
Computer Networks 167 (2020) 107033

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Full encapsulation or internal buffering in OpenFlow based hardware

switches?

Deepak Singh

a , ∗, Bryan Ng

a , 1 , Yuan-Cheng Lai b , Ying-Dar Lin

c , Winston K.G. Seah

a

a School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
b Dept. of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan
c Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

a r t i c l e i n f o

Article history:

Received 1 July 2019

Revised 26 September 2019

Accepted 26 November 2019

Available online 26 November 2019

a b s t r a c t

Software-Defined Networking (SDN) enables programmability in the network through a software-

dependent control function. OpenFlow is a de-facto protocol for communication between an SDN switch

and the controller. OpenFlow specifications generally allow two methods for packet encapsulation of data

packets at the switch that require decisions from the controller, (a) full encapsulation, and (b) internal

buffering. However, full encapsulation of data packets has been the default choice for packet processing,

and internal buffering has not been explored much, especially for hardware switching. In this paper, we

model and analyse the effect of internal buffering on the performance of an OpenFlow hardware switch.

We compare queueing models for the switch with full encapsulation and internal buffering for hardware

switching. The results show that internal buffering significantly reduces the average packet transfer delay

by 85% and packet loss probability by 60%. The results further provide guidelines to network operators

that internal buffering for hardware switching is useful for controllers with lower processing rates, espe-

cially in delay-sensitive applications running over SDN. For loss-sensitive applications running over SDN,

the full encapsulation method is more robust handling flows with a high table miss probability.

© 2019 Elsevier B.V. All rights reserved.

1

p

F

c

S

c

t

r

w

t

d

l

g

l

b

y

r

c

C

b

p

s

t

p

F

e

n

s

t

p

fl

h

1

. Introduction

Software-Defined Networking (SDN) provides flexible packet

rocessing to higher layer applications via protocols such as Open-

low [1] and ForCES [2] . OpenFlow is the most widely used proto-

ol to define communication between the controller and switch in

DN paradigm [3] . In SDN, the control function resides in a logi-

ally centralised controller that has network-wide visibility, while

he packet forwarding is executed by the switch [3] . This “sepa-

ation of concerns” between the control function and packet for-

arding allows automation and programmability in the network

hrough software.

The network automation and programmability via SDN has

riven network engineers and researchers to extend SDN into wire-

ess networks such as Industrial Internet of Things (IIoT) [4] , fifth-

eneration (5G) wireless networks [5] , and Software defined Wire-

ess Access Networks (SDWAN) [6] . These wireless networks are
∗ Corresponding author.

E-mail addresses: deepak.singh@ecs.vuw.ac.nz (D. Singh),

ryan.ng@ecs.vuw.ac.nz (B. Ng), laiyc@cs.ntust.edu.tw (Y.-C. Lai),

dlin@cs.nctu.edu.tw (Y.-D. Lin), winston.seah@ecs.vuw.ac.nz (W.K.G. Seah).
1 Principal corresponding author.

c

w

c

e

t

a

ttps://doi.org/10.1016/j.comnet.2019.107033

389-1286/© 2019 Elsevier B.V. All rights reserved.
elatively less stable than their wired equivalents, operate less effi-

iently with increasing network size (e.g. due to the contention in

SMA/CA type wireless access) and may sustain significant packet

ursts over the switch-controller path leading to packet loss and

oor throughput [7,8] . Fortunately, OpenFlow switches have provi-

ions to address the problem of contention and memory issues at

he low-end switch via internal buffering [9] .

Internal buffering in communication networks is used as tem-

orary buffering of packets within the switch [10] . An Open-

low switch with internal buffering temporarily buffers data pack-

ts within the switch and send asynchronous messages desig-

ated as “Packet-In ” to the controller. A Packet-In message con-

ists of a fraction of a data packet (around 20%) encapsulated with

he OpenFlow header and buffer identifier associated with a data

acket [11–13] .

OpenFlow switches forward packets based on the entries of

ow tables (an entry can be thought of as a row with multiple

olumns). A flow table is made up of flow table entries (FTEs)

hich generally consist of match fields with associated actions (the

olumns in a row). If there is no matching FTE for incoming pack-

ts of a flow at the switch, the first packet of that flow is passed

o the SDN controller for decisioning. For the rest of this paper, we

ssume that OpenFlow is the protocol for communication between

https://doi.org/10.1016/j.comnet.2019.107033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.107033&domain=pdf
mailto:deepak.singh@ecs.vuw.ac.nz
mailto:bryan.ng@ecs.vuw.ac.nz
mailto:laiyc@cs.ntust.edu.tw
mailto:ydlin@cs.nctu.edu.tw
mailto:winston.seah@ecs.vuw.ac.nz
https://doi.org/10.1016/j.comnet.2019.107033

2 D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033

a

t

r

c

s

s

o

f

n

e

p

o

t

t

h

s

o

s

b

e

e

p

w

i

F

h

i

s

p

e

f

i

3

w

i

i

(

c

n

c

m

p

a
the controller and switch in SDN [14] and we only consider hard-

ware switches (see [15,16] for hardware vs. software switches).

OpenFlow specifications provide two packet encapsulation

methods. These packet encapsulation methods are (a) internal

buffering of data packets, and (b) full encapsulation of data pack-

ets. Internal buffering of data packets allows only part of data

packets to be encapsulated within Packet-In messages. However,

this requires additional memory at the OpenFlow switch to tem-

porarily buffer data packets that can result in resource contention

in the controller. Similarly, full encapsulation (FE) of data packets

allows an OpenFlow switch (typically lower end switches) with no

support for internal buffering to encapsulate an entire data packet

with a Packet-In message. Therefore, the Packet-in message in the

internal buffering method is smaller in size compared to the full

encapsulation method. Clearly, these packet encapsulation methods

have benefits and trade-offs which will be identified and analysed

in this paper.

The packet encapsulation methods for the OpenFlow switch are

modeled and compared analytically using queueing theory in this

paper. Queueing models help switch designers and network anal-

ysers to predict performance measures before actual deployment,

making it cost-effective and faster for network planning. The pri-

mary objective of this paper is to identify benefits and tradeoffs

between full encapsulation of data packets and internal buffering

of data packets at the OpenFlow switch.

The rest of paper is organised into six sections. In Section 2 ,

we discuss the existing related works that use an OpenFlow

based packet encapsulation methods. The hardware switching of

an OpenFlow based switch is discussed in the Section 3 using the

generic model. An OpenFlow based packet encapsulation methods

are described and modelled using queueing theory in Section 4 .

The analytical and simulation results with performance analysis

are discussed in Section 5 . The values for traffic and switch param-

eters used in Section 5 are justified in Section 6 through sensitivity

analyses. Finally, this paper is concluded with the summary of re-

sults in Section 7 .

2. Related work

Buffering has been extensively used in the traditional switches

such as ATM and Banyan switches to avoid delay and loss of pack-

ets under heavy traffic conditions [10] . Under heavy traffic condi-

tions, the logically centralised controller in SDN can be a bottle-

neck with increasing flow requests for decisions. Therefore, inter-

nal buffering in SDN switches reduce the communication workload

on the OpenFlow channel between the controller and switch as

studied in [11] .

