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A B S T R A C T

Cyber threat intelligence (CTI) provides the means to rapidly identify and investigate attacks such that the
security risks can be addressed. However, few studies have assessed the consistency between the CTI and the
observations in the real-world environment (i.e., sightings). Accordingly, this study proposes an approach for
assessing such consistency. The assessment process involves finding both false positives (i.e., attacks reported
in the CTI, but not observed in the sightings) and false negatives (i.e., attacks observed in the sightings, but not
reported in the CTI). The latter are then used to augment the CTI. Several strategies are proposed for assessment
and augmentation with a large number of flows in the sightings. For assessment, we first list the characteristic
rules for various attacks, and see whether the characteristics of the malicious flows labeled with the attack tags
by the CTI match the corresponding rules. We also divide the reported malicious flows into clusters for easier
observation. For augmentation, a machine learning framework is employed to identify flows in the sighting
with a behavior similar to that of known malicious flows. The attack type and severity of these flows are
predicted and used to update the CTI accordingly. The experimental results reveal that among the sightings,
over 50% of the flows do not exhibit the behaviors expected from the characteristic rules, but nevertheless
appear to be probing or scanning. The proportion of such flows is greater than 90% in the largest cluster for
each attack type. When the learning framework is employed, the number of high-severity malicious sources
identified in the sighting increases by 156% compared to that reported in the original blacklist. In addition,
around 53% of these sources are also considered as potentially malicious by other intelligence sources, and
are thus regarded as valid candidates for CTI augmentation.
1. Introduction

Cyber security is regarded by the World Economic Forum as a criti-
cal risk that results in significant financial loss [1]. To protect network
environments from malicious attack, it is common practice to deploy
security systems such as firewalls and intrusion prevention/detection
systems to detect or block attacks based on pre-configured rules, at-
tack signatures, and detection models. However, such systems may be
unable to identify malicious sources proactively until attacks actually
occur. Furthermore, their performance may be limited to inaccuracies
inherent in the detection techniques employed. In view of this, cyber
threat intelligence (CTI), which contains rich information about threats,
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such as malicious IP addresses, domain names, hash values, and tactics,
techniques and procedures (TTP) of threats, plays an invaluable role
in developing more robust defense systems. Moreover, CTI provides a
powerful tool for analyzing cyber security events and identifying the
threats within them. Thus, network administrators have come to rely
increasingly heavily on CTI in recent years as a means of defending
against malicious sources by, for example, configuring a firewall with
the blacklists provided by CTI to block malicious sources at an early
stage of attack (e.g., when a threat actor probes targets for a later
attack).
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CTI is derived from various sources, including security vendors and
expert reports. The intelligence can be in the form of a comment, arti-
cle, note, tweet, and so on. However, fast-changing threats in the real
world, and the limited views of most information sources, may result in
inconsistent, inaccurate, and incomplete threat intelligence. Moreover,
integrating different sources and formats may lead to information
conflict. Thus, as reported by Gao et al. [2], although structured CTI is
useful in capturing fragmented views of threats, it still often lacks the
capability to uncover complete threat scenarios due to the disconnected
nature of the indicators of compromise (IOCs). Furthermore, while
unstructured CTI can provide more comprehensive knowledge about
threats, it is challenging to devise automated methods for harvesting
such knowledge for threat hunting.

In the context of CTI, the term ‘‘sighting’’ refers to observations
made in a real-world operational network or system environment, such
as network flows, captured packets, and system logs. For example,
sighting is performed by logging packets or flow information at a router
or switch. The gathered information not only yields valuable insights
into the actualities of the CTI in the real world, and but also provides a
means of assessing the consistency of the CTI with the actual sightings.
Furthermore, by examining the similarity of the activities found in the
sightings with those described in the CTI, it is possible to uncover
more potential threats through methods such as machine learning.
Accordingly, the current study presents a comprehensive approach for
assessing and augmenting the CTI based on the sighting observations. In
doing so, the study fills an important gap in the extant literature, which
generally considers either the assessment of CTI or its augmentation,
but seldom both.

In general, the consistency of CTI with the real-world actualities in
the networks can be assessed by collecting the NetFlow logs of all the
activities reported as malicious by the CTI. However, the sheer volume
of these logs precludes exhaustive manual inspection and analysis.
Moreover, the logs lack ground truth data for reference purposes.
Accordingly, in the approach proposed in the present study, a set of
characteristic rules is first constructed for each of the attack types
reported by the CTI such that the proportion of reported attacks that
really take place in the sighting can be quickly and crudely estimated.
Having identified possible malicious behaviors in the sighting, the flows
related to each type of attack are clustered and then inspected in
accordance with their features. Since the flows in the same cluster are
similar one another in some way, it is sufficient simply to sample the
flows from each cluster for further investigation. As a result, the manual
inspection load is significantly reduced.

As mentioned above, the CTI may be incomplete because of the
limited view of the information sources. As a result, the ability of
the CTI to detect and predict malicious attacks is inevitably impaired.
Consequently, the present study not only proposes the consistency
evaluation method described above, but also proposes an approach
for detecting potential attacks in the sighting based on their similarity
to previous reported attacks and predicting their tags (i.e., attack
types) and severity. In particular, the flows associated with the attacks
reported by the CTI are first used to train an unsupervised learning
model to detect similar flows in the sighting. Having detected such
flows, two more learning models, also trained using the malicious flows
previously reported by the CTI, are used to predict the tags and severity
of the flows. The results are then applied to prioritize the flows for
further investigation with the aim of augmenting the CTI if appropriate.

To the best of the authors’ knowledge, the present study is the first
to correlate the CTI with the full sighting in an operational network for
assessing and augmenting the intelligence. Through the assessment and
augmentation processes outlined above, this study aims to answer the
following questions that were rarely studied in the literature:

• Do the malicious sources in the sighting behave in the ways
reported by the CTI?

• Do the tags and severity of the malicious sources marked by the
2

CTI precisely reflect the actualities in the sighting?
• How many network activities in the sighting are similar to those
from known malicious sources, and how should their sources be
prioritized for augmentation of the CTI?

Addressing the issues can shed light on how the CTI should be in-
terpreted in the sighting of an operational network, and also provide
the methods to identify more malicious sources before the CTI is
updated. The contributions will be useful for both network analysts and
administrators.

The remainder of this paper is organized as follows. Section 2
presents the background to the general CTI and sighting field and
reviews previous work on CTI assessment and augmentation, respec-
tively. Section 3 introduces the considered scenario and formulates
the related problem statements. Section 4 describes the proposed CTI
assessment and augmentation methods. Section 5 introduces the im-
plementation details of the proposed methods. Section 6 presents and
discusses the assessment and augmentation results. Finally, Section 7
provides some brief concluding remarks and indicates the intended
direction of future research.

2. Background and related work

2.1. Cyber threat intelligence

Farnham [3] divided CTI sources into three categories: internal,
community, and external. The internal category incorporates the in-
telligence gleaned from the inside environment of an organization.
By contrast, the community category includes the intelligence shared
between multiple organizations that trust each other, such as the
Information Sharing and Analysis Centers (ISACs) in multiple Euro-
pean countries, which combine various units and organizations in
the governments or private sectors to share intelligence. Finally, the
external category contains intelligence which stems neither from the
organization itself nor from a community group. Typically, such intel-
ligence originates from open-source intelligence (OSINT) sources [4]
and is manifested in many different forms, including reports written
by experts, formatted files, essays on cyber security, lists of specific
objectives, and so on. However, no matter what form the CTI takes, the
information which it provides can help to identify malicious entities
such as IP addresses and domain names. The intelligence can signifi-
cantly improve the detection accuracy of firewalls, intrusion detection,
and malware detection.

