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Abstract—Network function virtualization (NFV), with
its virtualization technologies, brings cloud computing to
networking. Virtualized network functions (VNFs) are chained
together to provide the required functionality at runtime on
demand. It has a direct impact on power consumption depending
on where and how these VNFs are placed and chained to accom-
plish certain demands as the power consumption of a physical
machine (PM) depends on its traffic load. One of the advantages
of VNF placement over traditional virtual machine placement
is that virtualization is not limited solely to servers. The PMs,
including the servers and varying loads to these machines and
their utilization, are critical issues related to the network’s energy
consumption. In this paper, we designed a dynamic energy-saving
model with NFV technology using an M/M/c queuing network
with the minimum capacity policy where a certain amount of load
is required to start the machine, which increases the utilization of
the machine and avoids frequent changes of the machines’ states.
We formulate an energy-cost optimization problem with capacity
and delay as constraints. We propose a dynamic placement of
VNF chains (DPVC) heuristic solution to the NP-hard problem.
The results show that the DPVC solution performs better and
saves more energy. It uses 45%–55% less active nodes to satisfy
the requested demands and increases the utilization of the active
nodes by 40%–50% compared to other algorithms.

Index Terms—Virtualized network function, service chaining,
Markov model, energy consumption, cost optimization.

I. INTRODUCTION

THE ENERGY crisis has been a significant issue for years,
as most resources are non-renewable such as oil, coal, and

gas [1]. As the report [2] suggested, by 2008, global electrical
generation from solar sources was less than 1%. Furthermore,
solar power has a very poor infrastructure worldwide. In 2015,
it barely passed 1 % [3]. The majority of the world’s energy
comes from non-renewable resources, which, due to the large
amounts of greenhouse gases emitted (such as carbon dioxide),
lead to global warming. To add to this concern, energy con-
sumption and greenhouse gas emissions resulting from Internet
usage have been steadily increasing in recent years. For exam-
ple, data center Web servers, such as those used by Google
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and Facebook, account for 2% of the greenhouse gas emis-
sions – about the same as air travel [4]. This rate is going to
increase substantially as people of highly populated develop-
ing countries like India and China become more inclined to
use the Internet. In the U.S., which hosts approximately 40%
of the world’s data center servers, it is estimated that server
farms consume close to 3% of the national power supply [5].
Greenpeace’s 2010 “Make IT Green” report estimates that
the global demand for electricity from data centers was on
the order of 330bn kWh in 2007, close to the equivalent
of the entire electrical demand of the U.K. This demand is
projected to triple or quadruple by 2020.

Fortunately, virtualization technology can spur a “green”
revolution in the communication network. Server virtualization
in data center networks is a big example of this revolution.
A great deal of research [7]–[9] has focused on minimizing
energy consumption in data center networks that use virtual
machines. However, this virtualization mechanism has been
limited to servers only, and some hitches, such as excessive
resource fragmentation [10] and migration issues [11], still
exist. Additionally, virtualization technology has a very high
migration cost both in terms of time and energy [13]. Most
importantly, its management is only limited to the service
provider.

Network function virtualization (NFV) [12], [14], [15] tech-
nology has emerged as a new alternative, which can overcome
the pitfalls. NFV offers a new way to design, deploy, and
manage networking services by decoupling the network func-
tions, such as network address translation, firewalls, intrusion
detection, domain name service, etc., from dedicated hardware
devices so they can run in software. These network func-
tions are called virtualized network functions (VNFs), and they
are placed on physical machines as “virtual machine (VM)
instances.” However, VNFs can be placed on other types
of containers like Docker or Linux container (LXC) [6].
A network service chain consists of a chain of such VNFs that
can be connected across the network using software provision-
ing. An example of service chain placement in the network is
presented in Figure 1. The network consists of nine nodes
considered as the physical machines of the network. We have
four different network functions: A, B, C, D, which are avail-
able in different nodes of the network, as shown in Figure 1.
Table I shows four service chain demands, with the source
and destination paths of four different flows. The virtual links
and physical path of each flow from source to destination are
given in the table. The first service chain, SC1 (B–C–A), at
source node 1, will be placed in the sequence of nodes 2, 4, 7.
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Fig. 1. Illustrative example of service chain placement in the network.

TABLE I
VNF PLACEMENT OF THE SERVICE CHAINS

That is, the first VNF ‘B’ will be placed on node 2, then the
second VNF ‘C’ will be placed on node 4, where the func-
tion ‘C’ is available. The final VNF of SC1 will be placed
on node 7 and the chain will terminate at destination node 6.
Similarly, the second service chain, SC2 (C–A–D), will start
from source node 5, terminate at destination node 1, and place
VNFs on nodes 9, 7, 4. The third service chain, SC3 (A–D–B),
will start from source node 6, terminate at destination node 1,
and place VNFs on nodes 7, 4, 2. However, for the fourth
service chain, SC4 (B–D–B), from the source node 5, after
placement of the first VNF ‘B’ on node 9, the next function
‘D’ is not available in the neighboring nodes. Therefore, it
will be placed on node 4, the last VNF ‘B’ will be placed on
node 2, and finally, it will terminate at destination node 6.

As we discussed earlier, energy is a big issue within
the Internet world. Unlike VM placement, we can minimize
energy consumption using NFV technology, which can extend
virtualization to other PMs, such as routers, switches, etc.
Physical machines consume maximum power only during peak
demand times, and average servers remain idle over 90% of
the time [17]. However, the power consumption of an idle
machine is nearly 60% of the peak load power consumption of
the machine [18]. By reducing the number of active machines,
and turning off the idle machines, we can reduce the energy
consumption of the network.

In our design, we use the minimum capacity
mechanism [44] to minimize the frequent change of the
machines’ states. According to this mechanism, we required
a minimum capacity to transit an OFF node to an ACTIVE
node. This helps to increase the utilization of the machine.
Fifty percent of the power consumed by the PMs is to reduce
heat generated during processing [20]. Hence, depending on
the PM load, the cooling load also varies [45]. Therefore,
in this paper, we normalize the energy consumption cost
of the PMs, and the respective VM instances on those
machines, which will help with performing a better analysis
of the network’s energy consumption issues. We consider the

dynamic service chain placement, which is a more realistic
scenario than static placement. However, in this work, we
do not consider the energy consumption of the link, as the
difference of the energy consumption of the link from idle to
full utilization is very minimal [47].

Since NFV extends the virtualization beyond servers, it can
be applied to data centers, wide areas, and backbone networks.
Hence, our design is not limited to any predefined topology of
the network. In this paper, we tried to find the most suitable
node for the placement of VNF of the service chain, in order
to minimize the total energy consumption cost with certain
constraints. Our novel contribution is summarized as follows:

1) First, we design an energy-saving model using an M/M/c
queuing network [discussed in Section III (B)] for the
placement of multiple service chains’ functions in the
network.

2) We formulate an optimization problem to minimize
the total energy consumption cost of the network with
capacity and delay as the constraints and prove that
NP-hard.

3) We propose an efficient dynamic placement of VNF
chains (DPVC) heuristic algorithm for the dynamic
placement of VNFs in the network. Via MATLAB
experimentation, we demonstrate that our algorithm
significantly minimizes the cost of energy consumption.

