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Abstract
Edge and fog computing technologies are akin to cloud computing but operate in closer proximity to users, offering similar
services on a more widely distributed and localized scale. To enhance the computing environment and enable efficient
offloading of computing requests, we propose a unified federation of these technologies, forming a federated cloud-edge-
fog (CEF) system. Unlike current offloading models limited to single-hop and unidirectional vertical scenarios, our model
facilitates two-hop, bidirectional (horizontal and vertical) offloading. The CEFmodel enables not only fog and edge devices to
offload tasks to the cloud but also allows the cloud to offload tasks to the edges and fogs, creating a more dynamic and flexible
computing ecosystem. To optimize this system, we formulate an optimization problem focused on minimizing the total cost
while adhering to latency constraints. We employ simulated annealing as the solution approach. By adopting the proposed
CEF model and optimization strategy, organizations can effectively leverage the strengths of cloud, edge, and fog computing
while achieving significant cost reductions and improved task offloading efficiency. The findings from our study indicate that
adopting a two-hop offloading approach can result in cost savings of 10–20% compared to the traditional one-hop method.
Furthermore, when incorporating horizontal and bidirectional offloading, cost savings of approximately 12% and 20% can
be achieved, respectively, in contrast to scenarios without horizontal offloading and only unidirectional vertical offloading.
This advancement holds promise for optimizing computing resources and enhancing the overall performance of distributed
systems in real-world applications.
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1 Introduction

Cloud computing technology has become increasingly pop-
ular in recent years, exerting a significant impact on the
development trajectory of the information industry. This
architecture offers users the advantage of not having to invest
in storage andmaintenance, as it leverages the robust comput-
ing power and information technology resources provided by
cloud service providers to fulfill user requests [1]. However,
the drawback of this architecture lies in the distance between
the resources and end users, making it unsuitable for latency-
sensitive applications. To address the limitations of cloud
computing, researchers have proposed two new paradigms:
edge computing [2] and fog computing [3]. Edge computing
brings compute and storage capabilities closer to the edge
network, while fog computing enables numerous heteroge-
neous devices to collaborate and perform high computing
and storage tasks [4]. Both edge and fog computing solutions
offer advantages such as proximity to users and lower costs

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-023-01061-x&domain=pdf


B.-S. Lin et al.

compared to the cloud [5]. Nevertheless, edge and fog com-
puting also have their own shortcomings. They have limited
computing resources, which hinders their ability to process
a large number of requests, and their processing power is
relatively inferior to that of the cloud [6].

To address the aforementioned challenges, a federation
technique has been adopted, which involves interconnect-
ing various computing entities [7]. This allows for dynamic
resource allocation to cater to user demands by offloading
requests from one service provider to another. Such dynamic
offloading has a significant impact on system performance,
as it enables service providers to optimize their performance
by leveraging resources from others [8]. The effectiveness of
this optimization relies on factors such as computing resource
availability, latency limitations, and low-cost computation,
among others. Historically, most research has focused on
two-tier architectures, such as cloud-edge [9, 10], cloud-fog
[11], or edge-fog [12] federations. There has been relatively
limited exploration of three-tier architectures [13], which
involve the federation of cloud, edge, and fog components.
Moreover, in current federated systems, the offloading pro-
cess has been confined to unidirectional offloading, involving
the transfer of tasks from one level to another. For instance,
tasks are offloaded from the edge to the cloud, from the fog
to the edge, or from the edge to the fog, etc.

In this paper, we introduce a generic cloud-edge-fog
(CEF) federated system that employs bidirectional offload-
ing. This means that not only can edges offload tasks to the
cloud, but the cloud can also offload tasks to the edges. Our
architecture comprises three tiers: the cloud is positioned at
the top, the edges are in the middle, and the fogs form the
bottom tier. Each edge is connected to several fogs, and the
cloud is connected to all edges. Additionally, all edges in the
middle tier are horizontally interconnected. Further details
regarding our proposed architecture can be found in Sect. 3.
Compared to existing architectures that are limited to single-
hop offloading scenarios, our CEF federated system supports
more versatile offloading scenarios. Within our architecture,
we also considered two-hop offloading. For instance, the
cloud can offload its requests not only to connected edges
but also to fogs, and similarly, a fog can offload tasks to both
edges and the cloud. This enhanced flexibility in offloading
empowers the system to efficiently allocate tasks across dif-
ferent tiers, optimizing the overall performance and resource
utilization.

The proposed architecture is motivated by two primary
factors: computation cost and computation power. Compu-
tation cost gradually decreases if we move requests from
the cloud tier to the fog tier [6]. Despite such low com-
putation cost, resources in edges and fogs remain unused
as a result of low computation power; computation power
gradually increases from fog tier to cloud tier [1]. In terms
of computation power, the cloud ranks highest, while the

fog possesses the lowest. Correspondingly, the cloud incurs
higher computation costs, whereas the fog has the advantage
of the lowest computation costs. The edge’s computation cost
and computation power lie between those of the cloud and
fog. Thus, our architecture enables the offloading of tasks
from higher tiers to lower tiers to achieve low-cost compu-
tation, and vice versa, offloading tasks from lower tiers to
higher tiers to handle high computation power requirements
[14].

Therefore, in the envisioned generic architecture for
Cloud, Edge, and Fog (CEF), bidirectional offloading facili-
tatesmutual support among all components, allowing them to
offload tasks to one another. Additionally, horizontal offload-
ing among edge nodes further enhances their collaboration.
To address the challenge, we proposed a mixed-integer opti-
mization problem to minimize the cost with latency as a
constraint. To obtain a near-optimal solution, we employed
the simulated annealing (SA) algorithm. To the best of our
knowledge, our research is the first to design a CEF feder-
ated system with bidirectional two-hop offloading. The key
contributions of our paper can be summarized as follows.

1. We proposed a generic three-tier federated architecture
where nodes in themodel possess the capability to offload
requests to distinct tiers or within the same tier, thereby
fulfilling user demands effectively.

2. We formulate a method to minimize the total cost of
the federated system while considering latency as a con-
straint.

3. To attain a near-optimal solution,we utilized the SAalgo-
rithm as a solution.

4. Furthermore, we have conducted performance compar-
isons between one-hop and two-hop offloading scenarios
within the proposed architecture.

The remainder of this paper is organized as follows. In
Sect. 2, related work is reviewed. We introduce our system
model in Sect. 3, and formulate the cost optimization problem
inSect. 4. In Sect. 5, the solution algorithms are presented and
the experimental results are given in Sect. 6. Finally, in Sect. 7
concludes this paper.

2 Related works

A variety of research papers has focused on different feder-
ated architectures between cloud, edge, and fog computing to
exploit the advantages of these technologies [15–17]. Table
1 summarizes these papers and makes a comparison with our
work.