2.2. Sighting

The term ‘‘sighting’’ refers to the cyber activities observed on the
hosts or in the network of the real world. The present study focuses
on the particular case of sightings in the network, where the associ-
ated information may range from discrete raw packets to higher-level
concepts such as network flows, network traffic statistics, and events.
Such network traffic is generally collected on the router between the
institutional network and external networks because the boundary be-
tween them provides a convenient and strategic position for observing
external attacks. Network traffic collection is commonly performed
at the raw packet level. However, the packet volume in real-world
networks is often extremely large, and hence the associated storage
cost is extremely expensive. Moreover, inspecting the packets and
their payloads may raise important privacy concerns. Consequently, a
more scalable and ethical practice, particularly in large networks, is to
aggregate the packets into flows for analysis purposes [5]. For example,
NetFlow [6] and IP Flow Information eXport (IPFIX) [7] are widely
used for network monitoring. The flow data typically contain informa-
tion such as the source/destination IP addresses/ports, the start/end
times, the duration, the number of bytes and packets associated with
each flow. Such flow information preserves the major characteristics
of the network behavior and is thus invaluable for various purposes
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Table 1
Recent CTI-related studies categorized by assessment and augmentation.

Paper Objective Input Output

Assessment Augmentation Aggregation CTI Sighting

No assessment or augmentation (for aggregation only)

Lee et al. 2018 [10]
× × ✓ IoC × CTI graph database

Gao et al. 2020 [11]
× × ✓ IoC ×

A CTI modeling and
identification system

For assessment only

Gao et al. 2018 [12] Trust evaluation × × IoC × Threat intelligence graphs

Mavzer et al. 2021 [13] Completeness, extensiveness, x × IoC x 66 intelligence itemsfreshness and quality

For augmentation only (some also implement aggregation)

Huang et al.
× TTP × MITRE ×

Enrich the knowledge
2021 [14] associated with TTP

Gao et al. 2021 [2]
× IoC × OSCTI text System entities Threat behavior extraction

from OSCTI text

Azevedo et al.
× IoC ✓ IoC × Quality threat intelligence2019 [15]

Sills et al. 2020 [16]
× CKG ✓ IoC ×

A repository of known
security vulnerabilities

Mavroeidis et al.,
× Actor ✓ TAL ×

Threat actor type
2021 [17] inference and characterization

Suryotrisongko et al.,
× IoC ✓ IoC DNS logs Robust botnet DGA detection2022 [18]

Berady et al.
× IoC ✓ IoC TTP of red team Advanced persistent graphs2021 [19]

For both assessment and augmentation

Mills et al. 2021 [9] Geolocation, blacklist × IoC Dataset from honeypots An intrusion detection
IP address and port framework

Our work False positives and IoC, tag,
× IoC Full sighting in an operational network Consistency analysis and

false negatives of CTI severity candidates to be augmented
of traffic analysis, including network measurement (e.g., [8]) and
threat detection. Thus, while packet capture can provide more detailed
insights into the network traffic, the present study focuses on the
problem of collecting and analyzing the network flows in the sighting.

2.3. Related work

Table 1 summarizes the recent related research in the CTI field. With
the exception of the present study, only one previous study [9] con-
sidered both the assessment and the augmentation of CTI. Moreover,
existing studies do not refer to the sighting or refer only to the network
traffic of a limited scope (e.g., that from a red team or honeypots). In
ther words, the present study provides the first reported attempt to
ointly assess and augment the CTI based on the full sighting in an
perational network. The details and scope of the other studies reported
n Table 1 are presented in the following.

Gao et al. [12] collected CTI from several threat intelligence sharing
latforms, and used the information to construct a threat intelligence
raph. The graph was then as the basis for an automatic trustworthiness
alculation mechanism. Mavzer et al. [13] performed four tabletop
xercises to evaluate various CTI sharing tools such as ECHO – Early
arning System (E-EWS) in terms of 66 intelligence items. As in the

resent study, Mills et al. [9] utilized CTI to label the flow data in the
etwork. However, the study focused mainly on the problem of iden-
ifying the geolocation and IP addresses of actual attacks rather than
he feasibility of utilizing the CTI to predict potential future attacks.
oreover, while the present study employs an unsupervised learning

pproach to detect previously unreported malicious IP addresses and
redict the attack type and severity of the associated flows as a means
f augmenting the CTI, the study in [9] employed a supervised learning
3

pproach to carry out intrusion detection.
Several studies have considered the problem of aggregating CTI
from multiple sources to produce a single piece of CTI. For example,
Lee et al. [10] presented a standardized management structure for
integrating the intelligence received from multiple sources into a graph
database and then sharing the CTI outside. Gao et al. [11] developed
a practical system called HinCTI for aggregating and modeling CTI
from different sources and generating high-quality CTI such as the
threat type. Azevedo et al. [15] proposed a platform referred to as
PURE to create quality threat intelligence through OSINT sources via
clustering and correlation mechanisms. Sills et al. [16] used CTI to
construct a Cybersecurity Knowledge Graph (CKG) which was then
augmented to produce a higher quality graph through the integration
of multiple resources. Mavroeidis et al. [17] used the Intel Threat Agent
Library (TAL) to generate highly contextual, explicable, processable,
and shareable threat actor intelligence. Huang et al. [14] combined OS-
INT and various resources on the MITRE website to develop a system,
designated as MAMBA, to recognize threat techniques and discover
TTP and malicious behavior. The proposed method identified malicious
behavior through the use of deep learning. However, the quality of
the detection results was heavily dependent on the reliability of the
aggregated CTI sources, and aggregating multiple CTI sources is beyond
the scope of our work.

Several studies have used sighting data such as DNS logs, system
entity records, and the TTP of the red team to facilitate threat detection
and CTI investigation. Gao et al. [2] proposed a system referred to
as ThreatRaptor for facilitating threat hunting in computer systems
using open-source CTI (OSCTI) text. A model was additionally proposed
for detecting the potentially malicious traffic produced by domain
generation algorithms (DGAs). Suryotrisongko et al. [18] showed that
CTI methods face difficulties in detecting DGA-based botnets using
blacklists. Thus, a method was proposed for detecting such traffic using
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Table 2
Notations.

Category Notation Description

NetFlow
𝐹 = {𝑓1 , 𝑓2 ,… , 𝑓𝑚} NetFlow logs, in which 𝑓𝑖 stands for a flow.
𝑉𝑒 Set of external hosts
𝑉𝑖 Set of internal hosts

CTI

𝐵 = {𝑏1 , 𝑏2 ,… , 𝑏𝑛} Set of blacklisted IP addresses from the CTI
𝐵+ = {𝑏+1 , 𝑏

+
2 ,… , 𝑏+𝑙 } Set of malicious IP addresses found in the

augmentation
𝑇 = {𝑡1 , 𝑡2 ,… , 𝑡𝑘} Set of attack tags in the CTI
𝑆 = {1, 2,… , 𝑠} Range of severity in the CTI

Model
𝐷𝑀 Malicious flow detector
𝑃𝑇 Tag predictor
𝑃𝑆 Severity predictor

the statistical features of a large number of DGA families. In addition,
the interpretability of the detection results was enhanced by combining
explainable AI and OSINT. Berady et al. [19] presented a model for
analyzing cyber-attacks from the perspectives of both the attacking red
team and the defending white team, respectively, in order to better
understand the TTP of both sides and identify the origins of objects
which then become IoCs.

In summary, although the existent studies may utilize dedicated
security appliances like us, as well as some graph or learning models
in their designs, the appliances and models are used to correlate the
CTI from multiple sources, or to label the specific traffic from the
CTI. Unlike the present study, the existent studies do not assess the
consistency between the CTI and the actualities in the sighting of an
operational network, and augment the CTI accordingly.

