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A B S T R A C T

Modern hackers display increasing sophistication. Intrusion detection systems, both network-based and host-
based, now utilize machine learning for improved detection of such advanced attacks. While most of these
systems rely on a single data source for training, practical scenarios often involve attack features scattered
across multiple sources, posing challenges to the system’s effectiveness in detection. This impairs their potential
for attack detection. Thus, this study assesses three host-based data sources—network traffic, system logs, and
host statistics. It evaluates and compares their combined detection capabilities across diverse attack stages
and types. In the proposed framework, network traffic data is handled by a Convolutional Neural Network
(CNN) for improved automatic feature selection. System log data are processed using Long Short-Term Memory
(LSTM) and an attention model to enhance temporal relationship exploration. Host statistics are processed by
a Deep Neural Network (DNN) to improve classification performance. Experimental results show that the F1-
scores reach 1.0 for all considered attacks and attack stages when all three data sources are utilized in the
detection process. Additionally, employing diverse models based on the data type leads to improved results,
a fact exemplified by Lin et al. (2022) which exclusively utilized XGBoost. The host statistics were found to
be highly effective in detecting attacks and were thus investigated further for different attack methods and
attack stages. The results showed that the disk usage percentage (DSK), minor memory faults (MINFLT), major
memory faults (MAJFLT), total virtual memory growth during the last interval (VGROW), and total resident
memory growth during the last interval (RGROW) were primarily affected by all the attacks in the initial
access and command and control stages. By contrast, in the impact attack stage, the affected system resources
varied widely depending on the particular attack.
. Introduction

Cyberattacks have consistently resulted in substantial losses for both
ndividuals and businesses. Despite the existence of numerous defense
echanisms, the advancement of technology has led to increasingly

omplex cyberattack behaviors, continuously introducing new attack
ethods that can penetrate existing defense technologies. Of the many

orms of attack which may be launched nowadays, advanced persistent
hreat (APT) attacks are particularly complex and dangerous. APTs are
ell-funded and traditionally associated with nation-state sponsors or
ery large organizations. They typically lurk within the target system
or long periods of time before being activated and then conduct
omplex and sophisticated attacks that are hard to detect by traditional
nti-virus software. APT attacks have the ability to cause great damage
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and thus robust systems capable of detecting their presence at the
earliest stage possible are urgently required [1–3].

One of the most common methods for achieving network security is
that of intrusion detection systems (IDSs). The traditional approach is
the signature-based IDS, which construct a database of signature values
based on known attacks and then raise an alert whenever the attack
pattern matches one of the signature values stored in the database.
However, while signature-based IDS provide a good performance in
detecting known attacks, they cannot guard against zero-day attacks,
for which no previous signature exists. Thus, anomaly-based systems
have found increasing use in detecting zero-day vulnerabilities in recent
years. Anomaly-based IDS record normal network behaviors and then
vailable online 12 October 2023
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evaluate new data as malicious if their patterns deviate significantly
from previous normal behaviors. Various machine learning (ML) meth-
ods have been proposed for learning normal data patterns, including
support vector machines (SVMs) [4] and k-nearest neighbor (k-NN) [5].
Aldweesh et al. [3] showed that DL methods, such as CNN and LSTM,
are more effective than traditional ML methods such as SVM and
decision tree (DT) in implementing IDS systems.

DL-based IDS methods can be broadly classified as either NIDS or
HIDS, depending on the data source they use. In particular, NIDS sys-
tems are deployed on the gateway of a network segment to analyze and
monitor any abnormal behavior of the network packets. By contrast,
HIDS systems are installed on a host system to determine whether
or not it is under attack by monitoring changes in the log sources,
e.g., the network traffic, system logs, host statistics, and so on. Unlike
NIDS systems, which collect packet data from the entire intranet, HIDS
systems collect incoming and outgoing packets from a single host. The
system logs record all the events that occur on the operating system,
and the host analyzes the usage of the various system resources while
the system is running, such as the CPU usage, memory usage, and so
forth, in order to detect possible attacks.

To effectively analyze the approaches and techniques of attacks,
MITRE presented ATT&CK (Adversarial Tactics, Techniques, and Com-
mon Knowledge) [6] in 2013 to integrate and categorize the lifecycle
and various stages of cyberattack behaviors and formulated 14 tactics,
188 techniques, and 379 sub-techniques in 2022. MITRE ATT&CK
shows that network attacks are not a single action, but are in fact
composed of multiple attack techniques applied in different stages.
Therefore, the ability to recognize attacks at different stages is essential
in detecting complex attacks such as APTs [7–9]. In addition, different
data sources provide an effective means of detecting different attacks
at different stages [10]. For example, network traffic, system logs, and
host statistics provide a particularly good detection performance during
the command and control(C&C), initial access, and impact stages of an
attack, respectively. In general, different data sources provide different
detection capabilities when under attack. For example, Mirai produces
more network traffic records, while Disk Wipe generates more host
statistics records. Therefore, detecting different kinds of attacks using
only a single data source is extremely challenging. Compared to an IDS
with a single data source, we believe a HIDS with multiple data sources
can do better defense and analysis.

In recent years, many DL-based IDSs based on a single data source
have been proposed, where these data sources generally take the form
of network traffic [11,12], system logs [13,14], and host statistics [15,
16]. However, very few studies have considered the use of multiple data
sources [10,17]. Moreover, most previous methods have not considered
the problem of detecting attacks at different stages (e.g., initial access,
C&C, and impact). We believe that designed with multiple data sources
and detection by attack stages can provide a more comprehensive
understanding of attacks. Finally, even when multiple data sources
have been used, they have invariably been treated simply as different
features, or the same ML model has been applied to every source. In
fact, however, different data sources have different characteristics, and
should be handled using different DL models to improve the detection
accuracy.

Accordingly, the present study proposes an integrated host-based
IDS framework based on three data sources, namely network traffic,
system logs, and host statistics. Depending on its data characteristics,
each data source is processed by a suitable pre-processing method and
then handled by a different DL model. In the testing stage, each pre-
trained DL model predicts the data from different sources in the same
time slot. The prediction results of the three models for each time
slot are then evaluated by an ensemble method to determine the final
prediction outcome for the system status. The detection ability of each
data source is evaluated for seven different attacks and three different
attack stages using the F1-score. The F1-score is additionally evaluated
2

for seven different combinations of the data sources. It is shown that, in
most cases, the detection results obtained using multiple data sources
for prediction purposes have a higher F1-score than those which use a
single data source alone.

The main contributions of this study are as follows:

• Different pre-processing techniques and DL models are used to
handle different data sources in order to improve the detection
performance of the respective model.