Some of this research considered a CEF federated sys-
tem. Chekired et al. [18] proposed a decentralized multi-tier
fog architecture for Industrial Internet of Things (IIoT)
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applications and developed an IIoT offloading algorithm
by solving a mixed nonlinear integer programming prob-
lem. Thai et al. [19] developed a cloud-edge computing
architecture that includes vertical and horizontal offloading.
They derive a branch-and-bound algorithm to reduce the
complexity of the problem. Deng et al. [20] divided evac-
uation into dispatching and scheduling to solve the burst
load evacuation problem, using optimal routing and opti-
mal parallel scheduling. Aburukba et al. [21] proposed a
hybrid fog-cloud architecture. Using the genetic algorithm
to address the scheduling problem to minimize the deadline
misses of requests. Although these papers considered a CEF
federated system, none of them addressed the issue where
each tier of nodes could receive users’ requests. A feder-
ated architecture with UEs, vehicular-fogs, edges, and cloud
was proposed along with a probabilistic offloading strategy
[33]. Theyused a subgradient-based algorithm to estimate the
optimal offloading probabilities to minimize the Quality of
Service (QoS) violationwhile satisfying the delay constraint.
However, none of these above-discussed papers considered
multi-hop offloading, and traffic arrival is limited to only one
tier. In this paper, we consideredmulti-hop offloading, where
traffic can arrive at any layer of the architecture.

The following papers are based on cloud-edge federated
systems. An omnidirectional offloading in a two-tier feder-
ated cloud-edge architecture was proposed to optimize cost,
using a modified simulated annealing algorithm to find near-
optimal results [22, 23]. Cao et al. [24] designed an edge
federation to provide services between edge infrastructure
providers and the cloud. The service provision for the edge
federation algorithm was also developed by these authors
to dynamically resolve the problem of achieving an effi-
cient service provision solution. Ascigil et al. [25] considered
Function-as-a-Service in the edge-cloud systems. They use
single cloudlet provisioning and coordinated provisioning
to predict upcoming requests accurately. Dong et al. [26]
discussed the efficient deployment of “cloud-edge” tasks
and overall load balancing and proposed joint cloud-edge
task deployment based on a pruning algorithm with deep
reinforcement learning. Tong et al. [27] proposed a hierar-
chical edge cloud architecture that uses workload placement
algorithms and adjusts the service rate to minimize the
average execution delay. All these papers consider one-hop
offloading. However, in this paper, we considered two-hop
offloading.

The following papers focus on cloud-fog federated sys-
tems. Faticanti et al. [28] proposed a multi-domain federated
fog ecosystem while guaranteeing resource locality con-
straints and proposed a new deployment technique based on
a breadth-first search. Razaq et al. [29] proposed an inte-
ger linear programming model and a dynamic programming
algorithm to preserve user privacywhileminimizing the aver-
age end-to-end (E2E) delay. With experiments, these authors

demonstrate that the proposed method can ensure security
and effectively reduce the delay time. However, in these
above papers, each node is considered as a single server,
which is not reasonable. In this paper, we consider multiple
servers.

The following papers are based on edge-fog federated
systems. Sharmin et al. [30] proposed a micro-level fog
federation environment for vehicular networks that han-
dle delay-sensitive applications and derived a pricing-based
workload distributor algorithm to balance the workload.
Yen et al. [31] designed a two-tier edge and vehicular-fog
federated architecture and proposed a decentralized offload-
ing configuration protocol (DOCP) for low-cost offloading.
Mourad et al. [32] propose a vehicular edge computing
fog-enabled scheme that allows a task to be offloaded to a
federated vehicle node. They minimized computation exe-
cution time and energy consumption and used the genetic
algorithm as a solution. However, in these papers, bidirec-
tional vertical offloading and horizontal offloading have not
been considered simultaneously. Using bidirectional verti-
cal offloading and horizontal offloading simultaneously can
effectively distribute a request to the appropriate node for
better results, and this is the crux of our paper.

3 Systemmodel

3.1 CEF federated systems

In this section, we discuss our proposed CEF federated sys-
tems. The notations and variables used in this paper are
enumerated in Table 2. As illustrated in Fig. 1, the system
model comprises three tiers: cloud, edge, and fog. There is
a single cloud node in the cloud tier, which is connected to
m edge nodes in the edge tier, and each edge node is con-
nected to n j fog nodes in the fog tier. All edges in the edge
tier are connected to each other. For simplification, we have
not considered any direct communication between any two
fogs. A fog can communicate with its sibling fogs via its par-
ent edge node. The communication between two connected
nodes is bidirectional. Each node in each tier has a different
number of servers, and each server has different capacities.
The cloud node has n′′ servers, each with service rateμ′′. For
the edge tier, each edge e j has n′

j servers, each with service
rate μ′

j . Similarly, for the fog tier, each fog consists of n j,i

servers, each with service rate μ j,i . Since each node in each
tier has computing resources, each can receive a request (λ′′
for cloud tier, λ′

j for edge tier, or λ j,i for fog tier) directly
from a user. A node can offload part of the request to other
nodes to reduce the cost as long as the latency constraint
is satisfied. The cost is calculated based on the number of
requests transmitted from one node to another and processed
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Table 2 Notation table Notation Description

C Cloud node

E , F Set of edge nodes, fog nodes

m, n j Number of edge nodes of the system, number of fog nodes connected to j th
edge node

j , i 1∼ m, 1∼ n j

e j , f j,i j th edge node in E , i th node in j th fog in F where j th fog is connected to e j
c Erlang’s c formula

Request

λ′′, λ′
j , λ j,i Input request rate from user to C , e j , and f j,i

R′′, R′
j , R j,i Total requests rate processed by C , e j , and f j,i

β ′
j
′, β ′

j , β
�
j, j ′ , β

′
j,i , β j,i Offloading probabilities from C to e j , e j to C , e j to e j ′ , e j to f j,i , and f j,i to

e j

β̂, β̂ j , β̂ j,i Un-offloading probabilities by C , e j , and f j,i

Computing resource

μ′′, μ′
j , μ j,i Service rate of a server in C , e j , and f j,i

r ′
j , r

′
j, j ′ , r j,i Transmission rate between C and e j , e j and e j ′ , and e j and f j,i

n′′, n′
j , n j,i Number of servers in C , e j , and number of devices in f j,i

Cost

S Total cost

S′′
C,E , S

′
E,E ′ , SE,F Total communication cost between cloud and edge tier, within the edge tier,

and between edge and fog tier

S′′
total , S

′
total , Stotal Total computation cost of cloud tier, edge tier, and fog tier

[5pt] s′′
C,E , s

′
E,E ′ , sE,F Unit communication cost between cloud and edge tier, within the edge tier,

and between edge and fog tier

s′′, s′, s Unit computation cost of cloud tier, edge tier, and fog tier

Latency

T ′
j
′, T ′

j , T
�
j, j ′ , T

′
j,i , Tj,i Communication latency from C to e j , e j to C , e j to e j ′ , e j to f j,i , and f j,i to

e j

l ′′, l ′j , l j,i Computation latency of C , e j , and f j,i

Lmax Latency limitation

Fig. 1 Proposed CEF federated systems

by the nodes. Our objective is to minimize the total cost,
subject to the presumed latency constraint satisfaction.