The work in [11] focuses on the buffer management scheme

and channel utilisation using their software and hardware proto-

types. These prototypes are suggestive improvement toward an ex-

isting OpenFlow buffer management scheme but have paved the

path for research in internal buffering in SDN.

There is little research exploring benefits and drawbacks of in-

ternal buffering in SDN. This may be due to the current lack of

support for internal buffering in commodity switches [13] . The an-

alytical modelling approach in this paper is a cheaper and faster

approach to predict the performance of SDN without actually

procuring equipment and setting up a test-bed.

From a performance analysis perspective of SDN via analytical

modelling, queueing theory has been seen a resurgence for mod-

elling SDN since the publication of the M/M/1 model for a single

controller–switch network in [17] . Queueing models predict net-

work performance and provide insights to network designers and

analysers for their SDN deployments [16] . Queueing theory has

been used in [17–21] to model an OpenFlow switch. These are few

selected models that have significant contribution to modelling
nd performance analysis of an OpenFlow switch in SDN. However,

hese models have assumed the full encapsulation of data packets

equiring the decisioning from the SDN controller, primarily be-

ause it is the default option for packet processing in the OpenFlow

pecifications [12] .

The work presented in [12] is the first to model an OpenFlow

witch with internal buffering. In this work, the full encapsulation

f data packets is compared with the internal buffering. The results

rom this work showed that the packet encapsulation with inter-

al buffering significantly reduces: (i) the average delay of pack-

ts traversing the network and (ii) packet loss probability com-

ared to the full encapsulation method, but these benefits were

btained at the cost of requiring additional memory to support in-

ernal buffering. The work in [12] considers a software switch and

he model cannot account for: (i) the line speed processing of a

ardware switch and (ii) potential interactions between the high

peed switch processor and the other processors in the network.

The work in [16] is among the first to investigate the effect

f hardware switching on the OpenFlow switch. In this work, a

oftware-based OpenFlow switch is compared with a hardware-

ased OpenFlow switch with the full encapsulation of data pack-

ts. Their results showed that a hardware switching with the full

ncapsulation method significantly reduces the overall delay and

acket loss probability in the SDN.

The work in [13] compares a software-based OpenFlow switch

ith a hardware-based OpenFlow switch with the internal buffer-

ng of data packets. The results show that a hardware-based Open-

low switch provides better scalability with increasing number of

osts per switch than a software-based OpenFlow switch.

However, the comparative analysis between the internal buffer-

ng and full encapsulation methods in hardware-based OpenFlow

witches has not been studied. The comparative analysis in this pa-

er helps network engineers to understand the hardware switching

ffects of these methods in an OpenFlow switch. In this paper, the

ull encapsulation of data packets is compared with internal buffer-

ng of data packets for a hardware switch in an OpenFlow switch.

. Generic model for an OpenFlow based hardware switch

The generic model for a hardware-based SDN switch equipped

ith the specialised hardware and CPU (central processing unit)

s shown in Fig. 1 . The hardware switch maintains flow tables

n both TCAM (ternary content-addressable memory) and SDRAM

synchronous dynamic random access memory) which are syn-

hronised through a middleware layer on the switch. This synchro-

isation ensures consistent forwarding behaviour and avoids dupli-

ate flow table entries (FTEs) [22,23] .

Fig. 1 shows four phases that a hardware-based SDN switch

ust capture. The four phases are:

• Phase (1): The flow arrives at the specialised hardware in the

switch.

• Phase (2): The first packet of a flow is matched against FTEs

stored in TCAM. If there is no matching FTE for a packet in

TCAM, a packet is forwarded to the CPU to match against FTEs

stored in SDRAM, otherwise serviced to the destination.

• Phase (3): A packet without matching FTE is processed by the

CPU using packet encapsulation methods and then forwarded

to the controller.

• Phase (4): The controller feedback with flow updates in both

SDRAM and TCAM. After the flow updates, the packet is ser-

viced to the destination by the CPU.

Based on these four important phases, queueing models for

acket encapsulation methods in a hardware-based SDN switch

re developed in the following section. The queueing models are

D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033 3

Fig. 1. Generic model for a hardware-based SDN switch with the specialised hard-

ware and the CPU [13,16] .

f

m

4

p

d

t

s

t

n

w

i

c

m

g

C

f

s

s

C

f

n

w

v

t

s

a

q

C

K

m

a

m

e

t

b

Fig. 2. SDN hardware switching using full encapsulation method.

4

m

e

s

i

t

v

I

f

m

p

fl

e

M

n

n

C

v

t

t

{

t

t

w

l

i

p

m

n

s

t

c

C

L

A

n

n

e
urther described with details of network occurrences and perfor-

ance metrics such as delay and loss probability.

. Queueing models for packet encapsulation methods

For brevity, queueing models for hardware switching with the

acket encapsulation method that require an internal buffering of

ata packets is named as “Internal Buffering” and full encapsula-

ion of data packets is named as “Full Encapsulation”. Hardware

witching involves the CPU and specialised hardware (namely,

ernary content-addressable memory or TCAM) [24] .

It is assumed that the CPU uses priority queues with a fi-

ite capacity with GI/M/1/K distribution and the specialised hard-

are is represented as M/M/1/K distribution [16,20,25] . The prior-

ty queues provide isolation between the packets arriving from the

ontroller and packet to be processed by the CPU when there is no

atching FTE in the specialised hardware.

The priority queues were first introduced in [20,25] to distin-

uish packets processed by the CPU into two classes, Class HP and

lass CP. The Class HP represents the low priority class of the CPU

or the external data packet that has no matching entry in the

witch’s specialised hardware. The data packet is sent from the

pecialised hardware to the Class HP with probability β . The Class

P represents the high priority class of the CPU to store packets

eedback from the controller. It is assumed that the CPU synchro-

ises the table information (in the CPU) with specialised hardware

ith negligible delay. Both Class CP and Class HP queues share ser-

ice rate μsp while the specialised hardware queue is serviced at

he rate μsh and μsh � μsp .

Similarly, the controller is represented as an M/M/1 queue with

ervice rate μc . For the remaining parameters, λ1 is the external

rrival rate at the TCAM and T represents the throughput of the

ueue. It is further assumed that the queue buffer capacities of the

lass CP, Class HP, specialised hardware, and internal buffer are K 1 ,

 2 , K 3 , and K 4 respectively.

For comparative analysis between the full encapsulation

ethod and internal buffering, the primary performance metrics

re the average delay and packet loss probability. These perfor-

ance measures have a huge impact on the overall user experi-

nce. The average delay determines the speed of the network while

he packet loss probability is a negative indicator that causes a

reakup in the network’s communication.
.1. Full encapsulation

The packet processing for the full encapsulation queueing

odel can be explained in five steps as shown in Fig. 2 [16] : (1)

xternal data packets arrive to the specialised hardware of the

witch, (2) data packets are forwarded to the Class HP of the CPU

f the specialised hardware in the switch has no matching FTE or

he packet leaves the switch (i.e. is forwarded to the destination

ia an output port), (3) data packets are encapsulated with Packet-

n control message and forwarded to the controller, (4) controller

eeds the forwarding information back to switch via a “packet-out”

essage to the CPU (queue up in Class CP), and (5) finally the CPU

rocesses control packets in the Class CP, updates and synchronises

ow tables with the specialised hardware, and forwards data pack-

ts to the destination through an output port.

