Computer Networks 167 (2020) 107033

Contents lists available at ScienceDirect z)
~Netugri
) rks
Computer Networks (&asy
O
journal homepage: www.elsevier.com/locate/comnet
Full encapsulation or internal buffering in OpenFlow based hardware n
switches? i

Deepak Singh®*, Bryan Ng®', Yuan-Cheng Lai", Ying-Dar Lin¢, Winston K.G. Seah?

aSchool of Engineering and Computer Science, Victoria University of Wellington, New Zealand
b Dept. of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan
¢ Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 1 July 2019

Revised 26 September 2019
Accepted 26 November 2019
Available online 26 November 2019

Software-Defined Networking (SDN) enables programmability in the network through a software-
dependent control function. OpenFlow is a de-facto protocol for communication between an SDN switch
and the controller. OpenFlow specifications generally allow two methods for packet encapsulation of data
packets at the switch that require decisions from the controller, (a) full encapsulation, and (b) internal
buffering. However, full encapsulation of data packets has been the default choice for packet processing,
and internal buffering has not been explored much, especially for hardware switching. In this paper, we
model and analyse the effect of internal buffering on the performance of an OpenFlow hardware switch.
We compare queueing models for the switch with full encapsulation and internal buffering for hardware
switching. The results show that internal buffering significantly reduces the average packet transfer delay
by 85% and packet loss probability by 60%. The results further provide guidelines to network operators
that internal buffering for hardware switching is useful for controllers with lower processing rates, espe-
cially in delay-sensitive applications running over SDN. For loss-sensitive applications running over SDN,

the full encapsulation method is more robust handling flows with a high table miss probability.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Software-Defined Networking (SDN) provides flexible packet
processing to higher layer applications via protocols such as Open-
Flow [1] and ForCES [2]. OpenFlow is the most widely used proto-
col to define communication between the controller and switch in
SDN paradigm [3]. In SDN, the control function resides in a logi-
cally centralised controller that has network-wide visibility, while
the packet forwarding is executed by the switch [3]. This “sepa-
ration of concerns” between the control function and packet for-
warding allows automation and programmability in the network
through software.

The network automation and programmability via SDN has
driven network engineers and researchers to extend SDN into wire-
less networks such as Industrial Internet of Things (IloT) [4], fifth-
generation (5G) wireless networks [5], and Software defined Wire-
less Access Networks (SDWAN) [6]. These wireless networks are

* Corresponding author.

E-mail addresses: deepak.singh@ecs.vuw.ac.nz (D. Singh),
bryan.ng@ecs.vuw.ac.nz (B. Ng), laiyc@cs.ntust.edu.tw (Y.-C. Lai),
ydlin@cs.nctu.edu.tw (Y.-D. Lin), winston.seah@ecs.vuw.ac.nz (W.K.G. Seah).

1 Principal corresponding author.

https://doi.org/10.1016/j.comnet.2019.107033
1389-1286/© 2019 Elsevier B.V. All rights reserved.

relatively less stable than their wired equivalents, operate less effi-
ciently with increasing network size (e.g. due to the contention in
CSMA/CA type wireless access) and may sustain significant packet
bursts over the switch-controller path leading to packet loss and
poor throughput [7,8]. Fortunately, OpenFlow switches have provi-
sions to address the problem of contention and memory issues at
the low-end switch via internal buffering [9].

Internal buffering in communication networks is used as tem-
porary buffering of packets within the switch [10]. An Open-
Flow switch with internal buffering temporarily buffers data pack-
ets within the switch and send asynchronous messages desig-
nated as “Packet-In” to the controller. A Packet-In message con-
sists of a fraction of a data packet (around 20%) encapsulated with
the OpenFlow header and buffer identifier associated with a data
packet [11-13].

OpenFlow switches forward packets based on the entries of
flow tables (an entry can be thought of as a row with multiple
columns). A flow table is made up of flow table entries (FTEs)
which generally consist of match fields with associated actions (the
columns in a row). If there is no matching FTE for incoming pack-
ets of a flow at the switch, the first packet of that flow is passed
to the SDN controller for decisioning. For the rest of this paper, we
assume that OpenFlow is the protocol for communication between

https://doi.org/10.1016/j.comnet.2019.107033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.107033&domain=pdf
mailto:deepak.singh@ecs.vuw.ac.nz
mailto:bryan.ng@ecs.vuw.ac.nz
mailto:laiyc@cs.ntust.edu.tw
mailto:ydlin@cs.nctu.edu.tw
mailto:winston.seah@ecs.vuw.ac.nz
https://doi.org/10.1016/j.comnet.2019.107033

2 D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033

the controller and switch in SDN [14] and we only consider hard-
ware switches (see [15,16] for hardware vs. software switches).

OpenFlow specifications provide two packet encapsulation
methods. These packet encapsulation methods are (a) internal
buffering of data packets, and (b) full encapsulation of data pack-
ets. Internal buffering of data packets allows only part of data
packets to be encapsulated within Packet-In messages. However,
this requires additional memory at the OpenFlow switch to tem-
porarily buffer data packets that can result in resource contention
in the controller. Similarly, full encapsulation (FE) of data packets
allows an OpenFlow switch (typically lower end switches) with no
support for internal buffering to encapsulate an entire data packet
with a Packet-In message. Therefore, the Packet-in message in the
internal buffering method is smaller in size compared to the full
encapsulation method. Clearly, these packet encapsulation methods
have benefits and trade-offs which will be identified and analysed
in this paper.

The packet encapsulation methods for the OpenFlow switch are
modeled and compared analytically using queueing theory in this
paper. Queueing models help switch designers and network anal-
ysers to predict performance measures before actual deployment,
making it cost-effective and faster for network planning. The pri-
mary objective of this paper is to identify benefits and tradeoffs
between full encapsulation of data packets and internal buffering
of data packets at the OpenFlow switch.

The rest of paper is organised into six sections. In Section 2,
we discuss the existing related works that use an OpenFlow
based packet encapsulation methods. The hardware switching of
an OpenFlow based switch is discussed in the Section 3 using the
generic model. An OpenFlow based packet encapsulation methods
are described and modelled using queueing theory in Section 4.
The analytical and simulation results with performance analysis
are discussed in Section 5. The values for traffic and switch param-
eters used in Section 5 are justified in Section 6 through sensitivity
analyses. Finally, this paper is concluded with the summary of re-
sults in Section 7.

2. Related work

Buffering has been extensively used in the traditional switches
such as ATM and Banyan switches to avoid delay and loss of pack-
ets under heavy traffic conditions [10]. Under heavy traffic condi-
tions, the logically centralised controller in SDN can be a bottle-
neck with increasing flow requests for decisions. Therefore, inter-
nal buffering in SDN switches reduce the communication workload
on the OpenFlow channel between the controller and switch as
studied in [11].

The work in [11] focuses on the buffer management scheme
and channel utilisation using their software and hardware proto-
types. These prototypes are suggestive improvement toward an ex-
isting OpenFlow buffer management scheme but have paved the
path for research in internal buffering in SDN.

There is little research exploring benefits and drawbacks of in-
ternal buffering in SDN. This may be due to the current lack of
support for internal buffering in commodity switches [13]. The an-
alytical modelling approach in this paper is a cheaper and faster
approach to predict the performance of SDN without actually
procuring equipment and setting up a test-bed.

From a performance analysis perspective of SDN via analytical
modelling, queueing theory has been seen a resurgence for mod-
elling SDN since the publication of the M/M/1 model for a single
controller-switch network in [17]. Queueing models predict net-
work performance and provide insights to network designers and
analysers for their SDN deployments [16]. Queueing theory has
been used in [17-21] to model an OpenFlow switch. These are few
selected models that have significant contribution to modelling

and performance analysis of an OpenFlow switch in SDN. However,
these models have assumed the full encapsulation of data packets
requiring the decisioning from the SDN controller, primarily be-
cause it is the default option for packet processing in the OpenFlow
specifications [12].