3.2 One-hop versus two-hop offloading

Our proposed model is not limited to single-hop offloading;
we consider both one and two-hop offloading. Table 3 shows
all possible offloading scenarios in our architecture, where
ONE and TWO represent one-hop and two-hop, respectively.
Because of the page limit of the paper, the fog tier is shown
as a figure, and the edge tier and cloud tier are described in
the text.

3.2.1 One-hop offloading

Because each fog node is only connected to only one edge
node in the fog tier, a request may be offloaded to the parent
edge node. As shown in Fig. 2, β j,i is the offloading prob-
ability from f j,i to e j . β j,iλ j,i is amount of requests are
offloaded to e j , and β̂ j,iλ j,i is the number of requests that
are kept in f j,i . For the edge tier, an edge node can offload
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Table 3 One-hop and two-hop offloading scenarios

Request received by Offloaded to cloud Offloaded to edge Offloaded to fog

Cloud ONE (All edges) TWO (All fogs)

Edge ONE ONE (Adjacent edges) ONE (Child fogs)

TWO (Children of adjacent edges)

Fog TWO ONE (Parent edge) TWO (Sibling fogs)

TWO (Adjacent edges of the parent)

Fig. 2 One-hop offloading for fog tier

Fig. 3 Two-hop offloading for fog tier

its requests to the cloud, adjacent edges, or child fog nodes.
The cloud can offload jobs to all the edge nodes.

3.2.2 Two-hop offloading

Figure3 shows two-hop offloading for the fog tier. The
part enclosed by the red rectangle illustrates the second-hop
offloading. In two-hop offloading, a fog node can offload its
request via the parent edge to the cloud, via the parent edge to
other edges that are adjacent to its parent, and via the parent
edge to its sibling fog nodes. β ′

j , β�
j, j ′ , and β ′

j,i ′ represent
the offloading probability from e j to C , e j ′ and f j,i ′ , respec-
tively. For the edge tier, an edge can offload its request to the
fogs that are directly connected to adjacent edges. Similarly,
the cloud can offload its request to all fogs with two-hop
offloading.

4 Problem formulation

In this section, we analyze the system model of one-hop
offloading by calculating latency and cost. The analysis of
two-hop offloading is given in Appendix A.

4.1 Latency calculation

The latency calculation is divided into two parts: communi-
cation and computation, and the latency is derived depending
on different tiers of nodes, assuming that computation work-
loads are given according to the Poisson process [34].

4.1.1 Communication latency

We use the sojourn time equation of the M/M/1 queuing
model to derive communication latency but do not consider
the propagation latency from the user to each node. There
are five different offloading scenarios for one-hop offload-
ing. Let Tj,i , T ′

j,i , T
�
j, j ′ , T

′
j , and T ′

j
′ be the communication

latency for transmitting one request from f j,i to e j , e j to
f j,i , e j to e j ′ , e j to C , and C to e j which can be represented
as follows.

Tj,i = 1

r j,i − λ j,iβ j,i
, r j,i ≥ λ j,iβ j,i , ∀ j, i, (1)

T ′
j,i = 1

r j,i − λ′
jβ

′
j,i

, r j,i ≥ λ′
jβ

′
j,i , ∀ j, i, (2)

T �
j, j ′ = 1

r ′
j, j ′ − λ′

jβ
�
j, j ′

, j 
= j ′, r ′
j, j ′ ≥ λ′

jβ
�
j, j ′ ,

∀ j, j ′, i, (3)

T ′
j = 1

r ′
j − λ′

jβ
′
j
, r ′

j ≥ λ′
jβ

′
j , ∀ j, (4)

T ′
j
′ = 1

r ′
j − λ′′β ′

j
′ , r ′

j ≥ λ′′β ′
j
′, ∀ j, (5)

where λ j,iβ j,i is the request offloaded from f j,i to e j , λ′
jβ

′
j,i

is the request offloaded from e j to f j,i , λ′
jβ

�
j, j ′ is the request

offloaded from e j to e j ′ , λ′
jβ

′
j is the request offloaded from

e j to C , and λ′′β ′
j
′ is the request offloaded from C to e j .
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Please refer to Appendix A.1 for the communication latency
of the two-hop offloading.

4.1.2 Computation latency

For computation latency, we consider anM/M/Cmodel aswe
assume that the cloud node and each edge node havemultiple
servers and that each device in each fog node is a computa-
tion server. In the first step, we calculate the total requests
processed by each node and then estimate the computation
latency. Let R j,i be the total request processed by f j,i , which
can be represented as

R j,i = λ j,i − λ j,iβ j,i + λ′
jβ

′
j,i , (6)

where λ j,iβ j,i is the request offloaded to e j and λ′
jβ

′
j,i is

the request received from e j . Let R′
j be the total request

processed by e j , which can be represented as

R′
j = λ′

j − λ′
jβ

′
j + λ′′β ′

j
′ −

n j∑

i=1
λ′
jβ

′
j,i +

n j∑

i=1
λ j,iβ j,i

−
m∑

j ′=1, j ′ 
= j
λ′
jβ

�
j, j ′ +

m∑

j ′=1, j ′ 
= j
λ′
j ′β

�
j ′, j , (7)

where λ′
jβ

′
j , λ

′
jβ

′
j,i , and λ′

jβ
�
j, j ′ are the requests offloaded to

C , f j,i , and e j ′ . λ′′β ′
j
′, λ j,iβ j,i , and λ′

j ′β
�
j ′, j are the requests

received from C , f j,i , and e j ′ . Let R′′ be the total requests
processed by C , which can be represented as

R′′ = λ′′ −
m∑

j=1
λ′′β ′

j
′ +

m∑

j=1
λ′
jβ

′
j , (8)

where λ′′β ′
j
′ are the requests offloaded to e j and λ′

jβ
′
j are

the requests received from e j . Let l j,i , l ′j , and l ′′ be the com-
putation latency for processing one request by f j,i , e j , and
C which can be represented as follows:

l j,i =
c
(
n j,i ,

R j,i
μ j,i

)

n j,iμ j,i − R j,i
+ 1

μ j,i
, ∀ j, i, (9)

l ′j =
c

(

n′
j ,

R′
j

μ′
j

)

n′
jμ

′
j − R′

j
+ 1

μ′
j
, ∀ j, (10)

l ′′ =
c
(
n′′, R′ ′

μ′ ′
)

n′′μ′′ − R′′ + 1

μ′′ , (11)

where c() is Erlang’s c formula [34]. Please refer toAppendix
A.2 for the computation latency of the two-hop offloading.