The full encapsulation model is modelled as a continuous time

arkov process with four state variables, {(n c (t), n cp (t), n hp (t),

 sh (t)), t ≥ 0}. Each of the four state variables symbolised by n c (t),

 cp (t), n hp (t), and n sh (t) tracks the packet count in the controller,

lass CP, Class HP and specialised hardware. Moreover, each state

ariable is a positive integer bounded by ∞ , K 1 , K 2 , and K 3 respec-

ively (see definition in Section 4). Thus, the Markov process for

he full encapsulation model at time t be defined as

 n c (t) , n cp (t) , n hp (t) , n sh (t) } = { w, x, y, z} . (1)

The state transitions of Markov process for the full encapsula-

ion model are shown in Table 1 . The state transitions are used

o compute the stationary distribution probability (π) and is a

ell documented matrix-analytic approach [26–28] for the prob-

em we are solving (thus not described further in this paper). Us-

ng π , the performance metrics like throughput, average delay and

acket loss probability can be computed for the full encapsulation

ethod.

Average number of data packets for full encapsulation model (de-

oted by L FE) is the average number of data packets in the CPU and

pecialised hardware of the switch for full encapsulation model. In

he full encapsulation model, data packets travel through the spe-

ialised hardware (i.e TCAM), the CPU (i.e the Class HP and Class

P), and the controller. Therefore, L FE is given as

 F E =

∞ ∑

w =0

K 1 ∑

x =0

K 2 ∑

y =0

K 3 ∑

z=0

(w + x + y + z) πw,x,y,z . (2)

verage data packet transfer delay for full encapsulation model (de-

oted by t FE) is the mean sojourn time of a data packet in an SDN

etwork with a single controller and hardware switch with the full

ncapsulation packet processing method. Applying Little’s formula

4 D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033

Table 1

Mapping network occurrences to Markov process transitions for Full Encapsulation.

Network occurrence From To Rate

An external data packet enters switch TCAM. (w, x, y, z) (w, x, y, z + 1) λ1

Switch processor services one packet from TCAM. (w, x, y, z) (w, x, y, z − 1) μsh (1 − β)

One packet forwarded to CPU (Class HP) from TCAM. (w, x, y, z) (w, x, y + 1 , z − 1) μsh β

Packet-In message is sent to controller. (w , 0, y, z) (w + 1 , 0 , y − 1 , z) μsp

One packet serviced by Controller forwarded to CPU (Class CP). (w, x, y, z) (w − 1 , x + 1 , y, z) μc

A single packet serviced by switch CPU. (w, x, y, z) (w, x − 1 , y, z) μsp

t

Table 2

State variables for Internal Buffering.

State Description Range

n b (t) Number of packets in the internal buffer [0, K 4]

n c (t) Number of packets in the controller [0, ∞]

n cs (t) Number of packets in the Class CP [0, K 1]

n es (t) Number of packets in the Class HP [0, K 2]

n sh (t) Number of packets in the specialised hardware [0, K 3]

t

{

T

d

b

p

t

c

t

p

d

b

C

p

l

T

c

b

on Eq. (2) , the average time a packet spends in the system is given

as

 F E =

L F E
T F E

, (3)

where T FE is the total throughput of the switch using the full en-

capsulation method and is given as

T F E = T cp + (1 − β) T sh . (4)

Packet loss probability (PL FE) is the packet loss probability due to

blocking of packets at the Class CP, Class HP and specialised hard-

ware queue for the full encapsulation model. The packet loss prob-

ability in the full encapsulation model is expressed as

P L F E = 1 − T F E /λ1 . (5)

4.2. Internal buffering

The packet processing for the internal buffering model is same

as the full encapsulation model with an additional internal buffer

as shown in Fig. 3 . If there is no matching FTE for a flow at the

TCAM, data packets are temporarily buffered in an internal mem-

ory and a portion of the data packet is encapsulated with a Packet-

In message which is then forwarded to the controller. Similarly,

when the controller feedbacks a Packet-Out message with control

packet, CPU instantaneously processes the control packet in Class

CP, updates and synchronises the flow table with the TCAM, ex-

tracts temporarily buffered data packet from the internal buffer

and forwards it to the destination through an output port.

The internal buffering in an OpenFlow switch is modelled as

a continuous time Markov process with five state variables, {(n b (t),

n c (t), n cs (t), n es (t), n sh (t)), t ≥ 0}. The description and range of these
five state variables are shown in Table 2 .

Fig. 3. SDN hardware switching using internal buffering method.

i

T

(

C

i

t

C

L

(

O

w

d

a

t
Let the Markov process for the internal buffering model at time

 be defined as

 n b (t) , n c (t) , n cs (t) , n es (t) , n sh (t) } = { v , w, x, y, z} . (6)

he number of packets in the controller and Class CP are depen-

ent on the number of temporarily buffered packets in the internal

uffer hence x = (v − w) and the state variables { v, w, x, y, z } are

ositive integers bounded by { K 4 , ∞ , K 1 , K 2 , K 3 } respectively.

The mapping of network occurrences to transitions for the in-

ernal buffering model are shown in Table 3 and these help us

ompute performance metrics for the internal buffering model

hrough stationary distribution probability π .

Throughput of Internal Buffer (denoted by T ib) is the sum of

robabilities that the internal buffer at the CPU has at least one

ata packet to forward with service rate of μsp for the internal

uffering model. The throughputs of the internal buffer (T ib) and

lass CP (T cp) for the internal buffering model are the same as the

rocessing of the packet in Class CP by the CPU is instantly fol-

owed by the extraction of the packet from the internal buffer [12] .

his is also reflected in the last row of Table 3 where the pro-

essing of the Class CP packet and the extraction of the internally

uffered packet by the CPU occurs at the same time. Therefore, T ib
s given as

 ib = T cp = μsp

K 4 ∑

v =1

v −1 ∑

w =0

K 2 ∑

y =0

K 3 ∑

z=0

πv ,w,x,y,z . (7)

Average number of data packets for the internal buffering model

denoted by L IB) is the average number of data packets in the

PU and specialised hardware of the switch for internal buffer-

ng model. In the internal buffering model, data packets travel only

hrough the specialised hardware (i.e TCAM) and the CPU (i.e the

lass HP and the internal buffer). Therefore, L IB is given as

 IB =

K 4 ∑

v =0

v ∑

w =0

K 2 ∑

y =0

K 3 ∑

z=0

(v + y + z) πv ,w,x,y,z . (8)

Average data packet transfer delay for the internal buffering model

denoted by t IB) is the mean sojourn time of a data packet in an

penFlow-based SDN with a single controller and hardware switch

ith the support for an internal buffer. The average packet transfer

elay of a packet in the internal buffering model is obtained by

pplying Little’s theorem to Eq. (8) which is expressed as

 IB = L IB /T IB , (9)

D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033 5

Table 3

Mapping network occurrences to Markov process transitions for Internal Buffering.

