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Network architects often 
rely on a software-defined 
network (SDN) to decou-
ple the control plane from 

the data plane for higher program-
mability.1 They can then use net-
work function virtualization (NFV) 
to extend the data plane to outsource 
service functions (SFs), which allows 
service providers to deploy virtual 
SFs on commodity servers instead of 
on specialized hardware. Virtualiza-
tion facilitates the dynamic instantiation of SFs to meet 
resource requirements from input traffic, which effec-
tively lowers deployment cost.

However, this strategy puts an extreme burden on 
the centralized controller in a large datacenter network, 
which manages a set of switches through a southbound 
interface such as that defined by the Open Networking 
Foundation’s OpenFlow specification.2 An SDN provides 
flexible connectivity between switches and hosts, but 
providing value-added services exclusively through the 

controller is not a scalable solution, and passing packets 
from the switches to the controller will incur excessive 
communication overhead.3,4 The controller can chain 
SFs—order their sequence and bind them together in a 
group—by configuring the data plane to support NFV. 
However, load balancing with SF chains can rapidly 
overwhelm the controller in such a large network.

To address this issue, we developed Balanced Hash 
Tree (BHT), a load-balancing mechanism for SF chain-
ing, service routing, and traffic steering. Rather than 
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relying on the controller, BHT imple-
ments load balancing on the switches 
through the select group table, as 
described in the OpenFlow specifica-
tion, which requires processing to be 
based on a switch-computed selec-
tion algorithm.2 In BHT, switches use 
a hashing-based algorithm to deter-
mine the output port for load balancing 
among an SF’s instances, and the switch 
uses the select group type to assign each 
flow to an action bucket. Flow distribu-
tion is similar to the well-known equal-
cost multipath routing (ECMP) strategy, 
which balances loads using multiple 
equal-cost paths between two neigh-
boring hops (en.wikipedia.org/wiki 
/Equal-cost_multi-path_routing). How-
ever, BHT is different because it also con-
siders service chaining between SFs and 
can assign weights to different paths.

BHT has proven to be a successful 
alternative to load balancing through 
the controller—an approach taken by 
many existing load-balancing schemes. 
In a performance evaluation, BHT 
reduced packet-in message- processing 
time by 92.5 percent and its load- 
balancing performance was within 2.4 
to approximately 5 percent of perfect.

SERVICE FUNCTION CHAINING 
AND LOAD BALANCING
A service chain, which is an ordered 
sequence of SFs, is typically used to 
build a required network service. For 
example, to configure web traffic to 
go through a firewall, an administra-
tor can use SF chaining to combine 
and order intrusion-prevention and 
load-balancing functions; the control-
ler can then instruct the switches to 
redirect traffic through the SFs in that 
chain.5 The Internet Engineering Task 
Force (IETF) defines the architecture for 

SF chaining,6 but in simple terms, for 
each SF chaining path, a tunnel is estab-
lished between the roots of the trees of 
any two successive SFs—meaning that 
the entire SF chaining path consists of 
multiple tunnels.

Balancing through switches
OpenFlow switches process incom-
ing traffic through a pipeline of one 
or more flow tables and determine the 
actions on a packet by matching the 
entries in the flow tables. If a switch 
cannot match any of the flow entries, 
it either drops the packet or sends a 
packet-in message to the controller to 
ask how to process the packet. In the 
latter case, the controller sends the 
switch a packet-out or a flow-modify 
message telling it how to process the 
packet and configure the flow table. 
The multipart message has the added 
benefit of allowing the controller to 
collect information from the switches, 
such as port statistics.

When a matched flow entry’s actions 
specify that a packet should go to a 
specific group entry, the packet must 
be processed according to the actions 
specified in the group entry’s action 
buckets, which are determined by the 
entry’s group type. OpenFlow sup-
ports four group types: all, indirect, fast 
failover, and select. For the select type, 
one bucket in the group entry is exe-
cuted, depending on the selection algo-
rithm, but the algorithm’s configura-
tions and states are left unspecified.

Network function virtualization
NFV supports running virtualized 
SFs on commodity servers and makes 
it easier to deploy SF instances on the 
virtualization layer, increasing both 
scalability and flexibility.7 The NFV 

infrastructure includes management 
and orchestration components, which 
determine the service chain for spe-
cific traffic. The controller is then pro-
grammed to enforce the orchestration.