• An HIDS framework based on multiple data sources is proposed
which exploits the different information and detection capabil-
ities of diverse data sources to achieve a more comprehensive
understanding and detection of sophisticated attacks.

• The F1-score is evaluated for seven different combinations of data
sources in seven different attacks and three attack stages.

• The host statistics data are analyzed in order to understand the
amount and type of system resources consumed by different
attacks in different attack stages and hence to gain insights into
the means by which the DL model is able to classify different
attack types based on the host statistics.

The remainder of this paper is organized as follows. Section 2
surveys the existing state-of-the-art for anomaly intrusion detection.
Section 3 defines the notations and problem considered in the present
study. Section 4 introduces the pre-processing mechanisms and DL
models applied to the different data sources. Section 5 presents and
discusses the experimental results. Finally, Section 6 provides some
brief concluding remarks and indicates the intended direction of future
research.

2. Related work

Table 1 summarizes the current state-of-the-art ML-based IDS meth-
ods, where these methods are classified into four categories depending
on their data source, namely network traffic, system logs, host statistics,
and multiple sources.

2.1. Network traffic

Many studies have proposed DL models for abnormal network traffic
detection. Generally speaking, these models use unsupervised learning
methods to detect new attacks by extracting the features automatically
from the network traffic. For example, Li et al. [11] used random forest
(RF) to filter out the critical features of the network traffic and then
used these features together with an autoencoder to perform training.
In a previous study [12], the present group used a CNN to extract
the features of the network traffic and then used an autoencoder to
train the extracted features. Notably, for each flow, only the first few
packets (packed into segments with a fixed length of 60 bytes) were
processed, and hence the computation time and memory space were
greatly reduced compared to that of statistical-based feature extraction
methods [11,18]. In addition to autoencoder, CNN is also suitable
for training complex data. Zhang et al. [18] used the SMOTE-ENN
algorithm to solve the imbalanced data issue inherent in network traffic
datasets and converted the resulting data into an image format for CNN
training purposes. Zeng et al. [19] proposed an integrated framework
designated as Deep-Full-Range for intrusion detection based on three
different DL models, namely CNN for learning the features of the
raw traffic in the spatial range, LSTM for learning the features in the
temporal domain, and stacked autoencoder (SAE) for extracting the
features from the coding characteristics. Sun et al. [20] proposed a
hybrid network for intrusion detection, in which CNN was used for
feature extraction and LSTM for training. The present group recently

proposed a novel packet-level IDS based on LSTM [21].
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Table 1
ML-based anomaly intrusion detection approaches.

Paper Data Sources Dataset Algorithm Performance

Network System Host
traffic logs statistics

[11] V CSE-CIC-IDS 2018 RF+Autoencoder 0.53∼1.00 (AUC)
[12] V USTC-TFC 2016 CNN+Autoencoder 0.99∼1.00 (F1)
[18] V NSL-KDD SMOTE-ENN+CNN 83% (Acc)
[19] V ISCX VPN-nonVPN, ISCX 2012 CNN+LSTM+SAE 0.96∼1.00 (F1)
[20] V CICIDS2017 CNN+LSTM 98.67% (Acc)

[21] V ISCX2012, USTC-TFC2016, LSTM 0.97∼1.00 (F1)Mirai-RGU, Self-collected
[13] V HDFS, OpenStack LSTM 0.96∼0.98 (F1)
[14] V HDFS, BGL Attention-based LSTM 0.95∼0.96 (F1)
[22] V HDFS, self-collected Attention-based Bi-LSTM 0.91∼0.99 (F1)
[23] V Self-collected CNN+LSTM 78.6% (Acc)
[24] V HDFS, BGL multi-head self-attention 0.94∼0.96 (F1)

[25] V HDFS, BGL embedding+LSTM+ 93%∼99% (Acc)self attention

[15] V Self-collected One-class K-means+ 91% (Acc)Univariate Gaussian
[16] V Self-collected SVM 99% (Acc)
[26] V Self-collected SVM+TFPG 98.71% (Acc)
[27] V V Self-collected RF 100% (Acc)

[17] V V Self-collected OneR, DT, NB, BN, LR, 91%∼100% (Acc)RF, KNN, SVM, K-means
[10] V V V Self-collected XGBoost 0.97 (F1)

Ours V V V CR»ME CNN, DNN, 1.00 (F1)LSTM+self-attention
2.2. System logs

Log files record all the events in the operating system in a text
format. Sequence DL models such as RNN and LSTM are well suited
to natural language processing (NLP) problems, in which the aim is
to learn the temporal relationships among sentences. Thus, many IDSs
which use system logs as the data source employ sequence models
as the DL model. For example, in the DeepLog system proposed in
DeepLog [13], LSTM is used to automatically learn the log patterns
under normal execution and to detect anomalies when the log patterns
deviate from the learned model. In the LogAnomaly framework pro-
posed in [14], the original log files are first converted into templates
using the FT-Tree log parser, and the templates are then converted
into vectors using DLCE. Finally, the log file data are trained using an
Attention-based LSTM. Once a certain amount of new data have been
collected, they are added to the dataset, and the model is retrained.
In the LogRobust system [22], the original logs are converted into
vectors using the Drain log parser and Fast-Text tools, and TF-IDF is
then employed to determine the relative importance of the data items
and adjust the weights accordingly. Finally, the dataset is trained using
an Attention-based Bi-LSTM. Tan et al. [23] converted the system log
data into 2D matrices using a word embedding approach and then
employed a CNN-LSTM hybrid DL model to extract the features and
train the model. Wang et al. [24] used BERT to extract the semantic
vectors of the data log, and then employed a multi-head self-attention
mechanism to learn the context information of the log sequence. Yang
et al. [25] proposed an intrusion framework based on LSTM with
self-attention and showed that the framework not only improved the
detection accuracy compared to previous methods, but also reduced the
training time and testing time.

2.3. Host statistics

Most IDSs that use host statistics as the training data are designed
for IoT equipment and mobile devices (e.g., Android). Since such
devices usually have only limited computing resources, the IDS systems
3

are generally implemented using simple ML or statistical methods. For
example, Ribeiro et al. [15] used a univariate Gaussian algorithm and
K-means algorithm to analyze and evaluate the host statistics of An-
droid. Ham et al. [16] used SVM as a classifier due to its ability to filter
out unnecessary features automatically by reducing the dimensionality.
Sun et al. [26] employed a two-stage detection scheme using SVM and
the Temporal Failure Propagation Graph (TFPG) algorithm, designed
for smart meter applications, effectively reducing the false alarm ratio
and conserving computational resources.