Network occurrence From To Rate

An external data packet enters switch TCAM. (v, w, x, y, z) (v , w, x, y, z + 1) λ1

Switch processor services one packet from TCAM. (v, w, x, y, z) (v , w, x, y, z − 1) μsh (1 − β)

One packet forwarded to CPU (Class HP) from TCAM. (v, w, x, y, z) (v , w, x, y + 1 , z − 1) μsh β

One packet forwarded to the internal buffer from Class HP. (v, w , 0, y, z) (v + 1 , w, 0 , y − 1 , z) μsp

Packet-In message is sent to controller. (v, w , 0, y, z) (v , w + 1 , 0 , y − 1 , z) μsp

One packet forwarded to switch (Class CP) from Controller. (v > 0, w, x, y, z) (v > 0 , w − 1 , x + 1 , y, z) μc

One packet leaves the system from internal buffer triggered by packet-out in Class CP. (v > 0, w, x, y, z) (v − 1 , w, x − 1 , y, z) μsp

w

i

T

a

b

l

P

4

b

o

b

t

n

c

t

a

q

b

c

K

w

C

a

ρ

a

K

w

w

ρ

H

(

5

T

w

c

Table 4

Parameter used for both Full encapsulation and Internal buffering models.

Parameter Value

Table miss probability, β 0.1 ~ 1

CPU service rate, μsp (packets/sec) 1000

TCAM service rate, μsh (packets/sec) 1000 × μsp

Controller to CPU service rate Ratio (μc / μsp), m r 0.1 ~ 2

External data packet arrival rate, λ1 (packets/sec) 120, 240, 480

Bit Error Rate, BER 10 −12

MTU TCP packet size (byte) 1500

t

2

i

r

a

i

b

s

t

w

1

a

m

u

d

l

b

λ

K

p

t

M

d

M

i

q

s

a

a

f

e

Q

f

u

a

u

b

c
here T IB is the throughput of the switch using the internal buffer-

ng method, expressed as

 IB = T ib + (1 − β) T sh . (10)

Packet loss probability (denoted by PL IB) is the packet loss prob-

bility due to blocking of packets at the Class CP, Class HP, internal

uffer and specialised hardware queue of the switch. The packet

oss probability for the internal buffering model (PL IB) is given as

 L IB = 1 − T IB /λ1 . (11)

.3. Buffer dimensioning

Buffer dimensioning ensures packet losses due to queueing are

elow losses that occur in the outgoing links. The losses in the

utgoing links are given by the Bit Error Rate (BER). The BER can

e approximately expressed as a function of the Packet Error Ra-

io (PER) with the relation: P ER = 1 − (1 − BER) N where N is the

umber of bits in the packet. Following the example of [29,30] , we

onduct a very simple approximation of the minimum buffer size

o ensure no queueing losses by assuming all queues are M/M/1

nd each queue operates independent of all other queues.

Let K FE denote the minimum buffer capacity to ensure no

ueueing loses for the full encapsulation model. The minimum

uffer capacity for K FE is simply the sum of the minimum buffer

apacities K 1 , K 2 and K 3 :

 F E = K 1 + K 2 + K 3 ,

=

log P ER

log ρcp
+

log P ER

log ρhp

+

log P ER

log ρsh

, (12)

here ρcp , ρhp , and ρsh are the server utilisation at the Class CP,

lass HP, and specialised hardware, respectively, which are defined

s

cp =

βλ1

μsp
, ρhp =

βλ1

μsp
, ρsh =

λ1

μsh

.

The minimum buffer capacity for the internal buffer is denoted

s K 4 which is calculated as

 4 =

⌈

log P ER

log ρib

⌉

, (13)

here ρ ib is the server utilisation at the internal buffer of the CPU

hich is defined as

ib =

βλ1

μsp
.

ence the minimum buffer capacity for the internal buffer model

say K IB) is K 4 + K F E .

. Results

The parameters used for analysis and simulation are shown in

able 4 . The table miss probability β has a geometrical relationship

ith a flow size [20] and is varied from 0.1 to 1, the switch pro-

essor or CPU service rate (μsp) is assumed to be 10 0 0 packets/sec,
he controller to switch processing ratio (m r) is varied from 0.1 to

, and the specialised hardware service rate (μsh – in packets/sec)

s assumed to be 10 0 0 times faster than the CPU. The external ar-

ival rate of data packets (λ1) to the switch from each host is fixed

t 120, 240 and 480 packets/sec to investigate the effect of increas-

ng traffic volumes. These values of β , μsp , m r , μsh , and λ1 are ar-

itrary values used for sensitivity analysis to identify the trends.

The value of the number of bits (i.e. N) for the MTU TCP packet

ize of 1500 bytes is 12,000 bits. Similarly, the switch and con-

roller are assumed to be deployed over an Ethernet network for

hich the BER is 10 −12 [31] and the value of PER is calculated as

 . 2 × 10 −8 as discussed in Section 4.3 .

In the following subsections, queue capacities of the Class HP

nd specialised hardware queue is assumed to be half of their

inimum queue capacities determined from buffer dimensioning,

sing Eqs. (12) and (13) , i.e. � K 2 2 � and � K 3 2 � respectively. This is

one to take into consideration the packet loss in the switch. Simi-

arly, buffer dimensioning is done for the Class CP (K 1) and internal

uffer (K 4) to ensure no loss of control packets.

Based on our assumptions, the value of K 3 is calculated as 2 for

1 equal to 120, 240, and 480 packets/sec. Similarly, the values of

 1 , K 2 , and K 4 are same and calculated as 5 for λ1 equal to 120

ackets/sec, 7 for λ1 equal to 240 packets/sec, and 13 for λ1 equal

o 480 packets/sec.

The discrete-event simulation in this manuscript is based on

onte Carlo simulation where Monte Carlo simulators use ran-

om number generators to simulate the system. The events for the

onte Carlo simulation are related to the transition rates of queue-

ng models which cause models to change their states. Both the

ueueing model and discrete-event simulation use the same as-

umptions. The simulations are conducted with 100 random seeds

nd the results are reported with 95% confidence intervals (CI).

To compute the steady-state probabilities using the matrix-

nalytic method, a MATLAB toolbox [32] with standard library

unctions to solve QBD Markov chains has been used. As discussed

arlier, the full encapsulation is represented as a level-independent

BD and the internal buffering as a level-dependent QBD. There-

ore, in this paper, Logarithmic Reduction algorithm [33] has been

sed for the full encapsulation to compute a rate matrix due to

 faster quadratic convergence rate. Similarly, the Matrix Contin-

ed Fraction (MCF) algorithm [34] has been used for the internal

uffering which is faster and efficient to handle iteration while

omputing rate matrices for each level. The generation of block

6 D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033

Fig. 4. Validation of Full encapsulation model by comparing: (a) Average packet transfer delay, and (b) Packet loss probability.

Fig. 5. Validation of Internal buffering model in terms of (a) Average packet transfer delay, and (b) Packet loss probability.

5

d

b

2

o

f

t

e

c

b

t

l

o

c

p
matrices which are elements of rate matrices for the full encapsu-

lation and internal buffering are briefly discussed in [16] and [13] ,

respectively.