3. Scenario description and problem statements

In this study, it is assumed that a security device is deployed at the
typical location of a firewall, and is able to observe all the network
traffic between the internal and external networks. It is further assumed
that the security device has access to the CTI and can refer to a blacklist
of IP addresses 𝐵 = {𝑏1, 𝑏2,… , 𝑏𝑛}, and choose to either block or log the
network traffic accordingly. For convenience, the device is referred to
simply as a CTI device hereafter. The CTI device is assumed to have
the ability to mark each blacklisted IP address, 𝑏𝑖, with one or more
tags from a set of pre-defined attack tags 𝑇 to indicate the type of
attack, such as botnet, and its severity in the range 𝑆 (e.g., between 1
to 10). In addition, to obtain the raw network traffic from the sighting,
it is assumed that a NetFlow collector (located on a border router, for
example) observes the same network traffic as that seen by the CTI
device, and sample every packet in the network traffic to generate a
set of NetFlow logs 𝐹 = {𝑓1, 𝑓2,… , 𝑓𝑚}. The notations used throughout
this study are listed in Table 2.

3.1. Problem statement for CTI assessment

The first objective of the present study is to design a method to
assess the consistency of the CTI with the real-world sightings. Given
the NetFlow logs 𝐹 and blacklist of malicious IP addresses, 𝐵, the
assessment process sets out to determine whether the flows in 𝐹 whose
source hosts are included in 𝐵 really exhibit the characteristics of the
attack types indicated by their tags and severity labels in the CTI. The
more the characteristics observed in the sighting conform to the tags
and severity of the blacklisted IP addresses reported in the CTI, the
more consistent the CTI is with the sighting. In general, inconsistencies
between the CTI and the sighting may arise for two main reasons.
First, the flow is from a normal host but the source host is listed in
𝐵, or the flow is erroneously labeled with an attack tag and associated
severity in the CTI (i.e., the flow represents a false positive). Second,
the flow is from a malicious host but the host is not listed in 𝐵, or
the flow (which is malicious) is not labeled with an attack tag or
4

associated severity in the CTI (i.e., the flow is a false negative). In
practice, the assessment process is extremely challenging since there are
no ground truth labels in the real network to indicate whether or not
the flows behave consistently with their tags/severity labels in the CTI.
Furthermore, given thousands of flows or even more per minute in a
typical network, manually determining whether the nature (i.e., benign
or malicious) of each flow is a next to impossible task.

3.2. Problem statement for CTI augmentation

The second objective of the present study is to find potentially
malicious network flows in the sighting that are not associated with any
of the blacklisted IP addresses reported in the CTI (i.e., false negatives
on the CTI device), and to augment the CTI accordingly. Formally,
given the NetFlow logs, 𝐹 , and blacklisted IP addresses, 𝐵, together
with their attack tags and severity labels, the augmentation process
aims to determine the set of malicious source IP addresses in 𝐹 but
not in 𝐵 (referred to henceforth as 𝐵+), and to update the tags and
severity associated with each member in 𝐵 ∪𝐵+ as required. Note that
some of the blacklisted IP addresses may not be tagged with any attack
type in the CTI; thus, the augmentation process also includes marking
such IP addresses and updating their severity. As for the CTI assessment
process, the augmentation process is challenged by the absence of
ground truth labels for the network flows in the sighting. Consequently,
the present study utilizes the information associated with the reported
malicious flows and the tags of the flow sources in the CTI to construct
three prediction models to facilitate the augmentation process, namely
(1) a malicious flow detector 𝐷𝑀 , (2) a tag predictor 𝑃𝑇 , and (3) a
severity predictor 𝑃𝑆 . Collectively, the three models provide the means
to find previously unseen malicious flows in the sighting, predict their
tags, and update the severity of the respective IP addresses in the set 𝐵∪
𝐵+. Besides the intelligence sharing platform used in the present study
(see Section 6.1), the augmented intelligence items (e.g., blacklisted IP
addresses) can be formatted to be incorporated into other platforms
such as the malware information-sharing platform (MISP),1 e.g., as a
reported event in the MISP.

3.3. Scope and limitations

CTI involves a wealth of information, including malware hashes and
the IP addresses and domain names of malicious hosts. However, col-
lecting and analyzing all of the available information in the sightings in
order to perform the assessment and augmentation processes described
above require the use of enormous resources and complex processing.
For example, it may be necessary to deploy honeypots and system moni-
toring tools on many user hosts in order to collect sufficient information
to detect and collect malware. Furthermore, it may be necessary to
collect not only the packet headers, but also the packet payloads, which
is time-consuming and resource intensive and is complicated by the
many encryption protocols in use nowadays. Finally, performing a deep
analysis of such information in the sighting may violate user privacy
laws. Thus, while involving more intelligence in the sighting to perform
the assessment and augmentation tasks is an appealing option to obtain
more insight, the present study focuses on the more practical case of
analyzing L3/L4 information for scalable processing and in order to
avoid such privacy concerns and better match the capabilities of the
devices used in our network (see Section 6.1).

1 https://www.misp-project.org

https://www.misp-project.org
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Fig. 1. Basic workflow of proposed CTI assessment and augmentation framework.

4. Assessment and augmentation methods

4.1. Design overview

Fig. 1 presents an overview of the proposed CTI assessment and
augmentation framework. In the NetFlow data used in the preprocess-
ing stage, each flow contains various fields, such as the source and
destination IP addresses/ports, the numbers of bytes and the packets,
and the timestamp. In the present study, the interactions between the
hosts in the internal and external networks in the NetFlow sighting
data collected over a certain period of time are modeled as a bipartite
graph. The statistical features of the nodes and edges in the graph are
determined based on the NetFlow data. Meanwhile, the blacklisted IP
addresses, together with their tags (if any) and severity, are obtained
from the CTI logs maintained by the CTI device. The statistical sighting
information and CTI data are then provided as inputs to the assessment
and augmentation processes, as described in the following.

After the network activities in the sighting have been modeled,
the consistency of the CTI with the sighting is evaluated. Note that
without any ground truth data, the consistency can only be estimated
(rather than precisely quantified), given the huge effort of manually
examining a large number of flows in a real network. To ease the CTI
assessment task and identify false positives, characteristic rules are thus
erived for each tag (i.e., each type of attack) in the CTI to describe the
haracteristic behavior of most network flows associated with sources
abeled with this tag (see Table 5). The rules then provide a convenient
pproach for quickly identifying those flows whose sources are sup-
osed to be unlikely marked with the corresponding tag. The network
lows whose sources are marked with the same tag are then divided
nto clusters by DBSCAN clustering. Through the use of the clustering
rocess, the behaviors of the corresponding flows associated with each
ag can be investigated using a simple sampling process rather than by
nspecting each flow individually. Consequently, the investigation load
s significantly eased, particularly in the case of clusters containing a
arge number of flows.

One of the main objectives of the CTI assessment process is the
dentification of false negatives, i.e., malicious sources in the sighting
hich are regarded as benign in the current CTI. In the present study,

hese false negatives are considered as potential candidates to augment
he CTI so as to improve its robustness in the future. In the proposed
ugmentation approach, the current CTI is first used to label the
5

nown malicious flows in the sighting, and these labels are used to
Fig. 2. Illustrative example of directed bipartite multi-graph.

rain a one-class support vector machine (one-class SVM or OCSVM)
odel, referred to as the malicious flow detector, to identify additional
alicious sources in the sighting. Since such malicious sources, and

ome blacklisted IP addresses, do not have attack tags, or their severity
alues are presently underestimated in the CTI, two further models are
lso trained, namely a tag predictor and a severity predictor, to update the
ource/IP tags and severity, respectively. The resulting list of malicious
P addresses, tags, and severity values are then taken as potential
andidates for CTI augmentation. Note that not all of the findings are
dded to the CTI because of the inherent inaccuracy of the original
TI and the first learning model. Consequently, the predicted severity
alues are used as a reference in prioritizing which particular findings
hould be added to the CTI. The validity of the prioritization results is
hen further validated by reference to public intelligence and intrusion
revention system (IPS) logs for the sighting (if available).