When queried from the ingress 
switch that classifies incoming traffic, 
the controller runs service routing and 
then configures the switches to enforce 
the SF chain by traffic steering. Service 
routing is responsible for finding the 
optimal path through a particular ser-
vice chain, given available resources in 
the NFV infrastructure. In traffic steer-
ing, the switches steer incoming traffic 
according to the flow entries set by the 
controller.

Network service header
The European Telecommunications 
Standards Institute (ETSI) specification 
on OpenFlow-based traffic steering8 
describes it as the process of matching 
five tuples in each incoming packet to 
set entries in the flow table. However, 
per-flow matching incurs a large num-
ber of flow entries because the same 
SF chaining path must be set multiple 
times for each group of five tuples.

To address that problem, the IETF 
has proposed using the network service 
header (NSH),9 which enables traffic 
steering and service chaining to be car-
ried out in the service plane.10 The NSH 
carries two critical fields: the service 
path identifier (SPI), which identifies an 
SF chaining path; and the service index 
(SI), which identifies the SF’s location in 
the path. The SI decreases by 1 each time 
a packet travels through an SF (after the 
SF is finished). The combination of SPI 
and SI determines the tunnels through 
which the packets will pass.

The NSH efficiently reduces the 
number of entries for traffic steering 

BHT BALANCES CHAINING BY REDIRECTING 
INCOMING FLOWS TO THE OPTIMAL 

SERVICE FUNCTION WHILE MITIGATING THE 
CONTROLLER’S WORKLOAD.
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because multiple SF chaining paths 
share the tunnels. The tunnel to be 
transformed for the next SF might con-
sist of multiple equivalent instances for 
load balancing. The IETF draft does not 
specify the exact balancing method.

Controller-based balancing
Several proposed systems balance the 
load among SF instances, but all involve 
using the controller. One strategy 
implements multiple load- balancing 
algorithms on the controller, such as 
random, round-robin and load-based 
methods.10 When it receives a  packet-in 
message, the controller selects an SF 
instance according to the algorithms 
and then sets the flow entries. Another 
approach uses a dedicated controller 
for each service network to monitor SF 
instance loads for load balancing.11 Yet 
another system monitors the server 
loads and the network status for process-
ing packet-in messages when some flows 
request services.12 A system for resource 
management and load balancing sets 
flow entries to divide incoming traffic.13

In all these systems, when the con-
troller receives a packet-in message, 
it must track the loads of SF instances 

to select the appropriate one and then 
set the flow entries accordingly—tasks 
that greatly increase its workload.

HOW BALANCED 
HASH TREE WORKS
BHT has two main objectives: to bal-
ance SF chaining in a way that redirects 
incoming flows to the desired SFs, and 
to mitigate the controller’s workload.

As Figure 1 shows, BHT establishes 
a tree of SFs and uses group entries to 
split incoming traffic among the SF 
instances. We assume that the data-
center network provides the NFV infra-
structure, the network has a fat-tree 
topology, and the controller has infor-
mation about both the network topol-
ogy and the SF instances’ locations. In 
this design, a service chain is mapped 
to a single service-chaining path that 
interconnects the roots of trees of SFs 
based on the NSH.

In Figure 1, SF locations are hetero-
geneous (different instances in the 
same pod), but BHT works equally well 
with homogenous locations (identi-
cal instances in the same pod). The 
intratree path is through the entries in 
the select group type, and the packets 

are redirected back to the root when 
an SF is finished. Thus, when the con-
troller receives a packet-in message, it 
needs only to establish an intertree tun-
nel; it does not have to specify which 
instances will provide SFs.

Traffic steering
After classification to determine its 
traffic type (such as HTTP), a packet is 
mapped to the desired service chain 
according to the configured policy. It is 
then tagged with the NSH, which car-
ries SPI and SI for traffic steering. SPI 
carries the service-chaining path iden-
tifier, and SI is initialized to the length 
of service chain.