5.1. Validation: full encapsulation and internal buffering

The validation of analytical results for the full encapsulation

model and the internal buffering model is done by comparing it

with discrete event simulation results. Figs. 4 and 5 show the

validation results for the full encapsulation and internal buffer-

ing models respectively for increasing β with m r = 1 . The error

percentage between analysis and simulation predictions for both

average packet transfer delay and packet loss probability is be-

tween 0.6%-2.8% as shown in Figs. 4 and 5 . The error for the in-

ternal buffering model is slightly higher than the full encapsula-

tion model by 1%. This range of error is acceptable for the internal

buffering model due to level dependency of packets in the con-

troller and Class CP on the packet temporarily buffered at the in-

ternal buffer [35] .
.2. Comparing computation time

In this subsection, the computation time between analysis and

iscrete-event simulation for the full encapsulation and internal

uffering is com pared. The com putation time for λ1 equal to 120,

40, and 480 packets/sec is computed. This comparison helps to

bserve the computation overload between analysis and simulation

or varying external arrival rate in a hardware switch. The values of

he queue buffer capacities for λ1 equal to 120, 240, and 480 pack-

ts/sec have been set in the Section 5 along with other parameters.

Fig. 6 shows the average computation time in milli second to

alculate the average packet transfer delay and packet loss proba-

ility for varying λ1 . Fig. 6 (a) shows the computation overload for

he full encapsulation and Fig. 6 (b) shows the computation over-

oad for the internal buffering. From Fig. 6 (a) and (b), it can be

bserved that the computation overload for analysis drastically in-

reases for 480 packets/sec compared to discrete-event simulation.

This is because the queue buffer capacities for λ1 equal to 480

ackets/sec is high compared to 120 and 240 packets/sec. Due to

D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033 7

Fig. 6. Computation time between analysis and simulation for : (a) Full encapsulation and (b) Internal buffering.

Fig. 7. Relative average packet transfer delay between the full encapsulation model and internal buffering model i.e. εd for (a) increasing β and m r = 1 ; and (b) increasing

m r and β = 0 . 5 .

a

i

a

i

s

5

t

t

c

a

d

t

n

ε

A

a

c

t

I

i

e

c

i

t

t

s

m
 high buffer capacity, the matrix size increases signigicanlty caus-

ng significant increase in the computation time using the matrix-

nalytic method. The computation overload for the internal buffer-

ng increases drastically because of a higher multi-dimensional

tate space than the full encapsulation.

.3. Comparing average delay

In this subsection, the average packet transfer delay between

he full encapsulation (denoted by t FE as in Eq. (3)) and the in-

ernal buffering (denoted by t IB as in Eq. (9)) is compared. This

omparison helps to investigate the effect of an internal buffer in

 hardware switch with reference to the average packet transfer

elay.

The relative average packet transfer delay (denoted by εd) be-

ween the full encapsulation and internal buffering (both with fi-
ite capacity) is calculated as

d =

(t IB − t F E)

t F E
× 100% .

 positive value of εd means that the full encapsulation model has

 lower average delay for a packet to travel through the network

ompared to the internal buffering model.

Fig. 7 shows the relative average packet transfer delay between

he full encapsulation and internal buffering models in percentile.

n Fig. 7 (a), where m r is constant at 1, it can be observed that the

nternal buffering method achieves up to 28% reduction in the av-

rage packet delay compared to the full encapsulation. With in-

reasing β , the number of data packets sent to the controller is

ncreased. These data packets requiring decisioning from the con-

roller are processed by the CPU which has a slower processor than

he specialised hardware. With internal buffering, the CPU encap-

ulates a small part of a data packet (mostly packet header infor-

ation) in the Packet-In message which is processed faster by the

8 D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033

Fig. 8. Relative average packet loss probability between the full encapsulation model and internal buffering model i.e. εt for (a) increasing β and m r = 1 ; and (b) increasing

m r and β = 0 . 5 .

a

b

t

t

W

i

a

p

a

i

m

f

i

m

i

s

d

w

t

T

C

s

q

i

c

t

p

e

t

n

6

s

S

μ

i

d

i

controller than Packet-In messages encapsulated with a full data

packet. The internal buffering significantly reduces the overall de-

lay for increasing traffic forwarded by the specialised hardware as

seen in Fig. 7 (a).

With the increasing m r , as shown in Fig. 7 (b), the controller

processing capacity increases. However, the performance of con-

troller degrades with increasing flow update requests from the

switch. The real benefit of an internal buffer at the OpenFlow

switch can be observed for a slower controller, represented by

lower m r value, as seen in Fig. 7 (b) where the average packet trans-

fer delay is reduced up to 85%. As seen in Fig. 7 (b), the relative

average packet transfer delay decreases from 85% to 20% with in-

creasing processing capacity of the controller. With the internal

buffering of packets awaiting decision from the controller, the con-

trol traffic size can be reduced allowing the controller to process

packets faster.

This reduction in average packet transfer delay with lower β
and m r shows the benefit of internal buffering over the full packet

encapsulation method for hardware switching in an OpenFlow

switch.

5.4. Comparing packet loss probabilities

In this subsection, the average packet loss probability between

the full encapsulation (PL FE in Eq. (5)) and the internal buffering

(PL IB in Eq. (11)) is compared. This comparison highlights the ef-

fect of internal buffer in a hardware switch with reference to the

packet loss probability.

The relative packet loss probability (denoted by ε l) between the

full encapsulation and internal buffering (both with finite capacity)

is calculated as

εl =

(P L IB − P L F E)

P L F E
× 100% .

A positive value of ε l means the full encapsulation model has a

lower packet loss probability compared to the internal buffering

model.

Fig. 8 shows the relative packet loss probability between the full

encapsulation and internal buffering models in percentile. Fig. 8 (a)

and (b) show the relative packet loss probability for increasing β
and m r , respectively. In Fig. 8 (a), we show that internal buffering

exhibits up to 60% drop in the packet loss probability for lower

packet arrival rates, viz. λ = 120 or 240 pkts/sec. At higher packet
1
rrival rate, λ1 = 480 pkts/sec, the 60% drop in packet loss proba-

ility at lower β reduces quickly to 6% as β increases. This is due

o the finite buffer capacity for the internal buffer. The finite in-

ernal buffer can temporarily store limited number of data packets.

ith a lower value of β , the number of data packets to be stored

n the internal buffer is lower resulting in a lower packet loss prob-

bility. Whereas, with a higher value of β , the number of data

ackets to be stored in the internal buffer is higher resulting in

 higher packet loss probability. The higher packet loss probability

n the internal buffer reduces the benefit of the internal buffering

odel over the full encapsulation model as seen in Fig. 8 (a). There-

ore, the full encapsulation method is more appropriate to handle

ncoming flows that have a higher table miss probability.

