
Journal of Network and Computer Applications 215 (2023) 103630

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Cost optimization of omnidirectional offloading in two-tier cloud–edge
federated systems
Binayak Kar a,∗, Ying-Dar Lin b, Yuan-Cheng Lai c

a Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
b Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
c Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

A R T I C L E I N F O

Keywords:
Cloud–edge systems
Cost
Latency
Federation
Offloading
Reverse offloading
Optimization

A B S T R A C T

The use of the federation can exploit the advantages of cloud and edge computing technologies as the federation
provides the facilities by which both can complement each other. However, certain services are needed to
offload from clouds to edges, termed reverse offloading, and between edges, termed horizontal offloading.
By considering the scenarios discussed above, in this paper, we propose a generic omnidirectional (OMNI)
architecture of cloud–edge computing systems intending to provide vertical (edge to cloud offloading, and vice
versa), and horizontal (between edges) offloading. To investigate the effectiveness of the proposed architecture
in different operational scenarios, we formulate the cost optimization problem with different latency (loose,
low, ultra-low) constraints. We develop an offloading algorithm using simulated annealing named the two-tier
simulated annealing (TTSA) algorithm. We set two criteria for offloading: (1) offloading based on the job’s size
and (2) offloading based on the job’s priority, irrespective of its size. The experimental results show that our
proposed OMNI architecture can reduce the total cost by 7%–10%, compared to other existing architectures,
and our proposed TTSA algorithm can reduce the cost by 45%–55%, compared to other existing algorithms.
The average latency in OMNI architecture is relatively very less compared to other architectures.
1. Introduction

A federation is a group of service providers agreeing upon standards
of operation collectively. For example, ‘‘federated cloud’’ facilitates
the interconnection of two or more geographically separate clouds
for load-balancing traffic and accommodating spikes in demand from
respective users (Liaqat et al., 2017). The federation scenario is defined
by various researchers differently. The collection of service providers
cooperates to provide resources requested by users (Truong-Huu and
Tham, 2014). For example, in cloud-A, computation is cheaper, but
storage cost is high, and in cloud-B, storage cost is low but has high
computation cost. In such a scenario, federation plays a key role where
both the clouds agree to provide a common platform to facilitate
low computation and storage costs to their customers. One service
provider wholesales or rents computing resources to another service
provider (Wang et al., 2017); in such a scenario by this federation, a
provider acts as a user and service provider simultaneously (Goudarzi
et al., 2021). For example, when the customer submits its request to
cloud-A, but cloud-A does not have enough resources to serve the
customer; hence it offloads (Satyanarayanan, 2015) the request to
cloud-B that has the resources to serve the request. However, after the

∗ Corresponding author.
E-mail addresses: bkar@mail.ntust.edu.tw (B. Kar), ydlin@cs.nctu.edu.tw (Y.-D. Lin), laiyc@cs.ntust.edu.tw (Y.-C. Lai).

edges are re-architectures as data centers (Peterson et al., 2016), the
cloud–edge federation comes into existence (Kelaidonis et al., 2016),
where both cloud and edge complement each other in various scenarios
while providing services to their customers.

The following reasons significantly highlight the necessity of the
cloud–edge and edge–edge federation. Cloud computing provides
greater data storage and computing power but causes high communi-
cation latency as clouds are far away from the end users. In contrast,
edge computing offers similar services with a lower communication
latency as they are closer to the end user but with limited capacity and
coverage (Shi et al., 2016; Shi and Dustdar, 2016). Since resources re-
quired to provide the service are limited on edge, an edge can federate
with other edges and/or clouds to satisfy the users’ requests. Through
this federation, the efficiency in resource utilization and enlargement of
capabilities of the federated entities can increase. Fig. 1 shows a two-
layer cloud–edge federated system, where the upper layer and lower
layer consist of multiple clouds (like google, amazon, etc.), and edges
(such as AT&T, Chunghwa telecom, etc.), respectively. The federation
manager (Kanwal et al., 2014) manages the federation between two
entities in these systems. In the edge–edge federation, when an edge
vailable online 1 April 2023
084-8045/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2023.103630
Received 26 June 2022; Received in revised form 4 January 2023; Accepted 26 Ma
rch 2023

https://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:bkar@mail.ntust.edu.tw
mailto:ydlin@cs.nctu.edu.tw
mailto:laiyc@cs.ntust.edu.tw
https://doi.org/10.1016/j.jnca.2023.103630
https://doi.org/10.1016/j.jnca.2023.103630
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2023.103630&domain=pdf

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Fig. 1. Cloud–edge federated model.

does not have the required resources to handle the requests, it can
offload the tasks to other edges with enough resources (Cao et al.,
2020). In the edge-cloud federation, the edge can offload the workloads
to the clouds that require high computation resources or extra storage
space (Chekired et al., 2018). Similarly, the cloud can reverse offload
the latency-sensitive tasks (Villari et al., 2016).

Depending on different types of applications, input tasks/jobs can be
grouped into three categories (Hsu et al., 2015) such as ultra-low, low,
and loose latency jobs. Some applications whose end-to-end latencies
are a few milliseconds, even in order of 100 microseconds, are ultra-low
latency jobs (Nasrallah et al., 2018), for example, industrial applica-
tions (Wollschlaeger et al., 2017), tactile internet (Maier et al., 2016),
virtual reality (Elbamby et al., 2018), automated guided vehicles (Os-
seiran et al., 2015), telesurgery (Tozal et al., 2013), control traffic in
smart grid (Verma et al., 2016), etc. The tasks/jobs coming with loose
deadlines, i.e., in seconds, are considered loose latency jobs and are
reasonable in operational cost reduction in the cloud system (Goudarzi
and Pedram, 2013). The jobs whose deadline is neither tight nor too
loose are considered low or medium latency jobs. To the best of our
knowledge, such categorization of jobs and using all categories of jobs
together in the offloading model has not been discussed before.

In this paper, we considered two approaches to categorize the
above-discussed job categorization. (1) Size of the jobs (Kim et al.,
2018), where small jobs are coming under ultra-low or tight latency
jobs, medium size jobs are part of low latency jobs, and larger jobs are
part of loose latency jobs. (2) Priority of jobs (Choudhari et al., 2018;
Gao and Moh, 2018), which is set irrespective of their size, i.e., a larger
job can be in the category of tight latency, and a small job can have
loose latency. Job categorization based on its size is a default approach;
in such a scenario, we assume a larger job requires more resources and
may cause the execution to get delayed, as we reserve the resources for
the small jobs and offload the large job. However, job categorization
based on priority is a special approach where job size will not affect
resource allocation; if the job is on priority, the required resources are
available, then they must be allocated.

When highly time-sensitive jobs are given as input to an edge, and
the edge cannot handle such requests, it offloads the jobs to other
edges horizontally (Cao et al., 2020). Similarly, when the edge receives
loose latency jobs and/or jobs that consume very high storage space, it
vertically offloads to a cloud (Chekired et al., 2018). However, when
a cloud receives certain applications such as microservices (Thönes,
2015), it offloads to an edge to overcome the latency and data transfer
cost (Villari et al., 2016). We define the key terms used in this paper
with an example as follows. Let us consider two clouds, say 𝐶1 and 𝐶2,
and two edges, say 𝐸1 and 𝐸2, where clouds are in the upper tier and
edges are in the lower tier.

Definition 1. Federation Manager (FM) is the agent that is responsible
for the federation agreement between two parties to whom both the ser-
vice provider will expose their information such as available resources,
2

based on which FM will take the decision (Francescon et al., 2017).
The vertical federation between a cloud and an edge is managed by
the cloud–edge federation manager, whereas the edge–edge federation
manager manages the horizontal federation between two edges.

Definition 2. Horizontal Federation: Resource sharing agreement
between two nodes in the same layer. For example, 𝐸1 and 𝐸2.

Definition 3. Vertical Federation: Resource sharing agreement be-
tween two nodes in different layers. For example, 𝐸1 in the edge layer
is federated with 𝐶1 in the cloud layer.

Definition 4. Horizontal Offloading: When a request for 𝐸1 in one
layer is severed by 𝐸2 in the same layer, i.e. when 𝐸1 in the edge layer
offloaded its request to 𝐸2 in the same layer.

Definition 5. Vertical Offloading: When a request is for 𝐸1 in one layer
is severed by 𝐶1 in another layer, i.e., 𝐸1 offloaded its request to 𝐶1.

Definition 6. Triangular Offloading: When a user of one service
provider (say 𝐸1) is served by another service provider (say 𝐶1) and
the users’ inputs are offloaded from the user to 𝐶1 via 𝐸1, i.e., users
give input to 𝐸1 and 𝐸1 offloads the tasks to 𝐶1.

Definition 7. Non-triangular Offloading: When a user of one service
provider (say 𝐸1) is served by another service provider (say 𝐶1) and
based on the federation agreement, the FM will offload the users’ inputs
directly to 𝐶1 without offloading via 𝐸1.

Definition 8. Reverse Offloading: A vertical non-triangular offloading
where a user of an upper layer node directly offloads its request to a
node in the lower layer is called reverse offloading (Villari et al., 2016;
Kar et al., 2022). For example, when a request for 𝐶1 in the cloud layer
is severed by 𝐸1 in the edge layer i.e., the user of 𝐶1 of the cloud layer
offloaded its request directly to 𝐸1 in the edge layer.

In this paper, we proposed cloud–edge federated architecture with
omnidirectional offloading, where not only the edge can offload to the
cloud, but also the cloud can offload back to the edge using reverse
offloading, and the edges can offload to each other horizontally. By
horizontal offloading, when an edge does not have enough resources to
handle the requests that are time-sensitive and require less computing
resources, such as ultra-low latency jobs, it can offload the tasks to
nearby edges. Similarly, by vertical offloading, the edge can address
the low computing resource issues by offloading the loose latency jobs
to the clouds. By reverse offloading, as stated in Definition 8, the
low and ultra-low latency jobs of the clouds are directly offloaded
from the cloud users to the edges that are federated with the clouds,
which will help to reduce both communication cost and communication
latency. We set two criteria for offloading: (1) offloading based on the
job’s size and (2) offloading based on the job’s priority, irrespective
of its size. To the best of our knowledge, our work is the first to
design the edge-cloud federation where offloading can be done in
multiple directions (Kar et al., 2023), i.e., horizontal offloading, vertical
offloading from edge-to-cloud and reverse offloading from cloud to
edge. We also acknowledge the time sensitivity of different jobs and cat-
egorize them based on priority to minimize latency and communication
costs. We develop an offloading algorithm using simulated annealing
named the two-tier simulated annealing (TTSA) algorithm. Our detailed
contributions are as follows.

1. We design a generic two-tier federated architecture enabling the
clouds and edges to offload jobs omnidirectionally to satisfy the
users’ demand. In this architecture, not only can the edge offload
to the cloud like many existing architectures, but also the cloud
can reverse offload to the edge.