The work presented in [12] is the first to model an OpenFlow
switch with internal buffering. In this work, the full encapsulation
of data packets is compared with the internal buffering. The results
from this work showed that the packet encapsulation with inter-
nal buffering significantly reduces: (i) the average delay of pack-
ets traversing the network and (ii) packet loss probability com-
pared to the full encapsulation method, but these benefits were
obtained at the cost of requiring additional memory to support in-
ternal buffering. The work in [12] considers a software switch and
the model cannot account for: (i) the line speed processing of a
hardware switch and (ii) potential interactions between the high
speed switch processor and the other processors in the network.

The work in [16] is among the first to investigate the effect
of hardware switching on the OpenFlow switch. In this work, a
software-based OpenFlow switch is compared with a hardware-
based OpenFlow switch with the full encapsulation of data pack-
ets. Their results showed that a hardware switching with the full
encapsulation method significantly reduces the overall delay and
packet loss probability in the SDN.

The work in [13] compares a software-based OpenFlow switch
with a hardware-based OpenFlow switch with the internal buffer-
ing of data packets. The results show that a hardware-based Open-
Flow switch provides better scalability with increasing number of
hosts per switch than a software-based OpenFlow switch.

However, the comparative analysis between the internal buffer-
ing and full encapsulation methods in hardware-based OpenFlow
switches has not been studied. The comparative analysis in this pa-
per helps network engineers to understand the hardware switching
effects of these methods in an OpenFlow switch. In this paper, the
full encapsulation of data packets is compared with internal buffer-
ing of data packets for a hardware switch in an OpenFlow switch.

3. Generic model for an OpenFlow based hardware switch

The generic model for a hardware-based SDN switch equipped
with the specialised hardware and CPU (central processing unit)
is shown in Fig. 1. The hardware switch maintains flow tables
in both TCAM (ternary content-addressable memory) and SDRAM
(synchronous dynamic random access memory) which are syn-
chronised through a middleware layer on the switch. This synchro-
nisation ensures consistent forwarding behaviour and avoids dupli-
cate flow table entries (FTEs) [22,23].

Fig. 1 shows four phases that a hardware-based SDN switch
must capture. The four phases are:

+ Phase (1): The flow arrives at the specialised hardware in the
switch.

Phase (2): The first packet of a flow is matched against FTEs
stored in TCAM. If there is no matching FTE for a packet in
TCAM, a packet is forwarded to the CPU to match against FTEs
stored in SDRAM, otherwise serviced to the destination.

Phase (3): A packet without matching FTE is processed by the
CPU using packet encapsulation methods and then forwarded
to the controller.

Phase (4): The controller feedback with flow updates in both
SDRAM and TCAM. After the flow updates, the packet is ser-
viced to the destination by the CPU.

Based on these four important phases, queueing models for
packet encapsulation methods in a hardware-based SDN switch
are developed in the following section. The queueing models are

D. Singh, B. Ng and Y.-C. Lai et al./Computer Networks 167 (2020) 107033 3

Controller [| 3
[Forward

“)
Feedback

SDRAM

Match Action

2)

L o so oo g s e assan o CPU
Processing | | _ Packet
Synchronization Departure
[_______________ N_D _____

Specialized Hardware
TCAM
Match Action

@
Packet
Arrival

Match
Flow Table

Fig. 1. Generic model for a hardware-based SDN switch with the specialised hard-
ware and the CPU [13,16].

further described with details of network occurrences and perfor-
mance metrics such as delay and loss probability.

4. Queueing models for packet encapsulation methods

For brevity, queueing models for hardware switching with the
packet encapsulation method that require an internal buffering of
data packets is named as “Internal Buffering” and full encapsula-
tion of data packets is named as “Full Encapsulation”. Hardware
switching involves the CPU and specialised hardware (namely,
ternary content-addressable memory or TCAM) [24].

It is assumed that the CPU uses priority queues with a fi-
nite capacity with GI/M/1/K distribution and the specialised hard-
ware is represented as M/M/1/K distribution [16,20,25]. The prior-
ity queues provide isolation between the packets arriving from the
controller and packet to be processed by the CPU when there is no
matching FTE in the specialised hardware.

The priority queues were first introduced in [20,25] to distin-
guish packets processed by the CPU into two classes, Class HP and
Class CP. The Class HP represents the low priority class of the CPU
for the external data packet that has no matching entry in the
switch’s specialised hardware. The data packet is sent from the
specialised hardware to the Class HP with probability 8. The Class
CP represents the high priority class of the CPU to store packets
feedback from the controller. It is assumed that the CPU synchro-
nises the table information (in the CPU) with specialised hardware
with negligible delay. Both Class CP and Class HP queues share ser-
vice rate usp while the specialised hardware queue is serviced at
the rate pg; and pgy > fsp.

Similarly, the controller is represented as an M/M/1 queue with
service rate u.. For the remaining parameters, A; is the external
arrival rate at the TCAM and T represents the throughput of the
queue. It is further assumed that the queue buffer capacities of the
Class CP, Class HP, specialised hardware, and internal buffer are Kj,
K5, K3, and K4 respectively.

For comparative analysis between the full encapsulation
method and internal buffering, the primary performance metrics
are the average delay and packet loss probability. These perfor-
mance measures have a huge impact on the overall user experi-
ence. The average delay determines the speed of the network while
the packet loss probability is a negative indicator that causes a
breakup in the network’s communication.

Controller
He -~
Packet-out_IO_ I Packet-in
T, Controller T
@ Processor J hp
— — — — 3)
—-——— — — 19
CPU
. Class CP I Te
(High Priority) ©)
l Hyp I
| cusne
(Low Priority) | CPU Processor I
l I Output
|) ort
Specialized Hardware T I
—»l TCAM
p |-,
& Switch Processor I @
L —
Switch

Fig. 2. SDN hardware switching using full encapsulation method.

4.1. Full encapsulation

The packet processing for the full encapsulation queueing
model can be explained in five steps as shown in Fig. 2 [16]: (1)
external data packets arrive to the specialised hardware of the
switch, (2) data packets are forwarded to the Class HP of the CPU
if the specialised hardware in the switch has no matching FTE or
the packet leaves the switch (i.e. is forwarded to the destination
via an output port), (3) data packets are encapsulated with Packet-
In control message and forwarded to the controller, (4) controller
feeds the forwarding information back to switch via a “packet-out”
message to the CPU (queue up in Class CP), and (5) finally the CPU
processes control packets in the Class CP, updates and synchronises
flow tables with the specialised hardware, and forwards data pack-
ets to the destination through an output port.

The full encapsulation model is modelled as a continuous time
Markov process with four state variables, {(nc(t), nep(t), npy(t),
ngn(t)), t > 0}. Each of the four state variables symbolised by nc(t),
nep(t), npp(t), and ngy(t) tracks the packet count in the controller,
Class CP, Class HP and specialised hardware. Moreover, each state
variable is a positive integer bounded by oo, K;, K>, and K3 respec-
tively (see definition in Section 4). Thus, the Markov process for
the full encapsulation model at time t be defined as

{nc(®), nep(t), npp (8), ngp (O)} = {w, x,y, z}. (1)

The state transitions of Markov process for the full encapsula-
tion model are shown in Table 1. The state transitions are used
to compute the stationary distribution probability () and is a
well documented matrix-analytic approach [26-28] for the prob-
lem we are solving (thus not described further in this paper). Us-
ing 7, the performance metrics like throughput, average delay and
packet loss probability can be computed for the full encapsulation
method.