4.2 Cost calculation

4.2.1 Communication cost

To calculate the communication cost, we need to determine
the number of offloading requests between tiers and within
tiers and then multiply this by the unit communication cost.
The communication costs between the cloud tier and edge
tier (S′′

C,E ), within the edge tier (S′
E,E ′ ), and between the

edge tier and fog tier (SE,F ) are denoted as follows.

S′′
C,E = s′′

C,E

( m∑

j=1
λ′′β ′

j
′ +

m∑

j=1
λ′
jβ

′
j

)

, (12)

S′
E,E ′ = s′

E,E ′

(
m∑

j=1

m∑

j ′=1, j ′ 
= j
λ′
jβ

�
j, j ′

)

, (13)

SE,F = sE,F

(
m∑

j=1

n j∑

i=1
λ′
jβ

′
j,i +

m∑

j=1

n j∑

i=1
λ j,iβ j,i

)

, (14)

where s′′
C,E , s

′
E,E ′ , and sE,F are the unit communication cost

between cloud and edge tier,within the edge tier, and between
edge and fog tier, respectively. Please refer to Appendix A.3
for the communication cost of the two-hop offloading.

4.2.2 Computation cost

The computation cost here is calculated based on the number
of requests processed in each tier and multiplied by the unit
computation cost. Let S′

total , S
′
total , and Stotal be the compu-

tation cost of cloud, edge, and fog tiers, respectively, which
can be represented as follows.

S′′
total = s′′R′′, (15)

S′
total = s′ m∑

j=1
R′
j , (16)

Stotal = s
m∑

j=1

n j∑

i=1
R j,i , (17)

where s′′, s′, and s are the unit computation cost of cloud,
edge, and fog tiers, respectively. Please refer to Appendix
A.4 for the computation cost of the two-hop offloading.

4.3 Objective and constraints

The objective function of one-hop offloading is calculated by
the sum of the communication and computation cost in Eq.
(18). The problem is formulated as follows.

Minimize (S′′
C,E + S′

E,E ′ + SE,F + S′′
total + S′

total + Stotal),

(18)
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s.t .

β̂l ′′ +
m∑

j=1
β ′
j
′ (l ′j + T ′

j
′) ≤ Lmax , (19)

β̂ j l
′
j + β ′

j

(
l ′′ + T ′

j

)
+

n j∑

i=1
β ′
j,i

(
l j,i + T ′

j,i

)

+
m∑

j ′=1, j ′ 
= j
β�
j, j ′

(
l ′j ′ + T �

j, j ′
)

≤ Lmax , (20)

β̂ j,i l j,i + β j,i

(
l ′j + Tj,i

)
≤ Lmax , (21)

β̂ +
m∑

j=1
β ′
j
′ = 1, (22)

β̂ j + β ′
j +

n j∑

i=1
β ′
j,i +

m∑

j ′=1, j ′ 
= j
β�
j, j ′ = 1, ∀ j, (23)

β̂ j,i + β j,i = 1, ∀ j, i, (24)

R′′ < n′′μ′′, (25)

R′
j < n′

jμ
′
j , ∀ j, (26)

R j,i < n j,iμ j,i , ∀ j, i . (27)

The constraints in Eqs. (19), (20), and (21) ensure that the
sum of the computation and communication latency does not
exceed the threshold for the cloud, edge, and fog tiers, respec-
tively. The constraints in Eqs. (22), (23), and (24) ensures the
law of total probability in the cloud, edge, and fog, respec-
tively. The constraints in Eqs. (25), (26), and (27) ensure
that the total requests processed by the cloud, edge, and fog
are less than the total available service rate. The objective
function of two-hop offloading is given in Appendix A.5.

5 Proposed algorithm

In order to solve the cost optimization problem noted above,
we adopted the simulated annealing [35] to find the near-
optimal solution for the best offloading probabilities between
nodes so as to minimize total cost.

Algorithm 1 describes the framework of the simulated
annealing. In each iteration, a new solution is generated,
and the objective function Snew is calculated in Eq. (18).
Let �S denote the difference in cost between the current
iteration and the previous iteration. If �S ≤ 0, the Snew
is accepted. Otherwise, the solution is accepted by proba-

bility exp
(
−�S

T

)
. Finally, check whether it is better than

the current saved optimal solution. The initial temperature
Tini , the final temperature Tter , and the cooling parameter α

(0 < α < 1) control the progress of the algorithm until the
temperature is less than the terminal threshold Tter . The run
time of the SA algorithm does not have any bounded time, as
the cooling parameter determines the time complexity [35].

Algorithm 1 Simulated Annealing Algorithm
Input: λ′′, λ′

j , λ j,i , μ′′, μ′
j , μ j,i , s′′

C,E , s
′
E,E ′ , sE,F , s′′, s′, s, Lmax

Output:β̂, β̂ j , β̂ j,i , β ′
j
′, β ′

j , β
�
j, j ′ , β

′
j,i , β j,i

1: Randomly generate β̂, β̂ j , β̂ j,i , β ′
j
′, β ′

j , β
�
j, j ′ , β

′
j,i , β j,i and calculate

the objective function Sold by Eq. (18)
2: T ← Tini
3: while T > Tter do
4: Generate a new solution by Algorithm 2 and calculate the objec-

tive function Snew
5: �S = Snew − Sold
6: if �S ≤ 0 then
7: Sold ← Snew
8: else if Random (0, 1) < exp

(
−�S

T

)
then

9: Sold ← Snew
10: end if
11: if Sold ≤ Soptimal then
12: Soptimal ← Sold
13: end if
14: T ← α · T
15: end while

Algorithm 2 Generate A New Solution

Input: �S , β̂ j , β̂ j,i , β̂ j , β ′′
j , β

′
j , β

�
j, j ′ , β

′
j,i , β j,i

Output: β̂, β̂ j , β̂ j,i , β ′′
j , β

′
j , β

�
j, j ′ , β

′
j,i , β j,i

1: if �S ≤ 0 then
2: β̂ ← β̂ · (1 − γ )

3: β̂ j ← β̂ j · (1 − γ )

4: β̂ j,i ← β̂ j,i · (1 + γ )

5: else if �S > 0 then
6: β̂ ← β̂ · (1 + γ ′)
7: β̂ j ← β̂ j · (1 + γ ′)
8: β̂ j,i ← β̂ j,i · (1 − γ ′)
9: end if
10: repeat
11: Randomly generate β ′

j
′, β ′

j , β
�
j, j ′ , β

′
j,i , β j,i

12: Calculate computation latency and communication latency
based on the generated probability

