This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Clustering and Symbolic Regression for Power
Consumption Estimation on Smartphone
Hardware Subsystems

Ekarat Rattagan, Ying-Dar Lin, Fellow, IEEE, Yuan-Cheng Lai, Edward T.-H. Chu, and Kate Ching-Ju Lin

Abstract—The subsystem in a smartphone means its hardware compo-
nents, such as the CPU, GPU, and screen. Accurately estimating sub-
system power consumption of commercial smartphones is necessary for
applicable to wide research areas. Current subsystem power estimation
techniques are mostly based on power models, resulting in considerable
errors for various types of power consumption behaviors. These include
(1) asynchrony between the measured power consumption and the cor-
responding workload statistics, and (2) nonlinearity concerning CPU idle
states, pixels colors of AMOLED screen, and GPU workload statistics.
In this study we propose a novel utilization-based, subsystem power
estimation method for a smartphone, namely Clustering and Symbolic
Regression (CSR) that takes these power consumption behaviors into
account so as to increase power estimation accuracy. To address asyn-
chrony, we cluster the subsystem workload statistics into synchronous
and asynchronous groups by employing affinity propagation cluster-
ing. To address nonlinearity, we employ symbolic regression for fitting
measured power consumptions with respect to subsystem workload
statistics. We compare our approach with various power estimation
methods, Linear Regression Model (LM), Genetic Programming (GP),
and Support Vector Regression (SVR). The results show Mean Absolute
Percentage Error (MAPE) reduction between 23.61% and 42.55% on
the estimated power consumption of a simple (Nexus S) and complex
(Galaxy S4) smartphone subsystems

Index Terms—Smartphone subsystems, evolutionary computation,
clustering methods, power consumption modeling and estimation

1 INTRODUCTION

AST battery draining is the most critical issue for today
F smartphones, and smartphone applications play an im-
portant role in the cause of this major issue [1]. Without
clearly understanding the power consumption behaviors
of smartphone applications, developers may inadvertently

e E. Rattagan is with the Faculty of Information Science and Technology,
Mahanakorn University of Technology, Thailand.
E-mail: rekara40@mut.ac.th

e Y. D. Lin and K. C.-]. Lin are with Department of Computer Science,
National Chiao Tung University, Taiwan.
E-mail:ydlin, katelin@cs.nctu.edu.tw

e Y. C. Lai is with Department of Information Management, National
Taiwan University of Science and Technology, Taiwan.
E-mail: laiyc@cs.ntust.edu.tw

e E. T-H. Chu is with Department of Computer Science and Information
Engineering, National Yunlin University of Science and Technology,
Taiwan.
E-mail: edwardchu@yuntech.edu.tw

Manuscript received ; revised .

cause their applications to drain excessive power. It is thus
necessary for application developers to be aware of the
power usage of the applications they develop. Developers
can then monitor the power consumption of applications
from a power profile which gives the power consumption
information of smartphone subsystems as provided by man-
ufacturers such as an Android power profile [2]. However,
the power profile provided causes significant errors in old
smartphones. Dong and Zhong [3] determined the causes of
inaccuracies in generated power profiles and suggested that
the power profile of each smartphone should frequently be
reconstructed to reduce its inaccuracy.

In general, a power profile generated by smartphone
vendors contains a list of the correlation between subsys-
tem workload statistics and the associated measured power
consumption. However, reconstructing a power profile on
a commercial smartphone is labor-intensive, especially for
the power measurement task, as the manufacturer does not
provide any schematics for power measurement or a way
of measuring the consumption of each. Hence, to obtain the
power consumption of the target subsystems, most exist-
ing works employ a subtractive method, which works by
subtracting the power consumption of the other subsystems
(obtained from the generated subsystem power models)
from the total system power consumption (obtained from
an external power meter).

Recently several studies have proposed subsystem
power estimation modeling for commercial smartphones.
These studies can be classified into two categories:
utilization-based methods and instrumentation-based meth-
ods. Utilization-based methods refer to the profilers that
collect statistical data at a regular interval, whereas
instrumentation-based methods collect the required infor-
mation when a specific event occurs. In utilization-based
methods, Shy et al. [4] and Zhang et al. [5] used linear
regressions to build a power model of all major subsys-
tems. Kjrgaard and Blunck [6] applied a genetic algorithm,
whereas Ma et al. [7] used support vector regression to build
a power model of the subsystem, GPU, which nonlinearly
consumes power. On the other hand, in instrumentation-
based methods, Pathak et al. [8] stated that the tail energy,
a type of asynchronous power, consumed significant power,
and proposed system call-tracing to detect tail energy on
some subsystems such as GPS, SD-card, Wi-Fi, and 3G.

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Asynchronous power (ASP) is defined as the consumed
power which is uncorrelated with the corresponding sub-
system workload statistics. Cao et al. [9] instrumented the
browser in order to use WEB page load activities and re-
source information for modeling and predicting the energy
consumption of mobile Web page.

Although existing power modeling techniques can work
in general cases, they still have some limitations in handling
the power consumption behavior of complex subsystems,
leading to inaccurate power estimates. For example, the
linear regression techniques may generate good results for a
CPU where only two parameters (utilization and frequency)
are considered. However, they cause significant errors when
additional CPU parameters (idle time and entries) are con-
sidered [10]. These errors are the result of the presence
of nonlinear power consumption behaviors of CPU idle
time and entries. Nonlinear power (NLP) is defined as
the consumed power which is not linearly proportional
to the workload statistics. Moreover, ASP occurs in some
complex subsystems, such as GPU, which are too complex
to be detected by instrumentation-based approaches. Fur-
thermore, most of the existing works rely on those power
models whose forms (mathematical equations) are auto-
matically discovered by mathematical modeling methods
from machine learning or artificial intelligence techniques,
e.g., linear and nonlinear regressions, genetic programming,
support vector regression, etc. (named as a machine-defined
model form). Compared with a model whose forms are
manually defined by a human (named as a human-defined
model form), the traditional machine-defined model form
approach is only suitable for expressing the simple power
consumption behaviors. However, they are not applicable
to the complex power consumption behavior of modern
smartphones since they are associated with many param-
eters, e.g., a GPU is associated with about 19 parameters.
Generally speaking, the human-defined model form can
manually provide a more accurate model, while traditional
machine-defined model form can automatically generate a
less accurate model.

In this paper, we propose a novel utilization-based
power estimation method, called Clustering and Symbolic
Regression (CSR), to deal with ASP and NLP to improve the
estimation accuracy. To determine ASP, a clustering method
is introduced to first classify the data into samples correlated
with synchronous or asynchronous. In this work, the Affin-
ity Propagation (AP) clustering algorithm [11] is applied
since AP does not need to specify the number of clusters in
advance. This property of AP is suitable for discovering ASP
whose number of occurrences is difficult to predict. CSR
aims to detect ASP on various subsystems, especially for a
complex subsystem such as GPU, because it is impractical to
apply instrumentation-based approaches since GPU source
code is closed. Next, the obtained data sample, excluding
ASP, is passed through the symbolic regression (SR) method
of Eureqa software [12] in order to build a power model.
Unlike traditional SR, Eureqa addresses the relationship
among all parameters. We chose Eureqa because it is a
machine-defined model form approach which can automat-
ically discover power models whose mathematical forms
are similar to that generated by human-defined model form
approaches. With CSR, application developers can simply

2

and quickly build a power profile (power model) for each
smartphone being tested, especially for a smartphone which
includes complex subsystems, such as GPU and CPUs. Our
main contributions in this paper are as follows:

—We characterize two major behaviors of power con-
sumption in smartphones, i.e., nonlinear and ASP consump-
tion behaviors, which significantly cause the estimation
€eITOTS.