Once SPI and SI determine the tun-
nels through which the packets will 
pass, BHT establishes the tunnels by 
imposing the NSH between the origi-
nal packet and the Multi-Protocol Label 
Switching (MPLS) transport encapsu-
lation in the outer network. We chose 
MPLS over a virtual extensible LAN 
(VXLAN) or generic routing encapsu-
lation because its label format is sim-
ple and sufficient for our use. In an 
operation similar to that in MPLS, the 
switches in both ends of a tunnel will 

Root1 Root2 Root3 Root4

Intertree tunnel

Intratree path

Flow table

VMVM

Software 
switch

sv1 sv1 sv3 sv4sv1sv3 sv3 sv3 sv4sv4 sv2 sv4 sv2 sv2
sv2sv1

Flow table

FIGURE 1. How Balanced Hash Tree (BHT) balances service functions (SFs). In this design, each physical server has one OpenFlow software 
switch, which runs two identical SF instances on two virtual machines (VMs), as shown in the enlarged box at far right. Multiple SFs make up 
an SF chain, represented as sv1, sv2, sv3, … svi. In the example, one server processes one chain. The SF path through the network is divided 
into an intertree tunnel, which interconnects the roots of successive SF trees through the flow entries (lines above the horizontal line), and 
the intratree path for distributing traffic (lines below the horizontal line). The arrows to the left represent packet-forwarding directions: up 
(solid), down (dashed), and both ways (double arrow).
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distribute a locally unique label, and 
through repeated label switching the 
packets will move through the tun
nel. After an SF processes a packet, the 
packet goes back to the root switch, 
which will change the tunnel and re 
direct the packet to the next SF depend
ing on the SPI and SI.

The BHT module on the controller 
contains two functions related to traffic 
steering: Packet-In_processing() and 
Service_chain_setting(). We assume 
the controller knows the locations of 
the SF instances in terms of the attached 
switches and ports. It determines the 
group entries for each intermediate 
switch in the tree and then adds the 
group entries with the select group type 
(whether the SF locations are hetero
geneous or homogeneous).

When the Packet-In_processing() 
function receives a packetin message 

from the ingress switch, the controller 
assigns an SF chain to the flow specified 
in the message and checks whether the 
SF chain has been set. If it has, the con
troller sets a flow entry on the ingress 
switch to tag the flow’s packets with the 
NSH. If it has not been set, the packetin 
processing function calls the Service 
_chain_setting() function and assigns 
the new SF chain to the specified flow.

BHT assigns a unique path identifier 
to the SF chaining path and then checks 
whether every tunnel between any two 
successive SFs has been established. If 
it has, BHT uses SPI and SI as the match 
fields to set the entries on the root 
switch for changing the tunnel when 
the packets return to the root switch 
from a finished SF. Otherwise, it estab
lishes a tunnel by distributing a locally 
unique label for the tunnel and then 
setting the entries for label switching.

Figure 2 shows a trafficsteering 
example for SF chain sc = [sv1, sv2, sv3]. 
After an SF is finished, the correspond
ing root switch will change the tunnels 
(by changing the labels)—Root1 for the 
tunnel from Root1 to Root2, Root2 for 
the tunnel from Root2 to Root3, and 
Root3 for the tunnel from Root3 to the 
egress switch. The SF chain intercon
nects only the SF root switches, not the 
physical servers.

Load balancing
Because the controller knows the loca
tions of SF instances, it can construct 
the tree for each SF and set the group 
entries according to the number of 
instances and their locations. In addi
tion to the two trafficsteering func
tions, the BHT module on the controller 
contains the Load_balancing() func
tion, which performs three tasks:
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FIGURE 2. An example of traffic steering for an SF chain in which Root1, Root2, and Root3 are the root switches for SFs sv1, sv2, and sv3. 
The ingress switch first classifies incoming packets and initializes the service path identifier (SPI) and service index (SI) in the network 
service header as well as the label in the Multi-Protocol Label Switching (MPLS) transport encapsulation. The flow tables on the three 
root switches are in charge of changing the tunnel with a new label according to SPI and SI, while the other switches (sw1, sw2, and sw3) 
perform label switching and forward packets. The egress switch removes the network service header and forwards the packets to their 
original destination.
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 › For each SF, it calculates the paths 
from the switches to those SF 
instances attached to the ingress 
switch and leverages this infor-
mation to find the SF’s root switch 
(the switch nearest the ingress 
switch on the paths).

 › It counts the number of instances 
to which an output port is 
attached for each intermediate 
node on the tree and records it as 
tree information.

 › On the basis of the tree informa-
tion obtained, it determines the 
actions and weights in the action 
buckets and sets the entries in the 
select group type.

Figure 3 shows an example of load 
balancing in BHT.