13: until the latency constraints are satisfied

Algorithm 2 is used to generate a solution in Algorithm 1,
and is executed after every iteration of SA, if�S ≤ 0 inAlgo-
rithm1.The β̂ and β̂ j of the cloud and edgewill decrease byγ

percent and the β̂ j,i the fog will increase by γ percent. Then,
if�S > 0 the β̂ and β̂ j of the cloud and edge will increase by
γ ′ percent and the β̂ j,i the fog will decrease by γ ′ percent.
Then algorithm process will continue to randomly generate
offloading probabilities to other connected nodes and calcu-
late computation and communication latency based on the
probabilities obtained until suitable offloading probabilities
are found. Finally, the obtained probabilities are returned to
Algorithm 1 for the next iteration. The reason we designed
it this way is that for both the cloud and each edge, we can
obtain better results by offloading the request, while for each
fog, the offloading will make the result worse.When�S ≤ 0,
SAwill reduce the number of requests processed by the cloud
and each edge and increase the number of requests processed
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Table 4 Parameters table

Cloud Edge Fog

Number of server or device 10 servers 10 servers 20 devices

Service rate of one server or one device 200K request/s 50K request/s 5K request/s

Arrival rate 600K request/s 150K request/s 30K request/s

Latency constraint 1 s 1 s 1 s

Unit computation cost 20/request 15/request 10/request

Between cloud and edge Between edge and edge Between edge and fog

Transmission rate 1250K request/s 1250K request/s 1250K request/s

Unit communication cost 4 /request 3 /request 2 /request

by each fog. Conversely, when �S > 0, it will increase the
number of requests processed by the cloud and each edge
and reduce the number of requests processed by each fog.

6 Numerical results

In this section, we put the proposed generic architecture of a
CEF federated system with one-hop and two-hop offloading
into practice and subsequently conduct a comparative anal-
ysis of various aspects between the two approaches. While
previous research has focused on existing three-tier architec-
tures [18–21], predominantly limited to one-hop offloading,
our paper goes beyond by exploring two-hop offloading pos-
sibilities.

6.1 Experiment scenarios

The CEF federated systems consisted of one cloud node with
10 servers, three edge nodes, each with 10 servers, each edge
connecting with six fogs, each consisting of 20 devices for
the experiment. To set the parameters for our experiments,
we referred to [19, 31]. The service rate of a server was
200K requests/sec for the cloud, 50K requests/sec for each
edge, and the service rate of a device was 5K requests/sec
for each fog. The latency constraint for each request was set
at one second. NORDUnet [24], a research and education
network, is utilized to study workloads over time, revealing
that the average workload in most areas amounts to one-
third of the maximum workload. We thus designed arrival
rates at 30% of the service rate of each node. Hence, the
arrival rate was 600K requests/sec, 150K requests/sec, and
300K requests/sec for the cloud, edge, and fog, respectively.
In subsequent experiments, the arrival rate of this setting was
regarded as the standard. The transmission rate between any
two nodes was set to 1250k requests per second.We assumed

Fig. 4 Change in the ratio between computation and communication
cost

there was no change in the transmission rate resulting from
the simultaneous transmission of many requests. The initial
temperature Tini , cooling parameter α, and final temperature
Tter in simulated annealing are set to 300, 0.9, and 10. We
explore multiple values ranging from 0 to 1 for γ and γ ′, and
finally set them to 0.3 and 0.1, respectively, following [22].
The detailed parameter settings for our experiment are listed
in Table 4.

Figure4 shows the result of the change in the ratio between
computation and communication costs.Wefixed unit compu-
tation costs at 20/request, 15/request, and 10/request for the
cloud, edge, and fog, respectively, and adjusted the communi-
cation cost accordingly. In cases where the computation cost
and communication cost have a 1:1 ratio, two-hop offloading
results in a higher average cost than one-hop offloading due
to the increased communication load. For our experiment, we
opted for a median value of 5:1 as the standard computation
and communication ratio.
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6.2 One-hop versus two-hop offloading analysis

6.2.1 Total cost: one-hop versus two-hop

Figure5 demonstrates the cost variations of one and two-hop
offloading concerning changes in arrival rates at different
tiers. Specifically, Fig. 5a indicates that two-hop offloading
consistently outperforms one-hop offloading, yielding up to
21% cost savings, especially when the arrival rate increases
to 1800K. This superiority arises because two-hop offload-
ing allows the cloud to offload requests to a fog, which has
a lower unit computation cost than an edge or cloud, leading
to better performance. However, when the fog tier is full, the
costs increase more rapidly, as edges cannot offload requests
to fogs. This scenario is evident in Fig. 5a at an arrival rate of
1200K. Furthermore, Fig. 5b illustrates the changes in arrival
rate at the edge tier while keeping the cloud and fog tiers
unchanged. In this case, two-hop offloading exhibits approx-
imately 10% better cost performance compared to one-hop
offloading. This improvement is attributed to the more effi-
cient offloading of requests from the cloud to fog in the
two-hop approach. Based on these findings, we conclude that
two-hop offloading offers better cost efficiency compared to
one-hop offloading.

6.2.2 Workload: one-hop versus two-hop

Figures6 and 7 illustrate the percentages of workload
offloaded under various latency constraints. We analyzed
four different latency constraints: 1 s, 0.5 s, 0.1 s, and 0.05
s, to assess system performance.

Figure6 presents the results of requests received by the
cloud concerning different latency constraints. With one-
hop offloading, more requests are offloaded from the cloud
to the edge tier. In contrast, with two-hop offloading, more
requests are directed to the fog tier, leading to better perfor-
mance when the latency constraint is 0.5 s or more. As the
constraint tightens to 0.1 s, approximately 60% and 30% of
requests are offloaded from the cloud to the edge and fog tiers,
respectively, as depicted in Fig. 6b. However, as the latency
constraint becomes even more stringent at 0.05 s, both one-
hop and two-hop offloading strategies predominantly leave
most of the requests in the cloud tier for processing. This is
because the edge and fog have a lower service rate than the
cloud, resulting in increased processing time for requests in
these tiers (Fig. 6a, b). Consequently, to meet the stringent
latency constraint, the cloud needs to handle the majority of
the requests.

Figure7 shows the results of requests received by an edge
under different latency constraints for both one-hop and
two-hop offloading. When the latency constraint is 0.5 s or
greater, the edge prioritizes offloading requests to the fog
tier in both one-hop and two-hop offloading scenarios. In

two-hop offloading (Fig. 7b), a larger proportion of requests
are offloaded to the fog tier compared to one-hop offloading
(Fig. 7a). This is because, in one-hop offloading, offloading
is limited from one edge to other edge nodes, whereas in
two-hop offloading, an edge can offload to another edge,
which can then further offload the request to fog nodes. As
the latency constraint reduces to 0.1 s, both one-hop and
two-hop offloading still result in approximately 50–55% of
requests being offloaded to the fog tier due to the stringent
latency constraint, with the remaining 30–35% of requests
remaining at the edge tier for processing. Further reducing
the latency constraint to 0.05 s (Fig. 7a, b) results in both
one-hop and two-hop offloading leaving around 60% of the
requests in the edge tier for processing. About 20% of the
requests are offloaded to the cloud tier, and the remainder
is offloaded to other edges. This adjustment in offloading
behavior is necessary to meet the extremely strict latency
constraint.