.2. Preprocessing

Since viewing the individual flows separately is insufficient to char-
cterize the network behavior of the involved hosts, a directed bipartite
ulti-graph is built from the NetFlow records collected each hour to
odel the interactions between the internal and external hosts. In the

raph, the nodes represent the hosts whose IP addresses appear in the
etFlow logs and are identified as either internal nodes (belonging

o the internal network) or external nodes (belonging to an external
etwork). Meanwhile, the edges represent the flows between the var-
ous hosts. For modeling purposes, each edge is characterized by four
ields of the flow record, namely (1) the date first/last seen, (2) the
ource/destination address/port, (3) the byte count, and (4) the packet
ount.

Fig. 2 illustrates the directed bipartite multi-graph using a trivial
xample involving IP 1, IP 2 and IP 3 as external hosts, and IP 4 and
P 5 as internal hosts. The edges represent the interactions between the
wo sets of hosts over a certain period (e.g., 1 h). It is seen that some
nteractions are one-sided, e.g., from IP1 to IP 5, while others are two-
ay, e.g., between IP 3 and IP 5. Furthermore, for some interactions

e.g., IP1 to IP5), only one flow occurs during the observation period,
hereas in other interactions (e.g., IP 1 to IP 4), multiple flows take
lace.

Having constructed the bipartite multi-graph, the time-coupled pro-
ess of the flows over the observation period is modeled by extracting
9 features from the graph in accordance with the guidelines of Kr-
shnamurthy et al. [20]. The features relate to the numbers of packets,
ytes, and port numbers associated with or between the nodes, and may
e related to either individual nodes or across flows (see Table 3 and
able 4, respectively).
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Table 3
Features of nodes extracted from the bipartite multi-graph.

Features Description

packets_sent The total number of packets/bytes sent from a
host (i.e., the source IP addresses in the flows.)bytes_sent

packets_recv The total number of packets/bytes received by a
host (i.e., the destination IP address in the flows.)bytes_recv

packets_sent_to_port The total number of packets/bytes sent from a
port (i.e., the source ports in the flows.)bytes_sent_to_port

packets_recv_to_port The total number of packets/bytes received by a
port (i.e., the destination ports in the flows.)bytes_recv_to_port

distinct_to The total number of nodes that have an edge to a
node.

distinct_ports The total number of ports that have an edge to a
node.

avg_packets_sent_size The average bytes in a packet sent from a host.

avg_packets_recv_size The average bytes in a packet received by a host.

Table 4
Features across flows extracted from the bipartite multi-graph.

Features Description

packets_sent_to_target The total number of packets/bytes sent to a target
host from a source host in the flows.bytes_sent_to_target

packet_recv_from_target The total number of packets/bytes received from a
source host by a target host in the flows.bytes_recv_from_target

n_entries_to_port The number of flows between two ports.

n_entries_to_target The number of flows between two nodes.

distinct_ports_to_target The number of destination ports between two
nodes.

4.3. CTI assessment based on netflow

The purpose of the CTI assessment process is to determine the false
positives and false negatives in the sighting as compared with the CTI
report. As described in Section 4.1, the false negatives are regarded as
potential candidates for augmenting the CTI. Hence, the details of the
false negative identification process are presented later in Section 4.4,
which describes the entire CTI augmentation process. Accordingly, the
remainder of this subsection focuses on the problem of finding the false
positives in the sighting. The CTI assessment process for false positives
involves two mechanisms, namely characteristics rules and DBSCAN clus-
tering, where both mechanisms refer to the features extracted from the
directed bipartite multi-graph described in Section 4.2. Fig. 3 illustrates
the basic procedure of the CTI assessment process.

4.3.1. Characteristic rules
To facilitate the CTI assessment process, a set of characteristic rules

are derived relating to the connected ports and activities of the IP
addresses for each attack tag labeled by the CTI. The rules then provide
a convenient approach for rapidly identifying potential false positives
among the reported malicious IP addresses in the CTI device (i.e., the
flows from these addresses do not match the corresponding rules).
Table 5 summarizes the attack tags considered in the present study and
their characteristic rules. It is seen that the rules are simple, and can
thus be easily implemented in the assessment process. For example,
some of the rules consist simply of common ports associated with
6

particular types of attack, or the applications in which the associated
Fig. 3. Flowchart of CTI assessment process.

Table 5
Characteristic rules of attack types.

Types Rules

botnets The source or destination port is related to remote services.
exploits A client generates at least three flows with the mean packet size

larger than 64 bytes.
Tor The port of the external host is a common Tor port.
phishing The source or destination port is related to mail or web.
ransomware Manual review because of sparse flows.
malware The source or destination port is a common port related to malware.
spam The source or destination port is related to sending/receiving mail.
cryptomining The external port is a common mining port.

scanner To more than 10 IP addresses with the same port.
To the same IP address with more than 10 ports.

attacks most commonly occur [21]. In general, it is difficult to enumer-
ate a set of rules which exhaustively and precisely covers all possible
characteristics of a particular attack type since each attack type may
consist of multiple attack techniques (e.g., there are various botnet
variants in the wild). In view of this, and since the aim here is to focus
only on a crude evaluation of possible false positives in the assessment,
the rules in Table 5 intended only to describe the general characteristics
that the attacks of a certain tag typically display. The details of the
characteristic rules for each tag are described in the following.

• botnet: The assessment process considers two botnet scenarios:
(1) the host is a command and control (C&C) server, and (2) the
host has been compromised and is a bot. Possible ports likely
associated with C&C channels include those commonly used for
remote services, IRC channels, HTTP, and printers [21]. The ports
associated with known botnets are also considered. Thus, the
ports considered in the characteristic rule for botnets are specified
as follows:

– related to remote services, including those found in the
sighting: 21, 22, 23, 135, 177, 530, 903, 2049,3389, 2181,
5500, 5984, 6000, 6008, 7687, 9200, 9600, 11,211

– IRC channels: 6667, 6697
– HTTP, HTTPS: 80,443
– printer ports: 35, 515, 631, 2081, 2991, 3396
– found by searching ‘botnet’ in the speed guide: 636, 989,

990, 992, 994, 995, 3269, 5645, 7779, 8080, 8443, 13,620,

16,464, 16,465, 16,470, 16,471, 21,315, 21,810, 22,292
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• exploit: Exploiting attacks generally requires several attempts
to succeed. Hence, if a host initiates at least three flows and
the mean packet size is larger than 64 bytes (i.e., carrying a
non-empty payload), it is regarded as a potential exploitive host.

• Tor: The assessment process considers the case where an internal
host connects to an external Tor network. The ports most com-
monly used for Tor include 81, 82, 9001, 9030, 9040, 9050, 9051,
9150.

• Phishing: Several common phishing scenarios are considered,
including external hosts sending phishing mail to internal mail
servers or a web service (i.e., web phishing), or internal hosts
accessing a phishing web service. Thus, the characteristic rule
is defined in terms of the ports most commonly associated with
sending and receiving mail, or accessing web services, i.e.,

– Sending/receiving mail: 25, 57, 587, 465, 2525, 109, 110.
– Related to web: 80, 443, 8080.
– Obtained from searching for ‘phishing’ in the speed guide:

85, 880, 4903, 6180, 25,080.

• Ransomware: Such attacks are identified through manual in-
spection only due to the sparseness of such flows in typical
sightings.

• Malware: A total of 119 ports commonly associated with mal-
ware, Trojan, worms, and other malware-related attacks are con-
sidered [21].

• Spam: As for phishing attacks, several common spamming scenar-
ios are considered, such as external sources sending spam mail to
an internal mail server or web service. The characteristic rule is
thus configured in terms of the ports most commonly associated
with sending and receiving mail, or accessing web services, i.e.,

– Sending/receiving mail: 25, 57, 587, 465, 2525, 109, 110.
– Related to mail: 25, 587, 465, 2525.
– Obtained from searching for ‘spam’ in the speed guide: 25,

135, 559, 1025, 1026, 1080, 2568, 2599, 2703, 3355, 5190,
6019, 6277, 8910, 9040, 1133, 2113, 3311, 3342, 5080,
65,506.

• Cryptomining: The assessment process assumes that when the
external port is a common port for mining pools, the flow is likely
to be a cryptomining flow. Thus, the characteristic rule consists
of ports 443, 4444, 6641, 6642, and 8333, together with ports
derived from the web speed guide, including 8123, 8124, and
8125.