—To the best of our knowledge, we are the first to
use the clustering algorithm method, Affinity Propagation,
and Eureqa to improve the accuracy of estimated power
consumption of smartphone subsystems.

—We investigate the impacts of these two power con-
sumption behaviors, nonlinear and ASP consumption s, on
the real applications running on two different generations of
smartphone devices, Nexus S (single CPU core) and Galaxy
S4 (Exynos 5 Octa CPU cores).

The remainder of this paper is organized as follows:
Section 2 provides the background to our works, the briefs
of Affinity propagation and Eureqa; Section 3 gives the
problem statement and definition; Section 4 presents our
CSR approach; Sections 5 and 6 show the experimental
setup and experimental results, respectively, and Section 7
concludes this work.

2 BACKGROUND

In this section, we describe smartphone subsystems includ-
ing workload statistics and the aspects of power consump-
tion behaviors, such as ASP and NLP.

2.1 Smartphone Subsystems

A smartphone device is comprised of several hardware
subsystems, such as the CPU, GPU, screen, 3G interface,
Wi-Fi interface, GPS interface, and so on. Each subsystem
is associated with a variety of features. In the scope of this
paper, a CPU is associated with four parameters: utilization,
frequency, total time duration that a CPU stays in the idle
state per second (CPU idle time), and total number that a
CPU enters the idle state per second (CPU idle entries).
Each subsystem operates in various operating states. Each
operating state is represented as a vector storing all param-
eters values of a subsystem (workload statistics) and the
associated power consumption. For example, the workload
statistics of busy CPU usage can be presented by four
parameters, i.e., utilization = 100%, frequency = 1000 MHz,
idle time = 0 ms, idle entries = 0, and the associated power
consumption = 600 mW.

2.2 Power Consumption Behaviors

ASP is defined as the consumed power, which is uncor-
related with its corresponding workload statistics. In this
paper, we classify ASP into two types:

2.2.1 Predictable power

Predictable power is the ASP where occurrences can be
determined in advance, e.g., tail power which is the power
consumption that still resides on a subsystem associating
with low utilization, e.g., GPS , Wi-Fi [8], and 3G [13] . Fig. 1
shows the high tail power of 3G occurring during the FACH

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

—— Measured power =
—=— Packet rates (Tx+Rx)

4000
|
1000

Power(mW)
2000 3000
1 1
T T T
400 600 800
Packet rates (Tx+Rx)

1000

T
200

10
Time(sec)

Fig. 1: Asynchronous power behavior: Predictable power
such as tail power in 3G.

O Measured power
Hidden energy

Power(mW)
1500 2000 2500
| | |

1000
|

500
!

o 10

. 15
Time(sec)

Fig. 2: Asynchronous power behavior: Unpredictable power
such as hidden power in GPU.

(Forward Access Channel) state of Radio Resource Control
(RRC) protocol of about 6 seconds, i.e., between 9 to 15 sec.
In more detail, FACH is the cellular transmission state where
smartphones share transmission channels with other phones
to reduce the battery power consumption when there is not
much traffic to transmit.

2.2.2 Unredictable power

Unpredictable power is the ASP whose occurrences are
difficult to determine in advance, namely the hidden power.
Fig. 2 shows an example of hidden power, detected by CSR
in our experiment, occurring on GPU. Most of the current
works have proposed solutions which handle predictable
power only, but not unpredictable power. Pathak et al.
[8], for example, proposed an instrumentation-based power
modeling technique which probes the smartphone system
calls and application frameworks to capture tail power of
network HW components, but the GPU power remains
hidden. Cao et al. [9] also took only CPU and networks
into account, but ignores GPU hidden power usage caused
by activities such as web-based games. Maghazeh et al.
[14] sampled GPU workloads with low sample rates and
built a power model with linear regression, which is also
not enough to detect GPU hidden power. Although an
instrumentation-based technique is more accurate than a
utilization-based technique [15], it requires significant de-
velopment time and system knowledge to handle smart-