Average number of data packets for full encapsulation model (de-
noted by Lg) is the average number of data packets in the CPU and
specialised hardware of the switch for full encapsulation model. In
the full encapsulation model, data packets travel through the spe-
cialised hardware (i.e TCAM), the CPU (i.e the Class HP and Class
CP), and the controller. Therefore, Ly is given as

o Ki K Ks

L= > > 3 (WHX+Y +2)Tunye.)

w=0 x=0 y=0 z=0

Average data packet transfer delay for full encapsulation model (de-
noted by tg) is the mean sojourn time of a data packet in an SDN
network with a single controller and hardware switch with the full
encapsulation packet processing method. Applying Little’s formula

4 D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033

Table 1
Mapping network occurrences to Markov process transitions for Full Encapsulation.
Network occurrence From To Rate
An external data packet enters switch TCAM. w, x, ¥, 2) w,x,y,z+1) M
Switch processor services one packet from TCAM. w, x, ¥, 2) w,x,y,z—1) s (1= B)
One packet forwarded to CPU (Class HP) from TCAM. (w, x, ¥, 2) wx,y+1,z-1) UshB

das

capsulation method and is given as

Packet-In message is sent to controller. w,0,y,2) (W+1,0y—-12) Uy

One packet serviced by Controller forwarded to CPU (Class CP). (w, x, , 2) w-1,x+1,y,2) e

A single packet serviced by switch CPU. (w, x,y, 2) w,x-1,y,2) sp

on Eq. (2), the average time a packet spends in the system is given Table 2
State variables for Internal Buffering.

Leg State Description Range
trg = T 3) ny(t) Number of packets in the internal buffer [0, K4]
ne(t) Number of packets in the controller [0, oo]
where Tg is the total throughput of the switch using the full en- ne(t) Number of packets in the Class CP [0, K1]
Nes(t) Number of packets in the Class HP [0, K>]
ng(t) Number of packets in the specialised hardware [0, K3]

Trg =Tep + (1 = B) T (4)

Packet loss probability (PLgg) is the packet loss probability due to
blocking of packets at the Class CP, Class HP and specialised hard-
ware queue for the full encapsulation model. The packet loss prob-
ability in the full encapsulation model is expressed as

Pleg =1 —Tpg/Aq. (5)

4.2. Internal buffering

The packet processing for the internal buffering model is same
as the full encapsulation model with an additional internal buffer
as shown in Fig. 3. If there is no matching FTE for a flow at the
TCAM, data packets are temporarily buffered in an internal mem-
ory and a portion of the data packet is encapsulated with a Packet-
In message which is then forwarded to the controller. Similarly,
when the controller feedbacks a Packet-Out message with control
packet, CPU instantaneously processes the control packet in Class
CP, updates and synchronises the flow table with the TCAM, ex-
tracts temporarily buffered data packet from the internal buffer
and forwards it to the destination through an output port.

The internal buffering in an OpenFlow switch is modelled as
a continuous time Markov process with five state variables, {(1n,(t),
ne(t), nes(t), nes(t), ngy(t)), t > 0}. The description and range of these
five state variables are shown in Table 2.

Controller

So -
Packet-out I I Packet-in

T Controller
@ Processor J Thp
3)

I________._.

Internal
Buffer I

i) &) Thp)3)

L Class CP I P
(High Priority) -

Hsp

Class HP
(Low Priority)

CPU Processor

Output
Port

Switch

Fig. 3. SDN hardware switching using internal buffering method.

Let the Markov process for the internal buffering model at time
t be defined as

{np(6), ne(£), nes (£). Nes (), gy ()} = {v. w. X, y. z}. (6)

The number of packets in the controller and Class CP are depen-
dent on the number of temporarily buffered packets in the internal
buffer hence x = (v —w) and the state variables {v, w, x, y, z} are
positive integers bounded by {Kj, oo, K1, K3, K3} respectively.

The mapping of network occurrences to transitions for the in-
ternal buffering model are shown in Table 3 and these help us
compute performance metrics for the internal buffering model
through stationary distribution probability .

Throughput of Internal Buffer (denoted by Tj,) is the sum of
probabilities that the internal buffer at the CPU has at least one
data packet to forward with service rate of gy for the internal
buffering model. The throughputs of the internal buffer (T;) and
Class CP (T¢p) for the internal buffering model are the same as the
processing of the packet in Class CP by the CPU is instantly fol-
lowed by the extraction of the packet from the internal buffer [12].
This is also reflected in the last row of Table 3 where the pro-
cessing of the Class CP packet and the extraction of the internally
buffered packet by the CPU occurs at the same time. Therefore, Ty,
is given as

Ky v-1 Ky K3

Tp =Tep = Usp Z Z Z Zﬂv,w,x.y,b (7)

v=1 w=0 y=0 z=0

Average number of data packets for the internal buffering model
(denoted by Ljg) is the average number of data packets in the
CPU and specialised hardware of the switch for internal buffer-
ing model. In the internal buffering model, data packets travel only
through the specialised hardware (i.e TCAM) and the CPU (i.e the
Class HP and the internal buffer). Therefore, Lg is given as

K v K K

Lip= Z Z Z Z(Ver +Z)7Tv,w,x,y,z- (8)

v=0 w=0 y=0 z=0

Average data packet transfer delay for the internal buffering model
(denoted by tj) is the mean sojourn time of a data packet in an
OpenFlow-based SDN with a single controller and hardware switch
with the support for an internal buffer. The average packet transfer
delay of a packet in the internal buffering model is obtained by
applying Little’s theorem to Eq. (8) which is expressed as

tip = Lip/Tjs, 9)

D. Singh, B. Ng and Y.-C. Lai et al./Computer Networks 167 (2020) 107033 5

Table 3
Mapping network occurrences to Markov process transitions for Internal Buffering.
Network occurrence From To Rate
An external data packet enters switch TCAM. (v, w, %,y 2) ww,x,y,z+ 1) M
Switch processor services one packet from TCAM. (v, w, x, 9 2) v, w,x,y,.z—-1) sy (1 =)
One packet forwarded to CPU (Class HP) from TCAM. (v, w, %, ¥, 2) wwxy+1,z-1) WshB
One packet forwarded to the internal buffer from Class HP. (v, w,0,y, 2) wv+1,w,0,y—-1,2) sp
Packet-In message is sent to controller. (v w,0,y, z) wr,w+1,0,y-1,2) Msp
One packet forwarded to switch (Class CP) from Controller. v>0,wxy2z) W>0w-1x+1y2 i
One packet leaves the system from internal buffer triggered by packet-out in Class CP. (v >0, w,x,y,2z) (@w-1,wx-1,y,2) Msp

where Ty is the throughput of the switch using the internal buffer-
ing method, expressed as

Tp =Ty + (1 - B) Ty (10)

Packet loss probability (denoted by PLjg) is the packet loss prob-
ability due to blocking of packets at the Class CP, Class HP, internal
buffer and specialised hardware queue of the switch. The packet
loss probability for the internal buffering model (PLjg) is given as

PLp=1—Tpg/A\. (11)
4.3. Buffer dimensioning

Buffer dimensioning ensures packet losses due to queueing are
below losses that occur in the outgoing links. The losses in the
outgoing links are given by the Bit Error Rate (BER). The BER can
be approximately expressed as a function of the Packet Error Ra-
tio (PER) with the relation: PER =1 — (1 — BER)N where N is the
number of bits in the packet. Following the example of [29,30], we
conduct a very simple approximation of the minimum buffer size
to ensure no queueing losses by assuming all queues are M/M/1
and each queue operates independent of all other queues.