2.4. Multiple data sources

Several previous IDS systems use multiple data sources. For ex-
ample, the E-Spion system in [27] provides a three-layer intrusion
host-based detection service at an edge server for the Internet of Things
(IoT) devices by monitoring the white-list of all running processes
in one layer and detecting the system call and host statistics using
an RF approach in the other layers. Ribeiro et al. [17] presented an
IDS system for Android mobile devices based on network traffic and
host statistics and evaluated the performance of many different ML
methods, including One Rule (OneR), DecisionTree (DT), Naïve Bayes
(NB), BayesianNetwork (BN), Logistic Regression (LR), RF, KNN, SVM,
and K-means. Lin et al. [10] used XGBoost to train three different data
sources, namely system logs, network traffic, and host statistics, and
then compared the detection performance of seven different combina-
tions of these data sources. In general, the results showed that using
multiple data sources to detect malware was more effective than using
single data sources alone.

Although some previous studies used multiple data sources, they
either treated different data sources as a single type of data source or
used the same ML model to handle all of the data sources. However,
intuitively, the detection performance of IDS systems is likely to be
improved by utilizing different DL models to learn the features of the
different data sources (e.g., sequence models to learn the temporal
relationships between the sentences in system logs, CNN to learn the
features of network traffic, and so on). This motivates the present work
to adopt different DL models for different data sources.
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Table 2
Notation table.

Category Notation Description

Datasets
𝐷𝑛𝑡 Network traffic dataset
𝐷𝑠𝑙 System logs dataset
𝐷ℎ𝑠 Host statistics dataset

Models
𝑀𝑛𝑡 Pre-trained network traffic model
𝑀𝑠𝑙 Pre-trained system logs model
𝑀ℎ𝑠 Pre-trained host statistics model

3. System model and problem formulation

This section defines the notations used in the present study and
introduces the considered problem.

3.1. Notations

Table 2 defines the notations used in the present work. In the
proposed framework, three data sources are collected from [28]: the
network traffic dataset 𝐷𝑛𝑓 , the system logs dataset 𝐷𝑠𝑙, and the host
tatistics dataset 𝐷ℎ𝑠. The three data sources are pre-processed in
ccordance with their data type and, according to the timestamp, 80%
f the data in each data source are taken as training data, while the
emaining 20% are retained as testing data. The pre-processed data
re used to train three DL models, where these models are chosen
n accordance with the particular characteristics of the corresponding
ata source. The training process yields three trained models, namely
he pre-trained network traffic model 𝑀𝑛𝑡, the pre-trained system logs

model 𝑀𝑠𝑙, and the pre-trained host statistics model 𝑀ℎ𝑠. Finally, the
esting data are applied to each of the pre-trained models for prediction
urposes, and the ensemble method is used to combine the prediction
esults of each model and generate the overall predicted state of the
etwork (normal or under attack).

.2. Problem statement

• Input: Labeled 𝐷𝑛𝑡, labeled 𝐷𝑠𝑙, and labeled 𝐷ℎ𝑠.
• Output: Label prediction (benign or malicious).
• Objective: Optimize performance of malicious behavior detection

on a host using deep learning method.

– Performance metric: F1-score

• Constraint: Test based on a combination of different data sources.

As described in Section 3.1, the inputs to the proposed IDS frame-
ork comprised three host-based datasets, namely 𝐷𝑛𝑡, 𝐷𝑠𝑙, and 𝐷ℎ𝑠. A

raining process was performed using different DL models to obtain pre-
rained models 𝑀𝑛𝑡, 𝑀𝑠𝑙, and 𝑀ℎ𝑠, respectively. Finally, an ensemble
pproach was used to predict the network status in each time slot as
ither benign or malicious. Experiments were conducted to compare
he F1-scores of seven different combinations of the data sources across
even attacks and three attack stages. (Note that the seven combina-
ions of data sources consisted of the three individual data sources,
hree combinations of two data sources, and one combination of all
hree data sources.)

. Multi-datasource multi-stage deep learning framework for ma-
icious intrusion detection

.1. Overview

The present study develops a DL-based HIDS system and eval-
ates its detection capabilities for seven different combinations of
ata sources. Fig. 1 presents a schematic overview of the proposed
4

v

ramework. As shown, three data sources, 𝐷𝑛𝑡, 𝐷𝑠𝑙, and 𝐷ℎ𝑠, are col-
ected from CR»ME [28], a toolchain capable of simulating various
ttacks. The datasets are pre-processed using different pre-processing
echniques chosen in accordance with the data characteristics of the
orresponding data source. For each data source, 80% of the pre-
rocessed data are selected for DL model training. To improve the
etection performance, the pre-processed data from the different data
ources are trained using different state-of-the-art DL models in accor-
ance with their particular characteristics. The testing data are sorted
y time window and applied to the trained DL models for prediction
urposes. Finally, the ensemble method is employed to predict the
tate of each time slot as either benign or malicious. The detection
erformance of the proposed method is evaluated for seven attack
odes and three attack stages using the F1-score metric.

.2. Data preprocessing

Three host-based datasets (𝐷𝑛𝑡, 𝐷𝑠𝑙, and 𝐷ℎ𝑠) were collected from
he CREME testbed [28]. Before feeding the data sources to the DL
odels, they were pre-processed using the methods described in the

ollowing.
Network traffic: High-speed network environments usually gener-

te massive amounts of network traffic. Thus, in a previous study by
he present group [12], a pre-processing stage was applied to reduce
he burden of collecting and detecting the packets and speed up the
rocessing time by extracting only a few packets from each flow.
he present study adopts a similar approach. In particular, the PCAP
iles collected from CREME were converted into flows in accordance
ith their 5-tuple information (source IP, destination IP, source port,
estination port, and protocol). If the duration of a flow was longer
han that of a time slot (default time: 1 s), the flow was cut into sub-
lows. The CREME flows were labeled as either benign or malicious
ased on their source and destination IPs; thus, the IP addresses were
nonymized. Finally, as in [12], a fixed amount of data (e.g., the first
0 bytes of the first three packets) was extracted from each flow. If
he number of packets in the flow was less than three, or the total
umber of bytes belonging to a packet was less than 60, the data was
added with zeros. The extracted 180 bytes were then converted into
one-dimensional gray-level image consisting of 180 pixels.

System logs: CR»ME converts the original log files into templates
sing the parsing tool Drain [29]. In the present study, the words
n these templates were processed by Word2vec to produce an n-
imensional vector (default n = 100) from which the semantic re-
ationships among the words were then learned. In particular, each
emplate was transformed into a two-dimensional array, where the
irst dimension represented the word index and the second dimension
as the corresponding n-dimensional word vector. The TF-IDF method
escribed in [30] was then used to determine the importance of each
ord in the vector of templates in order to adjust their weights and
erge them into a single n-dimensional vector. The sequence length
as taken as a fixed window with a size of 11. In other words, eleven

emplates were combined into one vector. If the number of templates
as insufficient, the sequence was simply padded with zeros.