The remainder of the paper is organized as follows. In
Section II we will discuss some related works. Design
and modeling is presented in Section III. We propose the
optimization problem in Section IV, and the heuristic solu-
tion in Section V. In Section VI, we present an analysis of
results and discuss the conclusions in Section VII.

II. RELATED WORKS

Works related to our paper can be divided into two cat-
egories: Energy saving models using VM placement; and
different VNF placement methods and how our paper differs
from them.

A. Energy Saving Using Virtual Machines

Energy consumption minimization is one of the most stud-
ied objective functions, with several modeling approaches
proposed in VM placement [22]. A much-studied approach
is to consolidate VMs on the minimum number of PMs based
on the assumption that the use of fewer PMs will bring less
energy consumption [23]. Ding et al. [25] proposed an energy-
efficient scheduling algorithm of VMs to reduce the total
energy consumed by the cloud. A VM placement algorithm for
the distributed data centers was proposed in [24] to enhance
environmental sustainability. Chiang et al. [26] proposed
power-saving methods using VM placement by reducing the
number of unnecessary power-consuming machines in cloud
systems. In [8], an energy-aware Virtual Machine Allocation
Algorithm is presented to reduce data center power con-
sumption. This is accomplished by switching idle nodes to
sleep mode and allow Cloud providers to optimize resource
usage. Reference [7] Proposes a two-stage scheme to address
the energy issue in the DC. First, they use a static VM
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TABLE II
RELATED WORKS ON VNF PLACEMENT

placement scheme to minimize the active PMs and second
they propose a dynamic VM migration scheme to mini-
mize the maximum link utilization to improve the network
performance. A multi-dimensional space partition model was
proposed in [9] to characterize the resource uses in the PMs.
They proposed a VM placement algorithm to maximize the
PM utilization and minimize the energy consumption.

B. Virtualized Network Function Placement

The concept of NFV is creating the greatest buzz in the
telecommunication industry, given a large number of several
complex network functions in telecom networks.

Several optimization frameworks and planning tools for
NFV are available. Ghaznavi et al. [27] introduced the elas-
tic virtual network placement problem and presented a model
for minimizing the operational costs and providing VNF ser-
vices. Addis et al. [29] provided a framework to evaluate
the relative benefits of NFV in various scenarios and solved
the problem of VNF service chain placement using mixed
integer linear programming (MILP) to minimize the total pro-
visioning cost. Moens and De Turck presented a model for
resource allocation in NFV in [31]. They consider a NFV-
enabled hybrid environment by giving insights into trade-offs
between legacy and NFV networks. D’Oro et al. discussed
the service chain composition problem in NFV networks [28].
They used the non-cooperative game theory to propose a dis-
tributed and privacy-preserving algorithm in polynomial time.
D’Oro et al. [30] focus on the distributed resource alloca-
tion and orchestration of softwarized network. They used the
game theory to model the interaction between a user’s demand
and a server’s availability and response. A dynamic func-
tion composition optimization problem was proposed in [32],
where they used the Markov chain approximation method to
dynamically decide the appropriate service function instances
at run time. Sahhaf et al. [46] discussed the optimal decom-
position and embedment of network services. They minimize
the mapping cost of the network service chains and address
the scalability issue heuristically. A service chain instantia-
tion framework was discussed in [48] to combine the network
function optimally.

Table II lists some papers based on VNF placement and
how our contribution differs from them. Cohen et al. [33]
discuss algorithms for near-optimal placement of VNFs. They
presented a linear program (LP) relaxation-based approach for
finding the inter-data center VNF chain placement. In this VNF
placement problem, each demand considers a VNF set. Their
goal is to minimize the overall operational cost. A context-
free language-based VNF placement model is proposed by

Fig. 2. OIA state transition diagram of PM.

Mehraghdam et al. [34]. They used mixed integer quadrat-
ically constrained program (MIQCP)-based mapping to find
the PM for VNF placement. Luizelli et al. [35] proposed an
integer linear program (ILP) model to embed VNF chains on
a network infrastructure. The proposed model targets a min-
imum number of VNFs to be mapped on the substrate. The
article [36] presented an Eigen-decomposition-based approach
for the placement of network function chains. The previously
discussed articles in Table II focused on the optimal placement
of VNF service chains, but they are not dynamic. However,
Clayman et al. [37] described an architecture based on an
orchestrator, which ensures that the placement of the virtual
nodes, and the allocation of network services on them, is auto-
matic. In this architecture, they used a monitoring system that
collects and reports on the behavior of the resources. However,
their method is not optimal. Bari et al. [38] solve the problem
of determining the number of VNFs required, and their place-
ment to optimize operational expenses dynamically while
adhering to service level agreements using an ILP. Optimal
deployment of new service function chains and readjustment
of the in-service chains dynamically was discussed in [16].

In this paper, we focus on the optimal dynamic placement
of service chains and propose an energy-saving model using
an M/M/c queuing model. As the PMs are not homogeneous
in terms of performance, the amount of each machine’s energy
consumption is affected by the number of VM instances on it
and their capacities. So during the evaluation of energy con-
sumption cost, we normalized the PM and VM cost together,
which has not been done before.

III. DESIGN AND MODELING

A. Off-Idle-Active State Transition

Figure 2 illustrates the Off-Idle-Active (OIA) state transi-
tion diagram of the PM. Each machine has three states named
“OFF,” “IDLE,” and “ACTIVE.” A machine can transit from
one state to another with the following four rules. The power
consumption of the machine can be evaluated in each state as
well.

(1) OFF→ACT: Initially, the machine is in an OFF state,
and it consumes zero power (Zpower). The machine will turn
ACTIVE when the sum of the capacities of the VNFs in the
queue exceeds the minimum capacity, or when the waiting
time of any VNF in the queue exceeds the maximum waiting
time. We adopted this method to maximize utilization and to
avoid the machine from engaging in the switching state too
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often. This method also minimizes the waiting time of the
VNFs, which were waiting in the queue for a longer time.

(2) ACT→IDL: When all VNFs in the ACTIVE machine
finish or migrate to other machines, the machine will go to
the IDLE state. In the IDLE state, a machine will consume the
basic amount of energy, which can be evaluated as the product
of maximum power (Mpower) consumed by the machine and
the ratio between default capacity (Dcap) of the machine to
the maximum capacity (Mcap) of that machine.

(3) IDL→OFF: If no new VNFs are assigned to the machine
in the IDLE state within a predefined time, the machine will
turn OFF.

(4) IDL→ACT: If new VNFs are assigned, or if the VNFs
migrate from other ACTIVE machines, the machine will turn
ACTIVE from the IDLE state. Evaluation of the machine’s
energy consumption in the ACTIVE state is similar to the
IDLE state, only we need to add the summation of the capac-
ities of the deployed VNFs (

∑
Vcap) in the machine to the

default capacity of the machine. Here, the maximum power of
the machine represents the maximum computing and cooling
power of the machine.