— —— Total system power
- - - Idle time of state O
~~~~~ Idle time of state 1
---- Idle time of state 2
--- Idle entry of state O
- Idle entry of state 1
—— Idle entry of state 2

Normalized data

Time(s)

Fig. 3: Nonlinear power consumption behavior of the CPU
idle time and entry in state C0-C2 of the CPU core0 on
Galaxy S4.

phone software systems, especially for commercial smart-
phones. In particular, it is a laborious task to apply the
instrumentation-based technique to a subsystem such as
GPU because of the lack of OS support for GPU abstractions
[16].

Nonlinear power is defined as the power which is not
linearly proportional to workload statistics. For example,
Fig. 3 illustrates the normalized power consumption of a
CPU to show the nonlinearity of the three levels of CPU
idle time and entries. Furthermore, the power nonlinearity
also appears for pixel colors on an AMOLED screen, i.e., the
HW component showing the highest power consumption
ratio compared to other HW components [17] [18] [19]. To
model the NLP of CPU idle states, Zhang et al. [10] proposed
a weighted linear model to fit the power consumption of
multi-core CPU idle states. For AMOLED screens, Radhika
et al. [17] and Xu et al. [18] proposed an exponential power
model to fit the subset of pixel colors to the associated
measured power. To model the NLP of GPU, Ma et al.
[7] proposed the statistical method which selects 5 out of
39 GPU parameters to build a Support Vector Regression
(SVR). Another statistical method used is a tree-based ran-
dom forest to build a GPU power estimation model [19].
However, most of the existing works for the GPU power
models are based on the studies of a desktop GPU such as
Nvidia. Also, the proposed solutions of Zhang et al. [10],
Radhika et al. [17], and Xu et al. [18] are all examples of a
human-defined model form, whereas those of Ma et al. [7]
and Chen et al. [20] are not.

2.3 Affinity Propagation Clustering

The Affinity Propagation (AP) clustering algorithm [11] is
based on the process of message passing between data
samples ¢ and j. Every data sample is considered as an
exemplar, the data that is the center of each cluster. Ex-
emplar continue exchanging messages, responsibility and
availability, with one another until a good set of exemplars
and corresponding clusters emerges. The responsibility mes-
sage, r(i,7), is sent from data sample i to data sample j, a
candidate exemplar, reflecting the accumulated evidence for
how appropriate data sample j is to serve as the exemplar of
data sample i. Meanwhile, the availability message, a(3, j),

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

is sent from a data sample j, a candidate exemplar, to
the data sample i, reflecting the accumulated evidence for
how appropriate it would be for data sample 7 to choose
data sample j as its exemplar. Finally, a set of clusters
{c1,c,...,cn} is selected to maximize the fitness function
E, where E = """, s(i,j) and s is the similarity function
of ¢ and j. The reason we use AP is because it does not
require a specified number of clusters in advance. This
property is useful for detecting the unknown numbers of
ASP occurrence, especially for hidden power.

2.4 Eurega Symbolic Regression

Symbolic regression (SR) is a method for searching math-
ematical equations from given data samples. Unlike tra-
ditional linear and nonlinear regression methods that fit
parameters to an equation of a given model form, SR
searches both the parameters and equation forms concur-
rently. The result is represented as a tree structure com-
posed of inner nodes containing the mathematical operators
(4, —, X, +, sin, cos) and outer nodes containing either sub-
system parameters or a constant node containing either sub-
system parameters or a constant value. Unlike traditional
SR whose output model forms are not similar for the same
input data trained at different training times, because of its
random nature, Eureqa [12] can generate a mathematical
model form which is similar to every training.

Fig. 4a shows the process of Eureqa operations. In step
1, Eureqa first works by calculating partial derivatives be-
tween variables from given data. In step 2, it then generates
candidate symbolic functions that do accurately describe
the behaviors of the given data. In step 3, Eureqa derives
symbolic partial derivatives of the pairs of variables for
each candidate functions. In step 4, the results of step 3 are
compared with that of step 1. If the best candidates are not
satisfied, step 2, 3, and 4 are iteratively processed until the
best candidates are found (see [12] for more details).

Fig. 4b illustrates the example of applying Eureqa to
find an equation which describes the behavior of swinging
pendulum. Based on the Eureqa's operation, which uses
the partial derivative as a key of model searching, Eureqa
can produce a list of equations, trading them off between
accuracy and simplicity. The list of equations thus generated
allows users to have various choices for picking the most
suitable equation, e.g., the number 2 in Fig. 4b, which
prevents overfitting and underfitting. Unlike traditional lin-
ear and nonlinear regressions which fit parameters to an
equation of a given form, e.g., the linear regression just give
us f(t) = 0.02 as shown as number 4 in Fig. 4b, Eureqga can
find both the parameters and the form of equations at the
same time.

3 PROBLEM STATEMENT AND DEFINITION

This section first introduces the basic definition of smart-
phone subsystem power estimations, followed by formal
definitions of the main problem and subproblems I and II.

3.1 Basic Definitions

The notations used in this paper are as follows. Let S =

s, ...,sM denote a set of M subsystems. Each subsystem

1. Calculate partial derivative
for every pair of variables.

I
v

2. Generate candidate
symbolic functions

|

3. Derive symbolic partial derivatives of
pairs of variables for
each candidate functions

!

4. Compare results of
(3) with (1)

Sufficient
accuracy

Yes

/ Return the best candidates /

End

(a) The process of Eureqa symbolic regression.

0.5 10

Cost
0.0

]
<]
<]
£ g
I«
<

-1.0

— Eurega
T T T T T T

0 100 200 300 400 500

Time
1. f(t) = 1.24 X exp(0.19—(0.36 X1)) X sin((9.76 Xt) X exp(0.19— (0.36 Xt)))
2. f(t) = exp(0.34 = (0.34 X £)) X sin((9.64 X t) — 5.46)
3. f(t) = 0.26 X sin(0.42 + (9.77 X 1))
4. f(t) =002

(b) Example of Eureqa modeling and a list of equations.

Fig. 4: Eureqa symbolic regression

s' € S is characterized by N; parameters, where s’ denote
parameter j of the subsystem i. Each subsystem s’ has been
trained in different operating states (a 'trained state’ for
short). Each trained state & of the subsystem 4, denoted by
7}, = (81 ks Syi ), 18 @ vector that stores N* parameter
workloads s7 ;. Each trained state r} is also paired with
total system power pi, and is denoted by a training sample
v, = (1}, p},). Let Vi = {vf, ..., v}.} denote a set of Z trained
states vj, where 1 < k < Z. The set V" is used for build-
ing a power model M?, which represents the relationship
between r,ic and p};. To build an efficient power model M?,
it needs to take ASP and NLP into account. Table I lists all
notations and their definitions.

Definition 1. ASP. Given two data samples vi €V, and
v € V; where k # [. If the trained state 77}, is similar to r;
,but the total system power pj, is not similar to the total

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF ISTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
TABLE 1: Notations and their definitions

Notation | Definition

st The subsystem 4.

8% The parameter j of subsystem i.

s;'. & The workload of parameter j of subsystem i at a

i trained state k

ri The trained state k of subsystem i.