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.

d
a
r

2

f

r
p
e
c
a
m
e
B
c
o
a
c
j
(

t
c
t
w
o
p
t
t
m
d
e
p
f
s
c
c
o
f
t
p
a
f
i
d
p

d
f
a
f

2. We propose an analytical model to minimize the total cost with
latency as the constraint both from the cloud and edge layer
perspective. We classify the latency as loose, low, and ultra-
low. We considered all three types of latencies together as the
constraints in this paper.

3. We use the modified simulated annealing algorithm to find the
near-optimal solution globally of the proposed problem and
compare the performance of our proposed architecture with
three other existing architectures and compare the offloading
algorithm with other existing algorithms.

The rest of the paper is organized as follows. In Section 2, we will
iscuss the related works, and in Section 3 our proposed architecture
nd optimization problem. We will present our solution in Section 4 and
esults in Section 5. Finally, we will discuss the conclusion in Section 6.

. Related works

In this section, we will discuss some related work on the cloud–edge
ederation and how our work is different from the existing research.

Mashayekhy et al. (2014) proposed a game-theoretical model to
eshape the business structure among cloud providers. These cloud
roviders can improve their dynamic resource scaling capabilities by
stablishing cooperation with the federation method. In this paper, a
loud federation mechanism is used to reduce resource utilization, as
result, the profit of the providers is maximized. A capacity-sharing
echanism in a federated cloud environment is proposed in Hassan

t al. (2015), whose primary focus is global energy sustainability policy.
y using game theory, the paper minimizes the overall energy by
apacity sharing technique and promotes long-term individual profit
f the service providers. Hammoud et al. (2020) proposed a genetic
lgorithm to study the problem of forming highly profitable federated
louds to maintain stability among federated entities when providers
oin or leave federations, which might affect the Quality of Service
QoS).

Tong et al. (2016) proposed a hierarchical edge cloud architecture
o improve the performance of mobile computing by leveraging cloud
omputing and migrating mobile workloads for remote execution in
he cloud. For the efficient utilization of resources, they proposed a
orkload placement algorithm to decide which programs are placed
n which edge cloud servers and how much computational capacity is
rovisioned to execute that program. A new scheduling model in the
wo-tier cloud-fog architecture was proposed in Chekired et al. (2018)
o process the industrial Internet of things (IIoT) data. They aimed to
inimize communication and data processing delays in IIoT systems by
eploying multiple servers for IIoT applications at the fog layer. Ren
t al. (2019) investigate the cloud edge federation, where the tasks are
artially processed at the edge and the cloud server to improve their ef-
iciency with limited communication and computation capacities. They
olve this non-convex capacity optimization problem to an equivalent
onvex optimization problem using the Karush–Kuhn–Tucker (KKT)
onditions. Samanta and Chang (2019) proposed an adaptive service
ffloading (ASO) scheme for the MEC platform to maximize the profit
or delay-sensitive and delay-tolerant services in the presence of mul-
iple edge devices. Ascigil et al. (2021) proposed the optimal function
rovisioning and resource allocation problem by considering Function-
s-a-Service in the edge-cloud systems. However, since the proposed
ully-centralized, optimal models require accurate prediction of upcom-
ng requests, they use heuristic algorithms from fully centralized to fully
ecentralized and use single cloudlet provisioning and coordinated
rovisioning to make predictions accurate.

The vertical federation and horizontal federation integration are
iscussed in Chen et al. (2017) to determine stable cooperation partners
or the federation to improve efficiency where private clouds are feder-
ted with each other horizontally. These horizontal federated clouds are
ederated with the public clouds vertically. Cao et al. (2020) proposed
3

an integrated service provisioning model by considering vertical and
horizontal integration between multiple EIPs. In this edge federation,
they formulated a linear programming problem of the provisioning
process and took a variable dimension shrinking method to solve the
optimization problem.

Table 1 lists the above-discussed papers based on the federation and
presents a comparison of how the contribution of our work is different
from theirs. While Mashayekhy et al. (2014), Hassan et al. (2015),
and Hammoud et al. (2020) are based on horizontal federation, Tong
et al. (2016), Ren et al. (2019), Samanta and Chang (2019), and Ascigil
et al. (2021) are based on vertical federation and Chen et al. (2017),
and Cao et al. (2020) discussed both horizontal and vertical federation
together. Most papers in the table discussed the cost and capacity
optimization issues, and their optimization is single tier only, whereas
the article (Tong et al., 2016) is limited to only capacity optimization
and considered the two-tier optimization between cloud and edge fed-
eration with one-way vertical offloading. The articles (Chekired et al.,
2018; Ren et al., 2019) have addressed the latency issue and have
considered two-tier optimization but based on an edge-cloud federation
scenario where the workload is offloaded from the edge layer to the
cloud layer. Similarly, Samanta and Chang (2019) also addressed both
latency and cost issues in a two-tier cloud–edge architecture. However,
non of these articles are considered different latency sensitivity. In
this paper, we classify latency into three categories depending on the
type of input from the users and put certain restrictions on which
type of traffic should be handled by cloud or edge. We are also
considering both horizontal and vertical federations together. All the
above-discussed vertical federation papers are based on one-way of-
floading, i.e., edge-to-cloud offloading. However, in this paper, we are
considering two-way offloading where not only the edge will offload to
the cloud, but also the cloud can offload to edges.

3. System model

In this section, we will discuss our proposed cloud–edge federated
architecture and cost optimization problem with latency as a constraint.
In Table 2, we declared the notations and variables used to describe our
model and formulate the optimization problem.

Nodes: 𝐶𝑖 and 𝐸𝑗 represent the 𝑖th and 𝑗th nodes in tier-2 and tier-1,
respectively, where the tier-1 contains all the edges and tier-2
contains all the clouds.

Traffic: 𝜆̂𝑖 and 𝜆𝑗 are the traffic inputs to 𝑖th cloud and 𝑗th edge,
respectively. The variables 𝑣𝑗,𝑖, and 𝑣̂𝑖,𝑗 , represent the vertical
offloading from 𝑗th edge to 𝑖th cloud, and from 𝑖th cloud to 𝑗th
edge, respectively, and horizontal offloading from 𝑗th edge to
𝑗′th edge is presented by ℎ𝑗,𝑗′ .

Capacity: 𝜇̂𝑖, and 𝜇𝑗 are the computing capacity of the servers in the
𝑖th cloud and 𝑗th edge, respectively. 𝜇̈𝑖,𝑖 is the capacity of a
server used by 𝑖th cloud for self-computation and 𝜇̌𝑖,𝑗 is the
computing capacity of a server in 𝑖th cloud used by 𝑗th edge.
𝜇̄𝑗,𝑗′ is the capacity a server in 𝑗th edge is used by 𝑗′th edge,
when 𝑗 = 𝑗′, the capacity of 𝑗th edge server is used for self-
computation. ̄̄𝜇𝑗,𝑖 is the capacity of 𝑗th edge server used by 𝑖th
cloud. The notations 𝑏̄𝐶𝑖↔𝐸𝑗

, and 𝑏𝐸𝑗↔𝐸𝑗′
are communication

capacity between 𝑖th cloud and 𝑗th edge, and between 𝑗th edge
and 𝑗′th edge. The communication capacity between user and
𝑖th cloud, and user and 𝑗th edge are represented by ̄̄𝑏𝑢,𝐸𝑗

, and
𝑏̂𝑢,𝐶𝑖

, respectively.

Cost: The total cost of the cloud layer and edge layer are represented
by 𝜏, and 𝜏, respectively. The unit computing cost of clouds
is 𝑐 and ̄̄𝑐 is the same for edges. 𝑚, 𝑚̄, 𝑚̂, and ̄̄𝑚 are the unit
communication cost from user to edge, from user to cloud,

between two edges, and between edge and cloud, respectively.

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Table 1
Comparative analysis of related works.

References Vertical
federation

Horizontal
federation

Reverse
offloading

Cost Latency Latency
categorization

Two-tier
optimization

Methods

Mashayekhy et al.
(2014)

× ✓ × ✓ × × × GT

Hassan et al. (2015) × ✓ × ✓ × × × GT
Hammoud et al.
(2020)

× ✓ × ✓ × × × GA

Tong et al. (2016) ✓ × × × ✓ × ✓ SA
Chekired et al.
(2018)

✓ × × × ✓ × ✓ SA

Ren et al. (2019) ✓ × × × ✓ × ✓ KKT
Samanta and Chang
(2019)

✓ × × ✓ ✓ × ✓ ASO

Ascigil et al. (2021) ✓ × × × ✓ × × RAP
Chen et al. (2017) ✓ ✓ × ✓ × × × GT
Cao et al. (2020) ✓ ✓ × ✓ ✓ × × SEE
This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ TTSA

GT: Game Theory; GA: Genetic Algorithm; SA: Simulated Annealing; KKT: Karush–Kuhn–Tucker conditions; ASO: Adaptive Service Offloading; RAP: Resource Allocation and
Provisioning algorithms; SEE: Service Provision for Edge Federation; TTSA: Two-tier Simulated Annealing.
Table 2
List of Commonly used variables and notations.

Notations Descriptions

𝐶𝑖 , 1 ≤ 𝑖 ≤ 𝑞 𝑖th cloud in the upper tier (cloud layer) consists of 𝑞 number of clouds
𝐸𝑗 , 1 ≤ 𝑖 ≤ 𝑝 𝑗th edge in the lower tier (edge layer) consists of 𝑝 number of edges

Traffic
𝜆̂𝑖 , 𝜆𝑗 Traffic input to 𝐶𝑖 node and 𝐸𝑗 node
𝑣𝑗,𝑖 , 𝑣̂𝑖,𝑗 , ℎ𝑗,𝑗′ Vertical offloading from 𝐸𝑗 node to 𝐶𝑖 node, vertical offloading from 𝐶𝑖 node to 𝐸𝑗 node, and

horizontal offloading from 𝐸𝑗 node to 𝐸𝑗′ node
Capacity

𝜇̂𝑖 , 𝜇̈𝑖,𝑖 , 𝜇̌𝑖,𝑗 Computing capacity of a server in 𝐶𝑖 node, capacity of a server in 𝐶𝑖 used for
self-computation, and capacity of a server in 𝐶𝑖 used by 𝐸𝑗 node

𝜇𝑗 , 𝜇̄𝑗,𝑗′ , ̄̄𝜇𝑗,𝑖 Computing capacity of a server in 𝐸𝑗 node, computing capacity of a server in 𝐶𝑗 node used by
𝐸𝑗′ (when 𝑗 = 𝑗′ capacity of 𝐸𝑗 used for self task computation), capacity of a server in 𝐸𝑗 used
by 𝐶𝑖

𝑏̄𝐶𝑖↔𝐸𝑗
, 𝑏𝐸𝑗↔𝐸𝑗′

Communication capacity between 𝐶𝑖 and 𝐸𝑗 , communication capacity between 𝐸𝑗 and 𝐸𝑗′
̄̄𝑏𝑢,𝐸𝑗