• Scanner: Two scanner scenarios are considered: IP scanning and
port scanning. The corresponding characteristic rule is thus iden-
tified as follows:

– IP scanning: A source host tries to sending packets to more
than 10 internal hosts with the same port.

– Port scanning: A source host tries to send packets to more
than 10 ports with the same host.

The characteristic rules described above exploit the fact that dif-
ferent attack types usually exhibit different characteristics. In the CTI
assessment process, the flows obtained over different time frames
(i.e., one hour, one day, and 12 days in our observation (see Sec-
tion 6.2.1)) are observed and evaluated with reference to the char-
acteristic rules. If an observed IP address is tagged with one of the
attack types listed in Table 5, a check is made as to whether at least
one flow from this IP address matches the corresponding rule(s) of the
attack type within the considered time period. If at least one match
is obtained, the assessment process assumes that the IP address ‘‘may’’
exhibit the behavior of the associated attack type; otherwise, the IP
address is very unlikely associated with the attack type (i.e., it is likely
a false positive).

However, some flows which do not match the rules may still be an
attack (e.g., an attack with an unusual port number). Consequently, the
7

true number of false positives may be less than that predicted through
the rule matching. Nonetheless, the rules in Table 5 are deliberately
defined as loosely as possible to reduce such cases, and hence it is rea-
sonable to assume that the overestimation of false positives is small in
practice. However, the rule-matching approach may also underestimate
the number of false positives since no formal check is actually made in
the assessment process as to whether the reported malicious flows that
match the rules are truly positive instances. Because of the looseness of
the rules, it is likely that the underestimation of the false positives is
more significant than their overestimation. As a result, it is inferred that
the overall estimation is roughly the lower bound of the true number
of false positives.

4.3.2. DBSCAN clustering
To verify the results of the rule-matching process and better un-

derstand whether the tags from the CTI are truly consistent with the
observations in the sighting, the network flows in the present study
are also analyzed by manual inspection. As described earlier, it is im-
practical to manually inspect every flow because of the overwhelming
number of flows in the sighting. Thus, in the CTI assessment process,
a clustering approach is employed to group the similar flows per tag
such that representative flows can then be sampled at random for
manual inspection. Among the popular clustering algorithms available,
k-means and DBSCAN are two of the most commonly used. The present
study deliberately adopts the latter method since it is density-based
and can find clusters of arbitrary structures without being affected by
noise (i.e., noise is treated simply as an outlier). Consequently, DBSCAN
is an effective means of obtaining the clusters that require manual
inspection.

As described in Section 4.2, the flow features are extracted from
the bipartite multi-graph. DBSCAN is then run for each attack tag such
that all of the flows associated with each tag (i.e., attack type) are
clustered in accordance with their features. Following the clustering
process, the flows in each cluster are randomly sampled, and their
features and activities can be further examined manually. Since the
number of clusters is much less than the number of flows, such an
approach provides a convenient and efficient means of understanding
the activities involved in the major clusters of each attack tag.

4.4. CTI augmentation based on NetFlow

The CTI augmentation process involves finding malicious flows in
the sighting that have not been identified by the CTI device (i.e., false
negatives), labeling these newly-found malicious flows (as well as the
known malicious flows without tags) with tags, and also predicting
their severity values. To facilitate the augmentation process, three
learning models are trained to predict the malicious flows, their tags
and their severity. As described in Section 4.2, a bipartite multi-graph
is created every hour, and the flow features are extracted from it for
assessment and augmentation purposes. Fig. 4 illustrates the main steps
in the augmentation process. In the training stage, the features of the
flows with external blacklisted IP addresses are used to train the three
models, namely a single malicious flow detector based on one-class SVM,
multiple tag predictors (one for each attack type) also based on one-class
SVM, and a single severity predictor based on a random forest regressor.
In the subsequent prediction stage, the trained models are used to
predict malicious flows and identify their IP addresses, predict the tags
of the associated IP addresses, and predict their severity, respectively.

An assumption is made that the hosts that generate malicious flows
(i.e., the hosts blacklisted in the CTI device) are likely to be com-
promised but may still generate many normal flows as a result of
their normal usages. It is noted that the flows originating from the
external and internal blacklisted sources are observed quite differently
in the sighting. In particular, all the flows with Internet access from
the internal blacklisted sources can be collected at the border router,
regardless of their nature (normal or malicious). However, for the
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Fig. 4. Flowchart of CTI augmentation process.
xternal blacklisted sources, almost only the malicious flows produced
y these sources are observed in the sighting since their normal flows
ypically do not appear in the sighting (unless they happen to access
he services in the internal network as part of normal usage, which is
nlikely). Accordingly, only the flows from external blacklisted sources
re used to train the learning models since these flows can be reliably
onsidered to be malicious.

The three learning models operate at the level of network flows
ather than IP addresses. Accordingly, to obtain the predicted malicious
P list shown in Fig. 4, an assumption is made that if more than
alf of the flows from a host are predicted as malicious (or normal),
he corresponding IP address can also be predicted as malicious (or
ormal).

.4.1. Malicious flow detection model
The malicious flow model is trained with the characteristics of

nown malicious flows, and then tested with flows in the sighting to see
hether any of these flows behave similarly to known malicious flows.
ince the CTI device reports a list of malicious flows associated with
nown blacklisted IP addresses from the CTI, a one-class SVM model
s trained using these flows to predict the flows in the sighting. It is
oted that the training set contains only known malicious flows from
he CTI device, and it is nearly impossible to ascertain whether all the
lows not reported by the CTI are false negatives or are indeed truly
ormal. Hence, one-class SVM, which is trained with only one class of
nstances, is ideal for the present purposes. In practice, other anomaly
etection models are also available for similar classification problems,
uch as isolation forest. However, a preliminary investigation revealed
hat these methods had a poorer accuracy or lower efficiency than
he one-class SVM method, and hence they were discarded. As shown
n Fig. 4, prior to training, the NetFlow data collected in each hour
ere normalized by min–max normalization. The flows with blacklisted

ource IP addresses were then used to train the model, as described
bove.

.4.2. Tag prediction models
The tag prediction models are also trained using one-class SVM.

ince a blacklisted IP address may be marked with multiple tags, a sep-
rate model is trained for each tag (i.e., each attack type). Following the
alicious flow detection process, only the malicious source IP addresses
8

remain. Thus, only the flows from the blacklisted source IP addresses
are normalized for the tag prediction models. After normalization, the
flows with blacklisted source IP addresses are divided into different
sets according to their tags. If a flow is marked with multiple tags, it
is duplicated in multiple sets with these tags. The prediction models
for different tags are trained with the flows in the respective sets.
The trained models are then used to predict whether each flow in the
sighting should be associated with a particular tag or not.

4.4.3. Severity prediction model
The severity value is numerical (i.e., 𝑆=1∼10) rather than categor-

ical. Hence, the severity prediction model is trained using the random
forest regressor, which has good performance empirically. Moreover,
in contrast to the other models, the NetFlow data are not normalized
prior to training since the regression method is unaffected by the range
of the data values. The model is trained using the 19 features extracted
from the graph as data and the severity values from the CTI as labels.
The trained model is then used to predict the severity of each flow in
the sighting.

Having trained the three models, the prediction stage is conducted
as follows:

1. The malicious flow model detects the malicious flows in the
sighting. If more than half of the flows from an IP address
are detected as malicious, the IP address is also inferred to be
malicious.

2. Taking the list of malicious IP addresses as an input, all of the
flows coming from these IP addresses are processed by the tag
prediction model. If more than half of the flows coming from an
IP address are predicted to be associated with a particular tag,
the IP address is labeled with that tag.