Host statistics: The host statistics indicate the status of the var-
ous system resources during each process, such as the CPU usage
nd memory usage (see Table 3). In the present study, each process
as considered as a data point, and multiple system resources were
ssociated with each point. Each system resource usage statistic was
hus initially converted to a form that the DL model could identify,
.g., 15% to 0.15, 42 K to 42,000, and so on. After the conversion
rocess, each data point was represented as a vector, in which each
eature represented the usage status of a particular system resource.
inally, min–max normalization was performed to convert each data

alue to the range of 0 to 1.
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Fig. 1. Overview of system structure.
Table 3
Definition of host statistics features.

Feature Feature name Description

1 RDDSK The number of read data transfer issued physically on disk.
2 WRDSK The number of write data transfer issued physically on disk.
3 WCANCL The number of write data been removed before transfer issued physically on disk.
4 DSK The percentage of total disk accesses.
5 MINFLT The number of page faults has been solved by reclaiming the requested memory page from the free list of pages.
6 MAJFLT The number of page faults has been solved by creating/loading the requested memory page.
7 VSTEXT The virtual memory size used by the shared text.
8 VSIZE Total virtual memory usage.
9 RSIZE Total resident memory usage
10 VGROW The amount of virtual memory that the process has grown during the last interval.
11 RGROW The amount of resident memory that the process has grown during the last interval.
12 MEM Memory usage.
13 TRUN Number of threads within this process that are in the state ‘running’ (R).
14 CPU CPU utilization.
4.3. Deep learning models

The pre-processed data sources (network traffic, system logs, and
host statistics) were handled using three different DL models, as de-
scribed in the following.

Network traffic: CNNs provide an outstanding performance for
many computer vision and image processing tasks, such as image classi-
fication [31]. Moreover, many studies have applied 1D-CNNs to analyze
network traffic flows [12,19]. The superior performance of CNNs in
such tasks stems from their ability to automatically extract and learn
the useful features from the data. Accordingly, in the present study,
a CNN was deliberately chosen as the DL model for network traffic
training. In particular, the one-dimensional images of the network
traffic data (each with a size of 180 pixels) were taken as the input of
the CNN and were processed by two convolutional layers followed by
a max pooling layer. A batch normalization operation was performed
after each convolutional layer to avoid overfitting and the vanishing
gradient problem. Following the max pooling layer, a flattened layer
and three dense layers were used to conduct learning. ReLU was used
as the activation function in all of the layers other than the last dense
layer, which used the sigmoid function. Finally, binary cross-entropy
is used as the loss function. The aim of the CNN model was to classify
each flow as either benign or malicious; thus, the final output of the
model had the form of either zero or one, where zero indicated that
the flow was benign and one indicated that the flow was malicious.
The architecture of the CNN model is shown in Table 4.

System logs: The system logs dataset was handled using a sequence
model due to its ability to learn the temporal relationships among
sentences. Vaswani et al. [32] proposed the transformer approach. The
most important mechanism of the transformer is self-attention, which is
able to check attention with all words in same sentence at once, and the
performance is better than the traditional attention approach. Table 5
shows the sequence model implemented in the present study. As shown,
the first and second layers consisted of a LSTM and self-attention model,
respectively. The output of the self-attention model was processed by a
global average pooling 1D layer to return a fixed-length output vector
for each example by averaging the sequence dimension. Finally, a dense
layer was employed to learn binary classification. In implementing
5

Table 4
Network traffic DL model architecture.

Layer Type Filters/neurons Stride Padding

1 1D/ConV+Relu+ 32 (kernel size= 6) 1 5Batch Normalization

2 Maxpooling Kernel size = 2 2 –

3 1D/ConV+Relu+ 64 (kernel size= 6) 1 5Batch Normalization

4 Maxpooling Kernel size = 2 2 –

5 Dense+ 1024 – –Batch Normalization

6 Dense+ 25 – –Batch Normalization

7 Dense 1 – –

Table 5
System logs DL model architecture.

Layer Type Output shape Parameter#

1 LSTM (None, 11, 64) 67840
2 SeqSelfAttention (None, 11, 64) 4097
3 GlobalAveragePooling1D (None, 64) 0
4 Dense (None, 1) 65

the learning process, the sigmoid function was used as the activation
function, and binary cross-entropy was used as the loss function.

Host statistics: Most previous IDS studies based on host statistics
focus on IoT or mobile devices and use traditional ML or statistical
methods due to the limited computing resources of such devices [15,
16]. However, preliminary experiments conducted in the present study
showed that a DNN model outperformed these methods in handling
host statistics data. Thus, the present study adopted the DNN model
shown in Table 6, consisting of five dense layers. ReLU was used
as the activation function in the first four layers, while sigmoid was
used in the final layer. The model was implemented using the binary
cross-entropy loss function.
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Table 6
Host statistics DL model architecture.

Layer Type Output shape Parameter#

1 Dense (None, 32) 512
2 Dense (None, 64) 2112
3 Dense (None, 128) 8320
4 Dense (None, 256) 33024
5 Dense (None, 1) 257

Fig. 2. Single model prediction.

4.4. Ensemble

To evaluate the detection performance of the proposed framework
for different combinations of data sources, the ensemble method was
used to combine the prediction results of each model for the network
status (i.e., normal or under attack) in each time slot. As described in
Section 3.1., for each model, the data in the corresponding dataset (𝐷𝑛𝑡,
𝐷𝑠𝑙, or 𝐷ℎ𝑠) was divided into a training set and a test set according to
the timestamp. For example, timestamps 1637482171 to 1637482174
were chosen as training data, while timestamp 1637482175 was chosen
as testing data. The training sets were used to train the DL models of
the three data sources (𝑀𝑛𝑡, 𝑀𝑠𝑙, and 𝑀ℎ𝑠). The testing sets were then
used to generate predictions of the network status in each time slot.
Finally, the predictions of the three models were ensembled to make a
final prediction of the network status.

Fig. 2 illustrates the time slot prediction process of each DL model.
In practice, each time slot may contain several data points, and each
data point may yield a different prediction result. Thus, the final
prediction result of the model is based on the presence (or otherwise)
of a malicious prediction among all the data points. That is, if even one
of the data points in the time slot is judged to be malicious, the entire
time slot is deemed to be malicious. Conversely, if all of the data points
in the time slot are predicted to be normal, the time slot is classified as
benign.