Pl Total system power of subsystem 3 at trained state k.

vl The pair of a trained state r} and pi.

Vi The set of Z trained state v?.

M A power model for subsystem 3.

al Asynchronous power consumption of a trained state
k of subsystem 4.

b}; p}'c - a};.

w The set of Z trained state w} = (r},b})-

Al Asynchronous power table for subsystem i.

y? A mathematical equation for subsystem .

Xt In estimation, the set of T' data samples of subsys-
tem <. Note the data samples do not include power
information

z, In estimation, the workload of parameter j of sub-
system i at time slot ¢.

x; In estimation, the vector of all parameters j of
subsystem i at time slot ¢.

system power p;. It refers that either pi or p} includes
asynchronous power a;, or a;, respectively.

Definition 2. NLP. The nonlinear behavior between the
trained states 7% and their associated power b, where
bt = pi — al is the synchronous power. Since the
nonlinearity, b% is nonlinear power.

3.2 Problem Statement

The problem statement is as follows. Given a set of training
samples V*, find a power model M*, which comprises of
a mathematical equation Y and an ASP table A, the table
which contains the information of ASP, so that the estimated
total system power obtained from the sum of all subsystems
s* € S, under a given workload statistics, is approximately
equal to the measured total system power obtained from an
external power meter. To find Y% and A?, we need to solve
two subproblems below.

Subproblem 1. ASP problem. Given a set V' = {vf, ..., v’}
where v; = (r},p},), find ASP aj, where a; < p; for
each vy € V"

Subproblem 2. NLP problem. Given a set W* = {(r},b},)},
find Y* which is the best fit between the trained states r,
and the associated power consumption bj,.

4 CLUSTERING AND SYMBOLIC REGRESSION

In this section we describe the design of CSR, which has
three components: (1) ASP analysis, (2) NLP modeling, and
(3) subsystem power estimation, as shown in Fig. 5. The first
two components are for training the data samples while the
third estimates the power consumption of the subsystems.

A set of
data sample
\

(1) Asynchronous
Power Analysis

(3) Subsystem
Power Estimations,
(including A and Y).

(2) Nonlinear
Power Modeling

v
[+]
(a) (b)

Fig. 5: Workflow diagram of CSR components, (a) ASP
analysis and Nonlinear power modeling, and (b) Subsystem
power estimation.

4.1 ASP Analysis Component

This component uses Algorithm I, which determines
whether a given set V' contains ASP or not. The algorithm
is based on the assumption that if any trained states in V!
are similar, they would be associated with similar amounts
of power consumption pi in V. If not, there exists some
trained states 7§ which correlate with ASP. Note that this
assumption may be too strong when the number of collected
parameters is small. We thus collects as many parameters as
possible to reduce the errors caused by such an assumption.

To more clearly understand how Algorithm I works, it
is illustrated by a simple example as shown in Fig. 6. In
Fig. 6(a), a set of data sample V* = {v}, ..., v}, where v} =
(ri,pi) is given. We assume that all trained states r} are
divided into two groups, based on the similarity values. The
first group contains ri, where k = 1,2, and 3, whereas the
second group contains ri, where k = 4,5,6,7, and 8. Also,
all power values pi are divided into two groups. The first
group contains p};, where k = 1,2, 3,4, and 5, whereas the
second group contains pi, where k = 6,7, and 8. Based on
the assumption mentioned above, it can thus be seen that p
and pi contain ASP.

To find p} and pi by Algorithm I, we start by parti-
tioning v}, € V* based on the similarity function and AP
clustering (lines 2-3 in Algorithm I). The similarity function,
sim = exp(—(d/w)"), where d is a distance between data,
w = 1 is a radius, r = 2 is an exponent. More details of
this function use can be found in [21]. All data samples
vl € V' are partitioned into two clusters, including a cluster
C1 = {vi,vivivivi} and Cy = {v§, v, vi}. Next, all
data samples vi € V' are clustered again with the same
similarity function and AP clustering, but using trained
states Vri only (lines 4-5 in Algorithm I). Therefore, all data
samples vj, € V* are partitioned into two clusters including
Dy = {v}, v, vi} and Dy = {v,vi, vi, vl vi}. Finally, the
group of clusters C' and D are compared in order to find
ASP. Our assumption is that all members in D, should be in

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6
vi = ‘ vi | ve | v | v ‘ vi | vl | v ‘ v ‘ Lines1 = Wh— V!
Lines 2-3 612‘ vi|vh|vh| Vi Vg c, —| Ve | V5| Ve
[t Lot Lot Lo Lot [ [t [ ][ »
Linsas o= Vi [ W] n]| p-[ulw]w]w]w]
\ ol | l rh | e || 7 || 7 | s & %
(a) Input data Lines & Dsy =| vy | v DM:{ Vi | v Vg‘
Lines 9-11 avgPle—avgP(pl,pl) > avgP2<+— avgP(pg, ps. pa)
i i i i i i i i
wto= | w1 w2 { W3 l Wi | s ‘ We { w7 | "o | Lines 12 minP <— aygP2
ilmlmlwlnnlnnk| o
Lines 14-21 (p,_,swg_) «— minP
; - - - - (pt € wg) «— minP
‘ ry \ ) | g | rh | ri | g ‘ r | rh | a_‘_lq—(pl_em)—minp
as +— (pi € vs) - minP
A,=<rlri_,,dal> Ap<— (i, 2]
Az +— (15, as)

(c) Output data

(b) The process of asynchronous power analysis

Fig. 6: Asynchronous power analysis.

the same cluster of any (. If not, some of members of D,
contain ASP.

In our example, the algorithm will find that Vv € Ds
are not in any same cluster, unlike Vv,i € D; which are
in the same cluster C7. Hence, it can be concluded that
there exist ASP on some Pi € D,. Next, Vv,i € Dy are
partitioned into subclusters in order to find ASP (line 8
in Algorithm I). The number of subclusters depends on
the number of clusters C, in which each v € D, is.
In this example, the cluster Dy is partitioned into two
subclusters, i.e, Dyy = {vj,vi} and Day = {v§, v}, v8},
because v} and v{ are in Cj, and v}, vi, v} are in Cy. In
lines 9-11, the algorithm computes the average power of
all members in D37 and Ds 2, which are avgP(D3 1) and
avgP(D32), respectively. These power averages are used
to assess which subcluster D, 4 contains ASP. Based on
these criteria, all subclusters D, g which do not contain the
minimum average power contains ASP. In this example,
Fig. 6(b) (lines 9-12) shows that Dy; = {v},vi} contains
ASP a = avgPl — avgP2. Finally, Algorithm I (lines 13-
19) produces an ASP table A" = {4}, ..., A}, ..., A}, where
A, =< rp,r}_4,d,a; > is a row of the table including 7},
and r_, the pair of the training states triggering the ASP,
i.e., 7} contains asynchronous power if its previous training
state is 7}, _,, d is the asynchronous duration, and aj, is the
amount of ASP. Finally, a set W' = {(r{,b}),..., (r§, b%)}
is created, where the power by and b are mod1f1ed as

Y = pi—a} and b = pi—a} respectively. Fmally, Algorithm
I (line 22) returns W* and A‘, as shown in Fig. 6(c), which
are later used by the NLP modeling and subsystem power
estimation components, respectively.

4.2 Nonlinear Power Modeling Component

Algorithm II is applied to this component. The algorithm
uses Eureqa to produce a mathematical equation repre-

Algorithm 1: ASYNCHRONOUS POWER ANALYSIS

Input: A set V7. ‘
Output: A set W*

//An asynchronous power table A%,

1 51, s2 < 2D matriz; C, D and A + 0; W « V?;
2 sl « sim(Vvl, € V?);

3 C «+ AP(sl); //Clustering

4 82+ sim((Vri € vl) € V3);

5 D« AP(s2); //Clustering

6 foreach D, € D do

7 if Vi, € D, are not in the same cluster C,, then
8 F « partition(Yvi € D,);

9 foreach D, 4 € F do
10 //Add to list
11 angadd(Z((vP;‘ e;;lzc) € Dfl/,d));
12 minP < argmin{avgP};
13 // Number of members of D, 4
14 d < |Dyql;
15 foreach (pi, € vi) € D, 4 do
16 ”k <+ abs(pi — minP);
17 L wi «+ (rk, minP);
18 Aladd(< ri, ri_,, d, ab >);

19 return W7, A%

senting the relationship between trained states rjand the
associated synchronous power b}