6.2.3 Average sojourn time: one-hop versus two-hop

Figure8 shows the average sojourn time for one and two-
hop offloading scenarios when the cloud, edge, and fog tiers
receive requests. The sojourn time estimation is based on
the total communication time and computation time. When
the cloud receives a request, two-hop offloading exhibits a
relatively longer average sojourn time compared to one-hop
offloading. This is because, in two-hop offloading, requests
are offloaded to the fog tier, which introduces additional com-
munication time, while in one-hop offloading, requests are
only offloaded to the edge tier. Additionally, requests pro-
cessed in fog take longer than those processed in the edge,
resulting in longer computation time in two-hop offload-
ing. Similarly, when a request is received by the edge, both
one and two-hop offloading strategies prioritize offload-
ing requests to the fog for low-cost processing. However,
two-hop offloading leads to longer sojourn time due to the
following reasons: In one-hop offloading, offloading requests
are directed from an edge to its child fogs, while in two-hop
offloading, requests can be offloaded to fogs that are chil-
dren of adjacent edges. As a result, when fogs become full
in one-hop offloading, requests are processed by edges, and
the cloud can expedite computation time. In contrast, in two-
hop offloading, requests can still be processed by fogs that
are children of adjacent edges, thereby slowing computa-
tion time. When a fog receives a request, it can process the
request internally or offload it to its parent edge in one-hop
offloading. In two-hop offloading, a fog can offload requests
to sibling fogs via a parent edge, adjacent edges of the par-
ent edge, and the cloud. To prioritize low-cost processing,
the fog will prefer to handle requests internally. Hence, two-
hop offloading results in a longer sojourn time compared to
one-hop offloading.
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Fig. 5 Total cost with change in arrival rate in a cloud, and b edge

Fig. 6 Request received by Cloud with different latency constraint

Fig. 7 Request received by Edge with different latency constraint
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Fig. 8 Average sojourn time of one-hop and two-hop offloading

6.3 Unidirectional versus bidirectional offloading
analysis

In this section, we will analyze the performance of unidi-
rectional and bidirectional vertical offloading.Unidirectional
vertical offloading encompasses two types: vertically upward
and vertically downward offloading. In the former, lower-tier
nodes can only offload tasks to nodes in upper tiers, while in
the latter, nodes in upper tiers can only offload tasks to nodes
in lower tiers. On the other hand, bidirectional offloading
allows both upper-tier and lower-tier nodes to offload tasks
to each other, creating a more flexible and interconnected
offloading mechanism.

6.3.1 Total cost: unidirectional versus bidirectional

Figure9 illustrates the changes in arrival rate in the fog tier,
while the cloud and edge remain unchanged. For arrival
rates up to 60K, two-hop offloading results in a 10% lower
total cost compared to one-hop offloading. However, as the
arrival rate increases from 60K to 80K, the cost difference
between the two offloading strategies gradually diminishes.
When the arrival rate exceeds 80K, both one and two-hop
offloading demonstrate similar costs, as the fog tier’s service
rate is reached, and it stops receiving requests from upper
tiers. Unidirectional and bidirectional offloading results are
similar when changing the arrival rate at the fog, edge, and
cloud. Unidirectional upward offloading consistently yields
the worst results because it can only offload requests to a
higher tier, where the computation cost is higher. On the other
hand, the cost of unidirectional downward offloading and
bidirectional one-hop offloading are mostly similar, as both
approaches enable offloading from a higher-tier node to a
lower-tier node for low-cost computation. However, bidirec-
tional offloading stands out with nearly 20% lower cost than
one-hop offloading, especially during low traffic arrival rates.

Fig. 9 Total cost with unidirectional and bidirectional offloading when
change in the arrival rate of Fog

Fig. 10 Offloading result of unidirectional and bidirectional offloading
when the requests are received by the cloud, edge, and fog

As the traffic increases, the gap between the two offloading
strategies narrows down. Due to space constraints, detailed
results are omitted from the paper.

6.3.2 Workload: unidirectional versus bidirectional

Figure10 illustrates one-hop offloading scenarios for bidirec-
tional and unidirectional upward and downward offloading.
The three bars (left, middle, and right) represent results
when requests are received by the cloud, edge, and fog,
respectively. When a request reaches the cloud, bidirec-
tional and unidirectional downward offloading predomi-
nantly offload most requests to the edge tier for low-cost
computation, whereas unidirectional upward offloading pro-
cesses all requests at the cloud. Upon receiving a request
at the edge, bidirectional and unidirectional downward
offloading mostly direct requests to the fog tier, with a
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Fig. 11 Average sojourn time of bidirectional and unidirectional
offloading

few being offloaded to adjacent edges or processed by the
receiving edge. In contrast, unidirectional upward offload-
ing processes the majority of requests either internally or
offloads them to adjacent edges. Both bidirectional and
unidirectional upward offloading scenarios exhibit a very
low percentage of requests being offloaded from the edge
to the cloud. When the fog receives requests for low-cost
computation, most or all requests are processed within
itself. A small percentage of requests may be offloaded
to the edge in bidirectional and unidirectional upward
offloading.

6.3.3 Average sojourn time: unidirectional versus
bidirectional

Figure11 presents the average sojourn time for bidirectional
and unidirectional offloading. In bidirectional offloading
and unidirectional downward offloading, where computa-
tion costs in the lower tier are lower than in the higher tier,
the average sojourn time remains nearly the same across
all cases. Notably, unidirectional upward offloading mini-
mizes the average sojourn time when the cloud receives the
request. In this scenario, most requests are processed by the
edge itself, with only a small number being offloaded to the
cloud. Conversely, in unidirectional downward offloading,
requests are processed by the fog, and due to the faster pro-
cessing speed of an edge compared to a fog, the sojourn time
is reduced in unidirectional upward offloading. When a fog
receives a request, most requests are processed within the
fog for low cost, with only a small number being offloaded
to the edge or cloud. Consequently, the sojourn time is nearly
similar for all unidirectional and bidirectional offloading sce-
narios.

Fig. 12 Total cost with change in the arrival rate of Edge

6.4 With versus without horizontal offloading
analysis

In comparing the performance of architectures with and
without horizontal offloading, we restricted our analysis to
one-hop offloading.