Let Kgp denote the minimum buffer capacity to ensure no
queueing loses for the full encapsulation model. The minimum
buffer capacity for Kg is simply the sum of the minimum buffer
capacities Ky, K, and Ks:

Krg = K71 + K5 + K3,
_ logPER logPER logPER
logpep logpp, — logps,”

where pcp, ppp, and pg, are the server utilisation at the Class CP,
Class HP, and specialised hardware, respectively, which are defined
as

(12)

B B M
Pev = Msp L Msp’ s = M

The minimum buffer capacity for the internal buffer is denoted
as K4 which is calculated as

log PER

Ky = (W (13)
! log pip

where pj; is the server utilisation at the internal buffer of the CPU

which is defined as

A
pib:ﬂ .

Hence the minimum buffer capacity for the internal buffer model
(say KIB) is K4 =+ KFE'

5. Results

The parameters used for analysis and simulation are shown in
Table 4. The table miss probability 8 has a geometrical relationship
with a flow size [20] and is varied from 0.1 to 1, the switch pro-
cessor or CPU service rate (isp) is assumed to be 1000 packets/sec,

Table 4
Parameter used for both Full encapsulation and Internal buffering models.

Parameter Value

Table miss probability, 8 0.1-~1
CPU service rate, s, (packets/sec) 1000

TCAM service rate, [y, (packets/sec) 1000 x fsp
Controller to CPU service rate Ratio (ftc/fdsp), mr 01~2
External data packet arrival rate, A; (packets/sec) 120, 240, 480
Bit Error Rate, BER 10-12

MTU TCP packet size (byte) 1500

the controller to switch processing ratio (m;) is varied from 0.1 to
2, and the specialised hardware service rate (i, — in packets/sec)
is assumed to be 1000 times faster than the CPU. The external ar-
rival rate of data packets (A;) to the switch from each host is fixed
at 120, 240 and 480 packets/sec to investigate the effect of increas-
ing traffic volumes. These values of B, (sp, mr, W, and Ay are ar-
bitrary values used for sensitivity analysis to identify the trends.

The value of the number of bits (i.e. N) for the MTU TCP packet
size of 1500 bytes is 12,000 bits. Similarly, the switch and con-
troller are assumed to be deployed over an Ethernet network for
which the BER is 10~12 [31] and the value of PER is calculated as
1.2 x 10~8 as discussed in Section 4.3.

In the following subsections, queue capacities of the Class HP
and specialised hardware queue is assumed to be half of their
minimum queue capacities determined from buffer dimensioning,
using Egs. (12) and (13), i.e. (’%1 and (%31 respectively. This is
done to take into consideration the packet loss in the switch. Simi-
larly, buffer dimensioning is done for the Class CP (K;) and internal
buffer (K4) to ensure no loss of control packets.

Based on our assumptions, the value of K3 is calculated as 2 for
A1 equal to 120, 240, and 480 packets/sec. Similarly, the values of
K;, K5, and K4 are same and calculated as 5 for A; equal to 120
packets/sec, 7 for A, equal to 240 packets/sec, and 13 for A; equal
to 480 packets/sec.

The discrete-event simulation in this manuscript is based on
Monte Carlo simulation where Monte Carlo simulators use ran-
dom number generators to simulate the system. The events for the
Monte Carlo simulation are related to the transition rates of queue-
ing models which cause models to change their states. Both the
queueing model and discrete-event simulation use the same as-
sumptions. The simulations are conducted with 100 random seeds
and the results are reported with 95% confidence intervals (CI).

To compute the steady-state probabilities using the matrix-
analytic method, a MATLAB toolbox [32] with standard library
functions to solve QBD Markov chains has been used. As discussed
earlier, the full encapsulation is represented as a level-independent
QBD and the internal buffering as a level-dependent QBD. There-
fore, in this paper, Logarithmic Reduction algorithm [33] has been
used for the full encapsulation to compute a rate matrix due to
a faster quadratic convergence rate. Similarly, the Matrix Contin-
ued Fraction (MCF) algorithm [34] has been used for the internal
buffering which is faster and efficient to handle iteration while
computing rate matrices for each level. The generation of block

D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033

m, =

1

m,=1

0.015

- Simulation for A4 = 480 pkts/sec
- Analysis for A, = 480 pkts/sec
-0-- Simulation for A = 240 pkts/sec
- Analysis for 1, =240 pkts/sec
--o-- Simulation for 4 = 120 pkts/sec
-—- Analysis for A, = 120 pkts/sec

0.010

Average packet transfer delay (sec)
0.005

-~ Simulation for A4 = 480 pkts/sec
- Analysis for 4 = 480 pkts/sec

-~ Simulation for A, = 240 pkts/sec
- Analysis for 1, = 240 pkts/sec

- Analysis for &, = 120 pkts/sec

Simulation for &4 = 120 pkts/sec

Packet Loss Probability
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

o
o |
S 0.0 0.2 0.4 0.6, . 0.8 1.0 0.0 0.2 0.4 0.6, . 1.0
Table miss Probability () Table miss Probability (B)
(@) (b)
Fig. 4. Validation of Full encapsulation model by comparing: (a) Average packet transfer delay, and (b) Packet loss probability.
m,=1 m, =1
N | |--e-- Simulation for A = 480 pkts/sec ; --@-- Simulation for A4 = 480 pkts/sec *
© 7 |-+- Analysis for A; = 480 pkts/sec o o | [+~ Analysis for A, =480 pkts/sec !
© | |--e-- Simulation for A, = 240 pkts/sec o S + |--e-- Simulation for A, = 240 pkts/sec 4
— -—+- Analysis for A, = 240 pkts/sec 2 S | |-+~ Analysis for 1, = 240 pkts/sec :
8 o -o-- Simulation for A, = 120 pkts/sec 2 -o-- Simulation for A, = 120 pkis/sec .
@ 5 1 |-+~ Analysis for A; = 120 pkts/sec z" o -—+- Analysis for &, = 120 pkts/sec 0
>° H > 2] h
«© H £ o s
[0] 5 = :
° 8| s] g ;
> s o | é
QO o * o °© s
17} 5 S o ;
g ¢ e !
=8 s) i
= 8 K o 5 :
o= R & i
g 3 g ¢
Qg & {) = ‘
o S & T S b
o o Ry a s 4
© 4 ¢
[4
S o [Te) B
< 84 S g
S S &
B
o
g g s —
q o
0.0 0.2 0.4 0.6, . 0.8 1.0 0.0 0.2 0.4 0.6, . 0.8 1.0
Table miss Probability () Table miss Probability (B)
(@ (b)

Fig. 5. Validation of Internal buffering model in terms of (a) Average packet transfer delay, and (b) Packet loss probability.

matrices which are elements of rate matrices for the full encapsu-
lation and internal buffering are briefly discussed in [16] and [13],

respectively.

5.1. Validation: full encapsulation and internal buffering

The validation of analytical results for the full encapsulation
model and the internal buffering model is done by comparing it
with discrete event simulation results. Figs. 4 and 5 show the
validation results for the full encapsulation and internal buffer-
ing models respectively for increasing 8 with m; = 1. The error
percentage between analysis and simulation predictions for both
average packet transfer delay and packet loss probability is be-
tween 0.6%-2.8% as shown in Figs. 4 and 5. The error for the in-
ternal buffering model is slightly higher than the full encapsula-
tion model by 1%. This range of error is acceptable for the internal
buffering model due to level dependency of packets in the con-
troller and Class CP on the packet temporarily buffered at the in-

ternal buffer [35].

5.2. Comparing computation time

In this subsection, the computation time between analysis and
discrete-event simulation for the full encapsulation and internal
buffering is compared. The computation time for A; equal to 120,
240, and 480 packets/sec is computed. This comparison helps to
observe the computation overload between analysis and simulation
for varying external arrival rate in a hardware switch. The values of
the queue buffer capacities for A; equal to 120, 240, and 480 pack-
ets/sec have been set in the Section 5 along with other parameters.