B. M/M/c Queuing Network Model

Many analytical models have been presented by vari-
ous articles [26], [39], [41] using the M/M/1 queuing model.
However, in practice, real-world applications are not processed
by the single-service node. Therefore, we use the M/M/c
queuing network model [40], [42], where each service chain
request can be processed through multiple service nodes, and
each service node can process multiple network functions. Our
energy-saving model adheres to the following assumptions.
The VNFs of the service chain arrivals follow a Poisson pro-
cess λ and are served in the order of their arrivals, i.e., the
(i+1)th VNF of a service chain can start only after completion
of the ith VNF of that service chain. In our model, a service
node can process a maximum c number of VNFs of different
service chains together. We assume all service chains are inde-
pendent. All service times are independent and exponentially
distributed with mean 1/μ. The idle time follows the expo-
nential distribution with mean: 1/θ1, and the off time follows
exponential distribution with mean: 1/θ2. Both aforementioned
variables are independent of each other. Here, the state space
is settled by S = {(m, n), m = {0, 1}, 0 ≤ n ≤ ∞} where m
denotes the machine is ON or OFF, and n denotes the number
of VNFs in the machine. The state-transition-rate diagram for
a queuing system is shown in Figure 3. State (0, 0) denotes
that the machine is ON, but with no VNF, i.e., the IDLE state,
and (0, n) denotes that the machine is ACTIVE with n number
of VNFs. State (1, n) shows the OFF state with n number of
VNFs in waiting.

Let Pm,n denote the steady-state probabilities at state (m, n),
then the following notations are used:

P0,n = Probability that n VNFs exist in the PM in the
ACTIVE state.

P0,0 = Probability that no VNFs exist in the PM, and it
is IDLE.

Fig. 3. M/M/c queuing model state transition diagram for a service node.

P1,n = Probability that n VNFs exist in the PM in the OFF
state.

Based on Figure 3, the following balanced equations can be
given:

(λ + θ1)P0,0 = μ

c∑

n=1

n · P0,n, (1)

(λ + cμ)P0,n = λ·P0,n−1 + cμ·P0,n+c, (2)

where n = 1, . . . c − 1,

(λ + cμ)P0,n = λ·P0,n−1 + cμ·P0,n+c + θ2 · P1,n, (3)

where n = c, c + 1, . . . ∞,

θ1 · P0,0 = λ·P1,0, (4)

λ · P1,n = λ · P1,n−1, where n = 1, . . . c − 1, (5)

(λ + θ2)P1,n = λ · P1,n−1, where n = c, c + 1, . . . ∞. (6)

Let PACTIVE, PIDLE, and POFF denote the probabili-
ties that a PM is in the ACTIVE, IDLE, and OFF
states respectively. With the normalizing equation∑∞

n=1 P0,n + P0,0 +∑∞
n=0 P1,n = 1, the solutions of

these equations can be obtained as:
⎧
⎨

⎩

PACTIVE = ∑∞
n=1 P0,n,

PIDLE = P0,0,

POFF = ∑∞
n=0 P1,n.

Theorem 1:
∑∞

n=0 P1,n = [c · θ1
λ

+ θ1
θ2

]P0,0.
Proof: Please refer to Appendix B.
Assuming, α = (θ1+λ)·K·(K+c)

2c2 for some large integer K, we
have,

Theorem 2:
∑∞

n=1 P0,n = [ α
cμ + θ1

λ+cμ ]P0,0.
Proof: Please refer to Appendix E.
Theorem 3: If

∑∞
n=0 P0,n +∑∞

n=0 P1,n = 1, then P0,0 =
1

1+ θ1
θ2

+ cθ1
λ

+ α
cμ + θ1

λ+cμ

.

Proof: Please refer to Appendix F.
By using this value P0,0 we can find POFF, PIDLE, and

PACTIVE of each PM. That is, we can determine what is the
state of the machine, and how many VNFs are on the machine.
Then, as given in Figure 2, the amount of the power consumed
by the machine in different states can be evaluated.
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TABLE III
LIST OF COMMONLY USED VARIABLES AND NOTATIONS

IV. PROBLEM FORMULATION

As described in the previous section, we can get the state
of a PM at a particular time and the number of VM instances
on the PM at that time. Considering this, we propose an
optimization problem to minimize the energy consumption
cost in this section.

A. Variable Declaration

In Table III, we declared the variables used to formulate
the optimization problems. We classify all variables in four
groups. The first group represents the different sets we will
use. N and L are the set of nodes and links, respectively. Here,
a node means a PM. sC represents the set of all requested ser-
vice chains and vF is the set of VNFs we have in our network.
T is the set of iterations. vM is the set of VM instances on
a particular node and K is the set of commodities. The second
group represents the variables and different network parame-
ters we will use. n(u) is the decision variable of the physical
machine u, which shows the state of the machine. sk and tk
are the source and destination of commodity k, respectively.
Fk is the flow of commodity k, and Pk is the path of flow k.
eN

u shows the energy consumed by the node u. eC and teC are
the energy consumption cost and the total energy consump-
tion cost, respectively. The third group refers to the delay,
demand, and capacity parameters. CN(u), CI(u), and CV

i (u)

represent the maximum capacity, default capacity, and capac-
ity of the VM instance i of the node u, respectively. CL(u, v)
is the capacity of link (u, v) and dk(u, v) is the delay faced
by the flow k at link (u, v). qdsc

f (u) is the queuing delay of
the function f of service chain sc at node u. dMAX(u) is the
maximum delay at node u, and Dk is the maximum delay that
the flow can tolerate. dsc

f (u) represents the demand of function
f of service chain sc at node u. The last group consists of two
binary variables. Xf

i (u) presents function f placed on the ith
VM instance of node u. Ysc

f (u) shows the function f of service
chain sc placed on node u.

B. Objective Function and Constraints

By using the notations given in Table III, we state the energy
consumption cost is:

eC =
∑

u∈N

n(u) ∗
(

CI(u) +∑
i∈vM(u) CV

i (u)

CN(u)

)

∗ eN
u ,

Where n(u) =
{

1, if node (u) is IDLE or ACTIVE,

0, Otherwise.

The total energy consumption cost teC = ∑
t∈T eC(t). Here,

n(u) represents the state of the node u. The value is 1 if the
node is ACTIVE or IDLE, and 0 otherwise. CN(u), CI(u),
and CV

i (u) represent the maximum capacity, default capacity
of the machine in the IDLE state, and capacity of the VM
instance i (on u ) of the node u, respectively. eN

u is the cost
of energy consumed by node u at a utilization of 100%. eC(t)
is the cost of energy consumption by the network at time t.
The total cost of energy consumption teC of the network is the
sum of energy consumption of each individual node in various
states over a period of time. Our objective is to Minimize teC.
The set of operational constraints to be noticed are.

1) Flow Constraints: The inequality in Equation (7)
ensures that the flow from node u to node v must be posi-
tive. Equation (8), ensures that the total flow along each link
should not exceed the total capacity of that link. The flow con-
servation constraint is shown in Equation (9), where rk unit of
traffic is created in its source, and is destroyed in its destina-
tion. For a stable system, the limit of the utilization of each
node and links lies between [0, 1]. Equation (10) ensures the
utilization limit of each PM.