Since the three data sources are partitioned into the training set
and testing set using the same timestamps, the predictions of the three
models for each timestamp are aligned with one another, as shown in
Fig. 3. If one of the data sources does not have any data points in a
time slot, system status of that data source is assumed to be benign in
that time slot. Under the ensemble scheme considered in the present
study, if all the pre-trained models predict the time slot to be benign,
the time slot is assumed to be benign. However, if even one of the pre-
trained models predicts the time slot to be malicious, then the time slot
is considered to be malicious. The rationale for this approach lies in the
fact that an attack generally results in only very few data points. Thus,
if a malicious data point appears in a time slot, it is likely that an attack
occurred in that time slot, irrespective of the prediction outcomes of the
other models.
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Fig. 3. Prediction outcomes of multiple models in each time slot.

5. Evaluation

5.1. Experimental design

In this section, we describe the experimental environment, the
content of the dataset used in the experiments, and the evaluation
metrics.

5.1.1. Experimental setup
The experiments were conducted on a server-class machine with an

Intel(R) Xeon(R) Silver 4116 CPU, Nvidia GV100GL GPU, and 256G
memory. The DL models were implemented using TensorFlow 2.3.0 and
Keras 2.4.0, with CUDA version 11.0. The operating system was Ubuntu
18.04.

5.1.2. Datasets
CR»ME is a toolchain that emulates seven types of attacks and

automatically collects the simulated data [28]. The collected data
include network traffic, system logs, and host statistics, where these
data are labeled as either normal or abnormal. CR»ME is hosted on
a set of virtual machines (VMs) in an emulated attack environment
and can run on Windows or Linux. The benign and target servers
run on Metasploitable 3 (Ubuntu 14.04), emulating multiple legitimate
services such as Web, Email, and FTP, while the attack hosts run on
Kali Linux. The host-based data used in the present study were collected
from a single VM which emulated both benign and malicious behaviors.

CR»ME can emulate seven attacks: Mirai, Ransomware, Resource
Hijacking (Mining), Disk Wipe, Endpoint Denial of Service (endpoint
DoS), Data Theft, and Rootkit Ransomware. Each attack consists of
three stages: initial access, C&C, and impact, according to ATT&CK, and
each attack exhibits different behaviors at different stages. The different
data sources (𝐷𝑛𝑡, 𝐷𝑠𝑙, 𝐷ℎ𝑠) were collected, and their features, extracted
using different tools. For example, the network traffic was gathered
as PCAP files using 𝑡𝑐𝑝𝑑𝑢𝑚𝑝, and the PCAP files were converted into
flow-based data using 𝐴𝑟𝑔𝑢𝑠. Meanwhile the system logs were collected
using 𝑟𝑠𝑦𝑠𝑙𝑜𝑔 and were converted into templates using 𝑑𝑟𝑎𝑖𝑛. Finally,
the host statistics were collected and classified using 𝑎𝑡𝑜𝑝.

5.1.3. Evaluation metrics
We use F1-score as the metric to evaluate the performance of

proposed DL models. F1-score can be calculated from the confusion
matrix which is shown in Table 7.

Precision: 𝑇𝑃
𝑇𝑃+𝐹𝑃 . Percentage of all data predicted to be malicious

by the model that is actually malicious.
Recall: 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Percentage of all malicious data correctly predicted
to be malicious.

F1-score: 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . Harmonic mean of precision and recall.

A higher F1-score indicates a more stable model.
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Table 7
Confusion matrix for intrusion classification.

Predict

Malicious Benign

Malicious True Positive (TP) False Negative (FN)
Actual Benign False Positive (FP) True Negative (TN)

5.2. Detection performance of single data source and multiple data source
models for different attacks and attack stages

This section compares the detection capabilities of the proposed
framework (see Fig. 1) with seven combinations of the data sources for
different attack stages and attack methods. Table 8 shows the number
of malicious data points collected from CR»ME for each of the seven
attack modes. Note that, for each attack mode, the number of logs,
traffic, and statistics data points indicates the number of malicious
templates, flows, and processes, respectively. It can be seen that the
data points are non-uniformly distributed over the three data sources,
with the number of host statistics data points being far higher than that
of the number of system logs or network traffic data points.

5.2.1. F1-scores for different attack stages
Table 9 shows the F1-scores obtained for the seven attacks using

the different combinations of data sources. It is seen that the F1-score
is equal to 1 when all three data sources are employed, or when the
statistic or logs data source are employed alone. The F1-score also
has a value of 1 when the network traffic and statistics data sources
are combined, or the log and statistics data sources are combined.
For the network traffic data source alone, the overall F1-score is 0.93.
However, the score increases slightly to 0.951 when the network traffic
is combined with the log data. In terms of the detection capability in
the three attack stages, the F1-score has a value of 1 in all three stages
for all of the considered data source combinations other than those
involving the log and network traffic data or traffic data alone. Among
the latter two combinations, the combined use of the log and network
traffic data yields a slightly higher F1-score than that obtained using the
traffic data alone. The network traffic data source achieves a reasonable
performance in the C&C stage (0.96), a poor performance in the initial
access stage (0.917), and an intermediate performance in the impact
stage (0.919). However, the host statistics and log data sources each
achieve an F1-score of 1 in all three attack stages. Interestingly, the
results indicate that the use of two data sources does not necessarily
guarantee a better detection performance than that obtained using a
single data source. For example, the system logs data source yields
an overall F1-score of 1, but the F1-score reduces to 0.951 when it is
combined with the network traffic data source. It is speculated that this
performance degradation is due to missing data points. In particular,
some data sources with a superior detection capability have no data
points in certain time slots, and hence cannot help predict the status
of the time slot (benign or malicious). In such a case, the prediction
process relies on the outcomes of those data source which do have data
points in the time slot, even though they may have a poorer detection
capability than the original (i.e., superior) data source.

5.2.2. F1-scores of different attacks
Table 10 shows the F1-scores obtained for the seven attacks using

the different combinations of data sources. As for the staged-based
results presented in Table 9, it is seen that all three data sources are
able to predict some (or all) of the attacks. Furthermore, even in the
case where one or two data sources are unable to predict the attack
with absolute reliability, the F1-score can still reach 1 when all of the
7

data sources are combined.
5.2.3. F1-scores for different attacks at different stages
Table 11 shows F1-scores obtained by the various data sources

in the seven attacks and three attack stages. Note that a blank field
indicates that no malicious data were collected in the corresponding
stage, and hence the F1-score could not be calculated. Moreover, the
All row at the foot of the table shows the F1-score obtained using all of
the testing data in the corresponding attack stage. It is noted that some
of the data sources have an F1-score of 1 for one or more of the attacks,
but a score of less than 1 in the All row since some of the blank fields
of the benign data are incorrectly predicted. It is also observed that the
system logs did not contain any malicious data points in some attack
stages of several attacks. By contrast, the network traffic data source
and host statistics data source collected more attack behaviors. In other
words, the results confirm the need to combine multiple data sources
to compensate for the fact that some data sources may fail to reveal the
presence of malicious behavior in some time slots. To further examine
this phenomenon, Table 12 shows the percentage of abnormal time
slots correctly predicted by the different ensemble models (referred to
hereafter as the attack detection rate). From Table 12, we can observe
that system logs have a relatively lower attack detection rate as it
observes fewer malicious data points.