6.4.1 Total cost: with versus without

Figure12 shows the result of w/ and w/o horizontal offload-
ing architectures when there is a change in the arrival rate in
the edge tier. The results show that in all cases, w/ horizontal
offloading architecture will always have a lower average cost
thanw/o horizontal offloading.At an arrival rate of 150K/sec,
the w/ horizontal offloading architecture can reduce the aver-
age cost by about 12%. As the arrival rate increases, the
difference between the two continues to grow because the
edge can offload requests to adjacent edges for processing,
benefiting from their lower computation costs compared to
the cloud. Additionally, fogs have a minimal service rate,
making them less capable of handling large requests effec-
tively.

6.4.2 Workload: with versus without

The offloading results for requests received by the edge of
w/ horizontal and w/o horizontal offloading are shown in
Fig. 13a, b, respectively. The results in both figs show that
both w/ horizontal and w/o horizontal offloading architec-
ture will try to offload a request to the fog tiers for low-cost
computation. In Fig. 13a, due to w/ horizontal offloading, the
edge will offload more requests to other edges, compared to
Fig. 13b, where more requests will offload to the cloud since
there is no horizontal offloading.
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Fig. 13 Offloading result of w/ horizontal offloading and w/o horizontal offloading

Fig. 14 Average sojourn time of w/ horizontal offloading and w/o hor-
izontal offloading

6.4.3 Average sojourn time: with versus without

Figure14 shows the average sojourn time of w/ horizontal
and w/o horizontal offloading. When requests are received
by the cloud, the average sojourn times are nearly identical in
both cases because, in both scenarios, requests are offloaded
to the edges. Similarly, when the fog receives a request, the
average sojourn times are nearly equal in both cases as the
fog itself processes the requests. However, when an edge
receives a request, the average sojourn time is longer in the
w/ horizontal offloading scenario. In this scenario, requests
can be offloaded to both adjacent edges and the cloud. In
contrast, in the w/o horizontal offloading scenario, an edge
can only offload a request to the cloud but not to other edges,
resulting in faster processing times. As a consequence, the
average sojourn time is higher in the w/ horizontal offloading
compared to the w/o horizontal offloading.

7 Conclusions

In this paper, we have proposed a generic architecture for
a cloud-edge-fog federated system that provides two-hop,
horizontal, and bidirectional vertical offloading. We identi-
fied an optimization problem of minimizing the total cost
with latency as a constraint and derived a simulated anneal-
ing algorithm to solve it. Our results show that with two-hop
offloading, cost savings of approximately 10–20% can be
achieved compared to one-hop offloading.However, two-hop
offloading introduces additional latency. Therefore, for tasks
with loose latency constraints, two-hop offloading offers rel-
atively lower computation costs than one-hop offloading. On
the other hand, for tight latency jobs, one-hop offloading
is more suitable. We also found that the horizontal offload-
ing architecture can save nearly 12% of total cost compared
to that without horizontal offloading, and the architecture
with bidirectional vertical offloading can save nearly 20% of
total cost compared to that with only unidirectional vertical
offloading.

The results presented here are contingent upon given
parameter settings, which may be subject to change in dif-
ferent scenarios. Moving forward, we aim to conduct further
investigations to understand how various system parameters
influence the outcomes. Additionally, we plan to leverage
machine learning-based approaches [36, 37] capable of effec-
tively mapping any input parameters to achieve the desired
output.
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Appendix A: Two-hop offloading

A.1: Communication latency

Two-hop offloading can be divided into first-hop and second-
hop. For example, in an offloading scenario from f j,i through
e j to C ; first-hop is from f j,i to e j , and second-hop is from
e j to C . Since two-hop offloading is very similar to one-hop
offloading, all offloading cases of one-hop are also avail-
able for two-hop offloading, along with five extra offloading
options: (1) from f j,i through e j to C , (2) from f j,i through
e j to e j ′ , (3) from f j,i through e j to f j,i ′ , (4) from e j through
e j ′ to f j ′,i , and (5) from C through e j to f j,i . Since the esti-
mation of first-hop communication latency is the same as
one-hop offloading, the calculation of second-hop commu-
nication latency is discussed here. Let DC be the second-hop
of communication latency from f j,i to C , which can be rep-
resented as

DC = 1

r ′
j − λ j,iβ j,iβ

′
j
, r ′

j ≥ λ j,iβ j,iβ
′
j , ∀ j, i, (A1)

where λ j,iβ j,iβ
′
j is the request rate offload from f j,i to C

via e j . Let Dj ′ be the second-hop of communication latency
from f j,i to e j ′ , which can be represented as

Dj ′ = 1

r ′
j, j ′ − λ j,iβ j,iβ

�
j, j ′

, j 
= j ′,

r ′
j, j ′ ≥ λ j,iβ j,iβ

�
j, j ′ , ∀ j, j ′, i, (A2)

where λ j,iβ j,iβ
�
j, j ′ is the request rate offload from f j,i to

e j ′ via e j . Let Dj,i ′ be the second-hop of communication
latency from f j,i to f j,i ′ , which can be represented as

Dj,i ′ = 1

r j,i ′ − λ j,iβ j,iβ
′
j,i ′

, i 
= i ′,

r j,i ′ ≥ λ j,iβ j,iβ
′
j,i ′ , ∀ j, i, i ′, (A3)

where λ j,iβ j,iβ
′
j,i ′ is the request rate offload from f j,i to

f j,i ′ via e j . Let D′
j ′,i be the second-hop of communication

latency from e j to f j ′,i , which can be represented as

D′
j ′,i = 1

r j ′,i − λ′
jβ

�
j, j ′β

′
j ′,i

, j 
= j ′,

r j ′,i ≥ λ′
jβ

�
j, j ′β

′
j ′,i , ∀ j, j ′, i, (A4)

where λ′
jβ

�
j, j ′β

′
j ′,i is the request rate offload from e j to f j ′,i

via e j . Let D′′
j,i be the second-hop of communication latency

from C to f j,i , which can be represented as

D′′
j,i = 1

r j,i − λ′′β ′′
j β

′
j,i

, r j,i ≥ λ′′β ′′
j β

′
j,i ,

∀ j, i, (A5)

where λ′′β ′′
j β

′
j,i is the request rate offload from C to f j,i via

e j .