Fi(u, v) ≥ 0, ∀i, Fi ∈ K, ∀(u, v) ∈ L, (7)
k∑

i=1

Fi(u, v) ≤ CL(u, v) ∗ l(u, v), ∀(u, v) ∈ L, (8)

∑

(u,v)∈L

Fk(u, v) −
∑

(v,u)∈L

Fk(v, u) =
⎧
⎨

⎩

rk, if u = sk,

−rk, if u = tk,
0, otherwise,

(9)

0 ≤ λ

cμ
≤ 1. (10)

2) Capacity Constraints: The inequality in
Equation (11) ensures that the total sum of the capaci-
ties of VNFs on node u must be less than or equal to
‘utility capacity’ of node u, i.e., the difference between
maximum capacity and default capacity of u. The variable
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in Equation (12) shows the function f of service chain sc is
placed on node u. The Equation (13) inequality ensures that
the demand of function f of service chain sc at node u must
be less than or equal to the available capacity of node u.
The next inequality in Equation (14) presents the demand of
function f of service chain sc at node u less than or equal to
the capacity of the VM instance i of the node u.

∑

i∈vM(u)

CV
i (u) ≤ CN(u) − CI(u), ∀u ∈ N, (11)

Ysc
f (u) = 1, ∀u ∈ N, f ∈ vF, sc ∈ sC, (12)
∑

sc∈sC

dsc
f (u) ≤ CN(u) −

∑

i∈vM(u)

CV
i (u)−CI(u),

∀u ∈ N, f ∈ vF, sc ∈ sC, (13)

dsc
f (u) ≤ CV

i (u), ∀u ∈ N, f ∈ vF, sc ∈ sC. (14)

3) Placement Constraints: The binary variable in
Equation (15) shows the function f placed on the ith VM
instance of node u. The inequality in Equation (16) shows the
queuing delay of function f of service chain sc must be less
than or equal to the maximum delay at node u. Equation (17)
ensures that the delay faced by a flow along its path must
be less than or equal to the maximum delay the flow can
tolerate. Equation (18) checks the status of the node for the
placement of the function. It consists of three parts. The first
inequality checks whether the node is ACTIVE or not, and
the second part checks the node is IDLE or not. The last part
checks if the node is OFF or not, and whether the demand
on the node exceeds the threshold value.

Xf
i (u) = 1, ∀u ∈ N, (15)

qdsc
f (u) ≤ dMAX(u), ∀u ∈ N, f ∈ vF, sc ∈ sC, (16)
∑

(u,v)∈Pk

dFk(u, v) ≤ Dk, ∀k, Fk ∈ K, (17)

[[
Ysc

f (u) ≤
∑

Xf
i (u)

]∥∥
∥
∥

[[

EN(u) = CI(u) ∗ eN(u)

CN(u)

]∥
∥
∥
∥

[
(
EN(u) = 0

)
&

(
∑

sc∈sC

dsc
i (u) ≥ thresold

)] ]]

= 1,

∀u ∈ N, ∀f ∈ vF, sc ∈ sC, thresold is a constant.

(18)

C. Problem Analysis

The optimization problem we formulated in this paper can
be shown to be NP-hard, by reducing the standard Virtual
Network Embedding (VNE) problem [43], which is known to
be NP-hard, to our problem in polynomial time.

In the first step, we describe the mapping of virtual networks
to a physical network with an example, and then we state the
VNE problem, which is an existing NP-hard problem. In the
second step, we redefine our optimization problem to a deci-
sion problem and later demonstrate that the VNE problem
could be reduced to our problem. Figure 4 depicts a scenario
of virtual and physical network mapping. It consists of two
virtual networks and one physical network. The capacity of
each node and links (both physical and virtual) are given in
Figure 4. Two virtual networks are mapped to the physical

Fig. 4. Two virtual networks mapped onto one physical network [43].

network in such a way that the sum of the capacities of the
virtual nodes/links on a physical node/links must be less than
or equal to the capacity of that physical node/links.

1) Virtual Network Embedding (VNE) Problem: Given an
undirected graph GP = (UP, EP), where UP is the set of
vertices and EP is the set of edges. Each vertex ui ∈ UP

is assigned a capacity CP(ui) and each edge (ui, uj) ∈ EP,
ui, uj ∈ UP has a bandwidth bP(ui, uj). Given another undi-
rected graph GV = (WV , EV), where WV is the set of vertices
and EV is the set of edges. Each vertex wk ∈ WV is assigned
a capacity CV(wk) and each edge (wk, wl) ∈ EV , wk, wl ∈ WV

has a bandwidth bV(wk, wl).
The problem is to determine whether or not we can find a set

of valid mapping from EV to EP. In each mapping from edge
(wk, wl) ∈ EV to (ui, uj) ∈ EP, two conditions are required to
be satisfied:

1. CP(ui) ≥ CV(wk), and CP(uj) ≥ CV(wj),
2. bP(ui, uj) ≥ bV(wk, wl).
Theorem 4: Our optimization problem is NP-hard.
Proof: Please refer to Appendix G.

V. SOLUTION APPROACH

In this section, we will propose the dynamic placement of
the VNF chains heuristic algorithm. This placement method
reduces the number of active1 nodes in the network. We use
a restricted spanning tree mechanism for the placement of the
VNF. To reduce the energy cost, we select the path for the flow,
which has more active nodes, and fewer hop counts from the
source to destination. For example, in the network (Figure 1),
we have a new flow (say SC5) from source 1 to destination
6, with a service chain demand (B-D-A). After placement of
the first two functions, B and D on node 2, and 4 respec-
tively, we have two options for the placement of A. If we
place A on node 3, we have to turn it ACTIVE, which will
increase energy consumption. We can minimize energy con-
sumption by placing A on node 7, which is in the ACTIVE
state, and redirect the flow to the destination via node 9. This
algorithm consists of three stages. The first stage is the DPVC
algorithm presented in Algorithm 1. It takes the input in each
iteration of the loop and calls the Placement function (given in

1Node is either in the ACTIVE or IDLE state.
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Algorithm 1 DPVC Algorithm
1 Input: A, B, ST, VMcap, Totalcost, Idlmax, Umax, Uidl,

vNF, pt, Idltime, mincap, Ec, NumFlow, boot.
Algorithm:

2 VM = struct(VMflg, VMfun, VMexp, VMwait, VMflow)
3 ServiceChain =

struct(source, chain, destination, FLOWlen, FLOWnum)
4 ChainTime = struct(startTime, pTime,

preSource, chainDest, hop, endTime)
5 CurrInp = struct(chainNum, currSource, currVNF,

currDest, currFLOWlen, FLOWno, ETime)
6 for each iteration t
7 ServiceChain = ServiceChainIP(ServiceChain, t)
8 ChainTime = setChainTime(CurrInp,

ServiceChain, ChainTime, t)
9 CurrInp = CurrVNFinput(CurrInp,

ServiceChain, ChainTime, t)
10 Placement(CurrInp, ChainTime, nodes, A, B ,

ST, VM, t)
11 for each node i in ST
12 for each VM j in node i
13 if t > VMexp(i, j)
14 Release(VM, i, j)
15 end
16 end
17 if (i ∈ ST) & (Uass(i) == 0)
18 Idltime(i) = Idltime(i) + 1;
19 if Idltime(i) ≥ Idlmax
20 Delete(ST, i)
21 end
22 end
23 end for
24 VM = updateVM(VM)

25 cost = ∑N
i=1,i∈ST Ec(i) ∗ Uidl(i)+∑VMcap(i,j)∗VMflg(i,j)

Umax(i)
26 end for
27 Output: Totalcost=

∑
cost

Algorithm 2 Placement Algorithm
1 Placement(CurrInp, ChainTime, nodes, A, B, ST,

VM, t)
2 for i = 1 → |CurrInp| do
3 s = CurrInp(i).currSource;

d = CurrInp(i).destination;
4 nf = CurrInp(i).currVNF;
5 RDFST(nodes, A, B, ST, VMflg, VMexp, s, d, nf , t)
6 ChainTime = updateChainTime(ChainTime,

CurrInp, newNode)
7 end for
8 Return: ST, VM, ChainTime

Algorithm 2). The Placement function will take a set of VNFs
as input and call the Restricted Depth First Spanning Tree
(RDFST) function (given in Algorithm 3) for each individual
VNF, and find the appropriate location for placement.