Fig. 6 shows the average computation time in milli second to
calculate the average packet transfer delay and packet loss proba-
bility for varying ;. Fig. 6(a) shows the computation overload for
the full encapsulation and Fig. 6(b) shows the computation over-
load for the internal buffering. From Fig. 6(a) and (b), it can be

observed that the computation overload for analysis drastically in-
creases for 480 packets/sec compared to discrete-event simulation.

This is because the queue buffer capacities for A; equal to 480
packets/sec is high compared to 120 and 240 packets/sec. Due to

D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033

Full Encapsuation

Internal Buffering

o o
[= S =
N ~
Analysis § Analysis
Simulation Simulation
(=3
2 B [=]
o 0
[Q v
1] 1%}
= £
c (=
< =
<
£o £
c21 c
s So
S 837
e - 4
o (%
: :
o og
84 45 44
30 o
o
- 46 > 45
o o
. 240 480 120 . 240 480
External arrival rate (1) pkts/sec External arrival rate (1) pkts/sec
(a) (b)
Fig. 6. Computation time between analysis and simulation for : (a) Full encapsulation and (b) Internal buffering.
m, = 1 B =0.5
%
£
© —t— Analysis for A, = 480 pkts/sec j SR
£ 7| |—— Analysis for A; = 240 pkts/sec # s
g —— Analysis for A, = 120 pkts/sec I £
> ¥ z
< + <
o = ¥ ©
< 7 ¢ S
o
E ; oA
12} + [7)
=) =
g g ¥ g #
pofil g o #
5] L o) H
= ! 2 FF 7
) -l 3] FEF
< ¥) F& ¥
& e a 8 ifi
SRR v o F
en ! + =) Fa
g g £ irl
5} + o * & F
z & z i 4
8 2 = FF 4
2 a & 2 it 1
g & 81 147 .
% & T‘:‘ ! + 7 —— Analysis for A; = 480 pkts/sec
~ o o~ +T I —— Analysis for A; = 240 pkts/sec
84 P M Il —— Analysis for A; = 120 pkts/sec
s “ﬁﬂfﬁ 4
0.0 2 04 06. 08 10 0.0 05 . 10 . 15, 200
Table miss probability () Controller processing rate/Switch processing rate(m,)

(a)

(b)

Fig. 7. Relative average packet transfer delay between the full encapsulation model and internal buffering model i.e. €4 for (a) increasing 8 and m, = 1; and (b) increasing

m; and 8 =0.5.

a high buffer capacity, the matrix size increases signigicanlty caus-
ing significant increase in the computation time using the matrix-
analytic method. The computation overload for the internal buffer-
ing increases drastically because of a higher multi-dimensional
state space than the full encapsulation.

5.3. Comparing average delay

In this subsection, the average packet transfer delay between
the full encapsulation (denoted by tg as in Eq. (3)) and the in-
ternal buffering (denoted by tjp as in Eq. (9)) is compared. This
comparison helps to investigate the effect of an internal buffer in
a hardware switch with reference to the average packet transfer
delay.

The relative average packet transfer delay (denoted by €,) be-
tween the full encapsulation and internal buffering (both with fi-

nite capacity) is calculated as

g= U=t 00y
trE
A positive value of €; means that the full encapsulation model has
a lower average delay for a packet to travel through the network
compared to the internal buffering model.

Fig. 7 shows the relative average packet transfer delay between
the full encapsulation and internal buffering models in percentile.
In Fig. 7(a), where m, is constant at 1, it can be observed that the
internal buffering method achieves up to 28% reduction in the av-
erage packet delay compared to the full encapsulation. With in-
creasing B, the number of data packets sent to the controller is
increased. These data packets requiring decisioning from the con-
troller are processed by the CPU which has a slower processor than
the specialised hardware. With internal buffering, the CPU encap-
sulates a small part of a data packet (mostly packet header infor-
mation) in the Packet-In message which is processed faster by the

D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033

m, =1
o4 .,
Y o
A % '
L A
Y L A
= b g
=~ [\ A
=) '\ \ \ »:;I?
g \ #
= + L \ FF
= S \ X + A8
g i | f
S ! \ 1 R
5] E ¢ s
& _ Lot S
2 & 1t + + s
<] \ \ \ oo
= s P
._. + Ry
3 i \ \ A
i~ \ + o
0 o \ + R
33 i \ i oA
o gt
I 1 &
2 + L
2 i \ L
<l \ Lo
g Yooy '*}ﬁ*
23 S
"
",
ke 4
¥ I —— Analysis for A; = 480 pkts/sec
gl X P —— Analysis for A; = 240 pkts/sec
7 g —— Analysis for &, = 120 pkts/sec
00 02 04 06, 08 10
Table miss probability ()

(a)

o
2
X
g #
2 i
e F
B 7 Py 4
] F A
=] & +
] # ¥
a i ¥
a i s
2 o
3 H i
K= I
g T 7
2 i
g !
& I
o 4
2]
5 i
= 5 I
L ® r
- i
I —— Analysis for A, = 480 pkts/sec
H —+— Analysis for A, = 240 pkts/sec
i —+— Analysis for A; = 120 pkts/sec
o
=N

010 0s . 10 . 15, 200
Controller processing rate/Switch processing rate(m;)

(b)

Fig. 8. Relative average packet loss probability between the full encapsulation model and internal buffering model i.e. €, for (a) increasing 8 and m, = 1; and (b) increasing
m, and 8 =0.5.

controller than Packet-In messages encapsulated with a full data
packet. The internal buffering significantly reduces the overall de-
lay for increasing traffic forwarded by the specialised hardware as
seen in Fig. 7(a).

With the increasing m;, as shown in Fig. 7(b), the controller
processing capacity increases. However, the performance of con-
troller degrades with increasing flow update requests from the
switch. The real benefit of an internal buffer at the OpenFlow
switch can be observed for a slower controller, represented by
lower m; value, as seen in Fig. 7(b) where the average packet trans-
fer delay is reduced up to 85%. As seen in Fig. 7(b), the relative
average packet transfer delay decreases from 85% to 20% with in-
creasing processing capacity of the controller. With the internal
buffering of packets awaiting decision from the controller, the con-
trol traffic size can be reduced allowing the controller to process
packets faster.

This reduction in average packet transfer delay with lower g
and m;, shows the benefit of internal buffering over the full packet

encapsulation method for hardware switching in an OpenFlow
switch.

5.4. Comparing packet loss probabilities

In this subsection, the average packet loss probability between
the full encapsulation (PLgz in Eq. (5)) and the internal buffering
(PLig in Eq. (11)) is compared. This comparison highlights the ef-
fect of internal buffer in a hardware switch with reference to the
packet loss probability.

The relative packet loss probability (denoted by €;) between the
full encapsulation and internal buffering (both with finite capacity)
is calculated as

_ (PLip — PLgg)
€=

Plre x 100%.

A positive value of €; means the full encapsulation model has a
lower packet loss probability compared to the internal buffering
model.

