.7 but at 4.00 GHz and with
Open vSwitch version 2.3. We chose the
second server to emulate a datacenter
network’s tree topology by also run-
ning Mininet version 2.2 (mininet.org).
Mininet creates a realistic virtual net-
work that runs real kernel, switch, and
application code on a single machine.
Figure 4 shows the network configura-
tion used in our experiments.

The SF types are irrelevant to our
experimental results, and the loca-
tions of SFs can be either homogeneous
or heterogeneous. The traffic was sent
for 200 seconds, and the packet size
was consistently 1,514 bytes. Once we
sent all the traffic, we evaluated load-
balancing performance in terms of the
bytes received, which we considered
the workload of an SF instance.

Our objectives in conducting the
experiments were to evaluate packet-in
message-processing time and load-
balancing performance.

Packet-in message-
processing time
To set a baseline for comparing packet- in
message-processing times, we designed
a mechanism that imple ments load

balancing on the controller, as do many
existing schemes. The load-balancing
mechanism on the controller refers to
the received bytes as the workload of
an SF instance. When receiving a pack-
et-in message, but before calculating
the SF chaining path, the controller
sends a multi part request message to
get the port information of received
bytes on the software switches to
which the SF instances are attached.
The fewer bytes a software switch has
received, theoretically, the lighter the
load of the SF instances attached to it
will be.

After getting the received bytes
in a time interval from the software
switches, the controller selects the
instances attached to a software switch
with the lowest number of received
bytes (the least loaded instances) to pro-
vide the SF for load balancing. Finally,
the controller determines the SF chain-
ing path and sets the flow entries.

In this experiment, we assumed the
configuration in Figure 4: four SFs are
in the datacenter network (sv1 through
sv4), and each SF contains two instances
on each of the four physical serv-
ers for that SF. We generated 100 TCP

VMVM

Software
switch

Host1

Host2

Host100

Host101

...

Ingress switch

Links used in evaluation

Links not used in evaluation

Egress switch

sv2 sv3 sv4 sv4sv4sv1 sv2 sv3 sv3sv1 sv2 sv2 sv3 sv4
sv1

sv1 sv1 sv3 sv4sv1sv3 sv3 sv3 sv4sv4 sv2 sv4 sv2 sv2
sv2

Homogeneous

Heterogeneous

sv1

sv1

FIGURE 4. Network topology for our experiments to evaluate BHT’s load-balancing ability. We employed Mininet 2.2 to emulate a virtual
network. The VMs on Mininet emulate the SF instances. Mininet’s iperf tool generated 100 TCP connections with different destination
access control (MAC) addresses from Host1 to Host101 for emulating the flows that reach the desired SFs through SF chaining.

74 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

connections from Host1 to enforce the
same service chain over the four SFs.

Figure 5 shows processing times of
packet-in messages with and without
BHT. Packet-in processing time with-
out BHT includes the latency from the
queried switches reporting their load
information back to the controller. We
performed the queries in parallel by
multithreading, and latencies were typ-
ically on the order of milliseconds. Con-
sidering the processing time of 5.3 sec-
onds for 100 connections without BHT,
almost all the processing time is still

likely to be attributable to the control-
ler’s workload

Load-balancing performance
Figure 6 shows comparative load bal-
ancing for the same experiment. The
comparison covers only load balanc-
ing among the four physical servers for
each SF because the hypervisor han-
dles balancing among the VMs inside
the server. For each SF, the perfect
load balancing is 25 percent on each of
the four physical servers, so we eval-
uated load-balancing performance by

calculating the average absolute differ-
ence between the actual load and the
perfect load on each server.

Because the entry in the select group
type is implemented by hashing, the
loads are not as balanced as those with
load balancing without BHT, but the
absolute difference for BHT is within 2.4
to 5.0 percent of perfect performance.
The load balancing with BHT is slightly
better for heterogeneous SF allocation,
but the difference is insignificant for
any practical application. The results
show that BHT efficiently balances
loads among the servers, while simulta-
neously reducing the controller work-
load significantly.

Initial evaluations show that BHT can
be an effective-load balancing alter-
native to controller-based solutions,

and we have already identified areas
for extension. One is to accommodate
multi ple paths between adjacent SFs. In
the current design, BHT considers only
load balancing among the instances of
the same SF. Extending BHT to cover
load balancing among both the SF
instances and paths simultaneously is
an interesting issue for future work.
Another open question for additional
exploration is how to perform load bal-
ancing for diverse types of real-world
traffic in a datacenter network.