3. The flows coming from IP addresses that have at least one
predicted tag are processed by the severity model to predict the
corresponding severity values. The average severity value of all
the flows from the same IP address is then evaluated as the
severity label for the IP address.
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5. Implementation

5.1. Cyber threat intelligence solutions

In the present study, the CTI source was provided by a proprietary
intelligence sharing platform, which integrated global CTI collected
from around 20 CTI sources. One of the main sources was globally
reputable cyber security organizations, which were accessed to obtain
reputation data. Another source was OSINT, which were used to acquire
a wealth of CTI information, such as security reports. Overall, the
platform provided a rich CTI database, in which the threat indicator
feeds included whois, DNS, certifications, and history records. The
CTI on the platform therefore represents the results from multiple
common CTI sources, rather than those simply of a single product from
a technical company. Moreover, the platform can be used to search
for IP addresses, domains, URLs and so on. The possible search results
also include information such as basic, whois, and passive DNS. The
APIs for various searching functions were incorporated directly within
the platform. For example, the most commonly used function in the
present study was that of looking up the basic data associated with IP
addresses, such as their reputation, various scores, and nature (benign
or malicious) according to the CTI.

A proprietary intelligence-based firewall was used as the firewall
system based on the CTI provided by the intelligence sharing plat-
form. In particular, the former cooperated with the latter to update
its blacklist every hour and to implement active defense measures
accordingly. Both the CTI data from the intelligence sharing platform
and the blacklist from the intelligence-based firewall were used as
references for the assessment and augmentation processes. The firewall
system identified malicious flows through an inspection of their IP
addresses, domains, and so on. The flows were mirrored from the router
to the firewall system, which generated the logs of the malicious flows
according to its blacklist on the mirrored flows. Moreover, the firewall
system could be configured to block inline malicious flows for defense
if deployed in the packet path (despite not the configuration in the
present study).

The firewall system generated the logs that contained the detection
time, the source IP/port, the destination IP/port, the protocol, and so
on. The blacklist was obtained from the logs, and a report was then
manually generated from its dashboard. The report included detailed
statistics on malicious activities during the observation period, such as
the types of attacks detected and the external networks from which they
originated.

5.2. Tools and libraries

The NetFlow records were collected and processed using
nfdump [22], which incorporates the following main tools:

• nfcapd – NetFlow collector daemon
• nfdump – to process the collected NetFlow records
• nfanon – to anonymize the NetFlow records
• nfexpire – to expire the old NetFlow data
• nfreplay – to perform Netflow replay

In the present study, only two of the tools, nfcapd and nfdump,
ere used. The former tool was used to capture the NetFlow records

rom the router, while the latter was used to process the captured
ecords.

Scikit-learn [23] is a well-known machine learning module built
n the Python modules NumPy, SciPy, and matplotlib. Scikit-learn
s open-source and commercially usable, and provides a rich set of
earning functions, such as classification, regression, clustering, and
imensionality reduction. The present study employed the following
9

cikit-learn functions: e
• One-class SVM – used to implement the malicious flow detection
module to determine the nature of the flows (benign or malicious)
and the tag prediction module to ascertain the tag (attack type)
of each flow in accordance with its flow characteristics (see
Section 4.4).

• Random forest regressor – used to implement the severity pre-
diction model to determine the severity of each attack flow (see
Section 4.4).

• DBSCAN – used to cluster the flows with the same tag in order to
facilitate manual inspection (see Section 4.3.2).

• Some preprocessing functions used to perform data normalization
(see Section 4.4).

Finally, rsyslog, an open-source utility on Unix for filtering logs,
as used to capture the logs forwarded by the intelligence-based fire-
all.

. Evaluation

.1. Experimental setup and parameters

The evaluation experiments were performed using the internal net-
ork of the Department of Computer Science and Information En-
ineering, National Chung Cheng University, Taiwan. The network
omprised five /24 subnets. The volume of network traffic between
he internal and external networks was around 18 million flows per
ay during the experimental period. The flows contained approximately
30 to 160 million packets with a total volume of approximately 1TB.
he following devices were deployed to obtain the flow records and
acilitate the CTI assessment and augmentation processes.

1. Router: A high-end router (Cisco Catalyst 9500) connected the
internal network of the department to the outside world. The
NetFlow function was enabled on the router to obtain the Net-
Flow records 𝐹 . Every packet through the router was sampled
for fidelity.

2. Intelligence-based firewall: The flows from the router were mir-
rored to the firewall, which generated blocking logs correspond-
ing to the mirrored flows. Based on these logs, a blacklist 𝐵
was created to record the malicious IP addresses blocked by the
firewall over the corresponding period. Moreover, the dashboard
was used to generate a report based on the information received
from both the firewall and the proprietary intelligence sharing
platform.

3. Intelligence sharing platform: The intelligence sharing platform
integrated the various community and external CTI data into
a single database. The intelligence-based firewall obtained the
CTI from the platform, and automatically updated its black-
list according to the intelligence received. The APIs built into
the platform were used to obtain the data required for CTI
assessment and augmentation purposes.

4. Record server: The server received the logs from the intelligence-
based firewall using rsyslog and the NetFlow data from the
router using nfdump.

ig. 5 illustrates the relationship between the various devices. A solid
ine indicates a physical connection, while a dotted line represents data
ransfer. It is noted that the assessment and augmentation processes
ere carried out offline, and thus, the processes themselves did not
ring any latency to the operational network. Nonetheless, the pro-
osed framework caused some additional load to the router due to
he NetFlow collection and traffic mirroring as presented in Fig. 5.
owever, the load to the router was lightweight in the configuration,
ith the CPU utilization of the router merely around 10∼20%. Accord-

ngly, the operational network still worked quite smoothly, without
erceivable latency reported by the ordinary users in the operational

nvironment during the experiments.
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6.1.1. NetFlow data
The flow records involved around 400 internal IP addresses and

30∼200 thousand external IP addresses every hour. Around 100 to 200
malicious IP addresses were reported by the intelligence-based firewall
per hour, and around 100 to 600 malicious IP addresses were reported
by the firewall each day. The data used in the various experiments are
described as follows.

• Characteristic rules: The 12-day data collected from 2021/10/04
to 2021/10/15 were used, where the data involved nearly 2
million flows.

• Clustering: The one-day data collected on 2021/10/04 were used.
The data volume is presented in Fig. 7.

• Model training: The 15-day data collected from 2021/10/1 to
2021/10/15 were used, where the data involved around 2 million
malicious flows. There were around 0.5 to 1.5 million flows for
most of the tags except tor, cryptomining and ransomware tags,
which had around 20∼40 thousand flows (tor and cryptomining)
and a single flow (ransomware), respectively.

• Model testing: The testing data comprised 8 days of malicious
flow data (around 1.3 million flows), 1 day of normal DNS data
(approximately 1.7 million flows), and 15 days of Google index
flow data (around 1.3 million flows).

• ∙Model evaluation: The three models were combined and eval-
uated using six hours of data collected from 0 AM to 6 AM on
2022/02/28.

6.1.2. Metrics
Assume that for the problem considered in the present study, a

positive instance means a malicious instance. Thus, true positive (TP)
means that the prediction of an instance is positive, and the instance
truly is positive. Similarly, false negative (FN) means that the prediction
of an instance is negative, but the instance is in fact positive. False
positive (FP) means that the prediction of an instance is positive, but
the instance is actually negative. True negative (TN) means that the
prediction of an instance is negative, and the instance truly is negative.

The performance of the one-class SVM models was evaluated us-
ing two metrics, namely (1) the false-negative rate (FNR), defined
as 𝐹𝑁

𝑇𝑃+𝐹𝑁 , to evaluate the ability of the model to detect malicious
instances correctly, and (2) the false-positive rate (FPR), defined as

𝐹𝑃
𝑇𝑁+𝐹𝑃 , designed to evaluate whether the detected instances are truly

alicious. For the large-scale flows considered in the present evalua-
ions, it is difficult to determine the ground truth of the flows manually.
herefore, in evaluating the FPR performance of the models, flows from
he following trustworthy sources were selected as normal instances
nd treated as the ground truth.