Selection mechanism 
of Open vSwitch
We assume that the network shown in 
Figure 2 uses Open vSwitch (openvswitch 
.org). The default selection mechanism 
on Open vSwitch is to calculate a score 
for each action bucket and have the 
switch select the action bucket with 
the highest score for the enforced 

action. When an incoming packet is 
assigned to an entry in the select group 
type, the first step is to retrieve the 
packet’s destination media access con-
trol (MAC) address and then hash it to 
generate the basis value in the score 
calculation. The second step is, for 
each action bucket, hash its basis with 
index i and multiply the hashing result 
and the weight. The result is the action 
bucket’s score. The score calculation is 
formulated as

basis = hash_mac(dst_mac) 
score = (hash_int(i,basis) & 0xffff) *  
 bucket→weight

The default selection calculation 
has a flaw, however. The hash func-
tions are the same on every switch, so 
the packets with the same destination 
MAC address will get the same result 
with the same group entry, even on dif-
ferent switches. In other words, they 
will be all forwarded to the same port, 
and no packets will go through the 
other ports.

For that reason, BHT uses a modified 
calculation in which the destination 
MAC address and the switch’s data path 

identifier (dpid)—which allows the 
controller to manage switches—are 
hashed first to produce dpbasis, and 
dpbasis and the action bucket’s index 
are hashed next. With this modifica-
tion, selection varies with the switches 
even with the same group entry, but the 
selection for packets in the same flow is 
still uniform. The modification is for-
mulated as

basis = hash_mac(dst_mac) 
dpbasis = hash_int(dpid,basis) & 0xffff 
score = (hash_int(i,dpbasis) & 0xffff) * 
 bucket→weight

SAMPLE IMPLEMENTATION
To evaluate BHT’s performance, we 
implemented it on the Ryu controller 
(osrg.github.io/ryu) using our modi-
fication of the Open vSwitch’s default 
selection algorithm.

The BHT module on Ryu con-
tained the Load_balancing(), Packet 

-In_ processing(), and Service_chain 

_ setting() functions. As implemented, 
the first function uses Dijkstra’s algo-
rithm14 to calculate the SF trees and a 
list to store tree information. We applied 
parser.OFPGroupMod()—a function from 
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FIGURE 3. Load balancing in BHT. Physical servers can launch multiple VMs as SF instances, for example, SF-A in this case. After the tree 
has been established, the Load_balancing() function sets the group entries with multiple action buckets. The buckets consist of vari-
ous forwarding ports, which are generated according to node branches. The corresponding weights are determined by the number of SF 
instances (VM–A × n) on the physical servers reachable from the output ports.
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the Ryu APIs—to set group entries 
according to that information.

We had a packet-in message trig-
ger the Packet-In_processing() as 
a thread, and used the packet_in 

_handler() function to process the 
message. If necessary, we could have 
the packet-in message trigger the Ser-
vice_chain_setting() function, which 
relies on Dijkstra’s algorithm to set a 
new SF chaining path.

We did not include the NSH in our 
implementation. Rather, we inserted 
VLAN tags to carry the SPI and SI fields, 
which simulated NSH use, and estab-
lished tunnels in the transport encap-
sulation using the label value in the dif-
ferentiated services code point (DSCP) 
field—a six-bit field in the IP header 
that specifies the per-hop behavior for a 
given packet flow.

EVALUATION RESULTS
We used two servers in our experi-
ments. The first is an Intel Core i5-4590 
running the Debian 7.7 OS at 3.30 GHz 
on a VMware workstation with the 
Ryu 3.15 controller and OpenFlow 1.3 
switching protocol. The other server 
is an Intel Core i7-4790K also running 

Debian 7.7 but at 4.00 GHz and with 
Open vSwitch version 2.3. We chose the 
second server to emulate a datacenter 
network’s tree topology by also run-
ning Mininet version 2.2 (mininet.org). 
Mininet creates a realistic virtual net-
work that runs real kernel, switch, and 
application code on a single machine. 
Figure 4 shows the network configura-
tion used in our experiments.

The SF types are irrelevant to our 
experimental results, and the loca-
tions of SFs can be either homogeneous 
or heterogeneous. The traffic was sent 
for 200 seconds, and the packet size 
was consistently 1,514 bytes. Once we 
sent all the traffic, we evaluated load- 
balancing performance in terms of the 
bytes received, which we considered 
the workload of an SF instance.

Our objectives in conducting the 
experiments were to evaluate packet-in 
message-processing time and load- 
balancing performance.

Packet-in message-
processing time
To set a baseline for comparing  packet- in 
message-processing times, we designed 
a mechanism that imple ments load 

balancing on the controller, as do many 
existing schemes. The load-balancing 
mechanism on the controller refers to 
the received bytes as the workload of 
an SF instance. When receiving a pack-
et-in message, but before calculating 
the SF chaining path, the controller 
sends a multi part request message to 
get the port information of received 
bytes on the software switches to 
which the SF instances are attached. 
The fewer bytes a software switch has 
received, theoretically, the lighter the 
load of the SF instances attached to it 
will be.