ACKNOWLEDGMENTS
The work described in this article was sup-
ported in part by the Ministry of Science
and Technology, Taiwan; Chunghwa Tele-
com and MediaTek; and the III Innovative
and Prospective Technologies Project (1/1)
of the Institute for Information Industry,
which is subsidized by the Ministry of Eco-
nomic Affairs, Taiwan.

No. of connections (packet-in messages)
1

0.07 0.06

1.20

0.13

2.32

0.20

3.39

0.27

4.36

0.34

5.29

0.40

0

1

2

3

4

5

6

20 40 60 80 100

To
ta

l p
ro

ce
ss

in
g

tim
e

(s
)

(a)

No. of connections (packet-in messages)
1

0.13 0.15

1.38

0.17

2.41

0.22

3.30

0.29

4.29

0.34

5.30

0.40

0

1

2

3

4

5

6

20 40 60 80 100

To
ta

l p
ro

ce
ss

in
g

tim
e

(s
)

(b)

Without BHT

With BHT

Without BHT

With BHT

FIGURE 5. Processing times of packet-in messages with and without BHT. Times are in
terms of connection number, which is synonymous with the number of packet-in messages,
for (a) homogeneous and (b) heterogeneous SF locations. Time without BHT includes the
latency from the queried switches reporting their load information back to the controller.
With BHT, the controller outsources the selection of SF instances to the group table on the
switches, which effectively mitigates the controller’s workload. Total processing time with-
out BHT was 5.3 seconds and, with BHT, 0.4 seconds—a reduction of approximately 92.5
percent. The result is similar for homogenous and heterogeneous SF allocation.

 N O V E M B E R 2 0 1 6 75

REFERENCES
1. Software-Defined Networking: The New

Norm for Networks, white paper, Open
Networking Foundation, 2012; www
.opennetworking.org/images/stories
/downloads/sdn-resources/white
-papers/wp-sdn-newnorm.pdf.

2. OpenFlow Switch Specification, Version
1.5.0, ONF TS-020, Open Networking
Foundation, 19 Dec. 2014; www.open
networking.org/images/stories/down
loads/sdn-resources/onf-specifications
/openflow/openflow-switch-v1.5.0
.noipr.pdf.

3. B. Nunes et al., “A Survey of Software-
Defined Networking: Past, Present,
Future of Programmable Networks,’’
IEEE Communications Surveys & Tutori-
als, vol. 16, no. 3, 2014, pp. 1617–1634.

4. Y.D. Lin et al., “An Extended SDN
Architecture for Network Function
Virtualization with a Case Study on
Intrusion Prevention,” IEEE Network,
vol. 29, no. 3, 2015, pp. 48–53.

5. P. Quinn and T. Nadeau, Problem State-
ment for Service Function Chaining,
IETF RFC 7498, Apr. 2015; tools.ietf
.org/html/rfc7498015.

6. J. Halpern and C. Pignataro, Service
Function Chaining (SFC) Architecture,
IETF RFC 7665, Oct. 2015; tools.ietf
.org/html/rfc7665.

7. R. Mijumbi et al., “Network Function
Virtualization: State-of-the-Art and
Research Challenge,” IEEE Commu-
nications Surveys & Tutorials, vol. 18,
no. 1, 2016, pp. 236–262.

8. Group Specification: Network Func-
tions Virtualisation (NFV); Virtual
Network Functions Architecture,
ETSI GS NFV-SWA 001 v1.1.1, Euro-
pean Telecommunications Standards
Inst.; Dec. 2014; www.etsi.org/deliver
/etsi_gs/NFV-SWA/001_099/001/01.01
.01_60/gs_NFV-SWA001v010101p.pdf.

With BHT

Pe
rc

en
ta

ge
 o

f
10

0
co

nn
ec

tio
ns

0
sv1 sv2 sv3 sv4

sv1 sv2 sv3 sv4

5
10
15

20
25
30
35

40
45

(5.0%) (2.5%) (3.7%) (3.4%)

Without BHT

Pe
rc

en
ta

ge
 o

f
10

0
co

nn
ec

tio
ns

0
5

10

15
20

25
30

35

40
45

(0.4%) (0.4%) (0.4%) (0.5%)

sv1 sv2 sv3 sv4

With BHT

Pe
rc

en
ta

ge
 o

f
10

0
co

nn
ec

tio
ns

0
5

10

15
20

25
30

35

40
45

(2.4%) (3.0%) (4.0%) (3.5%)

sv1 sv2 sv3 sv4

Without BHT

Pe
rc

en
ta

ge
 o

f
10

0
co

nn
ec

tio
ns

0
5

10

15
20

25
30

35

40
45

(0.5%) (0.5%) (0.5%) (0.6%)

(a)

(b)