Algorithm II requires two input parameters, ie., the
set W; obtained from Algorithm I, and the target expres-
sion E which is a string expression that guides Eureqa
the type of model to search for. For instance, a target
expression "y = f(x1,29,...,2,)” is an equation where
y is modeled as a function of variables x1, 22, ..., z, and
y = fiQz1 + f2(z2t, ..., +fn()2, is an equation where
fi() is the coefficients of a variable ;. Algorithm II (line
1) works by initially defining the empty lists L and H.
Eureqa then applies the two input parameters to build the

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 2: NONLINEAR POWER MODEL GENERATION
input: A set W*

A target expression F <+ “y = f(z1,..
Output: An equation Y.
L, H, + An empty list;
L « Eureqa.build(W¢, E);
M + “y=Vz; € L";
H < Eureqa.build(W?, M);
G < {VYh; € H | MAE(h;) is 10% larger than MAE(
argmazx
7 return Y*;

. 7Ik‘)’

argmax
hi € H

oA WN

Com(hi))

6 Y Com(gi)

equation (line 2). Since Eureqa uses Symbolic Regression
(SR) to build an equation, it has to set termination criteria,
i.e., a number of generations and a stability value. The
stability value is used for measuring the sensitivity analysis
of all parameters to find a set of parameters most effecting
the subsystem power consumption. After completing, the
construction process, Eureqa returns a list of the most im-
pact subsystems parameters L. Next, the target expression
E is modified by replacing the existing variables with a
new set of variables from the list L, denoted as M (line
3). Eureqa is again run by applying W; and M, and then
returns a list of candidate equations H (line 4). The list
H, a collection of candidate equations, are ranked based
on the trade-off between the accuracy (fit) and complexity
(size) of an equation. The accuracy is measured by using the
Mean Absolute Error (MAE) metric and the complexity is
the size of an equation. We defined the process of choosing
an equation Y from H in two steps: (1) picking a group
of candidates whose MAEs are 10% larger than the MAE of
the greatest complexity, and (2) selecting the equation which
has the greatest complexity from the group we picked at
the first step. To create a generic model, we propose the
picking process which picks an equation that has the least
complexity but highest accuracy.

Fig. 7 is illustrative of the process of Algorithm II. At
step 1, let W' be a set of pairs of trained states and power
consumption wi, = (ri,b}) of GPU. The GPU subsystem
is composed of 19 parameters, z1, ..., £19. The set W? and
the target expression E are submitted to Eureqa that applies
sensitivity analysis to generate a set of GPU's parameters
most effecting its power consumption. In this example, the
sensitivity analysis generates the four most impact param-
eters, x1,%s5,%s, T12. At step 3, the target expression E is
replaced by 7Y = f(z1,x5,xs,212)”. At step 4, the expres-
sion £ and W, are submitted to Eureqa to build a model
again, but without applying the sensitivity analysis. At step
5, Eureqa returns the results of a list of equations which are a
trade-off between accuracy and complexity. Finally, at step
6, Algorithm II uses the picking criteria mentioned above
to pick the right equation Y that is the equation whose
complexity and MAE are 15 and 3, respectively, as shown as
the red spot in step 5.

4.3 Subsystem Power Estimation Component

This component uses Algorithm III, as well as the ASP
table A* and the equation Y, obtained from Algorithm I
and II, respectively, to estimate the total subsystem power

7
Step 1 ,Tll | E<"Y = f(x1,%2, .., X22)" |
Eureqa
Step 2 +
Sensitivity analysis

Step 3 | E<"Y = f(x1, X5, X5, X12)" |

=
Step 4 @

11

09 L‘

0.8

0.7
Step 5 S

0:4

0.3 ¢

0.2

0 10 20 ) « 0
Complexity

Step 6 | Y = f(X1, X5, Xg, X15) |

Fig. 7: Nonlinear power modeling.

of the subsystem s;, given a set of T' data samples X i.
Note that data samples X' only includes the workload
statistics of the subsystems, but not their power information.
Algorithm III (line 1) works by initially setting an empty
list P. Next, for each data sample z} € X*, Algorithm III
(line 3) checks whether z; associates with ASP or not. This
works by measuring the similarity, sim (line 4), between z;
and rj, € Al and x,_; with r,i_l € Al 1If the similarity is
greater than zero, it means x} associates with ASP, we then
estimate the total system power P; of z¢, by applying z! to
the equation Y plus ai € A;, and adding asynchronous
duration d with ¢ to the variable len. Alternatively, P; is
estimated by applying x} with Y only. If 2} associates with
ASP, we then continue checking the duration d € A as
shown in lines 7-13. In this iterative process, the similarity
between ¢ and z!_, is measured. If both data samples are
similar, then the total system power consumption P; is also
estimated by applying z{ with the process, as shown in
line 5. Alternatively, x} is checked with the other AL € A’
Finally, this component returns a set of 7" total system power
P? associated with the data samples X°.

5 EXPERIMENTAL SETUP

In this section, we first describe the hardware and software
experimental setup. We then elaborate all subsystems and
their training process.

5.1 Hardware and Software Setup
5.1.1 Hardware setup

The hardware test bed consisted of a host computer, a Mon-
soon power monitor [22], and two DUTs. The host computer
was a normal desktop computer with a 3.10GHz Intel Core
i3-2100 processor, 6GB of RAM, and 64-bit Windows 7.
The Monsoon power monitor, which sampled with rates
at 5 kHz, was used to measure the total system power. To
test the efficiency of the proposed technique, we ran our

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 3: SUBSYSTEM POWER ESTIMATION

TABLE 2: The subsystems of Nexus S and Galaxy S4

Input: A set of T data sample X* = {z1,...,7,}.
Output: A set of T power estimation P! = {py,...
Pt () //An empty list;
fort=1,...,|X;| do
foreach A} € A* do
if sim(x},r} € A}) A sim(x}_y,rh,_; € AL) then
len<+t+de Ay
pe = Yi(x}) + aj;
while ¢ < len do
if sim(x;,x;41) then
L P, Yi(x41) + al;
t++;

else
Rk t——;
3 break;

4 eISe
5 L Pt — Y;(ZL't)

JDr}-

O © W N AWM R

(S

6 return P

experiments on the old and new DUTs, Nexus S and Galaxy
S4 (54 for short). More details of both DUTSs, including the
target subsystems, CPU, screen, GPU, audio, GPS, 3G, and
Wi-Fi are listed in Table II.

5.1.2 Software setup

The software tools consisted of Eureqa desktop version
0.99.8 [23], a statistical tool, R [24], with the Apcluster
package [25], a system call tracing tool, Strace [26], and
our training application running on both DUTs. To validate
the accuracy of CSR, we tested it with four real applica-
tions with several scenarios. The applications included GPU
benchmark, Google Maps, Firefox web, Firefox Youtube,
Chrome web, and Chrome Youtube. For the Eureqa parame-
ter setup, for each training process, we ran the evolutionary
process until the number of generations reached 30,000 or a
stability value of more than 80%. It took around 4 minutes
to complete each training process.

5.2 Subsystem Training Process

To acquire subsystem workload statistics, we created two
applications, operating and monitoring applications [27],
working on a DUT side. The operating application put a
target subsystem into different operating states, while the
monitoring application periodically collected the workload
statistics of the training subsystems. To synchronize the
subsystem workload statistics with its associated power
measurements, we used the instantaneous power caused
by suddenly turning on and off the screen brightness as
the synchronization point. After completing the training
process, we stored the collected workload statistics of sub-