A.2: Computation latency

The computation latency of two-hop offloading is also based
on the M/M/c queuing model, and the methods of l j,i , l ′j ,
and l ′′ are same as (9), (10), and (11), respectively. However,
since we are considering the second-hop, the calculation of
R j,i , R′

j , and R′′ are not same as given in (6), (7), and (8).
R j,i in two-hop offloading can be represented as

R j,i = λ j,i − λ j,iβ j,i

+ λ′
jβ

′
j,i +

n j∑

i ′=1,i ′ 
=i
λ j,i ′β j,iβ

′
j,i

+
m∑

j ′=1, j ′ 
= j
λ′
j ′β

�
j ′, jβ

′
j,i + λ′′

jβ
′′
j β

′
j,i , (A6)

where λ j,i ′β j,i ′β ′
j,i is the request rate offloaded from f j,i ′

to f j,i , λ′
j ′β

�
j ′, jβ

′
j,i is the request rate offloaded from e j ′ to

f j,i , and λ′′β ′′
j β

′
j,i is the request rate offloaded from C to

f j,i . The R′
j in two-hop offloading can be represented as

R′
j = λ′

j − λ′
jβ

′
j

+ λ′′
(

1 −
n j∑

i=1
β ′
j,i

)

β ′′
j −

n j∑

i=1
λ′
jβ

′
j,i

+

n j∑

i=1
λ j,i

(

1 − β ′
j −

n j∑

i ′=1,i ′ 
=i
β ′
j,i ′

−
m∑

j ′=1, j ′ 
= j
β�
j, j ′

)

β j,i

−
m∑

j ′=1, j ′ 
= j
λ′
jβ

�
j, j ′

+
m∑

j ′=1, j ′ 
= j
λ′
j ′

(

1 −
n j∑

i=1
β ′
j,i

)

β�
j ′, j

+
m∑

j ′=1, j ′ 
= j

n j∑

i=1
λ j ′,iβ j ′,iβ�

j ′, j , (A7)

where λ j ′,iβ j ′,iβ�
j ′, j is the request rate offloaded from f j ′,i to

e j . λ′′
(
1 − ∑n j

i=1 β ′
j,i

)
β ′′

j , λ j,i (1−β ′
j −

∑n j

i ′=1,i ′ 
=i β
′
j,i ′ −

∑m
j ′=1, j ′ 
= j β

�
j, j ′)β j,i , and λ′

j ′
(
1 − ∑n j

i=1 β ′
j,i

)
β�
j ′, j are

request rate received by e j fromC , f j,i , and e j ′ , respectively.
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The R′′ in two-hop offloading can be represented as

R′′ = λ′′ −
m∑

j=1
λ′′β ′′

j +
m∑

j=1
λ′
jβ

′
j

+
m∑

j=1

n j∑

i=1
λ j,iβ j,iβ

′
j , (A8)

where λ j,iβ j,iβ
′
j is the request rate offloaded from f j,i to C .

A.3: Communication cost

Here, we calculated the communication cost between tiers.
Since two-hop offloading has an extra second-hop offloading,
its estimation is slightly different from the one-hop offload-
ing. The S′

C,E in two-hop offloading can be represented as

S′
C,E = s′

C,E

( m∑

j=1
λ′′β ′′

j +
m∑

j=1
λ′
jβ

′
j

+
m∑

j=1

n j∑

i=1
λ j,iβ j,iβ

′
j

)

, (A9)

where λ j,iβ j,iβ
′
j is the second-hop of the offloading from

f j,i toC . The S′
E,E ′ in two-hop offloading can be represented

as

S′
E,E ′ = s′

E,E ′

( m∑

j=1

m∑

j ′=1, j ′ 
= j
λ′
jβ

�
j, j ′

+
m∑

j=1

n j∑

i=1

m∑

j ′=1, j ′ 
= j
λ j,iβ j,iβ

�
j, j ′

)

, (A10)

where λ j,iβ j,iβ
�
j, j ′ is the second-hop of the offloading from

f j,i to e j ′ . The SE,F in two-hop offloading can be represented
as

SE,F = sE,F

( m∑

j=1

n j∑

i=1
λ′
jβ

′
j,i

+
m∑

j=1

n j∑

i=1
λ j,iβ j,i

+
m∑

j=1

n j∑

i=1

n j∑

i ′=1,i ′ 
=i
λ j,iβ j,iβ

′
j,i ′

+
m∑

j=1

m∑

j ′=1, j ′ 
= j

n j∑

i=1
λ′
jβ

�
j, j ′β

′
j ′,i

+
m∑

j=1

n j∑

i=1
λ′′β ′′

j β
′
j,i

)

, (A11)

where λ j,iβ j,iβ
′
j,i ′ is the second-hop of the offloading from

f j,i to f j,i ′ , λ′
jβ

�
j, j ′β

′
j ′,i is the second-hop of the offload-

ing from e j to f j ′,i , and λ′′β ′′
j β

′
j,i is the second-hop of the

offloading from C to f j,i .

A.4: Computation cost

The evaluation of computing cost in two-hop offloading is the
same as one-hop offloading as shown in (15) for the cloud
tier, (16) for the edge tier, and (17) for the fog tier.

A.5: Objective and constraints

The objective function in two-hop offloading is the same
as one-hop offloading, as shown in (18). The constraint of
two-hop offloading will be more complicated because of
the second-hop compared to the one-hop offloading, and the
objective function must meet the (22)–(27), along with the
following constraints.

β̂l ′′ +
m∑

j=1
β ′′
j

(

1 −
n j∑

i=1
β ′
j,i

) (
l ′j + T ′′

j

)

+
m∑

j=1

n j∑

i=1
β ′′
j β

′
j,i

(
l j,i + D′′

j,i

)
≤ Lmax , (A12)

β̂ j l
′
j + β ′

j

(
l ′′ + T ′

j

)
+

n j∑

i=1
β ′
j,i

(
l j,i + T ′

j,i

)

+
m∑

j ′=1, j ′ 
= j
β�
j, j ′

(

1 −
n j∑

i=1
β ′
j ′,i

) (
l ′j ′ + T �

j, j ′
)

+
m∑

j ′=1, j ′ 
= j

n j∑

i=1
β�
j, j ′β

′
j ′,i

(
l j ′,i + D′

j ′,i

)
≤ Lmax , (A13)

β̂ j,i l j,i + β j,i (1 − β ′
j −

n j∑

i ′=1,i ′ 
=i
β ′
j,i ′

−
m∑

j ′=1, j ′ 
= j
β�
j, j ′)

(
l ′j + Tj,i

)

+
n j∑

i ′=1,i ′ 
=i
β j,iβ

′
j,i ′

(
l j,i ′ + Dj,i ′

)

+
m∑

j ′=1, j ′ 
= j
β j,iβ

�
j, j ′

(
l ′j ′ + Dj ′

)

+β j,iβ
′
j

(
l ′′ + DC

) ≤ Lmax . (A14)

The constraints in (A12), (A13), and (A14) ensure that
the total communication latency plus the total computation
latency of the cloud, edge, and fog in the case of two-hop
offloading do not exceed the maximum latency limit.

An appendix contains supplementary information that is
not an essential part of the text itself but which may be help-
ful in providing a more comprehensive understanding of the
research problem or it is information that is too cumbersome
to be included in the body of the paper.
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