, 𝑏̂𝑢,𝐶𝑖
Communication capacity between user and 𝐸𝑗 , communication capacity between user and 𝐶𝑖

Cost
𝜏, ̄̄𝜏 Total cost of the cloud layer and edge layer
𝑐, ̄̄𝑐 Unit computing cost of the cloud and edge nodes
𝑚, 𝑚̄, 𝑚̂, ̄̄𝑚 Unit communication cost from user to edge, from user to cloud, between two edges, and

between edge & cloud
Latency

𝑙𝑖 , ̄̄𝑙𝑗 Computing latency at 𝐶𝑖 and 𝐸𝑗
𝑙𝐶→𝐸
𝑖,𝑗 , 𝑙𝐸→𝐶

𝑗,𝑖 , 𝑙𝐸→𝐸
𝑗,𝑗′ Communication latency from 𝐶𝑖 to 𝐸𝑗 , from 𝐸𝑗 to 𝐶𝑖, from 𝐸𝑗 to 𝐸𝑗′

𝑙𝑢→𝐸
𝑗 , 𝑙𝑢→𝐶

𝑖 Offloading latency from users to 𝐸𝑗 , from users to 𝐶𝑖

𝐿𝑢𝑙 , 𝐿𝑙𝑤 , 𝐿𝑙𝑠 Maximum latency for ultra-low, low and loose latency traffic
Distance

𝑑𝑉 , 𝑑𝐻 Distance between a cloud and an edge node, and between two edge nodes
𝑑𝑢→𝐸 , 𝑑𝑢→𝐶 Distance from user to edge, and from user to cloud
Latency: 𝑙𝑖, and ̄̄𝑙𝑗 represent the computing latency at 𝑖th cloud, and
𝑗th edge, respectively. Whereas 𝑙𝐶→𝐸

𝑖,𝑗 , 𝑙𝐸→𝐶
𝑗,𝑖 , and 𝑙𝐸→𝐸

𝑗,𝑗′ are the
communication latency from 𝑖th cloud to 𝑗th edge, from 𝑗th edge
to 𝑖th cloud, and from 𝑗th edge to 𝑗′th edge, respectively. In
this paper, we are considering three different types of latency,
i.e., ultra-low, low, and loose latency. 𝑙𝑢→𝐸

𝑗 , 𝑙𝑢→𝐶
𝑖 are the offload-

ing latency from users to 𝑗th edge, and from users to 𝑖th cloud.
The maximum latency limit for ultra-low, low, and loose latency
traffics are represented by 𝐿𝑢𝑙, 𝐿𝑙𝑤, and 𝐿𝑙𝑠, respectively.

Distance: 𝑑𝑉 is the vertical distance between cloud and edge, and
𝑑𝐻 is the horizontal distance between two edges. The distance
from users to edges and clouds are 𝑑𝑢→𝐸 , and 𝑑𝑢→𝐶 , respectively.
Speed of the light is 𝑐.

3.1. Two-tier cloud–edge federated architecture

In this section, we will discuss our proposed generic two-tier cloud–
edge federated architecture shown in Fig. 2. The upper tier consists
4

of clouds, and the lower tier consists of edges. The subscribers of
cloud or edge can submit their requests to their respective service
providers to avail of the services. In this architecture, as in Fig. 2, the
edges and clouds are connected vertically, and all edges are connected
horizontally. This means requests can be vertically offloaded from
edges to clouds, reverse offloaded from cloud to edges, and horizontally
offloaded from one edge to another. Since the clouds have unlimited ca-
pacity and coverage, we have not considered cloud-to-cloud horizontal
offloading. In this paper, we consider the following assumption while
modeling. Input jobs are assumed to be CPU-intensive jobs, hence do
not require any input/output interruption during execution. A job can
start its execution only after getting all the required resources. A task
cannot be partially interrupted or offloaded from one entity to another
after it starts processing. Most importantly, these tasks are assumed to
be independent of each other.

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Fig. 2. Generic two-tier federated architecture.

3.2. Traffic distribution

3.2.1. Edge layer traffic distribution
Let us assume the probability of total traffic input to the 𝑗th edge

is 1, which includes ultra-low, low, and loose latency traffic, i.e.,
𝑃𝑥(𝜆𝑗) + 𝑃𝑦(𝜆𝑗) + 𝑃𝑧(𝜆𝑗) = 1, where 𝑃𝑥(𝜆𝑗), 𝑃𝑦(𝜆𝑗), and 𝑃𝑧(𝜆𝑗) are the
probability of ultra-low, low, and loose latency traffics, respectively.
The probability of offloaded ultra-low latency traffic from 𝑗th edge to
all edges in the edge layer can be calculated as, 𝑃𝑥(𝜆𝑗) = [𝑃𝑥(1)(𝜆𝑗) +
𝑃𝑥(2)(𝜆𝑗)+⋯+𝑃𝑥(𝑝)(𝜆𝑗)], where 𝑝 is the number of edges. Similarly, 𝑃𝑧(𝜆𝑗)
can be calculated as 𝑃𝑧(𝜆𝑗) = [𝑃𝑧(1)(𝜆𝑗)+𝑃𝑧(2)(𝜆𝑗)+⋯+𝑃𝑧(𝑞)(𝜆𝑗)] where 𝑞
is the number of clouds in the cloud layer. Since the low latency traffic
of 𝑗th edge can be offloaded both horizontally to edges and vertically
to clouds, then 𝑃𝑦(𝜆𝑗) can be calculated as 𝑃 𝑉

𝑦 (𝜆𝑗) + 𝑃𝐻
𝑦 (𝜆𝑗), where

𝑃 𝑉
𝑦 (𝜆𝑗) is the probability of vertically offloaded traffics and 𝑃𝐻

𝑦 (𝜆𝑗) is
the horizontal offloaded traffics. 𝑃 𝑉

𝑦 (𝜆𝑗) can be calculated as [𝑃 𝑉
𝑦(1)(𝜆𝑗)+

𝑃 𝑉
𝑦(2)(𝜆𝑗)+⋯+𝑃 𝑉

𝑦(𝑞)(𝜆𝑗)] and 𝑃𝐻
𝑦 (𝜆𝑗) as [𝑃𝐻

𝑦(1)(𝜆𝑗)+𝑃𝐻
𝑦(2)(𝜆𝑗)+⋯+𝑃𝐻

𝑦(𝑝)(𝜆𝑗)].
Then the vertically offloaded total traffic from 𝑗th edge to 𝑖th cloud will
be, 𝑣𝑗,𝑖 = 𝑃𝑧(𝑖)(𝜆𝑗) ∗ 𝜆𝑗+𝑃 𝑉

𝑧(𝑖)(𝜆𝑗) ∗ 𝜆𝑗 . Total horizontally offloaded traffic
from 𝑗th edge to 𝑗′th edge will be, ℎ𝑗,𝑗′ = 𝑃𝑥(𝑗′)(𝜆𝑗) ∗ 𝜆𝑗 +𝑃𝐻

𝑥(𝑗′)(𝜆𝑗) ∗ 𝜆𝑗 .
In ℎ𝑗,𝑗′ , if 𝑗 = 𝑗′ then there will be no horizontal offloading.

3.2.2. Cloud layer traffic distribution
Let us assume the probability of total traffic input to the 𝑖th cloud

is one that includes ultra-low, low, and loose latency traffics, i.e.,
𝑃𝑥(𝜆̂𝑖) + 𝑃𝑦(𝜆̂𝑖) + 𝑃𝑧(𝜆̂𝑖) = 1, where 𝑃𝑥(𝜆̂𝑖), 𝑃𝑦(𝜆̂𝑖), and 𝑃𝑧(𝜆̂𝑖) are the
probability of ultra-low, low latency, and loose latency traffic input
to 𝑖th cloud, respectively. According to our architecture, the ultra-
low latency traffics are processed at the edge layer due to their time
sensitiveness; hence cloud always offloads such requests to the edges.
𝑃𝑥(𝑗)(𝜆̂𝑖) represents probability of offloaded ultra-low latency traffic
from 𝑖th cloud to 𝑗th edge. Then the total probability of offloaded ultra-
low latency traffic from 𝑖th cloud 𝐶𝑖 to the edge layer will be, 𝑃𝑥(𝜆̂𝑖) =
[𝑃𝑥(1)(𝜆̂𝑖) + 𝑃𝑥(2)(𝜆̂𝑖) + ⋯ + 𝑃𝑥(𝑝)(𝜆̂𝑖)]. 𝑃𝑦(𝑗)(𝜆̂𝑖) represents probability of
offloaded low latency traffic from 𝑖th cloud to 𝑗th edge and 𝑃𝑦(0)(𝜆̂𝑖) is
the probability of same traffic type for 𝑖th cloud for self-computation.
Then the probability of total low latency traffic input to a 𝑖th cloud
will be, 𝑃𝑦(𝜆̂𝑖) = 𝑃𝑦(0)(𝜆̂𝑖) + [𝑃𝑦(1)(𝜆̂𝑖) + 𝑃𝑦(2)(𝜆̂𝑖) +⋯+ 𝑃𝑦(𝑞)(𝜆̂𝑖)]. Then the
total traffic offloaded from 𝑖th cloud to 𝑗th edge can be calculated as,
𝑣̂ = 𝑃 (𝜆̂) ∗ 𝜆̂ + 𝑃 (𝜆̂) ∗ 𝜆̂ .
5

𝑖,𝑗 𝑥(𝑗) 𝑖 𝑖 𝑦(𝑗) 𝑖 𝑖
3.3. Latency calculation

In our model, we assume both the clouds and edges consist of
multiple servers, and each server has an equal capacity. However, the
number of servers in a cloud is relatively high compared to an edge.
Hence, a cloud has more computational capacity than an edge. To
calculate the computation latency of the nodes, we apply the M/M/𝑘
queueing model, where 𝑘 is the number of servers in the node. The
value of 𝑘 in the edges is kept fixed as the capacity of the edge is
limited. However, since the capacity of the cloud is unlimited, we have
considered the value of 𝑘 is dynamic. The communication latency is
calculated by the M/M/1 queueing model.

3.3.1. Computational latency calculation
Based on M/M/𝑘 model, the computational latency of 𝑖th cloud and

𝑗th edge are calculated in Eqs. (1) and (2), respectively, as follows.