5.3. Performance comparison: XGBoost vs. DL

The performance of the proposed detection framework was further
evaluated by comparing the F1-scores obtained using different combi-
nations of the three data sources with those obtained when applying the
method in [10] to the same dataset. The method in [10] also utilizes
different combinations of data sources to detect malicious behavior in
different attack stages and attack methods. However, in contrast to the
method proposed in the present study, all of the data sources in [10]
are handled using XGBoost as the ML model. Figs. 4 and 5 compare
the F1-scores of the two methods in different attack stages and attack
modes, respectively. It is seen that the proposed method significantly
outperforms that in [10] in most cases and has a comparable perfor-
mance in the remaining cases. In other words, the results confirm the
importance of choosing an appropriate DL model to handle each data
source in accordance with its particular characteristics.

5.4. Model efficiency and feature analysis

Since the size of a data source is different at each time slot, we
measure the average inference time of an ML model by dividing the
amount of time it takes to make predictions for the testing dataset
by the total number of seconds of the dataset. The averaged inference
times of the network traffic, system logs, and host statistics data sources
were found to be 0.006, 0.004, and 0.021 s, respectively. Even for the
case where three data sources are used in the detection process, the
average inference time is still not very long (i.e., less than 0.023 s per
time slot (1 s)). In other words, the proposed framework offers the
potential for the real-time detection of host attacks.

5.4.1. Feature analysis of host statistics
The results presented in the preceding sections have shown that,

among the three data sources, the host statistics data source provides a
larger number of malicious data points and provides the most robust
detection ability. Consequently, a further detailed investigation was
performed to determine the usage status of the various system resources
(i.e., the host statistics features) under various malicious attacks and
normal behaviors. Table 3 defines each of the 14 host statistics features.
Detailed discussions can be found in Appendix.

In summary, the results presented in Appendix show that different
attack behaviors affect the usage of different system resources. In the
initial access and C&C attack stages, the primary system resources
affected are MINFLT, MAJFLT, VGROW, and RGROW for all of the
attack methods. However, in the impact attack stage, different system
resources are affected, depending on the particular type of attack.
Furthermore, a significant difference in the system resource usage
patterns exists between the attack processes and the benign processes.
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Table 8
Malicious data points.

Initial access C&C Impact

Logs Traffic Statistics Logs Traffic Statistics Logs Traffic Statistics

Mirai 0 1 18 0 0 0 24 287 579
Mining 1 9 249 1 14 185 83 10 1145
Ransomware 12 86 1645 2 14 942 9 8 4213
Disk wipe 80 10 288 5 10 485 160 4 1461
End point DoS 91 14 506 0 0 0 327 11 2713
Rootkit ransomware 0 128 347 3 65 752 7 56 6663
Data theft 0 17 208 83 18 207 81 14 1384
All 184 265 3261 94 121 2571 691 390 18158
Table 9
F1-score of stage-based comparison.

Overall

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.951
Traffic 0.930

Initial Access

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.929
Traffic 0.917

Command and Control

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.960
Traffic 0.960

Impact

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.960
Traffic 0.919
Table 10
F1-score comparison based on attack type.

Mirai

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.824
Traffic 0.824

Mining

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.889
Traffic 0.889

Ransomware

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Log + Traffic 1.000
Statistic 1.000
Traffic 1.000
Log 1.000

Disk Wipe

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Log + Traffic 1.000
Statistic 1.000
Traffic 1.000
Log 1.000

Endpoint DoS

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Log + Traffic 1.000
Statistic 1.000
Log 1.000
Traffic 0.889

Rootkit Ransomware

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Statistic 1.000
Log 1.000
Log + Traffic 0.960
Traffic 0.960

Data Theft

Combination F1-score

All 1.000
Traffic + Statistic 1.000
Log + Statistic 1.000
Log + Traffic 1.000
Statistic 1.000
Traffic 1.000
Log 1.000
Table 11
F1-scores of testing data for different attacks and attack stages.

Initial access C&C Impact

Logs Traffic Statistics Logs Traffic Statistics Logs Traffic Statistics

Mirai 1.000 1.000 0.933 1.000
Mining 1.000 0.857 1.000 1.000 1.000
Ransomware 1.000 1.000 1.000 1.000 1.000 1.000
Disk wipe 1.000 1.000 1.000 1.000 1.000 1.000
Endpoint DoS 1.000 1.000 1.000 1.000 0.857 1.000
Rootkit ransomware 1.000 1.000 1.000 1.000 1.000 0.909 1.000
Data theft 1.000 1.000 1.000 1.000 1.000 1.000 1.000
All 1.000 0.917 1.000 1.000 0.960 1.000 1.000 0.919 1.000
5.4.2. Model validation
Our experimental results have shown that the F1-scores of the DL

models for network traffic, system logs, and host statistics are 0.93, 1.0,
and 1.0, respectively. This raises the question of whether the outstand-
ing performance might be attributed to overfitting. To further validate
the model, we employed K-fold cross-validation on three different data
sources. This technique involves dividing the dataset into K equally
sized subsets and then training the model K times. Each time, one of
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the subsets serves as the validation set, while the remaining K-1 subsets
form the training set. Finally, the performance evaluations from K vali-
dations are averaged to obtain an overall performance assessment of the
model. The cross-validation F1-scores for network traffic, system logs,
and host statistics are 0.913, 0.979, and 0.99, respectively, showing
little deviation from the original results. This indicates that our model
does not experience significant overfitting problems.
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Table 12
Attack detection rate of the present method for different data sources.