We randomly generated a connected graph (matrix A) con-
sisting of a set of nodes and links, of equal weight. We assign
different types of VNFs to each node randomly presented by
matrix B, i.e., the rows of the matrix present the nodes and
columns existing in the network functions. B(i, j) = 1, if the
ith node of the network has the jth function, else 0. ST is
the spanning tree. Umax and Uidl are the arrays presented as
the maximum capacity and default capacity of each node in the
graph, respectively. vNF is the set of functions, and pt is the

Algorithm 3 RDFST Algorithm
1 RDFST(nodes, A, B, ST, VM, s, d, fun, t)

Index = nodeWithfun(B, fun)
2 nodes = struct(num, CapAct, sNode, spd)
3 nodes = assignPrioritytoNodes(nodes, VM, s, d)

x = totalVMInstances(VM)
y = x − 1;

4 While y < x do
5 nodessorted = nestedSortStructure(nodes, {

CapAct, sNode, spd})
6 for i = 1 → |Index| do
7 if nodessorted(i).num ≤ 0 then
8 Display (‘Error!’);
9 else
10 nN = nodessorted(i).num;
11 Assign(ST, nN, VM, fun, NumFlow, boot)
12 if nN ∈ ST
13 exit; ;
14 else if Uass(nN) ≥ mincap
15 Add(ST, nN)
16 exit; ;
17 else if max(VMwait(nN, 1),

VMwait(nN, 2), . . . ) ≥ offtime
18 Add(ST, nN)
19 exit;
20 else
21 Display(‘Wait!’);
22 exit;
23 end
24 end
25 end
26 end if
27 end for
28 y = totalVMInstances(VM)
29 end while
30 Return: ST, VM, nN

processing time of each function. Idltime is the amount of time
the node can stay IDLE. If it does not receive any function,
during this time limit it will turn OFF. offtime is the maximum
amount of time a VNF can wait in an OFF PM. If the amount
of time is exceeded the limit, the PM will turn ON. VMcap

is the capacity of each VM instance. We are using the span-
ning tree concept in our algorithm. Here, if a machine turns
ACTIVE, we will add it to the spanning tree, and if an active
machine turns OFF, we will remove it from the spanning tree.
We are using two sets of operations (Add and Delete) in our
algorithm to handle this. When a machine turns ACTIVE, we
use the Add operation to add that machine to the spanning
tree, and when a machine turns OFF, we use the Delete oper-
ation to remove it from the spanning tree. We are using two
more operations such as Assign and Release for the placement
of a VNF. When a new VNF is placed on the machine, by the
Assign operation, we provide resources to that VM instance.
If a running VNF terminates by the Release operation, we
release the assigned resources of that VM instance, which can
be assigned to a new VNF. The definitions of these operations
are as follows.

Definition 1: [Add] if ST is an arbitrary set, u /∈ ST is an
arbitrary element, where ST = {ui : i ∈ I}, I is an Index set,
then we define Add(ST, u) = ST ∪ {u}.
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Definition 2: [Delete] if ST is an arbitrary set, u ∈ ST is an
arbitrary element, where ST = {ui : i ∈ I}, I is an Index set,
then we define Delete(ST, u) = ST − {u}.

Definition 3: [Assign] if ui is an arbitrary set and i is the
number of elements in u, and j /∈ u is an arbitrary element,
then we define Assign(ui, j) = ui+1.

Definition 4: [Release] if ui is an arbitrary set and i is the
number of elements in u, and j ∈ u is an arbitrary element,
then we define Release(ui, j) = ui−1.

The DPVC algorithm works as follows: First, we generate
four structures named, ServiceChain, ChainTime, and CurrInp.
The structure VM consists of five fields. VMflg shows whether
the VM is ON or OFF, VMexp presents the termination time
of the VM, and VMfun presents the network function run-
ning in the VM. VMwait shows the waiting time, and VMflow

shows a number of flows are sharing that VNF. The structure
ServiceChain consists of five fields, i.e., the chain presents the
service chain. The source, destination, Flowlen, and Flownum

represent the source, destination, length, and number of the
flows, respectively. The structure ChainTime consists of six
fields. The first field startTime holds the start time of each
VNF of the service chain and the second field pTime shows
the processing time of each VNF of the service chain, and the
third one is the preSource, i.e., the node where the previous
VNF of the service chain was placed. Initially, preSource is
the chain source. chainDest shows the destination of the flow.
hop and endTime present the end-to-end number of hop and
termination time of the flow, respectively. CurrInp is the struc-
ture, which holds a set of VNFs for the current iteration for
placement. After placement, the structure will discard all val-
ues of the structure. This structure consists of seven fields, i.e.,
currVNF shows the VNF name, currSource shows its source,
currDest shows its destination, chainNum shows which ser-
vice chain the VNF belongs to, currFLOWlen shows the flow
length, Flowno shows the flow number, and ETime shows the
termination time of the flow. After creation of the structure for
each iteration, we do the following: We take as a maximum
one flow and its service chain as an input and set its service
time by setChainTime function. By CurrVNFinput(), we select
the VNFs from different existing service chains for placement.
Then, we call the placement function for the Placement of
the selected VNFs. We check the termination time of all the
VM instances of each active node. If any VNF terminates, we
Release them. We also check the idle-time of each IDLE node,
if the idle-time exceeds the maximum idle-time, we turn that
node OFF. We calculate the energy consumption cost of the
system for each iteration by considering the status (ACTIVE,
IDLE, OFF) of each node and the number of VNFs on them.
After each loop iteration, we update the structure VM.

In the Placement algorithm, we retrieve each VNF (nf ) and
their current source node (s), i.e., where the previous function
of that service chain has been placed and their destination node
(d). Then, we call the RDFST function for the placement of
each VNF. After placement of the VNF, the chain time of the
service chain gets updated. After placement of all VNFs, the
Placement function returns the values to the DPVC algorithm.

The RDFST algorithm works as follow. First, we retrieve
the nodes that contain the required service function (fun)
using nodeWithfun(). We assign priority to these nodes by

TABLE IV
EXPERIMENT PARAMETERS

the function, assignPrioritytoNodes. Here, if the same node
has availability for the new function, then it will be given
the highest priority. Second priority will be given to the other
active nodes with availability. Third priority will be given to
the non-empty OFF nodes, and fourth priority will be allocated
to empty OFF nodes. If two nodes have the same priority, then
preference will be given to the node with the minimum short-
est path distance (spd). Here spd is calculated by adding the
shortest path from the current source (s) to the node and from
the node to the destination (d). By using structural sorting, we
sort the nodes based on their priority, retrieve the most suit-
able node (nN) for the placement of the VNF from the sorted
structure (nodessorted), and Assign the VNF (fun) to that node
and add the boot time if the VM is OFF. If the node is not
ACTIVE, we check to see if the assigned capacity of that
node exceeds the minimum capacity (mincap) or not. If the
minimum capacity has been exceeded, then we turn that node
ACTIVE. Then, by the Add operation, we add the node to the
spanning tree (ST). Otherwise, we check the waiting time of
all the VMs. If the waiting time of any VM exceeds the maxi-
mum waiting time (offtime), we turn that node ACTIVE. After
successful placement of a VNF, the RDFST function returns
the value to the Placement algorithm.