systems in a DUTs storage, and the power trace in the
host computer. For each operating state of a subsystem,
we repeatedly tested it five times and then measured its
average. The details of each subsystem training process are
as follows:

1) CPU. We disabled other subsystems when train-
ing the CPU. However, since GPU is on the same

Sub Nexus Galaxy S4
system Parameter Range Parameter Range
utilo(%) 1-100 utilo, ..., utily 1-100
frep(MHz) |{200,...,1000}|f reqp, ..., f reqs| {200, ..., 1600}
it K K
cPU | (dle time (ms)) =0 0,0, 1t7,0 =0
itovl,...,it7,1 =0
ito,2,...,it7,2 =0
ieg (idle time (ms)) =0 ieo,0,...,1€7,0 =0
ien,1,....i€7,1 =0
iep,2,....1€7,2 =0
brightness 0—255 bright 0-255
red 0-255
Screen
green 0—255
blue 0-255
GPU tal =0 tal =
(show
the most fps =0 fps =0
impact
four pa- usseccpp =0 usseccpp =0
rameters) gtt3d =0 gtt3d =0
‘ Audio ‘ volume ‘ [0, 1] ‘ volume ‘ [0,1] ‘
| ars | on | oy | o | pu |
on [0,1] on [0,1]
Wi-Fi channel {11, 36, 48, 54} channel {11, 36, 48, 54}
packet_rate =0 packet_rate =0
on 0,1 on 0,1
3G [0,1] [0,1]
packet_rate >0 packet_rate >0

tal : tile accelerator utilization

f ps : frame per second description

usseccpp : Universal Scalable Shader Engine clock cycle per pixel
gtt3d : GPU task time 3D utilization

System-on-Chip as CPU, we also monitored the
workload statistics of GPU. The training parameters
of CPU were set as described in Zhang et al. [9], for
training CPU idle state. While, it was simple to train
a single CPU core on Nexus S, it was an intensive
task to train 8 CPU cores on S4. The 8 CPU cores,
big.LITTLE [28], were partitioned into 2 groups: one
group for 4 big cores and the other group for 4 little
cores. Each big core had a range of frequencies of
between 800 and 1600 MHz, and each little core
had a range of frequencies of between 200 and 600
MHz. Although the S4’s CPU was composed of
8 cores, but only four cores, or one group, were
active at a time, because of limitations of the current
scheduler technology, In-kernel switcher [28] at the
time. Developers can in fact only view 4 logical CPU
cores, core(, corel, core2, and core3. The OS kernel
allows developers to turn off corel to core3, but not
core0. Thus, to train the S54’s CPU, we started by
training core0 alone by disabling the other cores. We
next trained corel by enabling it and let it operate
along with core0. The power consumption of corel
is then estimated by subtraction. We subsequently
trained core2 and core3 using the same procedure

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2)

3)

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

as for corel.

Screen. It was simple to train the screen of Nexus S
because it was a Super LCD [29], where its power
consumption is affected only by brightness levels.
However, for the screen of S4, we had to address the
red, green, and blue pixel colors for each brightness
level, starting from 0 to 255 with increments of
25. Therefore, at each brightness level, the 24-bit
color values, 8 bit for each color, were varied from
0 (black) to 255 (white). Since an OS kernel does
not provide the pixel color data, for real applica-
tion testing we used another android application,
SCR screen record [30], to record the pixel colors
of a whole screen, while the real application was
running. The pixel color data was then saved as
a MP4 file within a DUT, and was later processed
on the host computer. To reduce the power con-
sumption overhead caused by the SCR screen record
app, it was set to record the screen at eight frames
per second. Moreover, to reduce the time spent on
pixel processing on the host computer, we processed
only 135x240 of the total of 1080x1920 pixels. The
power consumption of the screen was obtained by
subtracting the power consumption of CPU from
the total system power. We also observed that there
were no GPU operations while pixel colors were
being trained by our training application.

GPU. 19 GPU parameters were trained and it was an
intensive task to control all combinations of these
parameters. We thus used the GPU benchmark,
Oxbench [31], to stress test the GPU. Oxbench con-
sists of 2D training apps, such as canvas, shape, and
image drawing, 3D training program, such as Cube
and Teapot rotation, and other miscellaneous apps,
e.g., Math, VM, Native, etc. The power consumption
of GPU was obtained by subtracting the power
consumption of CPU and screen.

GPS. We used the GPS Test application to train only
GPS on and off states to capture its ASP consump-
tion. The power consumption of GPS was estimated
by subtracting CPU and screen power consump-
tion. 5. Audio. We trained the audio subsystem by
running the built-in music player, Apollo, and only
maximum and minimum volume were trained. Its
power consumption was estimated by subtracting
CPU power because the screen was off.

Wi-Fi. We set the host computer as a server that con-
nected with a router TP-Link TL-WR1043ND. We
developed a client-server application, as described
in PowerTutor [5], to train the Wi-Fi workload statis-
tics. To reduce the variability of the experiment, we
controlled Wi-Fi channel rates at 11, 36, 48, 54, and
72 Mbps, while the files with different sizes were
exchanged between the DUT to the server at each
channel rate. We found that the Wi-Fi subsystem of
our DUTs resulted in a short duration of ASP con-
sumption, i.e., less than 1 second. We thus ignored
the asynchronous analysis for the Wi-Fi subsystem.
3G. We experimented with 3G similar to the Wi-Fi
experiment. However, we estimated its power con-
sumption by transferring multiple files with various

sizes between the DUT and a server over FTP.

6 EXPERIMENTAL RESULTS
6.1 ASP Detection

We give the results of CSR with reference to detecting ASP
as it occurred on GPS, GPU, and 3G. We ignored Wi-Fi as
its duration of ASP was trivial, i.e., about 1 second. Fig.
8(a) shows the ASP of GPS, which lasts for about 5 seconds
after GPS is disabled. We compared the CSRs results with
the results of the instrumentation-based approach, which
uses Strace to determine the operating states of GPS. Our
experiment found that the accuracy of CSR to detect ASP
is closed to the accuracy of the instrumentation-based ap-
proach. However, CSR can automatically obtain the time du-
ration of ASP, whereas the instrumentation-based approach
requires detecting the time duration of asynchronous power
manually. Moreover, we found that a sampling rate of 1 Hz
was sufficient for detecting ASP of GPS. Fig. 8(b) shows
ASP of GPU on S4. CSR revealed several portions of ASP
occurring on GPU. After determining the GPU workload
statistics that are correlated with ASP, we found that most of
ASP on GPU is hidden power. For example, between 12 and
14 seconds all captured workload statistics are similar, but
the associated power consumption changes instantaneously.
Moreover, we found that the ASP of GPU on Nexus S was
caused by the GPUs parameters correlated with negative
values, e.g., the negative values of Universal Scalable Shader
Engine (USSE) load stall and load pixel. We also found that
at least the sampling rate at 10 Hz was suitable for detecting
ASP of GPU. Since it was difficult to instrument the GPUs
system calls for the comparison purposes, we, therefore,
validated the accuracy of CSR for identifying the ASP of
GPU with the real applications. Fig. 8(c) shows the compar-
ison between the techniques with and without detecting the
ASP on 3G. The techniques for detecting the ASP include
CSR and system call (FSM), whereas the technique without
detecting ASP is LM. It can be seen that the techniques with
detecting ASP can reduce more errors than the technique
without detecting ASP.

6.2 Nonlinear Power Models

To validate the efficacy of CSR in terms of using a ma-