𝑙𝑖 =
C(𝑘𝐶𝑖 , 𝐽

𝐶
𝑖 , 𝜇̂𝑖)

𝑘𝐶𝑖 ⋅ 𝜇̂𝑖 − 𝐽𝐶
𝑖

+ 1
𝜇̂𝑖

,where 𝐽𝐶
𝑖 < 𝑘𝐶𝑖 ⋅ 𝜇̂𝑖, (1)

̄̄𝑙𝑗 =
C(𝑘𝐸𝑗 , 𝐽

𝐸
𝑗 , 𝜇𝑗)

𝑘𝐸𝑗 ⋅ 𝜇𝑗 − 𝐽𝐸
𝑗

+ 1
𝜇𝑗

,where 𝐽𝐸
𝑗 < 𝑘𝐸𝑗 ⋅ 𝜇𝑗 , (2)

where 𝑘𝐸𝑗 , and 𝑘𝐶𝑖 are the number of servers present in an edge, and
cloud node, respectively, 𝐽𝐶

𝑖 = 𝜆̂𝑖 −
∑𝑚

𝑗=1 𝑣̂𝑖,𝑗 +
∑𝑚

𝑗=1 𝑣𝑗,𝑖 and 𝐽𝐸
𝑗 =

𝜆𝑗 −
∑𝑛

𝑖=1 𝑣𝑗,𝑖 +
∑𝑛

𝑖=1 𝑣̂𝑖,𝑗 −
∑𝑚

𝑗′=1 ℎ𝑗,𝑗′ +
∑𝑚

𝑗′=1 ℎ𝑗′ ,𝑗 . C(𝑘, 𝜆, 𝜇) is the Erlang
C formula (Shortle et al., 2018), where C(𝑘, 𝜆, 𝜇) = 1

1+(1−𝜌) 𝑘!
(𝑘𝜌)𝑘

∑𝑘−1
𝑛=0

𝑘𝜌𝑛
𝑛!

and 𝜌 = 𝜆∕𝜇.

3.3.2. Communication latency calculation
From the users to the cloud/edge nodes, initial communication

latency can be calculated as follows. The communication latency from
the user to 𝑗th edge and from the user to 𝑖th cloud is calculated in Eqs.
(3), and (4), respectively. Similarly, the communication latency from
𝑖th cloud to 𝑗th edge, from 𝑗th edge to 𝑖th cloud, and from 𝑗th edge
to 𝑗′th edge are calculated in Eqs. (5), (6), and (7), respectively, as
follows.

𝑙𝑢→𝐸
𝑗 = 1

̄̄𝑏𝑢,𝐸𝑗
− 𝜆𝑗

+ 𝑑𝑢→𝐸

𝑐
, 𝑤ℎ𝑒𝑟𝑒 𝜆𝑗 < ̄̄𝑏𝑢,𝐸𝑗

, (3)

𝑙𝑢→𝐶
𝑖 = 1

𝑏̂𝑢,𝐶𝑖
− 𝜆̂𝑖

+ 𝑑𝑢→𝐶

𝑐
, 𝑤ℎ𝑒𝑟𝑒 𝜆̂𝑖 < 𝑏̂𝑢,𝐶𝑖

, (4)

𝑙𝐶→𝐸
𝑖,𝑗 = 1

𝑏̄𝐶𝑖↔𝐸𝑗
− 𝑣̂𝑖,𝑗

+ 𝑑𝑉

𝑐
, 𝑤ℎ𝑒𝑟𝑒 𝑣̂𝑖,𝑗 < 𝑏̄𝐶𝑖↔𝐸𝑗

, (5)

𝑙𝐸→𝐶
𝑗,𝑖 = 1

𝑏̄𝐶𝑖↔𝐸𝑗
− 𝑣𝑗,𝑖

+ 𝑑𝑉

𝑐
, 𝑤ℎ𝑒𝑟𝑒 𝑣𝑗,𝑖 < 𝑏̄𝐶𝑖↔𝐸𝑗

, (6)

𝑙𝐸→𝐸
𝑗,𝑗′ = 1

𝑏𝐸𝑗↔𝐸𝑗′
− ℎ𝑗,𝑗′

+ 𝑑𝐻

𝑐
, 𝑤ℎ𝑒𝑟𝑒 ℎ𝑗,𝑗′ < 𝑏𝐸𝑗↔𝐸𝑗′

. (7)

3.4. Triangular offloading problem

Triangular offloading is the case where users give their input to
a node (service provider), say 𝑆0. Node 𝑆0 determines whether the
input is appropriate to handle or not based on its available capacity
and other constraints. If yes, then the input is handled by the node
itself. Otherwise, 𝑆0 will determine another service node say 𝑆1, which
has a federation agreement with 𝑆0 and can handle the input. Then 𝑆0
will offload the requests to 𝑆1. This communication from the user to
𝑆0 and then from 𝑆0 to 𝑆1 (i.e., 𝑢𝑠𝑒𝑟 → 𝑆0 → 𝑆1) is called triangular
offloading. In this section, for such triangular offloading, we present
the optimization problem.

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.

𝜏

𝜇

3.4.1. Objective of the edge layer
Let 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, and 𝑥6 are the variables in Eq. (8), presenting

different costs of nodes in the edge layer.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥1 =
∑𝑝

𝑗=1 𝜆𝑗 ⋅ 𝑚,

𝑥2 =
∑𝑝

𝑗=1 𝑘
𝐸
𝑗 ⋅ ̄̄𝜇𝑗,𝑗 ⋅ ̄̄𝑐,

𝑥3 =
∑𝑝

𝑗=1
∑𝑝

𝑗′=1 ℎ𝑗,𝑗′ ⋅ 𝑚̂,

𝑥4 =
∑𝑝

𝑗=1
∑𝑝

𝑗′=1 𝑘
𝐸
𝑗 ⋅ 𝜇̄𝑗,𝑗′ ⋅ ̄̄𝑐,

𝑥5 =
∑𝑝

𝑗=1
∑𝑞

𝑖=1 𝑣𝑗,𝑖 ⋅ ̄̄𝑚,

𝑥6 =
∑𝑞

𝑖=1
∑𝑝

𝑗=1 𝑘
𝐶
𝑖 ⋅ ̄̄𝜇𝑗,𝑖 ⋅ 𝑐.

(8)

Where 𝑥1 shows the communication cost from the users to edges. The
total self-computing cost of the edges is presented by 𝑥2. The total
communication cost between edges is shown by 𝑥3. The 𝑥4 shows the
total computing cost of the edges while computation is done by other
edges. The total communication cost from the edges to the clouds is
presented by 𝑥5. The 𝑥6 presents the total computing cost of the edges
while computation is done by the clouds. Then the objective function
of the edges is to 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(̄̄𝜏), where,

̄̄𝜏 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6, (9)

subject to,
{

𝑙𝑢→𝐸
𝑗 + ̄̄𝑙𝑗 < 𝐿𝑢𝑙 , (a)
𝑙𝑢→𝐸
𝑗 + 𝑙𝐸→𝐸

𝑗,𝑗′ + ̄̄𝑙𝑗′ < 𝐿𝑢𝑙 , (b)
(10)

⎧

⎪

⎨

⎪

⎩

𝑙𝑢→𝐸
𝑗 + ̄̄𝑙𝑗 < 𝐿𝑙𝑤, (a)
𝑙𝑢→𝐸
𝑗 + 𝑙𝐸→𝐸

𝑗,𝑗′ + ̄̄𝑙𝑗′ < 𝐿𝑙𝑤, (b)
𝑙𝑢→𝐸
𝑗 + 𝑙𝐸→𝐶

𝑗,𝑖 + 𝑙𝑖 < 𝐿𝑙𝑤, (c)
(11)

𝑙𝑢→𝐸
𝑗 + 𝑙𝐸→𝐶

𝑗,𝑖 + 𝑙𝑖 < 𝐿𝑙𝑠, (12)

0 < ̄̄𝜇𝑗,𝑗 < 𝜇𝑗 , (13)

𝑝
∑

𝑗′=1
𝜇̄𝑗,𝑗′ +

𝑞
∑

𝑖=1

̄̄𝜇𝑗,𝑖 ≤ 𝜇𝑗 ,∀𝑗 = 1,… , 𝑝. (14)

The Eqs. (10)–(12) present the latency constraints for the inputs
given to all edges from users, where equations in (10) are for ultra-low
latency, equations in (11) are for low latency, and Eq. (12) is for loose
latency traffics. The inequalities in Eqs. (10)(a) and (11)(a) show the
communication latency from the user to 𝑗th edge plus the computing
latency at 𝑗th edge must be less than the ultra-low latency limit, and
low latency limit, respectively. Eqs. (10)(b) and (11)(b) are the cases
where the user submitted the jobs to 𝑗th edge, and 𝑗th edge offloaded
the job to 𝑗′th edge. The inequalities in Eqs. (10)(b), and (11)(b) show
the sum of the user to 𝑗th edge communication latency, 𝑗th edge to
𝑗′th edge communication latency and the computing latency at 𝑗′th
edge must be less than the ultra-low latency limit, and low latency
limit, respectively. Eqs. (11)(c), and (12) are the cases where the user
submitted the jobs to 𝑗th edge, and 𝑗th edge offload the job to 𝑖th cloud.
The inequalities in Eqs. (11)(c) and (12) show the sum of the user to
𝑗th edge communication latency, 𝑗th edge to 𝑖th cloud communication
latency and the computing latency at 𝑖th cloud must be less than the
low latency limit, and loose latency limit, respectively. The constraint
in Eq. (13) presents an edge that can neither compute all its received
requests by itself nor offload them entirely to others. The sum of self-
computation and horizontal offloading capacity plus vertical offloading
capacity must be less than the total input to the edges presented
6

in Eq. (14).
3.4.2. Objective of the cloud layer
Let 𝑦1, 𝑦2, 𝑦3, and 𝑦4 be the variables in Eq. (15), presenting different

costs of nodes in the cloud layer.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦1 =
∑𝑞

𝑖=1 𝜆̂𝑖 ⋅ 𝑚̂,
𝑦2 =

∑𝑞
𝑖=1 𝑘

𝐶
𝑖 ⋅ 𝜇̈𝑖,𝑖 ⋅ 𝑐,

𝑦3 =
∑𝑞

𝑖=1
∑𝑝

𝑗=1 𝑣̂𝑖,𝑗 ⋅ ̄̄𝑚,

𝑦4 =
∑𝑝

𝑗=1
∑𝑞

𝑖=1 𝑘
𝐸
𝑗 ⋅ 𝜇̌𝑗,𝑖 ⋅ ̄̄𝑐.