Mirai Mining Ransomware Disk Endpoint Rootkit Data Initial C&C Impact Overall
wipe DoS ransomware theft access

All 11/11 30/30 33/33 36/36 64/64 37/37 30/30 43/43 20/20 178/178 241/241
Traffic+Statistics 11/11 30/30 33/33 36/36 64/64 37/37 30/30 43/43 20/20 178/178 241/241
Logs+Statistic 11/11 30/30 33/33 36/36 64/64 36/37 30/30 43/43 19/20 178/178 240/241
Logs+Traffic 7/11 4/30 5/33 5/36 10/64 12/37 6/30 13/43 12/20 24/178 49/241
Statistic 11/11 30/30 33/33 36/36 64/64 36/37 30/30 43/43 19/20 178/178 240/241
Traffic 7/11 4/30 4/33 4/36 4/64 12/37 5/30 11/43 12/20 17/178 40/241
Logs 3/11 1/30 1/33 1/36 7/64 1/37 1/30 2/43 2/20 11/178 15/241
Fig. 4. Stage-based comparison of F1-scores obtained by the present method and that in [10].
Fig. 5. Attack-based comparison of F1-scores obtained by the present method and that in [10].
6. Conclusion

This study has proposed a DL approach for host-based IDS based
on three different data sources, namely network traffic, system logs,
and host statistics. The feasibility of the proposed approach has been
demonstrated for seven different attack methods and three different at-
tack stages (initial access, C&C command, and impact). In the proposed
approach, the three datasets are collected from the CR»ME toolchain
and preprocessed, and are then divided into a training set and testing
set in a ratio of 80%:20% in accordance with their timestamps. The
three datasets are handled by different DL models depending on their
particular characteristics. In particular, the network traffic data are
processed by a CNN to extract the data features automatically, the
system logs data are processed by LSTM and a self-attention model to
learn the temporal relationships, and the host statistics are processed by
a DNN. The predictions of the three models for the host status (benign
9

or malevolent) are then combined via an ensemble method to produce
a final prediction for the host status. The prediction performance of
the proposed method has been evaluated by means of the F1-score for
seven combinations of the data sources (namely, three individual data
sources, three combinations of two data sources, and one combination
of all three data sources).

The experimental findings reveal that the F1-scores achieved by the
DL models for network traffic, system logs, and host statistics are 0.93,
1.0, and 1.0, respectively. Although the F1-score of the system logs DL
model reaches 1.0, the data source generates relatively few malicious
data points. As a result, many of the time slots have no data points, and
therefore the final prediction outcome is dependent on the prediction
results of the other models. To address this problem, it is desirable to
obtain the final prediction outcome for each time slot using an ensem-
ble method based on the prediction outputs of all three data sources.
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Fig. A.1. Comparison of host statistic features impacted by different attack methods.
The experimental results have confirmed that the corresponding F1-
score reaches 1.0 for all of the considered attack methods and attack
stages. Furthermore, it has been shown that the proposed ensemble
method significantly outperforms the XGBoost model presented in [10].

The experimental results have shown that, among the three data
sources, the host statistics data source generates the largest number
of malicious data points and provides the best detection capability. To
investigate this finding further, a detailed analysis has been performed
to examine the system resources primarily affected under different
attack methods and attack stages. It has been shown that in the initial
access and C&C attack stages, most of the attack methods increase
the system resources related to page faults and memory, including
10

DSK, MINFLT, MAJFLT, VGROW, and RGROW. However, in the impact
stage, the affected resources depend on the particular attack method.
For example, the Mining and Ransomware attacks affect the TRUN
and CPU resources, while the Disk Wipe attack affects the DSK, VSIZE,
RSIZE, and MEM resources, and the Data Theft attack affects the RDDSK
and DSK resources.

While the experimental results are promising, some limitations still
exist. Our model prioritizes detection accuracy over resource con-
sumption, which may not be suitable for IoT or mobile devices with
limited computational resources. In the future, it may be possible to
integrate edge servers, similar to [27], to reduce the resource demands
on detection devices while simultaneously enabling the detection of

multiple data sources.
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Fig. A.1. (continued).
Another important feature of an IDS is its capability to detect
nknown attacks or zero-day attacks, which is not considered in this
tudy. This aspect will be another focus of our future research.

In addition, in our future studies, we will investigate the applica-
ility of the proposed framework for intrusion detection in real-world
nvironments. The data used in the present study (collected by CR»ME)
s emulated data and may not accurately represent the various sit-
ations encountered in real-world networks (e.g., normal behavior
hat resembles attack-like behavior). Thus, future studies will also aim
o increase the diversity and volume of the data used for training
urposes, in order to obtain more robust models for detecting complex
11

ttacks.
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Table A.1
Attack behaviors of different attack methods.

Attack scenario Initial access C&C Impact

Mirai T1190 Exploit Public-Facing Application T1105 Ingress Tool Transfer T1498 Network Denial of Service
Mining T1190 Exploit Public-Facing Application T1008 Fallback Channels T1496 Resource Hijacking
Ransomware T1078 Valid Accounts T1008 Fallback Channels T1486 Data Encrypted for Impact
DiskWipe T1078 Valid Accounts T1008 Fallback Channels T1561 Disk Wipe
Endpoint DoS T1078 Valid Accounts Create accounts T1499 Endpoint Denial of Service
Rootkit Ransomware T1078 Valid Accounts T1008 Fallback Channels T1486 Data Encrypted for Impact
DataTheft T1078 Valid Accounts T1008 Fallback Channels Data theft
Appendix. Feature analysis of host statistics

The overall objective of the investigation was to determine which
system resources had the greatest impact on the model prediction. Since
the value of each system resource feature varies widely, all of the col-
lected data were normalized to the interval of 0 and 1 by dividing the
collected value by the maximum value of the corresponding resource.
Each attack was divided into three stages and thus showed a different
system resource usage pattern in each stage. Note that the ATT&CK
technique used by each attack at each stage is shown in Table A.1.

Fig. A.1 shows the main features that were found to be significantly
different between the malicious dataset and benign dataset for each
of the seven attack scenarios. For each figure, the 𝑥-axis shows the
proportion of system resources used by the attack processes in each
time slot. Note that the blank spaces indicate the absence of any
benign or malicious processes in the corresponding slot. Note also that
for each attack, the graph on the left shows the usage status of the
system resources that are mainly affected by the attack, while the
graphs in the middle and on the right, respectively, show the usage
status of the system resources in the corresponding benign dataset.
Overall, the results show that each of the attack modes has certain
host statistics features which differ strongly between the malicious and
benign processes, and which can therefore be learned by the DL model
to detect the network status (benign or malicious) in each time slot.