VI. PERFORMANCE EVALUATION

In this section, we will discuss the experimental setup,
which is used in this paper to evaluate our proposed algo-
rithms. In this experiment, we considered multiple par-
tially meshed networks where the network does not have
a predefined structure for service chain placement. Through
this experiment, we demonstrate the performance of our algo-
rithm. As our design and objective are different from the exist-
ing VNF placement papers, we compare our DPVC algorithm
with random [19] and first-fit [21] placement algorithms. In
the random placement algorithm (RND), we randomly select
a node with sufficient capacity for the placement of the func-
tion. In the first-fit placement algorithm (FF), we select the first
node with available capacity for the placement of the function.

A. Experiment Setup

We used MATLAB to compare the performance of the
algorithms, Table IV shows the details of the experimental
parameter used in the simulated scenario for this work. For this
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simulation, we considered the randomly generated partially
meshed networks. Randomly generated flows2 are given as
the input from a set of source nodes to a set of destination
nodes, where for each flow, the source and destination nodes
are not equal. The length of the flows is 10–100 packets, and
all packets are of equal size. For each flow, the service chains
are randomly generated of lengths consisting of 5 to 14 VNFs.
We considered 10 different types of network functions out of
which 9 are the general functions (VNF remains active until
all packets of the flow get processed) and one is a special
function (VNF remains active until flow reaches the destina-
tion node). Different general VNFs have different processing
times and can appear one or more times in a single service
chain. If a VNF has a processing time of 20 packets/sec, then
it will take 4 sec to process a flow of 80 packets. The special
VNF can appear a maximum of one time in a service chain
and remain active until the flow reaches the destination node.
Each service chain contains a minimum of 3 different types
of functions. Placement of a service chain’s VNFs is sequen-
tial, i.e., (i + 1)th VNF of the service chain can be placed
only after completion of the ith VNF of that service chain.
If the ith VNF is a special one, then the VM will remain
active until the flow reaches the destination. The (i + 1)th
VNF of the service chain can be placed immediately after
the VM is available and packets are ready for processing.
After the placement of a special VNF of a service chain, the
next VNFs of that chain can be placed on the same node
along with the special VNF, if that function is available on
that node and the node has available capacity for placement.
For example, in Figure 1, we consider ‘C’ as a special func-
tion, and we have a flow from node 5 to 6 with service chain
demand C-B-A. The first VNF ‘C’ will be placed on node 9
and will remain active until the flow reaches the destination
node 6. The second VNF ‘B’ can be placed on node 9 if
the node has available capacity. This is a case where multiple
VNFs of the same chain run on the same node. However, ‘B’
will remain active until all packets of the flow get processed.
Without loss of generality, we assume a service chain demand
of a flow at the system will terminate only after all the packets
of the flow get processed by the respective VNFs, and the flow
reaches the destination nodes, whereby all flows are not able
to split. All nodes are of equal capacity. After releasing all the
VNF instances, the nodes can stay IDLE for duration of max-
imum idle-time, within this period, if new VNF instances are
assigned to the IDLE machine, it will turn ACTIVE or else it
will turn OFF. Because energy consumption in the IDLE state
is a big issue, in our evaluation, we have considered three
different cases, i.e., the IDLE node consumes 30%, 40%, or
50% of the energy of the maximum energy consumption of
the node during full utilization. When new VNFs are placed
on an OFF PM and within off-time duration after placement
of the first VNF, if the PM is unable to get the minCap value,
it will turn ACTIVE, which will minimize the waiting time of
the VNFs already in the queue.

2In this paper, we assume short flows (generated by user tasks that have
a short duration [49]).

B. Results Analysis

In this section, we will demonstrate the performance of the
algorithms under multiple topologies. In this evaluation, we
have considered all three cases of energy consumption of the
nodes in the IDLE state.

1) Energy Consumption Cost Analysis: Figure 5(a) presents
the total energy consumption cost of the networks. Total
energy consumption cost is nothing but the sum of the energy
consumption cost of the network after each iteration. We
check the status of the nodes and amount of VM instances
on them after each iteration. As the result, in Figure 5(a),
shows, our DPVC saves nearly 45% and 65% more on
costs than the FF and RND, respectively. As the input of
the number of flows increases, the total energy consumption
cost difference between the algorithms, continue to increase.
Figure 5(b) shows the variation of energy consumption cost
in each iteration. The result shows the DVCP consumes less
energy compared to other algorithms, because it always gives
priority to select active PMs for the placement of VMs instead
of OFF PMs.

Figure 5(c) shows the average energy consumption cost by
the network per flow. The result in Figure 5(c) clearly shows
that the average energy consumption cost in the DPVC is rel-
atively less than in other algorithms due to its node selection
process, which gives priority to select the active nodes for the
placement of the VNF. This process minimizes the number
of active nodes in the network, increases the utilization, and,
as a result, the cost decreases. Figure 5(d) shows the average
number of end-to-end hops per flow. The number of hops in
the FF is less than the number in the DVCP algorithm, as it
selects the shortest available node for the placement of func-
tion. However, its energy consumption is very high compared
to the DVCP, as shown in Figure 5(c). In the DVCP algo-
rithm we select the path which contains a greater number of
active nodes for the placement of VNFs, instead of the shortest
path. Hence, in the DVCP, the hop count is more, but energy
consumption is less.

2) Utilization of Active Nodes: Figure 6(a) shows the aver-
age utilization of active PMs, that are not in the OFF state,
i.e., we assume the IDLE machines are also active here, as
they consume default amount of energy. Average utilization
refers to the mean utilization of all nodes in the ACTIVE or
IDLE state. For example, a network consists of five nodes, if
three nodes are in the ACTIVE state with a utilization of 40%,
60%, and 80%, one node is in the OFF state and consumes no
energy, and one node is in the IDLE state with 0% utilization
of energy. Then the average utilization of the active nodes of
the network can be (40% + 60% + 80% + 0%)/4 = 45%.
As the result shows, in Figure 6(a), the utilization of the
active nodes is relatively 45% more than other algorithms.
This is because, in the DPVC, the percentage of active nodes
in the network is relatively less, as presented in Figure 6(b).
The percentage of active nodes of a network means that in
a network with 50 nodes, if 15 nodes are either in the ACTIVE
or IDLE state at the time t1, then we consider the percent-
age of active nodes to be 30% at t1. The percentage of the
active nodes in the DVCP is less because by the RDFST
method, it primarily selects the ACTIVE or IDLE nodes for
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Fig. 5. (a) Total energy consumption cost of the network per number of flows.
The DPVC algorithm saves more on cost than other algorithms. (b) Energy
consumption cost variation per flows. (c) Average energy consumption cost
per flows. The DPVC saves more on cost than others. (d) Percentage of the
average number of hops from the ingress node to the egress node per flows.

the placement of the VNFs rather the OFF nodes. This mini-
mizes the number of nodes in the OFF state that turn ACTIVE,
whereas, the RND method selects the node randomly and

Fig. 6. (a) Average utilization of active nodes per flow. The DPVC utilizes
its nodes better than other algorithms. (b) Percentage of active nodes in the
networks per flow. The DPVC has fewer active nodes. (c) Average utilization
variation of the active nodes ‘w/’ and ‘w/o’ IDLE nodes.

the FF selects the first available node for the placement of
the VNF.