(15)

Where 𝑦1 shows the communication cost from the users to the clouds.
The total self-computing cost of the clouds is presented by 𝑦2. The total
communication cost from the clouds to the edges is presented by 𝑦3. The
𝑦4 presents the total computing cost of the clouds while computation
is done by the edges. Then the objective function of the clouds is to
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝜏), where,

̂ = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4, (16)

subject to,

𝑙𝑢→𝐶
𝑖 + 𝑙𝐶→𝐸

𝑖,𝑗 + ̄̄𝑙𝑗 < 𝐿𝑢𝑙 , (17)

{

𝑙𝑢→𝐶
𝑖 + 𝑙𝑖 < 𝐿𝑙𝑤, (a)
𝑙𝑢→𝐶
𝑖 + 𝑙𝐶→𝐸

𝑖,𝑗 + ̄̄𝑙𝑗 < 𝐿𝑙𝑤, (b)
(18)

𝑙𝑢→𝐶
𝑖 + 𝑙𝑖 < 𝐿𝑙𝑠, (19)

{

0 < 𝜇̈𝑖,𝑖 < 𝜇̂𝑖,
𝑃𝑧(𝜆̂𝑖) < 1,

(20)

̈𝑖,𝑖 +
𝑝
∑

𝑗=1
𝜇̌𝑖,𝑗 ≤ 𝜇̂𝑖,∀𝑖 = 1,… , 𝑞. (21)

The Eqs. (17)–(19) presents the latency constraints for the inputs
given to all clouds from the users, where Eq. (17) is for ultra-low
latency, equations in (18) are for low latency, and Eq. (19) is for loose
latency traffics. Eqs. (17), and (18)(b) are the cases where the user
submitted the jobs to 𝑖th cloud, and 𝑖th cloud offloaded the jobs to
𝑗th edge. The inequalities in Eqs. (17) and (18)(b) show the sum of
the user to 𝑖th cloud communication latency, 𝑖th cloud to 𝑗th edge
communication latency and the computing latency at 𝑗th edge must be
less than the ultra-low latency limit, and low latency limit, respectively.
The inequalities in Eqs. (18)(a) and (19) show the user to 𝑖th cloud
communication latency plus the computing latency at 𝑖th cloud must
be less than the low latency limit, and loose latency limit, respectively.
The constraints in Eq. (20) present any cloud can neither compute all
its request by itself nor offload them entirely to others, provided all
the traffics to the cloud are not loose latency traffics. The sum of self-
computation and vertical offloading capacity must be less than the total
input to the clouds discussed in Eq. (21).

3.5. Non-triangular offloading problem

As discussed in Section 3.4, in triangular offloading, when two
service nodes 𝑆0 and 𝑆1 have a federation agreement, 𝑆0 receives the
request from the user and offload to 𝑆1. However, in non-triangular
offloading, if 𝑆0 and 𝑆1 have a federation agreement, then the user
of 𝑆0 can directly submit its request to 𝑆1 by the FM. This type
of offloading is called non-triangular offloading. In this subsection,
we modify our previously proposed optimization problem for such

non-triangular offloading.

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.

l
i

3

i

I
f
t
h
t
d
c
t

s

𝑙

{

𝑙

(

𝑗
a
l
t
E
e
a
l
l

3

a

I
𝑖
m
t
s
u
b

𝜏

s

𝑙

𝑙

(

𝑖
(
l
l

3

t
w
a
c
c
a
s
t
t
t
d
f
t
t
t
o
s
i
t
w
T
i

𝜏

s

(
(

4

r
t
a
f
d

4

v
a
b
T
c
w
𝛥
t

3.5.1. Non-triangular latency calculation
In a non-triangular offloading scenario, the communication latency

is estimated as follows. The vertical offloading latency from the user
to 𝑖th cloud, where the job input is for 𝑗th edge, is estimated as,
𝑙𝑢→𝐸𝐶
𝑗,𝑖 = 1

𝑏̂𝑢,𝐶𝑖−𝑣𝑗,𝑖
+ 𝑑𝑢→𝐶

𝑐 , where 𝑣𝑗,𝑖 ≤ 𝑏̂𝑢,𝐶𝑖
. The horizontal offloading

atency from the user to 𝑗′th edge, where the job input is for 𝑗th edge,
s calculated as, 𝑙𝑢→𝐸𝐸

𝑗,𝑗′ = 1
̄̄𝑏𝑢,𝐸𝑗′ −ℎ𝑗,𝑗′

+ 𝑑𝑢→𝐸

𝑐 , where ℎ𝑗,𝑗′ ≤ ̄̄𝑏𝑢,𝐸𝑗′
. The

reverse offloading latency from the user to 𝑗th edge, where job input
is for 𝑖th cloud, will be, 𝑙𝑢→𝐶𝐸

𝑖,𝑗 = 1
̄̄𝑏𝑢,𝐸𝑗 −𝑣̂𝑖,𝑗

+ 𝑑𝑢→𝐸

𝑐 , where 𝑣̂𝑖,𝑗 ≤ ̄̄𝑏𝑢,𝐸𝑗
.

.5.2. Modified objective of the edge layer
The new cost in the edge layer required the following cost variables,

ncluding some variables from Eq. (8).
{

𝑥7 =
∑𝑝

𝑗=1
∑𝑝

𝑗′=1 ℎ𝑗,𝑗′ ⋅ 𝑚,

𝑥8 =
∑𝑝

𝑗=1
∑𝑞

𝑖=1 𝑣𝑗,𝑖 ⋅ 𝑚̄.
(22)

n Eq. (22), 𝑥7 is the case where the input traffic from the user is
or 𝑗th edge. However, due to the decision of edge–edge FM, the
raffic is offloaded directly to the 𝑗′th edge. The 𝑥7 represents the total
orizontal offloading cost between the edges. The 𝑥8 is the case where
he input traffic from the user is for 𝑗th edge; however, due to the
ecision of cloud–edge FM, the traffic is offloaded directly to the 𝑖th
loud. Then the modified objective function of the edge layer will be
o 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(̄̄𝜏1), where,

̄̄𝜏1 = 𝑥4 + 𝑥6 + 𝑥7 + 𝑥8, (23)

ubject to,
𝑢→𝐸𝐸
𝑗,𝑗′ + ̄̄𝑙𝑗′ < 𝐿𝑢𝑙 , (24)

𝑙𝑢→𝐸𝐸
𝑗,𝑗′ + ̄̄𝑙𝑗′ < 𝐿𝑙𝑤, (a)
𝑙𝑢→𝐸𝐶
𝑗,𝑖 + 𝑙𝑖 < 𝐿𝑙𝑤, (b)

(25)

𝑢→𝐸𝐶
𝑗,𝑖 + 𝑙𝑖 < 𝐿𝑙𝑠, (26)

10)(a), (11)(a), (13), and (14).
The Eqs. (24) and (25)(a) are the cases where jobs from the user of

th edge are directly offloaded to 𝑗′th edge. The inequalities in Eqs. (24)
nd (25)(a) present the sum of the user to 𝑗′th edge communication
atency, and the computing latency at 𝑗′th edge must be less than
he ultra-low latency limit, and the low latency limit, respectively.
qs. (25)(b) and (26) are the cases where jobs from the user of 𝑗th
dge are directly offloaded to 𝑖th cloud. The inequalities in Eqs. (25)(b)
nd (26) present the sum of the user to 𝑖th cloud communication
atency, and the computing latency at 𝑖th cloud must be less than the
ow latency limit, and loose latency limit, respectively.

.5.3. Modified objective of the cloud layer
The new cost in the cloud layer required the following cost vari-

bles, including some variables from Eq. (15).
{

𝑦5 =
∑𝑞

𝑖=1
∑𝑝

𝑗=1 𝑣̂𝑖,𝑗 ⋅ 𝑚,

𝑦6 =
∑𝑞

𝑖=1(𝜆̂𝑖 −
∑𝑝

𝑗=1 𝑣̂𝑖,𝑗) ⋅ 𝑚̄.
(27)

n Eq. (27), 𝑦5 is the case where the input traffic from the user is for
th cloud. However, based on the decision of the cloud–edge federation
anager, the traffic is offloaded directly to 𝑗th edge. The 𝑦5 represents

he total reverse offloading cost from the cloud to the edges. The 𝑦6
hows the communication cost of the remaining traffic that from the
ser to the clouds. Then the new objective function of the clouds will
e 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝜏1), where
7

̂1 = 𝑦2 + 𝑦4 + 𝑦5 + 𝑦6, (28) b
ubject to,
𝑢→𝐶𝐸
𝑖,𝑗 + ̄̄𝑙𝑗 < 𝐿𝑢𝑙 , (29)

𝑢→𝐶𝐸
𝑖,𝑗 + ̄̄𝑙𝑗 < 𝐿𝑙𝑤, (30)

18)(a), (19), (20), and (21).
The Eqs. (29) and (30) are the cases where jobs from the user of

th cloud are reverse offloaded to 𝑗th edge. The inequalities in Eqs.
29) and (30) present the sum of the user to 𝑗th edge communication
atency, and the computing latency at 𝑗th edge must be less than the
ow latency limit, and loose latency limit, respectively.

.6. Objective of OMNI architecture

After analyzing both the triangular offloading problem in Sec-
ion 3.4 and the non-triangular offloading problem in Section 3.5,
e found both the offloading scenarios have their advantages as well
s disadvantages. For example, triangular offloading increases the
ommunication latency, whereas non-triangular offloading reduces the
ommunication latency but increases the burden on the federation man-
ger to make an optimal decision. Hence, we adopted both offloading
cenarios in our OMNI architecture. For the edge layer, we consider
he triangular offloading as in Eq. (9), where the edge will offload the
ask to other edges horizontally and the cloud vertically. Because in this
riangular offloading, the communication latency will not make more
ifference than the non-triangular offloading due to the short distance
rom the user to the edges and between edges. However, we consider
he non-triangular offloading for the cloud layer as in Eq. (28), where
he cloud will reverse offload the time-sensitive tasks to the edges. By
his reverse offloading, the communication latency of non-triangular
ffloading will be relatively less as compared to triangular offloading
ince the distance ‘‘from user to cloud and cloud to edge (triangular)
s much higher than simply ‘‘from user to edge (non-triangular). Since
he main goal of our model is to reduce the total cost of the system,
ith given latency as the constraint, the modified problem is as follows.
he modified objective function is to minimize the total system cost,

.e., minimize (𝜏𝑡𝑜𝑡𝑎𝑙), where

𝑡𝑜𝑡𝑎𝑙 = 𝑎 ⋅ ̄̄𝜏 + (1 − 𝑎) ⋅ 𝜏1, (31)

ubject to,

10)(a), (10)(b), (11)(a), (11)(b), (11)(c), (12), (13), (14),
18)(a), (19), (20), (21), (29), and (30).

. Problem formulation

In the solution, we describe the simulated annealing (SA) algo-
ithm (Johnson et al., 1989), which performs a probabilistic technique
o find a globally optimal solution. Specifically, it is a meta-heuristic
pproach to approximate global optimization in an ample search space
or an optimization problem and is used when the search space is
iscrete.