23.1 16.9

30.2
29.8

27.1
27.1 20.1

20.1

25.4
25.4
27.4
27.4

26.9

22.6

20.1

30.4

28.5
28.5 20.6

22.7
28.2

24.5

24.7

25.5
25.3

24.5
24.7

25.5
25.3

24.8
25.4

24.4
25.4

24.8

25.1

25.8
24.3

21.0
24.2

27.6

27.2

22.3
30.9

25.1 21.7

31.2

26.7 19.2

22.9

28.4

28.6

23.0 20.0

25.3

24.9

24.1
25.7

26.0
24.6

24.8
24.6

24.6

24.5
24.9

26.0

24.4
25.5

25.6

24.5

FIGURE 6. Comparison of load-balancing performance. We compared load balancing
on four physical servers with (a) homogenous and (b) heterogeneous locations with and
without BHT. The horizontal dashed line represents perfect balancing at 25 percent. The
numbers in parentheses above the bars denote the percentage departure of the average
load balancing (average of the numbers over the four bars) from a perfect load balancing for
that SF. In (b) with BHT, the sv1 balancing was within 2.4 percent of the perfect balance.

76 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

9. P. Quinn and U. Elzur, “Network Ser-
vice Header,” IETF Internet Draft,
work in progress, 26 May 2016.

10. H. Uppal and D. Brandon, “Open-
Flow-Based Load Balancing,” cite
seerx.ist.psu.edu/viewdoc/download
?doi=10.1.1.168.5150&rep=rep1&
type=pdf.

11. M. Koerner and O. Kao, “Multiple
Service Load-balancing with Open-
Flow,” Proc. IEEE 13th Int’l Conf. High-
Performance Switching and Routing
(HPSR 12), 2012, pp. 210–214.

12. N. Handigol et al.,“Plug-n-Serve:
Load-Balancing Web Traffic Using
OpenFlow,” Proc. ACM SIGCOMM Conf.
Data Communication (SIGCOMM 09),

2009; conferences.sigcomm.org
/sigcomm/2009/demos/sigcomm
-pd-2009-final26.pdf.

13. Z. Qazi et al., “SIMPLE-fying Middle-
box Policy Enforcement Using SDN,”
Computer Communication Rev., vol. 43,
no. 4, 2013, pp. 27−38.

14. E.W. Dijkstra, “A Note on Two Prob-
lems in Connexion with Graphs,”
Numerische Mathematik, vol. 1, 1959,
pp. 269−271.

ABOUT THE AUTHORS

PO-CHING LIN is an associate professor in the Department of Computer and
Information Science at National Chung Cheng University (CCU). His research
interests include network security, network traffic analysis, and the evaluation
of network systems performance. Lin received a PhD in computer science from
National Chiao Tung University (NCTU). Contact him at pclin@cs.ccu.edu.tw.

YING-DAR LIN is a Distinguished Professor in the Department of Computer
Science at NCTU and director of the Network Benchmarking Lab. His research
interests include transforming networks into clouds, software-defined networks
(SDNs), network function virtualization, 5G/mobile edge computing, and network
security. Lin received a PhD in computer science from the University of California,
Los Angeles. He is an IEEE Distinguished Lecturer, an Open Networking Founda-
tion research associate, and coauthor of Computer Networks: An Open Source

Approach (McGraw-Hill, 2011). Contact him at ydlin@cs.nctu.edu.tw.

CHENG-YING WU is an engineer at MediaTek. While conducting the research
reported in this article he was a graduate student at NCTU. His research interests
include network architecture, SDNs, and cloud computing. Wu received an MS in
computer science from NCTU. Contact him at cywu.cs02g@nctu.edu.tw.

YUANG-CHENG LAI is a professor in the Department of Information Management
at National Taiwan University of Science and Technology. His research interests
include wireless networks, network performance evaluation, network security,
and social networks. Lai received a PhD in computer science from NCTU. He is a
member of IEEE. Contact him at laiyc@cs.ntust.edu.tw.

YI-CHIH KAO is director of the Network and System Division of the Information
Technology Service Center at NCTU. His research interests include cyber foren-
sics, network performance evaluation, SDNs, and service design. Kao received a
PhD in industrial engineering and management from NCTU. He is a member of ACM
and the Project Management Institute (PMI). Contact him at ykao@mail.nctu.edu.tw.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org.

For more information
on paper submission,
featured articles, call-for-
papers, and subscription
links visit:

www.computer.org/tsusc

IEEE TRANSACTIONS ON

SUSTAINABLE
COMPUTING

NEW
IN 2016

T-SUSC is financially
cosponsored by IEEE

Computer Society and IEEE
Communications Society

T-SUSC is technically cosponsored
by IEEE Council on Electronic

Design Automation

SUBSCRIBE
AND SUBMIT