Figure 6(c) shows the difference between the maximum and
minimum average utilization of the active node. The network
experiences the highest variation when a node is in the IDLE
state (0% utilization) and another node is fully utilized (100%).
In the DVCP algorithm, the IDLE node remains IDLE for
a specific duration before turning OFF if no new VNF is
assigned. To switch an OFF PM to an ACTIVE state, the
DVCP requires a certain minCap value, which increases the
utilization. Via the RDFST method, we always try to place
a VNF in an active node rather than in an OFF node. Hence,
the DVCP experiences more utilization variation than other
algorithms with IDLE nodes utilization. However, the variation
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Fig. 7. Total energy consumption cost on different default consumption in
the IDLE state. As default consumption increases, cost increases.

Fig. 8. Energy consumption cost per number of flows in the DVCP algorithm
with each VNF shared by multiple flows. As the more flows shared by the
VNF, energy consumption cost decreases.

is significantly less when we exclude the utilization of the
network’s IDLE nodes.

3) Performance Changes With Different Default Energy
Consumption in the IDLE State: Energy consumption is one of
the biggest concerns in our research. In Figure 7 we presented
the results of the total energy consumption cost of the network
in different percentages of default energy consumption in the
IDLE state. As the results show, as the amount of energy
consumption in the IDLE state increases, the total energy
consumption also increases. The greater the number of IDLE
nodes in the network, the more the unutilized energy consump-
tion exists. As the default energy consumption in the IDLE
state increases, the total energy consumption increases. At the
same time, our DPVC algorithm saves more on cost than other
algorithms in all three cases.

4) Performance Changes With Different Flow Sharing
Limit: Figure 8 shows the performance of the DVCP algo-
rithm on different flow sharing limits (how many numbers of
flows can share a VNF together?). For example, if maximum
5 flows can share a VNF at a time, then flow sharing limit is 5.
In all the previous results, we considered the maximum shar-
ing limit 1. However, a VNF can be shared among different
flows together. The results in Figure 8 show that by increasing
the sharing limit of the VNFs, the energy consumption of the
network reduces significantly. By increasing the VNF’s flow
sharing limit from 1 flow to 5 flows, the energy consumption
decreases nearly 30%–35%.

Fig. 9. The DPVC algorithm with different minimum capacity (minCap)
required to turn ACTIVE, the OFF nodes. With increase in minCap (a) total
energy consumption cost decreases, (b) utilization increases, and (c) mean
delay per service chain increases.

5) Performance Changes With Different minCap Value:
Figure 9 shows the performance of the DPVC algorithm on
different minCap values. The minCap value is the minimum
capacity required to turn the node in on OFF state to an
ACTIVE state. As we have considered the capacity of the
VM instances to be equal, so we considered the minimum
number of VM instances required to turn a machine in an
OFF state to an ACTIVE state. This value significantly affects
the performance of the network. It minimizes the number of
active nodes and significantly increases the utilization of the
network. Figure 9(a) and 9(b) show the total energy consump-
tion cost and average utilization of the network on a different
minCap value, respectively. By increasing the minCap value
from 1 to 4, the energy consumption cost decreases by
nearly 50 percent, and average utilization increases by nearly
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Fig. 10. Energy consumption of network increases/decreases with
increase/decrease of the average utilization of the active nodes.

40 percent. Figure 9(c) shows the mean queuing delay of
VNFs per service chain. With the increase in minCap, the
delay increases. However, compared to the good energy saving
performance, this delay can be negligible.

6) Intermediate Results Analysis: Figure 10 shows the
intermediate results of VNF placement algorithms. We
described these results as intermediate results because they are
based on a single network; whereas other previous results are
on multiple networks of the DPVC algorithm. Here we retrieve
the status of the system for ten-iterations when the percentage
of active nodes in the network remains unchanged. However,
the energy consumption cost changes with the change of uti-
lization of the active nodes. As shown in Figure 10, the
energy consumption cost of the network increases/decreases
with increase/decrease the utilization of the active nodes.

VII. CONCLUSION

In this paper, we analyzed the energy consumption issue
in the network function virtualization network. We proposed
an energy-saving model using an M/M/c queuing network.
We formulated an optimization problem to minimize the total
energy consumption cost of the network, which proved to be
NP-hard. Our proposed algorithm can be used to determine
the most suitable PMs for the placement of VNFs to mini-
mize the energy consumption of the network. By normalized
PM and VM cost estimation, we found that the energy con-
sumption cost of the network depends on the utilization of the
active nodes. We reduced the unutilized nodes of the network
by using the minimum capacity policy. Via MATLAB experi-
mentation, we found that our algorithm saves nearly 40% more
total energy consumption cost while processing 500 flows. It
also minimizes the number of active nodes in the network and
maximizes the utilization of the active nodes by 40%–50%.

In this paper, the VNF chains placement is limited to
only short flows and single source and single destination
pairs. However, we can handle the long flows (generated by
applications with long duration [49]), by avoiding sequential
processing of flows in general VNFs, as a result, the process-
ing time will not become an issue to process the long flows
and a single flow can be processed simultaneously by multiple
VNFs. In our future research work, the long flows and flow
splitting scenario will be discussed.

APPENDIX

A. Lemma 1

∞∑

n=c

P1,n = θ1

θ2
· P0,0.

Proof: From Equation (6), we have,

(θ2 + λ) · P1,n = λ · P1,n−1, where n = c, c + 1, . . . , ∞.
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B. Proof of Theorem 1

From the derived equations (Equation (4) and Equation (5)),
we have,

P1,0 = θ1

λ
· P0,0

P1,0 = P1,1 = P1,2 = . . . = P1,c−1

So
c−1∑

n=0

P1,n = c · θ1

λ
· P0,0. (19)

∞∑

n=0

P1,n =
c−1∑

n=0

P1,n +
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n=c

P1,n (20)

Putting the values from Equation (19) and Lemma 1 in
Equation (20), we have,
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C. Lemma 2

∞∑

n=1

P0,n+c = P0,0

cμ
· [α − λ].