• DNS: Google DNS (8.8.8.8, 8.8.4.4), OpenDNS (208. 67.222.222,
208.67.220.220, 208.67.222.220, 208.67. 220.222), and Cloud-
flare/APNIC DNS (1.1.1.1, 1.0.0.1)
10
Table 6
Matching rates of characteristic rules.

Tag Rate of IP addresses that match the rules

Botnet 35.1%
Exploit 7.35%
Tor 0.13%
Phishing 31.7%
Ransomware 0%
Malware 4.2%
Spam 6.55%
Cryptomining 0.07%
Scanner 47.73%

• Google search homepage: 142.251.35.174, 142.251.32.110,
142.250.80.78, 142.250.81.238, 172.217.13.206, 216.58.223.
110, 216.58.200.46, and 172.217.160.78

In the present study, the severity (𝑆) is a numerical value in the
range of 1 to 10. Hence, the performance of the random forest regressor
was evaluated by computing the mean-squared error (MSE) of the
regression results, defined as the mean of the square of the difference
between the predicted and original severity values of each instance.

6.2. Assessment

6.2.1. Tag consistency with characteristic rules
The characteristic rules listed in Table 5 were used to examine

whether the flows with the tag assigned in the CTI behaved as expected
in the real-world sighting. If any of the flows from an IP address
matched the rule(s) of any tags, the IP address was attributed to that
tag(s). The matching rate for each tag was evaluated for every hour,
and the mean matching rate for each tag was then computed. The
corresponding results are presented in Table 6. It is seen that the actual
activities of the flows are mostly not as expected from the tags.

To compensate for the possibility that the characteristics simply
just happened not to appear within the observed one-hour period, the
evaluation procedure was extended to 1 day and 12 days, respectively.
The results presented in Fig. 6 indicate that, while the matching rate
generally increased slightly for the different tags, most of the flows still
did not match the corresponding characteristic rules. In other words,
over 50% of the flows do not exhibit the behaviors expected from the
characteristic rules.

Note that IP addresses are volatile identifiers in several cases. One
common case is that a malicious source is behind an NAT device
(e.g., a typical client host), and obtains its IP address through DHCP.
While the source obtains a dynamic private IP address, it comes with
a fixed public IP address (i.e., that of the NAT device) in the target
environment. Thus, analysis of such hosts is similar to those with fixed
public IP addresses. The presence of a malicious source in the case of
tunneling or VPN also comes with a fixed public IP address in the target
environment. Accordingly, analysis of such cases is also similar to that
of NAT. However, if the malicious source obtains public IP addresses
from DHCP, it will be difficult to tell such IP addresses from fixed
IP addresses from perspective of the target environment in a scalable
manner. This limitation is common to blacklisted IP addresses in the
CTI and the present study. Accordingly, it may be one of the reasons
that account for the low matching rates observed herein.

6.2.2. Clustering for each tag
To investigate the major activities of the flows with the same tag,

the flows with each tag were clustered by DBSCAN in accordance with
the 19 features described in Section 4.2. As shown in Fig. 7, each tag
showed one major cluster which was obviously larger than any of the
other clusters for the same tag. A manual inspection of the largest
clusters showed that, for each tag, most of the flows contained only one
packet or had an average packet payload of less 64 bytes (see Fig. 8).
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Fig. 6. Matching rates of characteristic rules.
Fig. 7. Clustering results for each tag.
Fig. 8. Observations of the largest cluster for each tag.
The ransomware tag contained only a single flow, but most of the
flows with the tor, spam and cryptomining tags have multiple packets.
Nonetheless, over 90% of the overall flows had an average payload
shorter than 64 bytes, a manual inspection of randomly sampled flows
from each tag showed that the packets in the flows appeared to be
probing or scanning packets.

6.2.3. Comparison with the IPS detection
The prevalence of probing or scanning packets among the NetFlow

data suggests that many attacks may have been blocked by the IPS of
the campus. To investigate this issue further, an analysis was performed
of the one-day IPS records associated with the blacklisted IP addresses
in the firewall and CTI platform. It is noted that the IPS was deployed
between the campus network and the Internet, whereas only the flows
from or to hosts in the considered department appear in the sighting.
11
Fig. 9 illustrates the relationship between the IP addresses detected
by the IPS and CTI device, respectively, on the same day. The results
presented on the left side of the figure show that out of all the IP
addresses blocked by the IPS, flows from 339 of these addresses still ap-
peared in the target environment. A total of 160 IP addresses appeared
in the CTI blacklist on that day. In other words, even though some
flows from malicious IP addresses were likely blocked from entering
the campus by the IPS, a certain number of flows still managed to
gain access to the target network. This suggests that the IPS detection
results may have included false negatives, or some of the flows from
the malicious IP addresses exhibited normal behavior. However, among
these 339 IP addresses, only 10 (3%) fell within the blacklist of the
intelligence-based firewall. Therefore, it was surmised that the blacklist
on the CTI device may not have been updated in time to catch the
latest malicious IP addresses. The results presented on the right side of
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Fig. 9. Venn diagrams between IP addresses blocked by IPS and blacklist based on CTI.
Table 7
Severity distribution of IPS blocked sources in CTI.

Items Low Medium High

Severity distribution of the IP addresses reported
by the IPS in our sighting

156 132 51

Severity distribution of the IP addresses reported
by the firewall

0 2 8

Severity distribution of the IP addresses after the
blacklist has been updated

0 2 40

the figure show that the number of blacklisted IP addresses increased
to 42 (12%) after two months. However, 120 IP addresses reported
by the CTI were not reported by the IPS. This finding suggests that a
large proportion of the attacks reported by the CTI were not blocked
by the IPS. Thus, the low matching rate of the characteristic rules were
not attributed to the blocking by the IPS, and the probing or scanning
packets were likely what they were from the malicious sources, rather
than the remaining packets that were not blocked by the IPS.

The IPS records, and their intersection with the CTI blacklist, were
additionally examined from the perspective of severity. The corre-
sponding results are presented in Table 7, where the first row presents
the distribution of the severity levels of the 339 IP addresses that
entered the target environment. (Note that the low level corresponds
to 1 to 4, while the medium and high levels correspond to severities of
5 to 7 and 8 to 10, respectively). The second row of the table shows
the distribution of the severity levels of the 10 IP addresses common to
both the IPS blacklist and the CTI blacklist. Finally, the third row shows
the distribution of the severity levels of the 42 IP addresses common to
the two blacklists after the CTI blacklist was updated.

Under the assumption that the IPS detection results are correct, the
firewall blacklist based on the CTI has a false negative rate of 97.1%
(329/339). Even after the CTI blacklist is updated, the false negative
rate is still 87.6% (297/339). Notably, the number of blacklisted IP
addresses with high severity increases from 15.7% to 78.4% (from 8/51
to 40/51) after the CTI update. In other words, the update process
improves the ability of the blacklist to detect most of the IP addresses
with high severity. Although the blacklist continues to miss many IP
addresses with low or medium severity, it is possible that some of these
addresses are actually false positives in the IPS detection process, which
accounts, at least partly, for the ‘‘failure’’ of the CTI device to capture
them.

6.3. Augmentation

In general, the assessment results presented above show that the
CTI-based blacklist results in a high false negative rate (FNR). There-
fore, in the augmentation process, machine learning is leveraged to
identify further flows similar to known malicious flows, and some of the
corresponding flow sources are then added to the CTI blacklist. Notably,
the augmentation process involves not only identifying more malicious
12

IP addresses, but also revising their tags and severities.
Table 8
FNR and FPR of malicious flow
detection model.
Metrics Value

FNR 0.104
FPR of DNS flows 0.002
FPR of Google flows 0.002

Table 9
FNR of the tag prediction model for
each tag.
Tag FNR

Botnet 0.095
Exploit 0.097
Tor 0.645
Phishing 0.099
Ransomware NaN
Malware 0.097
Spam 0.098
Cryptomining 0.722
Scanner 0.112

6.3.1. Learning models for augmentation
Malicious flow detection model The malicious IP list was obtained from
the CTI device, and the individual flows were then labeled as malicious
if they came from an IP address was on the list. Following the labeling
process, 15-day malicious flows (around 2 million in total) were used
to train the one-class SVM model (see Section 4.4). Finally, 8-day
malicious flows (around 1.3 million) were used to estimate the FNR,
and 1-day DNS flows (approximately 1.7 million) together with 15-day
flows from the Google homepage (around 1.3 million) were used to
estimate the FPR. Both the FPR and the FNR were calculated based on
the total number of flows. The corresponding results are presented in
Table 8.