.1. Two-tier simulated annealing

The two-tier simulated annealing (TTSA) process is a modified
ersion of SA described in Algorithm 1. In each iteration, we generate
new state 𝑥𝑛𝑒𝑤 from the previous state 𝑥𝑜𝑙𝑑 and compute the cost for
oth the tiers using 𝐶𝑜𝑠𝑡1(), i.e., in Eq. (9) and 𝐶𝑜𝑠𝑡2(), i.e., in Eq. (28).
he differences between the old and new costs of the edge tier and
loud tier denoted as 𝛥1 and 𝛥2, respectively, are computed. The 𝑥𝑛𝑒𝑤
ill be immediately accepted if 𝛥1 ≤ 0 and 𝛥2 ≤ 0. If 𝛥1 ≤ 0 and
2 > 0, then we have a probability 𝑒−𝛥2∕𝑇 to accept 𝑥𝑛𝑒𝑤, where 𝑇 is
he simulated temperature and decreases in each step of the iteration

y a cooling parameter 𝛼 (0 < 𝛼 < 1). However, if 𝛥1 > 0 and 𝛥2 ≤ 0, we

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Algorithm 1 TTSA Algorithm
Initially: Randomly generate initial solution 𝑥𝑜𝑙𝑑
Set: 𝑇 ← 𝑇𝑚𝑎𝑥
while 𝑇 > 𝑇𝑚𝑖𝑛 do

Generate new solution 𝑥𝑛𝑒𝑤
𝛥1 = 𝐶𝑜𝑠𝑡1(𝑥𝑛𝑒𝑤) − 𝐶𝑜𝑠𝑡1(𝑥𝑜𝑙𝑑)
𝛥2 = 𝐶𝑜𝑠𝑡2(𝑥𝑛𝑒𝑤) − 𝐶𝑜𝑠𝑡2(𝑥𝑜𝑙𝑑)
if (𝛥1 ≤ 0) & (𝛥2 ≤ 0) then

accept 𝑥𝑜𝑙𝑑 ← 𝑥𝑛𝑒𝑤
else

if (𝛥1 ≤ 0) & (𝛥2 > 0) then
accept 𝑥𝑜𝑙𝑑 ← 𝑥𝑛𝑒𝑤 with probability 𝑒−𝛥2∕𝑇

else
if (𝛥1 > 0) & (𝛥2 ≤ 0) then

accept 𝑥𝑜𝑙𝑑 ← 𝑥𝑛𝑒𝑤 with probability 𝑒−𝛥1∕𝑇

else
if (𝛥1 > 0) & (𝛥2 > 0) then

accept 𝑥𝑜𝑙𝑑 ← 𝑥𝑛𝑒𝑤 with probability 𝑒−(𝛥1+𝛥2)∕𝑇

end
end

end
end
𝑇 ← 𝛼 ⋅ 𝑇

end

can accept 𝑥𝑛𝑒𝑤 with probability 𝑒−𝛥1∕𝑇 . The 𝑥𝑛𝑒𝑤 will acceptable with
probability 𝑒−(𝛥1+𝛥2)∕𝑇 if 𝛥1 > 0 and 𝛥2 > 0. The length of the iterations
in SA is determined by the initial temperature 𝑇𝑚𝑎𝑥, the terminating
temperature 𝑇𝑚𝑖𝑛, and the cooling parameter 𝛼. At the beginning, 𝑇
equals to 𝑇𝑚𝑎𝑥. 𝑇 then decreases in each iteration, when 𝑇 = 𝑇𝑚𝑖𝑛 the
SA iterations terminate.

This algorithm applies randomness with some restrictions for the
initial solution, which is initialized as follows. As discussed in our
proposed architecture, our input jobs are three different types. Only
edges handle the ultra-low latency jobs, only clouds handle loose
latency jobs, and both edges and clouds can handle low latency jobs.
For a cloud, when the inputs are loose latency jobs, they will have kept
by the cloud, whereas if the job is ultra-low latency, it will offload to
any edge randomly. For low latency jobs, the cloud will have kept 70
percent by itself and offload the rest to the edges randomly. For an
edge, if the inputs are loose latency jobs, it will offload randomly to
the clouds. If the inputs are low latency jobs, then 50 percent of jobs
are kept on the edge, and the other 50 percent will be offloaded to
other edges and clouds. If the inputs are ultra-low latency jobs, then
70 percent will be kept by the edge, and the other 30 percent will be
randomly offloaded to other edges.

We use three processes (swapping, reversion, and insertion) in this
simulated annealing to make the offloading decision. In the swapping
process, two federated nodes can swap their jobs with each other. And
in the insertion process, a job from one node is taken and inserted
in another node. While invoking these processes, we impose some
restrictions not to violate offloading criteria set in the systems.

1. In the swapping process, ‘‘two loose latency jobs/two low la-
tency jobs/one low and one loose latency jobs’’ between two
clouds is applicable if and only if those two jobs are offloaded
from edges. Non-offloaded jobs cannot be swapped between two
clouds as there is no cloud-to-cloud offloading. The swapping of
two low latency jobs between an edge and a cloud is applicable,
provided the selected job in the edge is not offloaded from any
other clouds. The swapping can be performed between two edges
if the following condition holds. (a) if both the jobs are low
latency jobs, (b) if both the jobs are ultra-low latency jobs, and
(c) if one is a low latency job and the other is an ultra-low
latency job.
8

Fig. 3. Performance comparison between heuristic and optimal solutions.

2. In the reversion process, after two jobs are selected for swapping,
the necessary swapping condition (as discussed above) must be
satisfied between intermediate jobs in the intermediate nodes.
If there is any violation of the swapping rule between two
intermediate nodes, then swapping of those jobs will not be
performed.

3. In the insertion process, a loose latency job cannot be inserted
in an edge, and an ultra-low latency job cannot be inserted in a
cloud. A loose/low latency job, initially assigned to one cloud,
can be inserted into a new cloud if and only if the job was
offloaded from an edge.

Consequently, like the SA process, the TTSA also has no bounded
time complexity. Instead, its time complexity is determined by the
cooling parameter 𝛼.

5. Numerical results

5.1. Experiment setup

For the experiment, we considered a cloud–edge federated network
consisting of five clouds, with five edges geographically distributed.
The capacity of a server on edge is 2 GB, and each edge consists of 10
servers. The capacity of a server in the cloud is 4 GB, and the number of
servers in the cloud node is unlimited. The maximum distance from the
user to an edge, the user to a cloud, between two edges, and between
an edge and a cloud are 10 KM, 1000 KM, 100 KM, and 1000 KMs,
respectively. The size of the input jobs is taken randomly between 1 KB
to 250 MB. Based on the size, the jobs are categorized into three groups.
The unit cost of communication and computation is considered in terms
of money. The detailed parameters for our experiment are discussed
in Table 3. We conducted simulations to evaluate the performance
of OMNI architecture and the proposed TTSA algorithm. To calculate
the total cost in Eq. (31), we set the value of 𝑎 to 0.5 since the job
inputs given to both the edge and cloud layers are equal, and the
cooling parameter 𝛼 value is set to 0.99. Our simulation runs on a
Windows 11 operating system running on an i7 processor with 16 GB
RAM. We carried out our simulation by using Python and compared it
with CPLEX (Cplex, 2009) for the optimal result. Fig. 3 shows the cost
analysis of TTSA and CPLEX results for omnidirectional architecture.
This result is of cost analysis based on job sizes, and the input jobs
were taken randomly from 490 to 510 KB. Fig. 3 shows the total cost
result from the TTSA algorithm and CPLEX result are nearly similar.

5.2. Performance analysis

In this section, we compared the performance with three other ar-
chitectures: (1) zero offloading model (ZOM), (2) edge-to-cloud vertical

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Fig. 4. The total cost of the edge-cloud systems per number of jobs per second in terms of job priority.
Fig. 5. The total cost of the edge-cloud systems per number of jobs per second in terms of job size.
Table 3
Parameter settings.

Items Values

No. of clouds 5
No. of edges 5
Capacity and bandwidth
Capacity of an edge server 2 GB
Capacity of a cloud server 4 GB
No. of servers in each edge 10
No. of servers in each cloud unlimited
Job size 1KB–250 MB
small job job size ≤100 KB
medium job 100 KB<job size<25 MB
Large job 25 MB≤job size≤250 MB
Distance
User to edge distance 1 KM
User to cloud distance 1000 KM
Edge to edge distance 10 KM
Edge to cloud distance 1000 KM
Computing cost
cloud 20 money units/Mcycles
edge 15 money units/Mcycles
Communication cost
Cloud–edge 3 money units/MBytes
Edge–edge 2 money units/MBytes
User to edge 1 money units/MBytes
User to cloud 4 money units/MBytes

offloading (E2CVO) as in Tong et al. (2016), and (3) edge-to-edge hor-
izontal offloading (E2EHO) as in Cao et al. (2020). In this experiment,
we considered two types of input scenarios. First, the offloading is
based on the job’s size, where a small size job is treated as an ultra-low
latency job that an edge must process, and a large job is treated as a
loose latency job that a cloud must process. (2) Second, offloading is
based on the job’s priority, irrespective of its size. A priority value (low,
mid, high) was randomly assigned to each job, irrespective of their size.
In this scenario, a job of any size can be an ultra-low, low, or loose
latency job.

5.2.1. Total cost analysis – OMNI vs. Others
Figs. 4 and 5 show the cost analysis of different architectures with

the increase in the number of input jobs. Fig. 4 shows the system
performance where the offloading decision of the jobs is considered
9

based on their priority irrespective of their size. In contrast, Fig. 5
shows the offloading decision of the jobs is taken based on the size
of the jobs as given in Table 3. In both figures, we presented the total
cost of the systems in Figs. 4(a) and 5(a), and the intermediate results
are the edge layer cost in Figs. 4(b) and 5(b), and the cloud layer cost
in Figs. 4(c) and 5(c). If we consider the total cost as given presented in
Figs. 4(a) and 5(a), in both cases, our OMNI architecture saves the total
cost by 7%–10%, 20%–30%, and 25%–40% compared to the E2CVO,
E2EHO, and ZOM architectures, respectively, because of its horizontal,
vertical, and reverse offloading mechanisms. Due to reverse offloading,
the highly time-sensitive jobs of clouds are redirected to edges, which
reduces the communication cost. Due to horizontal federation, the edge
extends its computing capacity in the edge layer. The E2CVO saves
more cost than ZOM and E2EHO as the edges offload the loose latency
and some low latency jobs to the clouds, reducing the storage burden
on the edges and making the computation faster as the cloud has
unlimited computing resources. Let us compare the ZOM and E2EHO
performance. The E2EHO saves more cost than ZOM due to its edge-
to-edge horizontal federation as it extends the computing capacity and
provides the service faster than ZOM. For the edge cost, in the case
where offloading takes place based on priority irrespective of job size,
the cost of OMNI and E2CVO is lesser than others. The edge cost of
E2CVO is better than OMNI, as shown in Fig. 4(b), because of the
reverse offloading of some large jobs that have high priority offloaded
to the edges. However, in Fig. 5(b), the edge cost of OMNI is lower than
E2CVO as the jobs that are offloaded to the edges are smaller, where the
offloading decision is taken based on the job size. For the cloud cost,
OMNI architecture’s cost is better than E2CVO and similar to others in
low input, as shown in Fig. 4(c), where the offloading decision is based
on the priority of the jobs. However, the cloud cost of all architectures
is nearly similar in the case where the offloading decision is taken based
on the job size, as shown in Fig. 5(c).