Proof: From the Equation (2), we have,

cμ · P0,n+c = (λ + cμ) · P0,n − λ · P0,n−1

Putting n = 1, 2, . . . , c − 1, c, . . . K, where K ≈ ∞, we will
have a series of equations,

cμ · P0,c+1 = (λ + cμ) · P0,1 − λ · P0,0, n = 1

cμ · P0,c+2 = (λ + cμ) · P0,2 − λ · P0,1, n = 2

cμ · P0,c+3 = (λ + cμ) · P0,3 − λ · P0,2, n = 3
...

cμ · P0,c+c−1 = (λ + cμ) · P0,c−1 − λ · P0,c−2, n = c − 1

cμ · P0,c+c = (λ + cμ) · P0,c − λ · P0,c−1, n = c
...

cμ · P0,c+K = (λ + cμ) · P0,K − λ · P0,K−1, n = K

Adding these K number of equations we have,

cμ ·
K∑

n=1

P0,n+c

= cμ
[
P0,1 + P0,2 + · · · + P0,c + P0,c+1 + · · · + P0,K

]

+ λ · P0,K − λ · P0,0

= cμ · [P0,1 + P0,2 + · · · + P0,c
]

+ cμ · [P0,c+1 + P0,c+2 + · · · + P0,2c
]

+ cμ · [P0,2c+1 + · · · ] . . . + λ · P0,K − λ · P0,0

Assuming cμ · [P0,1 + P0,2 + · · · + P0,c]

≈ μ
[
P0,1 + 2P0,2 + · · · + c · P0,c

]

by Equation (1), we have

= μ ·
c∑

n=1

n · P0,n = (λ + θ1) · P0,0,

Hence,

cμ
[
P0,1 + P0,2 + · · · + P0,c + P0,c+1 + · · · + P0,K

]

= (θ1 + λ)P0,0 + 2 · (θ1 + λ)P0,0 + · · · + K

c
· (θ1 + λ)P0,0

= (θ1 + λ) · P0,0

[

1 + 2 + · · · + K

c

]

= (θ1 + λ) · K · (K + c)

2c2
· P0,0 (21)

So,

cμ ·
K∑

n=1

P0,n+c = (θ1 + λ) · K · (K + c)

2c2
· P0,0

+ λ · P0,K − λ · P0,0,

putting the value from Equation (21).

Eliminating the term “λ · P0,K”, as the value is quite
negligible and beyond our limit, we have,

cμ ·
K∑

n=1

P0,n+c =
[
(θ1 + λ) · K · (K + c)

2c2
− λ

]

· P0,0.

Putting (θ1+λ)·K·(K+c)
2c2 = α, we have,

cμ ·
K∑

n=1

P0,n+c = [α − λ] · P0,0

Hence,
∑∞

n=1 P0,n+c = P0,0
cμ · [α − λ].

D. Lemma 3

∞∑

n=1

P0,n−1 = [
α

cμ
+ 1]P0,0.

Proof:

λ ·
∞∑

n=1

P0,n−1

= λ · P0,0 + λ · [P0,1 + P0,2 + · · · + P0,K
]
, where K ≈ ∞

= λ · P0,0 + λ

cμ
· cμ

[
P0,1 + P0,2 + · · · + P0,K

]

putting the value from Equation (21), we have,

= λ · P0,0 + λ

cμ
· (θ1 + λ) · K · (K + c)

2c2
· P0,0

putting (θ1 + λ)
K·(K+c)

2c2 = α, we have,

= λ · P0,0 + λ

cμ
· α · P0,0,

=
[
αλ

cμ
+ λ

]

P0,0

Hence,
∞∑

n=1

P0,n−1 = [
α

cμ
+ 1]P0,0.

E. Proof of Theorem 2

From Equation (3), we have,

(λ + cμ)

∞∑

n=1

P0,n = λ

∞∑

n=1

P0,n−1 + cμ
∞∑

n=1

P0,n−1 + θ2

∞∑

n=c

P1,n.

Putting the values from Theorem 1, Lemma 2, and Lemma 3,
we have,

(λ + cμ)

∞∑

n=1

P0,n =
[
αλ

cμ
+ λ

]

P0,0 + [α − λ] · P0,0 + θ1 · P0,0

=
[
αλ

cμ
+ α + θ1

]

· P0,0

=
[

α ·
(

λ

cμ
+ 1

)

+ θ1

]

· P0,0
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Hence,

∞∑

n=1

P0,n = [
α

cμ
+ θ1

λ + cμ
] · P0,0.

F. Proof of Theorem 3

∞∑

n=0

P0,n +
∞∑

n=0

P1,n =
∞∑

n=1

P0,n + P0,0 +
∞∑

n=0

P1,n

Putting the value from theorem 1 and theorem 2,we have,

=
[

α

cμ
+ θ1

λ + cμ

]

· P0,0 + P0,0 +
[

c · θ1

λ
+ θ1

θ2

]

· P0,0,

=
[

1 + θ1

θ2
+ cθ1

λ
+ α

cμ
+ θ1

λ + cμ

]

· P0,0

Hence, P0,0 = 1
1+ θ1

θ2
+ cθ1

λ
+ α

cμ + θ1
λ+cμ

.

G. Proof of Theorem 4

Given an undirected graph G(N, L) representing the physi-
cal network, where N is the set of vertices and L is the set of
edges. Each vertex u ∈ N and edge (u, v) ∈ L have assigned
the capacity CN(u) and CL(u, v), respectively. Given another
undirected graph GV(NV , LV) representing the virtual network,
where NV is the set of vertices and LV is the set of edges. Here,
we consider that virtual nodes refer to instances of the virtual
functions, and virtual links refer to links between two instances
of the virtual function in a service chain. Each instance of the
functions has been assigned a capacity Cf , to represent the
capacity of the instance of function f ∈ FV and FV is the
set of virtual functions. Each virtual link has a certain ser-
vice chain demand da,b(u, v), which represents the demand of
virtual link (a, b), on physical link(u, v).

We see in the last example in Figure 4, in virtual and phys-
ical mapping models, multiple virtual nodes are mapped to
a single physical node of the network. That is, at a physical
node u, the sum of the capacity of all the virtual nodes mapped
to u, must be less than or equal to the maximum capacity of u.
Again, as multiple virtual links are mapped to single physical
links, the total sum of the demand of virtual links mapped to
a physical link must be less than or equal to the maximum
capacity of that physical link. In a virtual to physical mapping
scenario, for all a ∈ NV mapped to u ∈ N, and all b ∈ NV

mapped to v ∈ N, and for all links, (a, b) ∈ LV mapped to
(u, v) ∈ L is required to satisfy the following conditions:

1)
∑

f ∈FV
Cf (u) ≤ CN(u), and

∑
f ∈FV

Cf (v) ≤ CN(v),
∀u, v ∈ N, where

∑
f ∈FV

Cf (u) and
∑

f ∈FV
Cf (v) are the

sum of the capacities of the virtual nodes at physical
node u and v respectively.

2)
∑

da,b(u, v) ≤ CL(u, v), ∀(u, v) ∈ L, ∀(a, b) ∈ LV ,
where

∑
da,b(u, v) is the sum of the demand of the

virtual links mapped to the physical link (u, v).

Definition 5: A function f : δ1 → δ2 is called a mapping
reduction from A to B iff

a) For any β ∈ δ1, β ∈ A iff f (β) ∈ B,
b) f is a computable function.
Intuitively, a mapping reduction from A to B says that

a computer can transform any instance of A into an instance
of B such that the answer to B is the answer to A. By map-
ping the variable of the VNE problem to the variable of our
problem, we have,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CP(ui) → CN(u)

CP
(
uj
) → CN(v)

CV(wK) → ∑
f ∈FV

Cf (u)

CV(wL) → ∑
f ∈FV

Cf (v)
bP
(
ui, uj

) → CL(u, v)
bV(wK, wL) → ∑

da,b(u, v)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(22)

By Definition 5 and Equation (22), we can map and reduce
the VNE NP-hard problem to our optimization problem.
Hence, our optimization problem is NP-hard.
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