Fig. 8 shows the relative packet loss probability between the full
encapsulation and internal buffering models in percentile. Fig. 8(a)
and (b) show the relative packet loss probability for increasing B
and my, respectively. In Fig. 8(a), we show that internal buffering
exhibits up to 60% drop in the packet loss probability for lower
packet arrival rates, viz. A1 = 120 or 240 pkts/sec. At higher packet

arrival rate, A, = 480 pkts/sec, the 60% drop in packet loss proba-
bility at lower 8 reduces quickly to 6% as B increases. This is due
to the finite buffer capacity for the internal buffer. The finite in-
ternal buffer can temporarily store limited number of data packets.
With a lower value of 8, the number of data packets to be stored
in the internal buffer is lower resulting in a lower packet loss prob-
ability. Whereas, with a higher value of §, the number of data
packets to be stored in the internal buffer is higher resulting in
a higher packet loss probability. The higher packet loss probability
in the internal buffer reduces the benefit of the internal buffering
model over the full encapsulation model as seen in Fig. 8(a). There-
fore, the full encapsulation method is more appropriate to handle
incoming flows that have a higher table miss probability.
Similarly, in Fig. 8(b), we show that the internal buffering
model exhibits up to 89% reduction in the packet loss probabil-
ity for lower m, and up to 50% reduction for higher m,. It is ob-
served that higher value of A; (i.e 480 pkts/sec) significantly re-
duces packet loss probability for a lower value of m; (i.e m; < 1),
whereas the lower value of A (i.e 120 or 240 pkts/sec) shows bet-
ter packet loss probability for a higher value of m; (i.e m, > 1).
This is because lower m, means the controller is slower than the
CPU and higher m, means the controller is faster than the CPU. The
slower controller processes Packet-In messages slower and conse-
quently increases the blocking of data packets in the CPU. With the
internal buffer, the blocking of data packets in the CPU is signifi-
cantly reduced. On the other hand, the faster controller processes
the Packet-In messages faster and reduces the blocking of data
packets in the CPU. This reduces the benefit of the internal buffer
especially for a higher value of A;.
This shows the benefit of internal buffering over full encapsula-
tion method for the OpenFlow-based hardware switching, that sig-
nificantly reduces the packet loss probability.

6. Traffic and switch parameters

In this section, we perform sensitivity analysis to justify our
selection of values for A; (that are 120, 240, 480 pkts/sec) in
Section 5. We also justify the selection of wg, as 1000 times of
Wsp by varying ms in the full encapsulation and internal buffer-
ing models. Finally, we use realistic values of parameters for Zo-

diac switch based on [20] to compare the full encapsulation and
internal buffering models.

D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033 9

B=0.2

8e-04

7e-04

—e— Simulation for Internal Buffering
-—+- Analysis for Internal Buffering
—e— Simulation for Full Encapsulation
o"?'" -—- Analysis for Full Encapsulation

Average packet transfer delay (sec)
6e-04

5e-04

20 40 600 800 1000
0I?xternal arr?vial rate (&1) [packets/sec]

(a)

@ B -
i
) . p
— | [--e-- Simulation for Internal Buffering
-+- Analysis for Internal Buffering ;
-@-- Simulation for Full Encapsulation "°
<« | [-=+- Analysis for Full Encapsulation "?
S | &
] g
8 5
z &
3)
Qo
c 3 | ,?
38 3
o #
o o
5 §
(o]
a3 4
K &
X
3]
©
o
<+
Q.
3
«~
=)
=]
7
o
o

2 40 690 800 1000
[External arr?vial rate (9»1) [packets/sec]

(b)

Fig. 9. Effect of increasing A; on the full encapsulation method and internal buffering model for (a) average packet transfer delay (b) and packet loss probability.

For this section, the value of g is fixed to 0.2 which is typical 8
value for a flow in an OpenFlow-based SDN switch [20]. This value
of B is also close to the realistic 8 values shown in Table 5.

6.1. Sensitivity analysis by varying Aq

For this analysis, the value of A is varied from 10 to 999 pack-
ets/sec. The maximum value of A is set as 999 packets/sec which
is less than s of 1000 packet/sec to maintain a stationary distri-
bution in the CPU.

Fig. 9 shows the effect of varying A; between the full encap-
sulation and internal buffering models. Fig. 9(a) and (b) show the
average packet transfer delay and packet loss probability, respec-
tively, for increasing A;. From Fig. 9(a), the average packet transfer
delay for both the full encapsulation and internal buffering models
increases with increasing A;. The difference between these models
looks uniform as seen in Fig. 7(a) for B of 0.2.

Similarly, from Fig. 9(b), the average packet loss probability for
both the full encapsulation and internal buffering models are iden-
tical and increases with increasing A;. The differences between
these models are almost negligible as seen in Fig. 8(a) for B of
0.2.

Therefore, the selection of A; as {120, 240, 480} packets/sec or
any other positive values less than us, for given 8 would not af-
fect the relative performance of the full encapsulation and internal
buffering models.

6.2. Sensitivity analysis by varying g,

Next, we study the effects of ug, through mg which is varied
from 10 to 1000 (i.e. ug, = ms x sp). The value of A is fixed to
480 packets/sec.

Fig. 10 shows the effect of varying ms between the full encap-
sulation and internal buffering models. Fig. 10(a) and (b) show the

Table 5

Measured parameters for hardware switches.
Parameter Zodiac P3295
CPU service rate, s, (packets/ms) 1.536 132,000
Controller service rate, (¢, (packets/ms) 38568

Arrival rate, A; (packets/ms)
Average flow size, 1/8 (packets)

{1.8, 12.6, 33.2, 74.6}
(6.6, 153, 9.3, 9.8}

average packet transfer delay and packet loss probability, respec-
tively, for increasing ms. From Fig. 10, the average packet transfer
delay and packet loss probability for both models remain steady
for mg > 100.

From Fig. 10(a), the average packet transfer delay for the full
encapsulation model remains uniformly higher than the internal
buffering model with increasing ms. This is because higher value
of g, reduces the average packet transfer delay uniformly in the
specialised hardware for both models.

Similarly, from Fig. 10(b), the average packet loss probability for
the full encapsulation model and internal buffering model remains
identical. This is because loss incurred by the specialised hardware
is negligible and is almost zero with increasing ms.

Therefore, the selection of mg as 1000 or any other values
greater than 100 for given 8 and A; would not affect the relative
performance of the full encapsulation and internal buffering mod-
els.

6.3. Using realistic values for parameters

Lastly, we validate the models using realistic values of param-
eters for the switches and controllers which is shown in Table 5.
The parameters are measured in a network using a controller im-
plemented on a Dell OptiPlex 9010 running Ubuntu 16.04 LTS (64-
bit), using Intel i7-3770 CPU (3.40 GHz x 8) with 2 x 4
GB DDR3 RAM (1600 MHz each). The Zodiac switch is a low
end switch by Northbound Networks while the P3295 switch is a
medium range switch from Pica8. We use the Ryu controller run-
ning OpenFlow v1.3 to manage the hardware switches.

The remaining parameters other than those shown in
Table 5 are same as in Table 4. Figs. 11 and 12 show bar charts for
the average packet transfer delay and packet loss probability using
the fixed values of {Aq, 1/8}. Fig. 11 shows the average packet
transfer delay for Zodiac and P3295 switches, while Fig. 12 shows
the packet loss probability for Zodiac switch only. This is because
the packet loss probability for P3295 switch is negligible and
almost zero for all fixed values of {X{, 1/8}. The CPU service rate
for P3295 switch is approximately 86,000 times faster than Zodiac
switch resulting in negligible packet losses in P3295 switch.

From Fig. 11(a) and (b), we observe that the internal buffer-
ing model achieves lower average packet transfer delay than the
full encapsulation model as previously observed in Figs. 7(a), 9(a)
and 10(a). Similarly, from Fig. 12, the full encapsulation and inter-

10 D. Singh, B. Ng and Y.-C. Lai et al./Computer Networks 167 (2020) 107033

B =0.2, Ay = 480 packets/sec B =0.2, A, = 480 packets/sec
=3
o +
S -e-- Simulation for Internal Buffering
= =5 - Analysis for Internal Buffering
e S ©-- Simulation for Full Encapsulation
Ty = - Analysis for Full Encapsulation
Q
L g
*
T Zwo
25 =2
B g 23
P 8o
o
b7 —e— Simulation for Internal Buffering <
c -=- Analysis for Internal Buffering o
g —o— Simulation for Full Encapsulation g o
— -—+- Analysis for Full Encapsulation o o
Qo 1 Qe
$ 8 g °
88 3
S|+
[} ° ©
[=) . o w
© i [=3
— . o
o o
> o
< §
3| &
=])
3 L — 8
o (=5
o
S
.. 200 400 600 .800_ . 1000 .. 200 400 600 .800_ . 1000
§p60|allsed hardware to CPU grocessmg Ratio (mg) §pe<3|allsed hardware to CPU %rocessmg Ratio (mg)
(a) (b)

Fig. 10. Effect of increasing (g, via increasing ms on the full encapsulation method and internal buffering model for (a) average packet transfer delay (b) and packet loss
probability.