Tag prediction models A one-class SVM model was trained for each tag.
The IP list with tag information from the CTI was used to classify the
source IP addresses of the flows into nine tagged datasets (one for each
attack type). Some of the IP addresses had multiple tags, and hence
some of the IP addresses were duplicated in several tagged datasets.
After the prediction process, only the data with at least with one tag
remained. Hence, the FNR of each tag model was calculated by dividing
the total number of flows that the model predicted to contain a false
tag by the total number of flows labeled with the tag.

As shown in Table 9, with the exception of the tor, ransomware, and
cryptomining models, most of the models showed a low FNR. The poor
performance of the three models is due, most probably, to the lack of
flow data for training purposes (e.g., only one flow for the ransomware
tag). Apart from the scanner tag model, all of the other models had
a FNR of less than 0.1. In other words, the models were capable of
identifying the tags of most of the malicious IP address flows.

Note that although generating more related network flows (e.g., by
running malware samples in a sandbox) for training the tor, ran-
somware, and cryptomining models might address the issue of low

FNRs in the models, the flows in the sighting were still relatively
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Fig. 10. The MSE and data distribution of the severity prediction model.
Table 10
Number and percentage of malicious IP addresses predicted for each severity level and
tag.

Tag Low Medium High

Number Percentage Number Percentage Number Percentage

Botnets 2 1.85% 51 47.22% 73 67.59%
Exploits 2 1.85% 43 39.81% 54 50%
Phishing 4 3.7% 195 180.56% 122 112.96%
Malware 4 3.7% 94 87.04% 164 151.85%
Spam 2 1.85% 57 52.78% 77 71.30%
Scanner 1 0.93% 47 43.52% 50 46.30%
Total 4 3.7% 221 204.63% 169 156.48%

few for useful testing in practice. Moreover, since the present study
focuses on correlation of the CTI and the sighting, the dataset in the
evaluation is supposed to be collected in the real-world sighting, and
thus using manually generated network traffic is beyond the discussion
of this study, even though it may complement the present study for
augmentation.

Severity prediction model Fig. 10 shows the MSE and data distribution
of the severity prediction model results. As shown, the majority of the
data flows had a predicted severity of 8 and were associated with a
relatively low MSE. Although the MSE for the data flows with low
severity were significantly larger, the prediction error was not regarded
as a particular problem due to the low number of flows involved.

6.3.2 Prediction of malicious IP addresses
The network data collected over a period of six hours were used as a

testing set to predict the malicious IP addresses using the three models
described above. The CTI blacklist identified 108 malicious IP addresses
over the corresponding observation period. Table 10 shows the number
and percentage of malicious IP addresses predicted at each severity
level for the six tags with higher detection performance (see Table 9).
Note that since the six tags are predicted by six separate models, an
IP address may be multi-tagged in the original CTI. According to the
results, there were 3%, 205%, and 156% more predicted IP addresses
in the low, medium, and high severity levels, respectively, than in the
original CTI blacklist. Thus, the ability of the learning framework to
identify more IP addresses with similar features to known malicious
addresses is confirmed (particularly for IP addresses with medium or
high severity).

To confirm practical feasibility of the proposed models, a publicly
13

available reporting platform, AbuseIPDB (www.abuseipdb.com), was
Table 11
Rates of predicted IP addresses of different severity levels also reported
in AbuseIPDB.

Type Low Medium High

Botnets 50% 35% 48%
Exploits 50% 40% 54%
Phishing 25% 18% 55%
Malware 25% 37% 52%
Spam 50% 35% 48%
Scanner 0% 39% 56%
Total 25% 21% 53%

Table 12
Rate of augmented IP addresses of different severity levels.

Predicted
severity level

The rate of augmented
IPs to those from CTI

The rate that had been
reported in AbuseIPDB

High 156% (169:108) 53% (89 of 169)
Medium 205% (221:108) 21% (45 of 221)
Low 3.7% (4:108) 25% (1 of 4)

also checked to see whether any of the predicted IP addresses were also
reported in AbuseIPDB in the 10 days prior to or after the prediction
data. In particular, the AbuseIPDB records were used to estimate a
lower bound for the accuracy of our predicted data. As shown in
Table 11, 53% of the predicted IP addresses with high severity level
were also reported by AbuseIPDB. Similarly, 25% and 21% for the
low- and medium-severity IP addresses, respectively, were also reported
in both platforms. In other words, the IP addresses predicted by the
present models to be of high severity are indeed likely to be malicious
sources and can thus be considered as candidates for augmenting the
CTI blacklist.

Table 12 collates the results presented in Tables 10 and 11. The
results confirm that the data with a higher severity are those that
require the most attention. Moreover, the data with a lower severity
level, as mentioned above, are likely to be overestimated.

6.4 Summaries of main observations

The main observations from the assessment experiments can be
summarized as follows:

• For the false positives cases, more than 50% of the flows did not
match the characteristic rules for the associated tag. Furthermore,
the mismatch percentage exceeded 90% for some of the tags. In

http://www.abuseipdb.com
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other words, the tags listed in the CTI did not precisely match the
actualities observed in the sighting.

• Even though many of the malicious sources did not present the
behavior expected of the corresponding tags, they still exhibited
obvious probing or scanning behaviors.

• A significant inconsistency was observed between the IP blacklist
obtained from the CTI and the malicious IP addresses reported
by the IPS (a false negative rate of 97.1%). However, when the
CTI blacklist was updated using some of the malicious sources not
originally in the list, the false negative rate fell to 87.6%, with the
majority of this reduction associated with high-severity sources.

The main observations for the augmentation experiments are as
ollows:

• Twenty percent of the predicted tags did not appear in the origi-
nal CTI blacklist, but were successfully detected by the proposed
learning models.

• Eighty-nine of the predicted high-severity IP addresses were also
reported by AbuseIPDB, where these addresses accounted for 53%
of the total number of predicted high-severity IP addresses. In
other words, the learning framework proposed in this study suc-
cessfully captures malicious IP addresses blacklisted elsewhere.
The predicted high-severity IP addresses were 156% more than
those reported by the CTI blacklist over the observation period.

Conclusion and future work

Given the increasing importance of CTI in helping identify malicious
vents in network environments, it is essential to assess the consistency
f the CTI with the actual threats observed in the sightings. Accord-
ngly, the present study has proposed a systematic approach for not
nly assessing the CTI in terms of the false positives and false negatives
n the sighting, but also augmenting the CTI considering the false
egative outcomes. The present study found that over 50% of the flows
o not match the characteristic rules for the associated tag, and many of
he malicious sources exhibited obvious probing or scanning behaviors.
he IP blacklist obtained from the CTI was also found inconsistent with
he malicious IP addresses reported by the IPS (a false negative rate
f 97.1%). For augmentation, the proposed learning framework can
apture malicious IP addresses blacklisted elsewhere. The high-severity
P addresses identified in the sighting were 156% more than those
riginally blacklisted by the CTI over the observation period.

Future studies will conduct deeper investigations into the proposed
TI assessment and augmentation mechanisms. For example, further
ssessment trials will be performed to observe the sightings in multiple
etwork environments to be more comprehensive. Meanwhile, fur-
her augmentation experiments will also be conducted to evaluate the
recision and generalizability of the learning models, with particular
mphasis on the preprocessing of the data (including feature extraction
nd selection). In addition, more complex models will be considered for
rediction purposes, such as time series models.
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