chinedefined model forms for discovering NLP models, we
compare the forms of models generated by CSR with the
ones generated by using the human-defined model forms.
To do so, we built a power model of the Nexus S CPU
by using the Weighted Linear Model (WLM) described in
Zhang et al. [10], whose form was defined by a human.
Table III shows that, without human intervention, CSR can
determine a model whose form is very similar to the ones
produced by WLM. Moreover, the Mean Absolute Error
(MAE) of both of these are approximately the same, 17.95
and 18.49, respectively. We also built a CPU power model
generated by using GP, a traditional symbolic regression.
As shown in Table III, the model form obtained from the
GP approach is completely different from the one obtained
from WLM as well as CSR. The difference is because the
random nature of genetic programming which means the
model forms built by GP are different for each model built,



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

400
|

O Measured power
Tail energy

300
1

200
|

Power(mW)

100
|

e—_—

T T T T
o 50 100 150
Time(sec)

(a) GPS tail energy.

2500
I
0

Measured power
Hidden energy

2000
I

1500

Power(mW)

1000
I

500
I

o 2

T
o 5

15
Time(sec)

(b) GPU hidden energy.

5000
|

——  Measured power
rrrrr Without asynchronous detection
With asynchronous detection

4000
|

Power(mW)
3000
|

2000
|

1000
|

0
|

Time(sec)

(c) 3G tail energy.

Fig. 8: Asynchronous power detection on (a) GPS, (b) GPU,
and (c) 3G.

even though the input data is the same, whereas CSR
can produce very similar forms of models for each model
building. To show the accuracy, we compared the accuracy
of the NLP models built for GPU of Galaxy S4, the most
complex hardware subsystem. The results showed that the
MAE of the GPU power model built by LM is very high. The
MAE of LM and CSR are significantly different, at 8387.01
and 956.67, respectively. Furthermore, we also compared
the results of CSR with another nonlinear model building
method, SVR [7]. The results show that the error of CSR is
less than that of SVR, at about 15% on GPU.

6.3 Real Application Validation

To evaluate the accuracy of CSR-based power estimation,
we validated it on five well-known applications (seven
scenarios) and then compared its results with those of the
mixed model. In this paper we refer the mixed model as a

10
8
3 ] = Neasured power
— Estimated power ( CSR )
o = = Estimated power (Mixed model )
g8
Eo
-
8
as_|
e}
[=1
[=J—
2
0 20 40 60 80 100 120
Time(sec)
(a) GPS tail energy.
=]
8 ] = Measured power
— Estimated power (CSR)
o = — Estimated power (Mixed model )
28]
E o
=g =F
O3
8
o §— - A "’Jl‘\f“" e Fena rlm s e e ar Nl
~
o —
I I I |
0 20 40 60
Time(sec)
(b) GPU hidden energy.

Fig. 9: Asynchronous power detection.

list of subsystem power modeling techniques which gave
the best results for each subsystem we tested. For the mixed
model, we applied WLM for CPU, an Exponential model for
AMOLED, SVR for GPU, and LR to the other subsystems.We
also used Mean Absolute Percentage Error (MAPE) as the
error metric for evaluation.

Table IV shows the MAPE of CSR and the mixed model,
tested with the five applications running on two DUTs. On
Nexus S, the average MAPE of CSR was about 10.58%,
whereas that of the mixed model was about 13.85%, i.e.,
a 23.61% improvement of CSR over the mixed model. We
found that the accuracy of estimated GPU power consump-
tion has the most impact on that of total system power
estimation, and the estimated power consumption of the
other major subsystems, such as CPU, screen, and Wi-Fi
was similar. As shown in Fig 9(a), CSR is more accurate
than the mixed model for estimating total system power
consumption of surfing whole CNN website for about 2
minutes testing on Chrome with Wi-Fi and 3G. The higher
accuracy results from CSR being able to correctly capture the
power consumption behavior of GPU, whereas SVR cannot
perform this. On 54, the average MAPE of CSR was about
23.41%, whereas that of the mixed model was about 40.75%,
i.e., about 42.55% improvement. Fig. 9(b) shows that CSR
is capable of capturing accurate GPU power consumption
behavior by improving around 70.05on GPU bench applica-
tion. The improvement is because of the capability of ASP
detection of CSR on GPU.

It is worth noting that all MAPEs in this work were sig-

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE
Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 3: GPU and CPU power models of Nexus S and Galaxy S4 built by linear, GP, and CSR methods

DUT Subsystem | Method Power model MAE
CSR 262 + (2.05 x util) + (0.35 x f req) + ( rr=3312= (372707 ) 17.95
Nexus S CPU | wLMm 268.3+ (2.12 x util) + (0.34 x freq) + (—0.4662 x it-) 18.49
it til ; til i
GP 733 T (g5 +util + (557 + (=3.32+ 55)) -
LM (188.84 x tal) + (=7.17 x f ps) — (—1371.69 x usseccpp) + 1828.59 8387.01
Galaxy 54 GPU CSR | 603.76 + (1702.98 x gtt3d?) + (147.69 x gtt3d*) — f ps — (1370 x gtt3d) — (857.65 x gtt3d3) | 956.67
SVR SVM-Type: eps-regression, SVM-Kernel: radial, cost: 1, gamma: 0.05263158, epsilon: 0.1 1125.61
TABLE 4: Mean Absolute Percentage Error (MAPE) of power estimation on real applications
DUT Technique GPU bench | Google maps | Chrome web (Wi-Fi) | Chrome web (3G) | Firefox web (Wi-Fi) | Firefox web (3G)
Mixed model 8.15 15.61 13.49 19.90 7.64 18.07
Nexus S
CSR 7.97 13.72 9.52 15.86 6.30 13.00
Mixed model 38.49 34.83 24.31 77.49 30.40 58.27
Galaxy S4
CSR 11.62 20.88 23.03 18.86 28.47 25.68

nificantly high, because of the power consumption overhead
caused by using SCR screen record application periodically
capturing all pixel colors of the screen when real applica-
tions were being tested. In our experiment, it showed that
the SCR app consumes about 19% of the total system power
consumption.

7 CONCLUSION

In this paper we develop a Clustering and Symbolic Regres-
sion (CSR) power estimation method for smartphone sub-
systems. CSR improves the accuracy of subsystem power
estimation by investigating nonlinear and asynchronous
power consumption behaviors. With AP clustering, CSR
can efficiently capture ASP consumption behaviors on the
subsystems for which the instrumentation-based methods
are complicated to apply. Without a predefined form of a
power model, CSR can discover a power model which not
only fits the NLP consumption behavior but also discover
the correct relation between parameters as similarly defined
by a human, e.g., the discovery of power model of CPU
with three parameters, i.e., utilization, frequencies, and idle
states. We suggest that the ability of automatically build a
model without requiring the knowledge of the relationship
between subsystems parameters will play an important role
in the modeling methodology for embedded systems in the
future. We conducted experiments to evaluate the accuracy
of CSR by comparing it with various models, LM, WLM,
GP, and SVR. Our evaluation shows that CSR can reduce
the MAPE of total system power estimates between 23.61%
and 42.55%, from the results of various real applications
running on two different smartphones. CSR is however still

limited for analyzing the asynchronous power of some HW
subsystems which requires the instrumentation to obtain
their workload statistics, e.g., I/O device drivers. We will
take this into account in future work.

ACKNOWLEDGMENTS

This work was done when E. Rattagan was with National
Chiao Tung University.

REFERENCES

[1] A.Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
"Detecting energy bugs and hotspots in mobile apps,” in Proc.
SIGSOFT, 2014, pp. 588-598.

[2] Android power profile [Online], Available: https:/ /source.android.
com/devices/tech/power/index.html

[3] M. Dong, and Z. Lin, ”Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Proc. MobiSys,
2011, pp. 335-348.