5.2.2. Total cost analysis – TTSA vs. Others
In Fig. 6, we compared the performance of our proposed TTSA

algorithm with two other algorithms: (1) local servers are overloaded
(LSAO) used in Mehmeti and Spyropoulos (2016), (2) random (RAND)
offloading scheme used in Chen and Hao (2018). In this LSAO scenario,
all jobs coming to the edge are directly served by the edges locally, until
local servers become overloaded. When the edge becomes overloaded,
then tasks are offloaded to the other edges and clouds (Tong et al.,

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Fig. 6. Performance comparison of our proposed TTSA algorithm with other algorithms in terms of cost analysis.
Fig. 7. Average latency analysis in different architectures based on job’s priority and
job’s size.

2016). The jobs that are coming to the cloud will get served by the
cloud as the cloud will never become overloaded due to its unlimited
capacity. In the RAND offloading scenario, wherever the jobs arrive,
they will be processed in the host node or offloaded to other nodes;
that decision was taken randomly. Fig. 6(a) shows that our TTSA
algorithm performs nearly 45%–55% better than both RAND and LSAO
algorithms in terms of the total cost since the offloading decision of
TTSA is taken based on the job’s priority. As shown in Fig. 6(b), all
algorithms have similar costs for the edge cost; only LSAO has a high
cost during low inputs. However, for the cloud cost, in TTSA, the cloud
reverse offloads the high-priority jobs to the edges, whereas in LSAO,
jobs from the cloud are never offloaded to the edges as the cloud
has unlimited capacity, and in the RAND offloading decision is taken
randomly. Hence, TTSA’s cloud cost is lower than others, as shown in
Fig. 6(c).

5.2.3. Latency analysis – OMNI vs. others
Fig. 7 shows the average latency of the jobs in OMNI architecture

with others in both offloading scenarios. In both cases, the latency of
the ZOM model has the worst performance due to the long waiting time
as they do not have the offloading facility. E2EHO architecture is better
than ZOM because they can horizontally offload the nearby edges when
they require extra resources to handle the requests. However, they still
have a long waiting time due to the limited capacity at the edges. The
reason for the high waiting time in ZOM and E2EHO architectures is
limited resources on the edges. When requests are made, edges do not
have the resources to handle those requests in the edges layer and
also do not have the facility to offload them to the clouds. However,
the performance of E2CVO and OMNI is much better than the other
two architectures as they have very negligible waiting time due to the
option to offload to the clouds that have unlimited resources. Since
the clouds have unlimited computing resources and storage capacity,
as soon as the inputs are given to the clouds, the required resources get
allocated to the jobs for computation. The latency of OMNI is less than
E2CVO due to its reverse offloading architecture. It reverse offloads the
10
highly time-sensitive jobs to the edges, reducing communication time.
Also, due to OMNI’s horizontal federation, it extends its computation
capacity in the edge layer. As a result, it is able to handle more jobs in
a limited time and reduce the latency compared to E2CVO.

5.2.4. Average utilization – OMNI vs. others
Fig. 8 shows the average utilization of the active servers in the

edge and cloud layers in both cases, i.e., offloading based on the job’s
priority in Fig. 8(a) and offloading based on the job’s size in Fig. 8(b).
The utilization of the cloud servers in ZOM and E2EHO are relatively
similar in both Fig. 8(a) and (b), as there is no offloading to the cloud
in both cases. It only processes the tasks that are received by the
cloud from its users. However, the utilization of the edge servers in
E2EHO is better than ZOM as an edge can offload the tasks to nearby
edges in case of excessive load. The utilization of the cloud servers in
E2CVO architecture is better than others, as shown in Fig. 8(a), where
offloading takes place based on the job’s priority. Whereas in Fig. 8(b),
where offloading is based on the job’s size, cloud servers’ utilization is
less due to large fragmentation as only large-sized jobs are offloaded
from the edges to the clouds. In both cases (priority and size), the edge
servers’ utilization in E2EHO is even better than in E2CVO architecture.
In OMNI architecture, the heavily loaded edges offload their excessive
jobs either to clouds vertically or to other edges horizontally. Similarly,
the cloud reverse-offload the highly time-sensitive jobs to the edges.
The utilization of OMNI architecture is relatively better compared to
other architectures both in edge and cloud layer nodes as it tries to
accommodate more jobs within the specified amount of resources to
maximize resource utilization both in edges and clouds.

5.2.5. Offloading ratio – number of jobs vs. volume of jobs
Fig. 9 shows the offloading ratio of OMNI architecture in both cases,

i.e., based on the job’s priority and size. Fig. 9(a), and (b) present
the offloading ratios in terms of the number of jobs, and volume of
jobs, respectively. Let us compare the offloading ratios in terms of the
number of jobs in Fig. 9(a), in case of priority. The number of jobs
offloaded from cloud to edge is only about 5%–6% as the offloading
takes place based on the job’s priority, irrespective of the size of the
jobs. Whereas in the case of size, the number of jobs offloaded from
the cloud to the edge is significantly more, i.e., 17%–18%, as there are
smaller size jobs. Similarly, the number of jobs offloaded from the edge
to the cloud is only 17%–18% in the case of offloading based on the
job’s priority, whereas it is 33%–34% when offloading is based on the
job’s size. As Fig. 9(a) shows, when we calculate the offloading ratio
in terms of the number of jobs, we found a significant difference in the
offloading ratios between the offloading based on the job’s priority and
offloading based on the job’s size. However, that is not the case when
we calculate the offloading ratios in terms of the volume of the jobs.
Fig. 9(b) shows the offloading ratios in OMNI architecture in terms of
the volume of the jobs for both cases, i.e., based on the job’s priority
and size. As indicated, the offloading ratios in both offloading scenarios
are nearly similar.

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Fig. 8. Average utilization of active servers in edge and cloud nodes based on job’s priority and job’s size.
Fig. 9. Offloading ratio in the OMNI architecture.
6. Conclusions

In this paper, we proposed a two-tier federated cloud–edge archi-
tecture with omnidirectional offloading. In this federated architecture,
the edges can horizontally offload their requests to each other, and not
only can edges vertically offload their request to the clouds, but also
clouds can reverse offload their highly time-sensitive requests to the
edges for faster services. We proposed offloading optimization problem
to minimize the total cost of both the cloud and edge layer with given
latency constraints, where offloading takes place based on the job’s
size and priority. We used a modified SA algorithm to find the global
optimum results. The results show our proposed OMNI architecture
reduces the total cost by 7%–10%, 20%–30%, and 25%–40% compared
to E2CVO, E2EHO, and ZOM architectures, respectively. Our proposed
TTSA algorithm also reduces the cost by 45%–55% compared to LSAO
and RAND offloading algorithms. It also increases utilization in the
edges, and the average latency in our architecture is relatively less
compared to other existing architectures.

CRediT authorship contribution statement

Binayak Kar: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Writing – original draft, review
& editing, Supervision, Project administration, Funding. Ying-Dar Lin:
Conceptualization, Investigation, Writing – review & editing, Supervi-
sion, Project administration, Funding. Yuan-Cheng Lai: Conceptualiza-
tion, Investigation, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
11
Data availability

No data was used for the research described in the article

Acknowledgments

This work was supported by the Ministry of Science and Technology
(MOST), Taiwan, under Grant 109-2221-E-011-104-MY3. A preliminary
version of this paper appears in the proceedings of IEEE ICC 2020 (Kar
et al., 2020). We thank Yoel Pater Siswojo, Brandon Wymer Pramana,
and Primatar Kuswiradyo for their help with our simulations.

References

Ascigil, O., Tasiopoulos, A., Phan, T.K., Sourlas, V., Psaras, I., Pavlou, G., 2021.
Resource provisioning and allocation in function-as-a-service edge-clouds. IEEE
Trans. Serv. Comput. 15 (4), 2410–2424.

Cao, X., Tang, G., Guo, D., Li, Y., Zhang, W., 2020. Edge federation: Towards an
integrated service provisioning model. IEEE/ACM Trans. Netw. 28 (3), 1116–1129.

Chekired, D.A., Khoukhi, L., Mouftah, H.T., 2018. Industrial IoT data scheduling based
on hierarchical fog computing: A key for enabling smart factory. IEEE Trans. Ind.
Inform. 14 (10), 4590–4602.

Chen, H., An, B., Niyato, D., Soh, Y.C., Miao, C., 2017. Workload factoring and resource
sharing via joint vertical and horizontal cloud federation networks. IEEE J. Sel.
Areas Commun. 35 (3), 557–570.

Chen, M., Hao, Y., 2018. Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE J. Sel. Areas Commun. 36 (3), 587–597.

Choudhari, T., Moh, M., Moh, T.-S., 2018. Prioritized task scheduling in fog computing.
In: Proceedings of the ACMSE 2018 Conference. pp. 1–8.

Cplex, I.I., 2009. V12. 1: User’s manual for CPLEX. Int. Bus. Mach. Corp. 46 (53), 157.
Elbamby, M.S., Perfecto, C., Bennis, M., Doppler, K., 2018. Toward low-latency and

ultra-reliable virtual reality. IEEE Netw. 32 (2), 78–84.
Francescon, A., Baggio, G., Fedrizzi, R., Orsini, E., Riggio, R., 2017. X-MANO: An open-

source platform for cross–domain management and orchestration. In: 2017 IEEE
Conference on Network Softwarization. NetSoft, IEEE, pp. 1–6.

Gao, L., Moh, M., 2018. Joint computation offloading and prioritized scheduling in
mobile edge computing. In: 2018 International Conference on High Performance
Computing & Simulation. HPCS, IEEE, pp. 1000–1007.

http://refhub.elsevier.com/S1084-8045(23)00049-8/sb1
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb1
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb1
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb1
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb1
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb2
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb2
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb2
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb3
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb3
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb3
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb3
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb3
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb4
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb4
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb4
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb4
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb4
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb5
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb5
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb5
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb6
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb6
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb6
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb7
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb8
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb8
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb8
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb9
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb9
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb9
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb9
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb9
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb10
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb10
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb10
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb10
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb10

Journal of Network and Computer Applications 215 (2023) 103630B. Kar et al.
Goudarzi, P., Hosseinpour, M., Ahmadi, M.R., 2021. Joint customer/provider evolution-
ary multi-objective utility maximization in cloud data center networks. Iran. J. Sci.
Technol. Trans. Electr. Eng. 45 (2), 479–492.

Goudarzi, H., Pedram, M., 2013. Force-directed geographical load balancing and
scheduling for batch jobs in distributed datacenters. In: 2013 IEEE International
Conference on Cluster Computing. CLUSTER, IEEE, pp. 1–8.

Hammoud, A., Mourad, A., Otrok, H., Wahab, O.A., Harmanani, H., 2020. Cloud
federation formation using genetic and evolutionary game theoretical models.
Future Gener. Comput. Syst. 104, 92–104.

Hassan, M.M., Abdullah-Al-Wadud, M., Almogren, A., Song, B., Alamri, A.,
2015. Energy-aware resource and revenue management in federated cloud: a
game-theoretic approach. IEEE Syst. J. 11 (2), 951–961.