Similarly, in Fig. 8 (b), we show that the internal buffering

odel exhibits up to 89% reduction in the packet loss probabil-

ty for lower m r and up to 50% reduction for higher m r . It is ob-

erved that higher value of λ1 (i.e 480 pkts/sec) significantly re-

uces packet loss probability for a lower value of m r (i.e m r < 1),

hereas the lower value of λ1 (i.e 120 or 240 pkts/sec) shows bet-

er packet loss probability for a higher value of m r (i.e m r > 1).

his is because lower m r means the controller is slower than the

PU and higher m r means the controller is faster than the CPU. The

lower controller processes Packet-In messages slower and conse-

uently increases the blocking of data packets in the CPU. With the

nternal buffer, the blocking of data packets in the CPU is signifi-

antly reduced. On the other hand, the faster controller processes

he Packet-In messages faster and reduces the blocking of data

ackets in the CPU. This reduces the benefit of the internal buffer

specially for a higher value of λ1 .

This shows the benefit of internal buffering over full encapsula-

ion method for the OpenFlow-based hardware switching, that sig-

ificantly reduces the packet loss probability.

. Traffic and switch parameters

In this section, we perform sensitivity analysis to justify our

election of values for λ1 (that are 120, 240, 480 pkts/sec) in

ection 5 . We also justify the selection of μsh as 10 0 0 times of

sp by varying m s in the full encapsulation and internal buffer-

ng models. Finally, we use realistic values of parameters for Zo-

iac switch based on [20] to compare the full encapsulation and

nternal buffering models.

D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033 9

Fig. 9. Effect of increasing λ1 on the full encapsulation method and internal buffering model for (a) average packet transfer delay (b) and packet loss probability.

v

o

6

e

i

b

s

a

t

d

i

l

b

t

t

0

a

f

b

6

f

4

s

a

t

d

f

e

b

o

s

t

i

i

g

p

e

6

e

T

p

b

G

e

m

n

T

t

t
For this section, the value of β is fixed to 0.2 which is typical β
alue for a flow in an OpenFlow-based SDN switch [20] . This value

f β is also close to the realistic β values shown in Table 5 .

.1. Sensitivity analysis by varying λ1

For this analysis, the value of λ1 is varied from 10 to 999 pack-

ts/sec. The maximum value of λ1 is set as 999 packets/sec which

s less than μsp of 10 0 0 packet/sec to maintain a stationary distri-

ution in the CPU.

Fig. 9 shows the effect of varying λ1 between the full encap-

ulation and internal buffering models. Fig. 9 (a) and (b) show the

verage packet transfer delay and packet loss probability, respec-

ively, for increasing λ1 . From Fig. 9 (a), the average packet transfer

elay for both the full encapsulation and internal buffering models

ncreases with increasing λ1 . The difference between these models

ooks uniform as seen in Fig. 7 (a) for β of 0.2.

Similarly, from Fig. 9 (b), the average packet loss probability for

oth the full encapsulation and internal buffering models are iden-

ical and increases with increasing λ1 . The differences between

hese models are almost negligible as seen in Fig. 8 (a) for β of

.2.

Therefore, the selection of λ1 as {120, 240, 480} packets/sec or

ny other positive values less than μsp for given β would not af-

ect the relative performance of the full encapsulation and internal

uffering models.

.2. Sensitivity analysis by varying μsh

Next, we study the effects of μsh through m s which is varied

rom 10 to 10 0 0 (i.e. μsh = m s × μsp). The value of λ1 is fixed to

80 packets/sec.

Fig. 10 shows the effect of varying m s between the full encap-

ulation and internal buffering models. Fig. 10 (a) and (b) show the
Table 5

Measured parameters for hardware switches.

Parameter Zodiac P3295

CPU service rate, μsp (packets/ms) 1.536 132,000

Controller service rate, μc (packets/ms) 38568

Arrival rate, λ1 (packets/ms) {1.8, 12.6, 33.2, 74.6}

Average flow size, 1/ β (packets) {6.6, 15.3, 9.3, 9.8}

t

t

t

a

f

s

i

f

a
verage packet transfer delay and packet loss probability, respec-

ively, for increasing m s . From Fig. 10 , the average packet transfer

elay and packet loss probability for both models remain steady

or m s > 100.

From Fig. 10 (a), the average packet transfer delay for the full

ncapsulation model remains uniformly higher than the internal

uffering model with increasing m s . This is because higher value

f μsh reduces the average packet transfer delay uniformly in the

pecialised hardware for both models.

Similarly, from Fig. 10 (b), the average packet loss probability for

he full encapsulation model and internal buffering model remains

dentical. This is because loss incurred by the specialised hardware

s negligible and is almost zero with increasing m s .

Therefore, the selection of m s as 10 0 0 or any other values

reater than 100 for given β and λ1 would not affect the relative

erformance of the full encapsulation and internal buffering mod-

ls.

.3. Using realistic values for parameters

Lastly, we validate the models using realistic values of param-

ters for the switches and controllers which is shown in Table 5 .

he parameters are measured in a network using a controller im-

lemented on a Dell OptiPlex 9010 running Ubuntu 16.04 LTS (64-

it), using Intel i7-3770 CPU (3.40 GHz × 8) with 2 × 4

B DDR3 RAM (1600 MHz each). The Zodiac switch is a low

nd switch by Northbound Networks while the P3295 switch is a

edium range switch from Pica8. We use the Ryu controller run-

ing OpenFlow v1.3 to manage the hardware switches.

The remaining parameters other than those shown in

able 5 are same as in Table 4 . Figs. 11 and 12 show bar charts for

he average packet transfer delay and packet loss probability using

he fixed values of { λ1 , 1/ β}. Fig. 11 shows the average packet

ransfer delay for Zodiac and P3295 switches, while Fig. 12 shows

he packet loss probability for Zodiac switch only. This is because

he packet loss probability for P3295 switch is negligible and

lmost zero for all fixed values of { λ1 , 1/ β}. The CPU service rate

or P3295 switch is approximately 86,0 0 0 times faster than Zodiac

witch resulting in negligible packet losses in P3295 switch.

From Fig. 11 (a) and (b), we observe that the internal buffer-

ng model achieves lower average packet transfer delay than the

ull encapsulation model as previously observed in Figs. 7 (a), 9 (a)

nd 10 (a). Similarly, from Fig. 12 , the full encapsulation and inter-

10 D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033

Fig. 10. Effect of increasing μsh via increasing m s on the full encapsulation method and internal buffering model for (a) average packet transfer delay (b) and packet loss

probability.

Fig. 11. Average packet transfer delay for fixed { λ1 , μsh } on the full encapsulation model and internal buffering model using real switch parameters.

Fig. 12. Packet loss probability for fixed { λ1 , μsh } on the full encapsulation model

and internal buffering model using Zodiac switch’s parameters. The packet loss

probability for the P3295 switch is close to zero and therefore not shown.

n

l

b

a

7

t

u

i

al buffering models both have similar packet loss probability for

ower β as previously observed in Figs. 8 (a), 9 (b) and 10 (b).

Therefore, it shows that the models proposed in this paper can

e used to predict an SDN performance with real parameters. The

nalysis in this subsection also validates our analysis in Section 5 .

. Conclusion

In this paper, the two packet encapsulation methods based on

he OpenFlow specification for hardware switching were compared

sing queueing models, viz., the full encapsulation model and the

nternal buffering model, respectively.

From comparisons, the following conclusions were made:

• Internal buffering significantly reduces the average packet

transfer delay (almost 85%) for a slower controller and (almost

20%) for a faster controller than the full packet encapsulation

method.