[4] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying
real user activity patterns to guide power optimizations for mobile
architectures.” in Proc MICRO, 2009, pp. 168178.

[5] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, ”Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proc
CODES/ISSS, 2010, pp. 105114.

[6] M. B. Kjrgaard and H. Blunck, Unsupervised Power Profiling for
Mobile Devices, in Proc. MobiQuitous, 2012, pp. 138-149.

[7] X. Ma, M. Dong, L. Zhong and Z. Deng, “Statistical Power Con-
sumption Analysis and Modeling for GPU-Based Computing,” in
Proc. HotPower, 2009.

[8] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-

grained power modeling for smartphones using system call trac-

ing,” in Proc. EuroSys, 2011, pp. 153168.

Y. Cao, J. Nejati, P. Maguluri, A. Balasubramanian, and A. Gandhi,

Analyzing the Power Consumption of the Mobile Page Load. In

SIGMETRICS Perform. Eval. Rev. 44, 1, 2016, pp. 369-370.

[9

[

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2832173, IEEE

Transactions on Sustainable Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[10] Y. E. Zhang, X. D. Wang, X. Z. Liu, Y. X. Liu, L. Zhuang, and
F. Zhao, "Towards better CPU power management on multicore
smartphones,” in Proc. HotPower, 2013.

[11] B.]. Frey and D. Dueck, “Clustering by Passing Messages Between
Data Points,” Science, 2007.

[12] M. Schmidt and H. Lipson, ”“Distilling Free-Form Natural Laws
from Experimental Data,” Science, 2009, pp. 8185.

[13] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani.
“Energy consumption in mobile phones: a measurement study and
implications for network applications,” Proc. IMC, 2009, pp. 280293.

[14] A. Maghazeh, U. D. Bordoloi, M. Villani, P. Eles, Z. Peng,
"Perception-aware power management for mobile games via dy-
namic resolution scaling,” in Proc. of the IEEE/ACM International
Conference on Computer-Aided Design ICCAD '15, pp. 613-620, 2015.

[15] C. Yoon, D. Kim, W. Jung, and C. Kang, “Appscope: Application
energy metering framework for android smartphone using kernel
activity monitoring,” in Proc. of USENIX ATC 12, 2012.

[16] C.]., Rossbach, J. Currey, and E. Witchel, “Operating Systems must
support GPU abstractions,” in Proc. HotOS, 2011.

[17] M. Radhika, A. Kansal, and R. Chandra, "Empowering developers
to estimate app energy consumption,” in Proc. Mobicom, 2012.

[18] EY. Xu, Y.X. Liu, Q. Li, and Y.G. Zhang, "V-edge: fast self-
constructive power modeling of smartphones based on battery
voltage dynamics,” in Proc. USENIX NSDI, 2013, pp. 43-56.

[19] X. Chen, N. Ding, A. Jindal, Y. Charlie Hu, M. Gupta, and R.
Vannithamby, “Smartphone Energy Drain in the Wild: Analysis and
Implications,” in Proc. of SigMetrics 2015.

[20] J. M. Chen, B. Li, Y. Zhang, L. Peng, and J.- K. Peir, "Statistical
GPU power analysis using tree-based methods,” in Proc. IGCC,
2011, pp.1-6.

[21] Sim function. expSimMat [Online]. Available: http://cran.irsn.fr/
web/packages/apcluster/apcluster.pdf

[22] Monsoon power monitor. A power meter [Online]. Available: http:
/ /www.monsoon.com/LabEquipment/PowerMonitor.

[23] Eureqa. Symbolic regression tool [Online]. Available: http://
creativemachines.cornell.edu/eureqa.

[24] R. Statistical software tool [Online]. Available: http://www.
r-project.org.

[25] APCluster. Affinity Propagation clustering package [Online].
Available: cran.r-project.org/web/packages/ APCluster/index.
html.

[26] Strace. A system call tracer [Online]. Available: http://benno.id.
au/blog/2007/11/18/android-runtime-strace

[27] SRC tool [Online]. Available: https://github.com/pokekarat/
SRC_tool-master

[28] Linaro. In Kernel Switcher. [Online]. Available: https://events.
linuxfoundation.org/images/stories/slides/elc2013_poirier.pdf.

[29] Super LCD [Online]. Available: http://en.wikipedia.org/wiki/
Nexus_S.

[30] SCR screen record [Online]. Available: https://play.google.com/
store/apps/ details?id=com.iwobanas.screenrecorder.free.

[31] Oxzbench. Android benchmark suite [Online]. Available: https://
code.google.com/p/0Oxbench/.

Ekarat Rattagan received the MS degree in
Information Technology from King Mongkuts
University of Technology Thonburi (KMUTT),
Bangkok, Thailand, in 2003, and the Ph.D. de-
gree in Electrical Engineering and Computer
Science from National Chiao Tung University,
Hsinchu, Taiwan, in 2016. He is currently a lec-
turer in the Faculty of Information Science and
Technology at Mahanakorn University of Tech-
nology, Bangkok, Thailand. His research inter-
ests include mobile embedded systems.

12

Ying-Dar Lin is a Distinguished Professor of
computer science at National Chiao Tung Uni-
versity (NCTU), Taiwan. He received his Ph.D.
in computer science from the University of Cal-
ifornia at Los Angeles (UCLA) in 1993. He was
a visiting scholar at Cisco Systems in San Jose
during 20072008, and the CEO at Telecom Tech-
nology Center, Taiwan, during 2010-2011. From
August 2017, he has been jointly appointed
as the Vice President of National Applied Re-
search Labs (NARLabs). Since 2002, he has
been the founder and director of Network Benchmarking Lab (NBL,
www.nbl.org.tw), which reviews network products with real traffic and
has been an approved test lab of the Open Networking Foundation
(ONF) since July 2014. He also cofounded L7 Networks Inc. in 2002,
later acquired by D-Link Corp, and O'Prueba Inc. in 2018. His research
interests include network security, wireless communications, and net-
work softwarization. His work on multi-hop cellular was the first along
this line, and has been cited over 850 times and standardized into
IEEE 802.11s, IEEE 802.15.5, IEEE 802.16j, and 3GPP LTE-Advanced.
He is an IEEE Fellow (class of 2013), IEEE Distinguished Lecturer
(20142017), ONF Research Associate, and received in 2017 Research
Excellence Award and K. T. Li Breakthrough Award. He has served or is
serving on the editorial boards of several IEEE journals and magazines,
and is the Editor-in-Chief of IEEE Communications Surveys and Tutori-
als (COMST). He published a textbook, Computer Networks: An Open
Source Approach (www.mhhe.com/lin), with Ren-Hung Hwang and Fred
Baker (McGraw-Hill, 2011).

Yuan-Cheng Lai received his Ph.D. degree in
the Department of Computer and Information
Science from National Chiao Tung University in
1997. He joined the faculty of the Department
of Information Management at National Taiwan
University of Science and Technology in August
2001 and has been a professor since Febru-
ary 2008. His research interests include perfor-
mance analysis, protocol design, wireless net-
works, and and network security.

Edward T.-H. Chu received the Ph.D. degree in
computer science in 2010 from the Department
of Computer Science at National Tsing Hua Uni-
versity, Hsinchu, Taiwan. He has more than 4
years work-experience in the industry, where he
worked on embedded software and owns a Chi-
> & s nese patent. He was a visiting scholar at Purdue
University in 2009. He joined the Department
of Electronic and Computer Science Information
" . Engineering at National Yunlin University of Sci-

ence and Technology, Taiwan, as an assistant
professor in 2010 and has become an associate professor in 2015. His
research interests include embedded systems and real-time operating
systems.

Kate Ching-Ju Lin received the B.S. degree
from National Tsing Hua University, Taiwan, in
2003 and the Ph.D. degree from National Tai-
wan University, Taiwan, in 2009. She has been
a visiting scholar in CSAIL, MIT, in 2007. She
is now an associate professor in Computer Sci-
ence at National Chiao Tung University. Her cur-
rent research interests include wireless systems,
RF-based sensing and visible light communica-
tion.

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