Zodiac Switch P3295 Switch

0.30
7e-06

O Simulation for Internal Buffering
@ Analysis for Internal Buffering

m Simulation for Full Encapsulation
K Analysis for Full Encapsulation

O Simulation for Internal Buffering
@ Analysis for Internal Buffering

M Simulation for Full Encapsulation
K Analysis for Full Encapsulation

0.25
6e-06

5e-06

0.20

4e-06

3e-06

0.10

Average packet transfer delay (ms)
0.15
2e-06

Average packet transfer delay (ms)

Y m““" -
) Ié § Ei
8 ZIN é § %]
© {12.6, 6} /(33.2 9.3} | ((74.6, 9.8} e {1
e (A1) packets/ms, Flow size 1/B) packets} {Extern
(a) Zodiac (b) P3295

Fig. 11. Average packet transfer delay for fixed {Xq, us;} on the full encapsulation model and internal buffering model using real switch parameters.

nal buffering models both have similar packet loss probability for

Zodiac Switch lower B as previously observed in Figs. 8(a), 9(b) and 10(b).

o
= | Per—— Buttering 2 82 g 902 Therefore, it shows that the models proposed in this paper can
Ef skl . be used to predict an SDN performance with real parameters. The
gg | [Analysis for Full Encapsuiation analysis in this subsection also validates our analysis in Section 5.
o
2 7. Conclusion
iH
o . .
% In this paper, the two packet encapsulation methods based on
3 the OpenFlow specification for hardware switching were compared
53 using queueing models, viz., the full encapsulation model and the
g internal buffering model, respectively.
. From comparisons, the following conclusions were made:
Y|
° v 25 o « Internal buffering significantly reduces the average packet
I% § transfer delay (almost 85%) for a slower controller and (almgst
8 s 2N 20%) for a faster controller than the full packet encapsulation

{Exte%aBI’ gfﬁ}val rate(}%}g'[?%ckels}rgas',z F?6\313 size((: method.

Fig. 12. Packet loss probability for fixed {A1, us,} on the full encapsulation model ' ?nternal bUffer:ng Slgmﬁcantly reduce.s the pad(.e.t loss pmbabll_
and internal buffering model using Zodiac switch’s parameters. The packet loss ity (almOSt.GO/") for a lower table WISS probability and (almost
probability for the P3295 switch is close to zero and therefore not shown. 6%) for a higher table miss probability than the full encapsula-
tion method.

D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033 1

From above-mentioned conclusions, the following guidelines can
be provided to network operators for optimum performance:

+ For a delay-sensitive SDN, network operators can choose the
internal buffering method over the full encapsulation method
when a slower controller is used.

« For a loss-sensitive SDN, the full encapsulation method is
preferred over the internal buffering method for OpenFlow
switches. This choice becomes more evidence with a higher ta-
ble miss probability.

Finally, from sensitivity analyses by varying A; and g, in the
full encapsulation and internal buffering models, following con-
clusions were made to observe similar trends in the performance
analysis irrespective of values used for parameters:

« The value of an external arrival rate at the switch TCAM can be
of any positive values but less than the CPU processor for fixed
table miss probability.

 The value of the switch processor should be at least a hundred
times of the CPU processor for fixed table miss probability and
external arrival rate.

This work can be extended by considering the partial encapsu-
lation of data packets. The partial encapsulation of data packets is
the combination of the full encapsulation and internal buffering.
In the partial encapsulation of data packets, OpenFlow switches
with limited memory use the full encapsulation method when they
run out of memory for the internal buffering. Also, in this work,
the internal buffer is used to temporarily buffer data packets that
are to be forwarded to the controller. However, future works can
consider the use of internal buffering to buffer other data pack-
ets as well to avoid packet losses at the switch with limited buffer
capacities.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

The work of Deepak Singh was supported by a Victoria Doc-
toral Scholarship. Bryan Ng and Winston K.G. Seah were supported
in part by Victoria University’s Huawei NZ Research Programme,
Software-Defined Green Internet of Things project #E2881.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.comnet.2019.107033.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, Openflow: enabling innovation in campus networks, SIG-
COMM Comput. Commun. Rev. 38 (2) (2008) 69-74.

[2] L. Yang, R. Dantu, T. Anderson, R. Gopal, Forwarding and Control Element Sep-

aration (ForCES) Framework, 2004, Internet Engineering Task Force, RFC 3746.

http://www.tools.ietf.org/html/rfc3746.

P. Goransson, C. Black, Software Defined Networks: a Comprehensive Approach,

Elsevier, 2014.

[4] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, A.V. Vasilakos, Software-de-

fined industrial internet of things in the context of industry 4.0, IEEE Sens.].

16 (20) (2016) 7373-7380.

R. Trivisonno, R. Guerzoni, I. Vaishnavi, D. Soldani, SDN-Based 5G mobile net-

works: architecture, functions, procedures and backward compatibility, Trans.

Emerg. Telecommun.Technologies 26 (1) (2015) 82-92.

3

(5

[6] S.Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed software
defined WAN, in: ACM SIGCOMM Computer Communication Review, volume
43, ACM, 2013, pp. 3-14.

[7] Y. Gwon, H.T. Kung, Inferring origin flow patterns in wi-fi with deep learning,
in: ICAC, 2014, pp. 73-83.

[8] B.PS. Sahoo, C.-C. Chou, C.-W. Weng, H.-Y. Wei, Enabling millimeter-wave 5G
networks for massive IoT applications, (2018) arXiv:1808.04457.

[9] ONF, OpenFlow Switch Specification, Technical Report, Open Networking Foun-
dation, 2013.

[10] H.H. Kurmann, H.M. Kurmann, On the Emulation of Impairments in ATM-net-
works, vdf Hochschulverlag AG, 1997.

[11] J. Mao, B. Han, Z. Sun, X. Lu, Z. Zhang, Efficient mismatched packet buffer man-
agement with packet order-preserving for openflow networks, Comput. Netw.
110 (2016) 91-103.

[12] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, W.K.G. Seah, Modelling Switches with In-
ternal Buffering in Software-Defined Networks, in: Proceedings of the 27th In-
ternational Conference on Computer Communication and Networks (ICCCN),
2018. Hangzhou, China.

[13] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, W.K.G. Seah, Analytical modelling of soft-
ware and hardware switches with internal buffer in software-Defined net-
works, J. Netw. Comput. Applica. 126 (2019) 22-37.

[14] D. Kreutz, EM.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, S. Uhlig, Software-defined networking: a comprehensive survey, Pro-
ceed. IEEE 103 (1) (2015) 14-76.

[15] B. Davie, T. Koponen,]. Pettit, B. Pfaff, M. Casado, N. Gude, A. Padmanabhan,
T. Petty, K. Duda, A. Chanda, A database approach to SDN control plane design,
SIGCOMM Comput. Commun. Rev. 47 (1) (2017) 15-26.

[16] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, W.K.G. Seah, Modelling software-defined
networking: software and hardware switches, J. Netw. Comput. Applica. 122
(2018) 24-36.

[17] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, P. Tran-Gia, Modeling
and performance evaluation of an OpenFlow architecture, in: Proceedings of
the 23rd International Teletraffic Congress (ITC), San Francisco, CA, USA, 6-9
November, 2011, pp. 1-7.

[18] K. Mahmood, A. Chilwan, x amp, a sterb, O. #x00F, M. Jarschel, Modelling of
openflow-based software-defined networks: the multiple node case, IET Netw.
4 (5) (2015) 278-284.