• Internal buffering significantly reduces the packet loss probabil-

ity (almost 60%) for a lower table miss probability and (almost

6%) for a higher table miss probability than the full encapsula-
tion method.

D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033 11

F

b

f

c

a

l

t

I

w

r

t

a

c

e

c

D

c

i

A

t

i

S

S

f

R

[

[

[

[

[

[

[

[

[

[

[

[

[
rom above-mentioned conclusions, the following guidelines can

e provided to network operators for optimum performance:

• For a delay-sensitive SDN, network operators can choose the

internal buffering method over the full encapsulation method

when a slower controller is used.

• For a loss-sensitive SDN, the full encapsulation method is

preferred over the internal buffering method for OpenFlow

switches. This choice becomes more evidence with a higher ta-

ble miss probability.

Finally, from sensitivity analyses by varying λ1 and μsh in the

ull encapsulation and internal buffering models, following con-

lusions were made to observe similar trends in the performance

nalysis irrespective of values used for parameters:

• The value of an external arrival rate at the switch TCAM can be

of any positive values but less than the CPU processor for fixed

table miss probability.

• The value of the switch processor should be at least a hundred

times of the CPU processor for fixed table miss probability and

external arrival rate.

This work can be extended by considering the partial encapsu-

ation of data packets. The partial encapsulation of data packets is

he combination of the full encapsulation and internal buffering.

n the partial encapsulation of data packets, OpenFlow switches

ith limited memory use the full encapsulation method when they

un out of memory for the internal buffering. Also, in this work,

he internal buffer is used to temporarily buffer data packets that

re to be forwarded to the controller. However, future works can

onsider the use of internal buffering to buffer other data pack-

ts as well to avoid packet losses at the switch with limited buffer

apacities.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgement

The work of Deepak Singh was supported by a Victoria Doc-

oral Scholarship. Bryan Ng and Winston K.G. Seah were supported

n part by Victoria University’s Huawei NZ Research Programme,

oftware-Defined Green Internet of Things project #E2881.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.comnet.2019.107033 .

eferences

[1] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,
S. Shenker , J. Turner , Openflow: enabling innovation in campus networks, SIG-

COMM Comput. Commun. Rev. 38 (2) (2008) 69–74 .
[2] L. Yang, R. Dantu, T. Anderson, R. Gopal, Forwarding and Control Element Sep-

aration (ForCES) Framework, 2004, Internet Engineering Task Force, RFC 3746.
http://www.tools.ietf.org/html/rfc3746 .

[3] P. Goransson , C. Black , Software Defined Networks: a Comprehensive Approach,
Elsevier, 2014 .

[4] J. Wan , S. Tang , Z. Shu , D. Li , S. Wang , M. Imran , A.V. Vasilakos , Software-de-

fined industrial internet of things in the context of industry 4.0, IEEE Sens. J.
16 (20) (2016) 7373–7380 .

[5] R. Trivisonno , R. Guerzoni , I. Vaishnavi , D. Soldani , SDN-Based 5G mobile net-
works: architecture, functions, procedures and backward compatibility, Trans.

Emerg. Telecommun.Technologies 26 (1) (2015) 82–92 .
[6] S. Jain , A. Kumar , S. Mandal , J. Ong , L. Poutievski , A. Singh , S. Venkata , J. Wan-
derer , J. Zhou , M. Zhu , et al. , B4: Experience with a globally-deployed software

defined WAN, in: ACM SIGCOMM Computer Communication Review, volume
43, ACM, 2013, pp. 3–14 .

[7] Y. Gwon , H.T. Kung , Inferring origin flow patterns in wi-fi with deep learning,
in: ICAC, 2014, pp. 73–83 .

[8] B.P.S. Sahoo, C.-C. Chou, C.-W. Weng, H.-Y. Wei, Enabling millimeter-wave 5G
networks for massive IoT applications, (2018) arXiv: 1808.04457 .

[9] ONF , OpenFlow Switch Specification, Technical Report, Open Networking Foun-

dation, 2013 .
[10] H.H. Kurmann , H.M. Kurmann , On the Emulation of Impairments in ATM-net-

works, vdf Hochschulverlag AG, 1997 .
[11] J. Mao , B. Han , Z. Sun , X. Lu , Z. Zhang , Efficient mismatched packet buffer man-

agement with packet order-preserving for openflow networks, Comput. Netw.
110 (2016) 91–103 .

[12] D. Singh , B. Ng , Y.-C. Lai , Y.-D. Lin , W.K.G. Seah , Modelling Switches with In-

ternal Buffering in Software-Defined Networks, in: Proceedings of the 27th In-
ternational Conference on Computer Communication and Networks (ICCCN),

2018 . Hangzhou, China.
[13] D. Singh , B. Ng , Y.-C. Lai , Y.-D. Lin , W.K.G. Seah , Analytical modelling of soft-

ware and hardware switches with internal buffer in software-Defined net-
works, J. Netw. Comput. Applica. 126 (2019) 22–37 .

[14] D. Kreutz , F.M.V. Ramos , P. Esteves Verissimo , C. Esteve Rothenberg , S. Azodol-

molky , S. Uhlig , Software-defined networking: a comprehensive survey, Pro-
ceed. IEEE 103 (1) (2015) 14–76 .

[15] B. Davie , T. Koponen , J. Pettit , B. Pfaff, M. Casado , N. Gude , A. Padmanabhan ,
T. Petty , K. Duda , A. Chanda , A database approach to SDN control plane design,

SIGCOMM Comput. Commun. Rev. 47 (1) (2017) 15–26 .
[16] D. Singh , B. Ng , Y.-C. Lai , Y.-D. Lin , W.K.G. Seah , Modelling software-defined

networking: software and hardware switches, J. Netw. Comput. Applica. 122

(2018) 24–36 .
[17] M. Jarschel , S. Oechsner , D. Schlosser , R. Pries , S. Goll , P. Tran-Gia , Modeling

and performance evaluation of an OpenFlow architecture, in: Proceedings of
the 23rd International Teletraffic Congress (ITC), San Francisco, CA, USA, 6–9

November, 2011, pp. 1–7 .
[18] K. Mahmood , A. Chilwan , x amp , a sterb , O. #x00F , M. Jarschel , Modelling of

openflow-based software-defined networks: the multiple node case, IET Netw.

4 (5) (2015) 278–284 .
[19] W. Miao , G. Min , Y. Wu , H. Wang , J. Hu , Performance modelling and analysis

of software-Defined networking under bursty multimedia traffic, ACM Trans.
Multim. Comput. Commun. Applica. (TOMM) 12 (5s) (2016) 77 .

20] Y. Goto , H. Masuyama , B. Ng , W.K.G. Seah , Y. Takahashi , Queueing Analysis of
Software Defined Network with Realistic OpenFlow–based Switch Model, in:

Proceedings of the IEEE International Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS), 2016 .
London, UK.

[21] A. Fahmin , Y.-C. Lai , M.S. Hossain , Y.-D. Lin , Performance modeling and com-
parison of NFV integrated with SDN: under or aside? J. Netw. Comput. Applica.