After getting the received bytes 
in a time interval from the software 
switches, the controller selects the 
instances attached to a software switch 
with the lowest number of received 
bytes (the least loaded instances) to pro-
vide the SF for load balancing. Finally, 
the controller determines the SF chain-
ing path and sets the flow entries.

In this experiment, we assumed the 
configuration in Figure 4: four SFs are 
in the datacenter network (sv1 through 
sv4), and each SF contains two instances 
on each of the four physical serv-
ers for that SF. We generated 100 TCP 

VMVM
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switch

Host1

Host2

Host100

Host101

...

Ingress switch

Links used in evaluation

Links not used in evaluation

Egress switch

sv2 sv3 sv4 sv4sv4sv1 sv2 sv3 sv3sv1 sv2 sv2 sv3 sv4
sv1

sv1 sv1 sv3 sv4sv1sv3 sv3 sv3 sv4sv4 sv2 sv4 sv2 sv2
sv2

Homogeneous

Heterogeneous

sv1

sv1

FIGURE 4. Network topology for our experiments to evaluate BHT’s load-balancing ability. We employed Mininet 2.2 to emulate a virtual 
network. The VMs on Mininet emulate the SF instances. Mininet’s iperf tool generated 100 TCP connections with different destination 
access control (MAC) addresses from Host1 to Host101 for emulating the flows that reach the desired SFs through SF chaining.



74 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

connections from Host1 to enforce the 
same service chain over the four SFs.

Figure 5 shows processing times of 
packet-in messages with and without 
BHT. Packet-in processing time with-
out BHT includes the latency from the 
queried switches reporting their load 
information back to the controller. We 
performed the queries in parallel by 
multithreading, and latencies were typ-
ically on the order of milliseconds. Con-
sidering the processing time of 5.3 sec-
onds for 100 connections without BHT, 
almost all the processing time is still 

likely to be attributable to the control-
ler’s workload

Load-balancing performance
Figure 6 shows comparative load bal-
ancing for the same experiment. The 
comparison covers only load balanc-
ing among the four physical servers for 
each SF because the hypervisor han-
dles balancing among the VMs inside 
the server. For each SF, the perfect 
load balancing is 25 percent on each of 
the four physical servers, so we eval-
uated load-balancing performance by 

calculating the average absolute differ-
ence between the actual load and the 
perfect load on each server.

Because the entry in the select group 
type is implemented by hashing, the 
loads are not as balanced as those with 
load balancing without BHT, but the 
absolute difference for BHT is within 2.4 
to 5.0 percent of perfect performance. 
The load balancing with BHT is slightly 
better for heterogeneous SF allocation, 
but the difference is insignificant for 
any practical application. The results 
show that BHT efficiently balances 
loads among the servers, while simulta-
neously reducing the controller work-
load significantly.

Initial evaluations show that BHT can 
be an effective-load balancing alter-
native to controller-based solutions, 

and we have already identified areas 
for extension. One is to accommodate 
multi ple paths between adjacent SFs. In 
the current design, BHT considers only 
load balancing among the instances of 
the same SF. Extending BHT to cover 
load balancing among both the SF 
instances and paths simultaneously is 
an interesting issue for future work. 
Another open question for additional 
exploration is how to perform load bal-
ancing for diverse types of real-world 
traffic in a datacenter network. 
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FIGURE 5. Processing times of packet-in messages with and without BHT. Times are in 
terms of connection number, which is synonymous with the number of packet-in messages, 
for (a) homogeneous and (b) heterogeneous SF locations. Time without BHT includes the 
latency from the queried switches reporting their load information back to the controller. 
With BHT, the controller outsources the selection of SF instances to the group table on the 
switches, which effectively mitigates the controller’s workload. Total processing time with-
out BHT was 5.3 seconds and, with BHT, 0.4 seconds—a reduction of approximately 92.5 
percent. The result is similar for homogenous and heterogeneous SF allocation.
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FIGURE 6. Comparison of load-balancing performance. We compared load balancing 
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load balancing (average of the numbers over the four bars) from a perfect load balancing for 
that SF. In (b) with BHT, the sv1 balancing was within 2.4 percent of the perfect balance.
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