[19] W. Miao, G. Min, Y. Wu, H. Wang, J. Hu, Performance modelling and analysis
of software-Defined networking under bursty multimedia traffic, ACM Trans.
Multim. Comput. Commun. Applica. (TOMM) 12 (5s) (2016) 77.

[20] Y. Goto, H. Masuyama, B. Ng, W.K.G. Seah, Y. Takahashi, Queueing Analysis of
Software Defined Network with Realistic OpenFlow-based Switch Model, in:
Proceedings of the IEEE International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), 2016.
London, UK.

[21] A. Fahmin, Y.-C. Lai, M.S. Hossain, Y.-D. Lin, Performance modeling and com-
parison of NFV integrated with SDN: under or aside? J. Netw. Comput. Applica.
113 (2018) 119-129.

[22] M. KuZzniar, P. Peresini, D. Kosti¢, What you need to know about SDN flow
tables, in: Passive and Active Measurement, Springer, 2015, pp. 347-359.

[23] H. Pan, H. Guan,]. Liu, W. Ding, C. Lin, G. Xie, The flowadapter: Enable flexible
multi-table processing on legacy hardware, in: Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, ACM, 2013,
pp. 85-90.

[24] D.B. Rawat, S.R. Reddy, Software defined networking architecture, security and
energy efficiency: a survey, IEEE Commun. Surv. Tutor. 19 (1) (2017) 325-346,
doi:10.1109/COMST.2016.2618874.

[25] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, W.K.G. Seah, Modelling Software-Defined
Networking: Switch Design with Finite Buffer and Priority Queueing, in: Pro-
ceedings of the IEEE 42nd Conference on Local Computer Networks (LCN),
2017. Singapore.

[26] 1. Adan,]. Resing, Queueing Theory, Eindhoven University of Tech-
nology, Eindhoven, 2002 http://www.home.ewi.utwente.nl/~scheinhardtwrw/
queueingdictaat.pdf.

[27] G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi, Queueing Networks and Markov
Chains, 2nd, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

[28] G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in
Stochastic Modeling, 5, Siam, 1999.

[29] RJ. Simcoe, T.-B. Pei, Perspectives on ATM switch architecture and the influ-
ence of traffic pattern assumptions on switch design, SIGCOMM Comput. Com-
mun. Rev. 25 (2) (1995) 93-105.

[30] S.C. Liew, Performance of various input-buffered and output-buffered ATM
switch design principles under bursty traffic: simulation study, IEEE Trans.
Commun. 42 (234) (1994) 1371-1379, doi:10.1109/TCOMM.1994.580245.

[31] ISO/IEC/IEEE International standard for ethernet, ISO/IEC/IEEE 8802-3:2014(E)
(2014) 1-3754, doi:10.1109/IEEESTD.2014.6781545.

[32] D.A. Bini, B. Meini, S. Steffe, B. Van Houdt, Structured markov chains solver:
software tools, in: Proceeding from the 2006 workshop on Tools for solving
structured Markov chains, ACM, 2006, p. 14.

[33] G. Latouche, V. Ramaswami, A logarithmic reduction algorithm for
quasi-birth-death processes, J. Appl. Probab. 30 (3) (1993) 650-674.

[34] T. Hanschke, A matrix continued fraction algorithm for the multiserver re-
peated order queue, Math. Comput. Model. 30 (3-4) (1999) 159-170.

[35] T. Dayar, W. Sandmann, D. Spieler, V. Wolf, Infinite level-dependent QBD pro-

https://doi.org/10.1016/j.comnet.2019.107033
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0001
http://www.tools.ietf.org/html/rfc3746
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0006
http://arxiv.org/abs/1808.04457
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0021
https://doi.org/10.1109/COMST.2016.2618874
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0023
http://www.home.ewi.utwente.nl/~scheinhardtwrw/queueingdictaat.pdf
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0026
https://doi.org/10.1109/TCOMM.1994.580245
https://doi.org/10.1109/IEEESTD.2014.6781545
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032

12

D. Singh, B. Ng and Y.-C. Lai et al./ Computer Networks 167 (2020) 107033

cesses and matrix-analytic solutions for stochastic chemical kinetics, Adva.
Appl. Probab. 43 (4) (2011) 1005-1026.

Deepak Kumar Singh received the received the Dr.Eng.
degree from Victoria University of Wellington, New
Zealand, in 2019. He is currently working as a Re-
search Assistant in Victoria University of Wellington, New
Zealand. His research focuses on modelling of Software-
Defined Network, data modelling and recommendation
system.

Bryan Ng completed his Ph.D. (2010) in the area of
communication and networking. He held teaching & re-
search positions in Malaysia and France in addition to at-
tachments to commercial research laboratories Intel, Mo-
torola, Panasonic and Orange Labs. His research inter-
est include performance analysis of communication net-
works, modelling networking protocols and software de-
fined networking.

Yaun-Cheng Lai received his Ph.D. degree in the Depart-
ment of Computer and Information Science from National
Chiao Tung University in 1997. He joined the faculty of
the Department of Information Management at National
Taiwan University of Science and Technology in August
2001 and has been a professor since February 2008. His
research interests include performance analysis, protocol
design, wireless networks, and and network security.

Ying-Dar Lin is a Distinguished Professor of computer
science at National Chiao Tung University (NCTU), Taiwan.
He received his Ph.D. in computer science from the Uni-
versity of California at Los Angeles (UCLA) in 1993. He
was a visiting scholar at Cisco Systems in San Jose, Cal-
ifornia, during 2007008, and the CEO at Telecom Technol-
ogy Center, Taipei, Taiwan, during 2010-2011. Since 2002,
he has been the founder and director of Network Bench-
marking Lab (NBL, www.nbl.org.tw), which reviews net-
work products with real traffic and has been an approved
test lab of the Open Networking Foundation (ONF) since
July 2014. He also cofounded L7 Networks Inc. in 2002,
which was later acquired by D-Link Corp. His research in-
terests include network security, wireless communications, and network cloudifica-
tion. He is an IEEE Fellow (class of 2013), IEEE Distinguished Lecturer (2014-2017),
and ONF Research Associate, and is the Editor-in-Chief of IEEE Communications Sur-
veys and Tutorials (COMST). He published a textbook, Computer Networks: An Open
Source Approach (McGraw-Hill, 2011).

Winston K.G. Seah received the Dr.Eng. degree from Ky-
oto University, Kyoto, Japan, in 1997. He is currently Pro-
fessor of Network Engineering in the School of Engineer-
ing and Computer Science, Victoria University of Welling-
ton, New Zealand. Prior to this, he has worked for more
than 16 years in mission-oriented industrial research, tak-
ing ideas from theory to prototypes, most recently, as a
Senior Scientist in the Institute for Infocomm Research,
. Singapore. His latest research interests include Internet
of Things, wireless sensor networks powered by ambient
energy harvesting, wireless multi-hop networks, software
defined networking, and 5G access protocols for machine-
type communications.

http://refhub.elsevier.com/S1389-1286(19)30842-4/sbref0032
http://www.nbl.org.tw

	Full encapsulation or internal buffering in OpenFlow based hardware switches?
	1 Introduction
	2 Related work
	3 Generic model for an OpenFlow based hardware switch
	4 Queueing models for packet encapsulation methods
	4.1 Full encapsulation
	4.2 Internal buffering
	4.3 Buffer dimensioning

	5 Results
	5.1 Validation: full encapsulation and internal buffering
	5.2 Comparing computation time
	5.3 Comparing average delay
	5.4 Comparing packet loss probabilities

	6 Traffic and switch parameters
	6.1 Sensitivity analysis by varying λ1
	6.2 Sensitivity analysis by varying μsh
	6.3 Using realistic values for parameters

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Supplementary material
	References