113 (2018) 119–129 .
22] M. Ku ́zniar , P. Perešíni , D. Kosti ́c , What you need to know about SDN flow

tables, in: Passive and Active Measurement, Springer, 2015, pp. 347–359 .
23] H. Pan , H. Guan , J. Liu , W. Ding , C. Lin , G. Xie , The flowadapter: Enable flexible

multi-table processing on legacy hardware, in: Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking, ACM, 2013,
pp. 85–90 .

24] D.B. Rawat, S.R. Reddy, Software defined networking architecture, security and
energy efficiency: a survey, IEEE Commun. Surv. Tutor. 19 (1) (2017) 325–346,

doi: 10.1109/COMST.2016.2618874 .
25] D. Singh , B. Ng , Y.-C. Lai , Y.-D. Lin , W.K.G. Seah , Modelling Software-Defined

Networking: Switch Design with Finite Buffer and Priority Queueing, in: Pro-

ceedings of the IEEE 42nd Conference on Local Computer Networks (LCN),
2017 . Singapore.

26] I. Adan, J. Resing, Queueing Theory, Eindhoven University of Tech-
nology, Eindhoven, 2002 http://www.home.ewi.utwente.nl/ ∼scheinhardtwrw/

queueingdictaat.pdf .
[27] G. Bolch , S. Greiner , H. de Meer , K.S. Trivedi , Queueing Networks and Markov

Chains, 2nd, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006 .

28] G. Latouche , V. Ramaswami , Introduction to Matrix Analytic Methods in
Stochastic Modeling, 5, Siam, 1999 .

29] R.J. Simcoe , T.-B. Pei , Perspectives on ATM switch architecture and the influ-
ence of traffic pattern assumptions on switch design, SIGCOMM Comput. Com-

mun. Rev. 25 (2) (1995) 93–105 .
30] S.C. Liew, Performance of various input-buffered and output-buffered ATM

switch design principles under bursty traffic: simulation study, IEEE Trans.

Commun. 42 (234) (1994) 1371–1379, doi: 10.1109/TCOMM.1994.580245 .
[31] ISO/IEC/IEEE International standard for ethernet, ISO/IEC/IEEE 8802-3:2014(E)

(2014) 1–3754, doi: 10.1109/IEEESTD.2014.6781545 .
32] D.A. Bini , B. Meini , S. Steffe , B. Van Houdt , Structured markov chains solver:

software tools, in: Proceeding from the 2006 workshop on Tools for solving
structured Markov chains, ACM, 2006, p. 14 .

33] G. Latouche , V. Ramaswami , A logarithmic reduction algorithm for

quasi-birth-death processes, J. Appl. Probab. 30 (3) (1993) 650–674 .
34] T. Hanschke , A matrix continued fraction algorithm for the multiserver re-

peated order queue, Math. Comput. Model. 30 (3–4) (1999) 159–170 .
35] T. Dayar , W. Sandmann , D. Spieler , V. Wolf , Infinite level-dependent QBD pro-

https://doi.org/10.1016/j.comnet.2019.107033
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://www.tools.ietf.org/html/rfc3746
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0006
http://arxiv.org/abs/1808.04457
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
https://doi.org/10.1109/COMST.2016.2618874
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://www.home.ewi.utwente.nl/~scheinhardtwrw/queueingdictaat.pdf
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0026
https://doi.org/10.1109/TCOMM.1994.580245
https://doi.org/10.1109/IEEESTD.2014.6781545
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032

12 D. Singh, B. Ng and Y.-C. Lai et al. / Computer Networks 167 (2020) 107033

t

a

v

S

cesses and matrix-analytic solutions for stochastic chemical kinetics, Adva.
Appl. Probab. 43 (4) (2011) 1005–1026 .

Deepak Kumar Singh received the received the Dr.Eng.

degree from Victoria University of Wellington, New
Zealand, in 2019. He is currently working as a Re-

search Assistant in Victoria University of Wellington, New

Zealand. His research focuses on modelling of Software-
Defined Network, data modelling and recommendation

system.

Bryan Ng completed his Ph.D. (2010) in the area of

communication and networking. He held teaching & re-

search positions in Malaysia and France in addition to at-
tachments to commercial research laboratories Intel, Mo-

torola, Panasonic and Orange Labs. His research inter-
est include performance analysis of communication net-

works, modelling networking protocols and software de-
fined networking.

Yaun-Cheng Lai received his Ph.D. degree in the Depart-

ment of Computer and Information Science from National

Chiao Tung University in 1997. He joined the faculty of
the Department of Information Management at National

Taiwan University of Science and Technology in August
2001 and has been a professor since February 2008. His

research interests include performance analysis, protocol
design, wireless networks, and and network security.
Ying-Dar Lin is a Distinguished Professor of computer

science at National Chiao Tung University (NCTU), Taiwan.
He received his Ph.D. in computer science from the Uni-

versity of California at Los Angeles (UCLA) in 1993. He
was a visiting scholar at Cisco Systems in San Jose, Cal-

ifornia, during 20 070 08, and the CEO at Telecom Technol-

ogy Center, Taipei, Taiwan, during 2010–2011. Since 2002,
he has been the founder and director of Network Bench-

marking Lab (NBL, www.nbl.org.tw), which reviews net-
work products with real traffic and has been an approved

test lab of the Open Networking Foundation (ONF) since
July 2014. He also cofounded L7 Networks Inc. in 2002,

which was later acquired by D-Link Corp. His research in-

erests include network security, wireless communications, and network cloudifica-
tion. He is an IEEE Fellow (class of 2013), IEEE Distinguished Lecturer (2014–2017),

nd ONF Research Associate, and is the Editor-in-Chief of IEEE Communications Sur-
eys and Tutorials (COMST). He published a textbook, Computer Networks: An Open

ource Approach (McGraw-Hill, 2011).

Winston K.G. Seah received the Dr.Eng. degree from Ky-

oto University, Kyoto, Japan, in 1997. He is currently Pro-
fessor of Network Engineering in the School of Engineer-

ing and Computer Science, Victoria University of Welling-
ton, New Zealand. Prior to this, he has worked for more

than 16 years in mission-oriented industrial research, tak-
ing ideas from theory to prototypes, most recently, as a

Senior Scientist in the Institute for Infocomm Research,

Singapore. His latest research interests include Internet
of Things, wireless sensor networks powered by ambient

energy harvesting, wireless multi-hop networks, software
defined networking, and 5G access protocols for machine-

type communications.

http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://www.nbl.org.tw

	Full encapsulation or internal buffering in OpenFlow based hardware switches?
	1 Introduction
	2 Related work
	3 Generic model for an OpenFlow based hardware switch
	4 Queueing models for packet encapsulation methods
	4.1 Full encapsulation
	4.2 Internal buffering
	4.3 Buffer dimensioning

	5 Results
	5.1 Validation: full encapsulation and internal buffering
	5.2 Comparing computation time
	5.3 Comparing average delay
	5.4 Comparing packet loss probabilities

	6 Traffic and switch parameters
	6.1 Sensitivity analysis by varying λ1
	6.2 Sensitivity analysis by varying μsh
	6.3 Using realistic values for parameters

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Supplementary material
	References