Hsu, C.-H., Zhang, Y., Laurenzano, M.A., Meisner, D., Wenisch, T., Mars, J., Tang, L.,
Dreslinski, R.G., 2015. Adrenaline: Pinpointing and reining in tail queries with
quick voltage boosting. In: 2015 IEEE 21st International Symposium on High
Performance Computer Architecture. HPCA, IEEE, pp. 271–282.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C., 1989. Optimization by
simulated annealing: An experimental evaluation; part i, graph partitioning. Oper.
Res. 37 (6), 865–892.

Kanwal, A., Masood, R., Shibli, M.A., 2014. Evaluation and establishment of trust in
cloud federation. In: Proceedings of the 8th International Conference on Ubiquitous
Information Management and Communication. pp. 1–8.

Kar, B., Lin, Y.-D., Lai, Y.-C., 2020. OMNI: Omni-directional dual cost optimization
of two-tier federated cloud-edge systems. In: ICC 2020-2020 IEEE International
Conference on Communications. ICC, IEEE, pp. 1–7.

Kar, B., Yahya, W., Lin, Y.-D., Ali, A., 2022. A survey on offloading in federated cloud-
edge-fog systems with traditional optimization and machine learning. arXiv preprint
arXiv:2202.10628.

Kar, B., Yahya, W., Lin, Y.-D., Ali, A., 2023. Offloading using traditional optimization
and machine learning in federated cloud-edge-fog systems: A survey. IEEE Commun.
Surv. Tutor..

Kelaidonis, D., Rouskas, A., Stavroulaki, V., Demestichas, P., Vlacheas, P., 2016. A
federated edge cloud-IoT architecture. In: 2016 European Conference on Networks
and Communications. EuCNC, IEEE, pp. 230–234.

Kim, K.S., Kim, D.K., Chae, C.-B., Choi, S., Ko, Y.-C., Kim, J., Lim, Y.-G., Yang, M.,
Kim, S., Lim, B., et al., 2018. Ultrareliable and low-latency communication
techniques for tactile internet services. Proc. IEEE 107 (2), 376–393.

Liaqat, M., Chang, V., Gani, A., Ab Hamid, S.H., Toseef, M., Shoaib, U., Ali, R.L., 2017.
Federated cloud resource management: Review and discussion. J. Netw. Comput.
Appl. 77, 87–105.

Maier, M., Chowdhury, M., Rimal, B.P., Van, D.P., 2016. The tactile internet: vision,
recent progress, and open challenges. IEEE Commun. Mag. 54 (5), 138–145.

Mashayekhy, L., Nejad, M.M., Grosu, D., 2014. Cloud federations in the sky: Formation
game and mechanism. IEEE Trans. Cloud Comput. 3 (1), 14–27.

Mehmeti, F., Spyropoulos, T., 2016. Performance modeling, analysis, and optimization
of delayed mobile data offloading for mobile users. IEEE/ACM Trans. Netw. 25 (1),
550–564.

Nasrallah, A., Thyagaturu, A., Alharbi, Z., Wang, C., Shao, X., Reisslein, M., ElBak-
oury, H., 2018. Ultra-low latency (ULL) networks: A comprehensive survey covering
the IEEE TSN standard and related ULL research. arXiv preprint arXiv:1803.07673.

Osseiran, A., Sachs, J., Puleri, M., et al., 2015. Manufacturing reengineered: robots, 5G
and the industrial IoT. Ericsson Bus Rev. 4.

Peterson, L., Al-Shabibi, A., Anshutz, T., Baker, S., Bavier, A., Das, S., Hart, J.,
Palukar, G., Snow, W., 2016. Central office re-architected as a data center. IEEE
Commun. Mag. 54 (10), 96–101.

Ren, J., Yu, G., He, Y., Li, G.Y., 2019. Collaborative cloud and edge computing for
latency minimization. IEEE Trans. Veh. Technol. 68 (5), 5031–5044.

Samanta, A., Chang, Z., 2019. Adaptive service offloading for revenue maximization
in mobile edge computing with delay-constraint. IEEE Internet Things J. 6 (2),
3864–3872.

Satyanarayanan, M., 2015. A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets. GetMobile: Mob. Comput. Commun.
18 (4), 19–23.

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge computing: Vision and challenges.
IEEE Internet Things J. 3 (5), 637–646.

Shi, W., Dustdar, S., 2016. The promise of edge computing. Computer 49 (5), 78–81.
Shortle, J.F., Thompson, J.M., Gross, D., Harris, C.M., 2018. Fundamentals of queueing

theory, Vol. 399. John Wiley & Sons.
Thönes, J., 2015. Microservices. IEEE Softw. 32 (1), 116.
Tong, L., Li, Y., Gao, W., 2016. A hierarchical edge cloud architecture for mobile

computing. In: IEEE INFOCOM 2016-the 35th Annual IEEE International Conference
on Computer Communications. IEEE, pp. 1–9.
12
Tozal, M.E., Wang, Y., Al-Shaer, E., Sarac, K., Thuraisingham, B., Chu, B.-T.,
2013. Adaptive information coding for secure and reliable wireless telesurgery
communications. Mob. Netw. Appl. 18 (5), 697–711.

Truong-Huu, T., Tham, C.-K., 2014. A novel model for competition and cooperation
among cloud providers. IEEE Trans. Cloud Comput. 2 (3), 251–265.

Verma, P.K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., Alsabaan, M.,
Khalifa, T., Abdelkader, T., Abogharaf, A., 2016. Machine-to-machine (M2M)
communications: A survey. J. Netw. Comput. Appl. 66, 83–105.

Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R., 2016. Osmotic computing: A
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3 (6), 76–83.

Wang, H., Shi, P., Zhang, Y., 2017. Jointcloud: A cross-cloud cooperation architecture
for integrated internet service customization. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems. ICDCS, IEEE, pp. 1846–1855.

Wollschlaeger, M., Sauter, T., Jasperneite, J., 2017. The future of industrial communi-
cation: Automation networks in the era of the internet of things and industry 4.0.
IEEE Ind. Electr. Mag. 11 (1), 17–27.

Binayak Kar is an Assistant Professor of computer science
and information engineering at National Taiwan University
of Science and Technology (NTUST), Taiwan. He received
his Ph.D. degree in computer science and information
engineering from the National Central University (NCU),
Taiwan in 2018. He was a post-doctoral research fellow
in computer science with National Chiao Tung University
(NCTU), Taiwan from 2018 to 2019. His research interests
include network softwarization, cloud/edge/fog computing,
queueing theory, optimization, machine learning, cyber
security, and quantum computing.

Ying-Dar Lin is a Chair Professor of computer science
at National Yang Ming Chiao Tung University (NYCU),
Taiwan. He received his Ph.D. in computer science from the
University of California at Los Angeles (UCLA) in 1993. He
was a visiting scholar at Cisco Systems in San Jose during
2007–2008, CEO at Telecom Technology Center, Taiwan,
during 2010–2011, and Vice President of National Applied
Research Labs (NARLabs), Taiwan, during 2017–2018. He
cofounded L7 Networks Inc. in 2002, later acquired by
D-Link Corp. He also founded and directed Network Bench-
marking Lab (NBL) from 2002, which reviewed network
products with real traffic and automated tools, also an ap-
proved test lab of the Open Networking Foundation (ONF),
and spun off O’Prueba Inc. in 2018. His research interests
include network security, wireless communications, and
network softwarization. His work on multi-hop cellular was
the first along this line, and has been cited over 1000 times
and standardized into IEEE 802.11s, IEEE 802.15.5, IEEE
802.16j, and 3GPP LTE-Advanced. He is an IEEE Fellow
(class of 2013), IEEE Distinguished Lecturer (2014–2017),
ONF Research Associate (2014-2017), and received K. T.
Li Breakthrough Award in 2017 and Research Excellence
Award in 2017 and 2020. He has served or is serving on the
editorial boards of several IEEE journals and magazines, and
was the Editor-in-Chief of IEEE Communications Surveys
and Tutorials (COMST). He published a textbook, Computer
Networks: An Open Source Approach (www.mhhe.com/lin),
with Ren-Hung Hwang and Fred Baker (McGraw-Hill, 2011).

Yuan-Cheng Lai received the Ph.D. degree from the De-
partment of Computer and Information Science, National
Chiao Tung University in 1997. He joined the faculty
of the Department of Information Management, National
Taiwan University of Science and Technology in August
2001 and has been a Distinguished Professor since June
2012. His research interests include performance analysis,
software-defined networking, wireless networks, and IoT
security.

http://refhub.elsevier.com/S1084-8045(23)00049-8/sb11
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb11
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb11
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb11
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb11
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb12
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb12
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb12
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb12
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb12
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb13
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb13
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb13
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb13
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb13
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb14
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb14
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb14
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb14
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb14
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb15
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb16
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb16
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb16
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb16
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb16
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb17
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb17
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb17
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb17
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb17
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb18
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb18
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb18
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb18
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb18
http://arxiv.org/abs/2202.10628
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb20
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb20
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb20
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb20
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb20
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb21
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb21
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb21
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb21
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb21
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb22
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb22
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb22
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb22
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb22
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb23
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb23
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb23
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb23
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb23
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb24
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb24
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb24
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb25
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb25
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb25
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb26
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb26
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb26
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb26
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb26
http://arxiv.org/abs/1803.07673
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb28
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb28
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb28
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb29
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb29
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb29
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb29
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb29
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb30
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb30
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb30
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb31
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb31
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb31
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb31
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb31
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb32
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb32
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb32
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb32
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb32
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb33
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb33
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb33
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb34
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb35
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb35
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb35
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb36
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb37
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb37
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb37
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb37
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb37
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb38
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb38
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb38
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb38
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb38
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb39
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb39
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb39
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb40
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb40
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb40
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb40
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb40
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb41
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb41
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb41
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb42
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb42
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb42
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb42
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb42
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb43
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb43
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb43
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb43
http://refhub.elsevier.com/S1084-8045(23)00049-8/sb43
http://www.mhhe.com/lin

	Cost optimization of omnidirectional offloading in two-tier cloud–edge federated systems
	Introduction
	Related Works
	System Model
	Two-tier Cloud–Edge Federated Architecture
	Traffic Distribution
	Edge Layer Traffic Distribution
	Cloud Layer Traffic Distribution

	Latency Calculation
	Computational Latency Calculation
	Communication Latency Calculation

	Triangular Offloading Problem
	Objective of the Edge Layer
	Objective of the Cloud Layer

	Non-triangular Offloading Problem
	Non-triangular Latency Calculation
	Modified Objective of the Edge Layer
	Modified Objective of the Cloud Layer

	Objective of OMNI Architecture

	Problem Formulation
	Two-tier Simulated Annealing

	Numerical Results
	Experiment Setup
	Performance Analysis
	Total Cost Analysis – OMNI vs. Others
	Total Cost Analysis – TTSA vs. Others
	Latency Analysis – OMNI vs. Others
	Average Utilization – OMNI vs. Others
	Offloading Ratio – Number of jobs vs. Volume of jobs

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