A further detailed examination was made of the main features
affected by each attack at the different attack stages. In the initial
access attack stage, Mirai scans and cracks devices with weak telnet
passwords. Similarly, Mining exploits vulnerabilities in the Apache
Continuum service to obtain access to the system. Ransomware and
End-point DoS exploit vulnerabilities in the IRC server and docker dae-
mon to access the system and obtain privilege escalation. Meanwhile,
Disk Wipe, Rootkit Ransomware, and Data Theft all use the Ruby on
Rails web application vulnerability to gain root privileges. In the C&C
attack stage, Mirai downloads and executes malicious binary code.
Endpoint DoS creates accounts on the compromised device, and the
other five attacks insert a backdoor into the compromised machine.
The initial access and C&C stages exhibit similar system resource
usage patterns for these attacks, including DSK, MINFLT, MAJFLT,
VGROW, and RGROW. For example, some attack files cannot be found
in memory, which causes the system to suffer page faults and grab the
files from disk to memory. Consequently, the features related to page
faults, such as DSK, MINFLT, and MAJFLT, all increase. The two other
features, i.e., VGROW and RGROW, representing the growth sizes of the
virtual memory and resident memory, respectively, similarly increase.
Fig. A.1 also shows that the usage of the system resources affected
by the same attack technique is similar. For example, when obtaining
root privileges using the Ruby on Rails web application vulnerability,
the RGROW feature increases to 1 in the initial attack stage, and a
significant increase in VGROW and RGROW occurs when inserting a
backdoor (see Figs. A.1(m) and (p)).

In the impact attack stage, the different attacks affect different
system resources. For example, Mining hijacks the system resources
to mine Monero currency, while Ransomware encrypts files and hence
consumes a large amount of CPU resources. Thus, the TRUN and CPU
usage features increase significantly. Disk Wipe deletes the essential
13

or sensitive files on the device, together with the affected directories,
and hence affects the disk and memory-related features, such as DSK,
VSIZE, RSIZE, and MEM. Data Theft reads and steals a large amount
of data from the disk, and thus RDDSK and DSK both increase. Rootkit
Ransomware, however, shows no obvious effect on the system resources
during the impact stage since it hides the attack behavior. In general,
some system resource usage statistics are common for benign processes,
but are very different for attack processes, including VSTEXT, VSIZE,
and RSIZE.

References

[1] Jose S, Malathi D, Reddy B, Jayaseeli D. A survey on anomaly based host
intrusion detection system. J Phys Conf Ser 2018;1000:012049.

[2] Bridges R, Glass-Vanderlan T, Iannacone M, Vincent M, Chen Q. A sur-
vey of intrusion detection systems leveraging host data. ACM Comput Surv
2019;52:1–35.

[3] Aldweesh A, Derhab A, Emam AZ. Deep learning approaches for anomaly-based
intrusion detection systems: A survey, taxonomy, and open issues. Knowl-Based
Syst 2020;189:105124.

[4] Horng S-J, Su M-Y, Chen Y-H, Kao T-W, Chen R-J, Lai J-L, et al. A novel intrusion
detection system based on hierarchical clustering and support vector machines.
Expert Syst Appl 2011;38(1):306–13.

[5] Aburomman AA, Ibne Reaz MB. A novel SVM-kNN-PSO ensemble method for
intrusion detection system. Appl Soft Comput 2016;38:360–72.

[6] Strom BE, Applebaum A, Miller DP, Nickels KC, Pennington AG, Thomas CB.
Mitre att&ck: Design and philosophy. Technical report, The MITRE Corporation;
2018.

[7] Milajerdi SM, Gjomemo R, Eshete B, Sekar R, Venkatakrishnan V. HOLMES: Real-
time APT detection through correlation of suspicious information flows. In: 2019
IEEE symposium on security and privacy. 2019, p. 1137–52.

[8] Ghafir I, Hammoudeh M, Prenosil V, Han L, Hegarty R, Rabie K, et al. Detection
of advanced persistent threat using machine-learning correlation analysis. Future
Gener Comput Syst 2018;89:349–59.

[9] Bodström T, Hämäläinen T. A novel deep learning stack for APT detection. Appl
Sci 2019;9(6).

[10] Lin Y-D, Wang Z-Y, Lin P-C, Nguyen V-L, Hwang R-H, Lai Y-C. Multi-datasource
machine learning in intrusion detection: Packet flows, system logs and host
statistics. J Inf Secur Appl 2022;68:103248.

[11] Li X, Chen W, Zhang Q, Wu L. Building auto-encoder intrusion detection system
based on random forest feature selection. Comput Secur 2020;95:101851.

[12] Hwang R-H, Peng M-C, Huang C-W, Lin P-C, Nguyen V-L. An unsupervised
deep learning model for early network traffic anomaly detection. IEEE Access
2020;8:30387–99.

[13] Du M, Li F, Zheng G, Srikumar V. DeepLog: Anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security. New York, NY,
USA: Association for Computing Machinery; 2017, p. 1285–98.

[14] Meng W, Liu Y, Zhu Y, Zhang S, Pei D, Liu Y, et al. LogAnomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs. In:
Proceedings of the twenty-eighth international joint conference on artificial in-
telligence. International Joint Conferences on Artificial Intelligence Organization;
2019, p. 4739–45.

[15] Ribeiro J, Saghezchi FB, Mantas G, Rodriguez J, Abd-Alhameed RA. HIDROID:
Prototyping a behavioral host-based intrusion detection and prevention system
for android. IEEE Access 2020;8:23154–68.

[16] Ham H-S, Kim H-H, Kim M-S, Choi M-J. Linear SVM-based android malware
detection for reliable IoT services. J Appl Math 2014;2014:594501.

[17] Ribeiro J, Saghezchi FB, Mantas G, Rodriguez J, Shepherd SJ, Abd-Alhameed RA.
An autonomous host-based intrusion detection system for android mobile devices.
Mob Netw Appl 2020;25(1):164–72.

[18] Zhang X, Ran J, Mi J. An intrusion detection system based on convolutional
neural network for imbalanced network traffic. In: 2019 IEEE 7th international
conference on computer science and network technology. 2019, p. 456–60.

[19] Zeng Y, Gu H, Wei W, Guo Y. Deep-full-range : A deep learning based network
encrypted traffic classification and intrusion detection framework. IEEE Access

2019;7:45182–90.

http://refhub.elsevier.com/S2214-2126(23)00209-0/sb1
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb1
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb1
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb2
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb3
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb4
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb5
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb6
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb7
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb7
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb7
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb7
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb7
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb8
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb9
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb9
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb9
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb10
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb10
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb10
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb10
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb10
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb11
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb11
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb11
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb12
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb13
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb14
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb15
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb15
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb15
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb15
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb15
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb16
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb17
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb17
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb17
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb17
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb17
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb18
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb19
http://refhub.elsevier.com/S2214-2126(23)00209-0/sb19


Journal of Information Security and Applications 78 (2023) 103625R.-H. Hwang et al.
[20] Sun P, Liu P, Li Q, Liu C, Lu X, Hao R, et al. DL-IDS: Extracting features using
CNN-LSTM hybrid network for intrusion detection system. Secur Commun Netw
2020;2020:8890306.

[21] Hwang R-H, Peng M-C, Nguyen V-L, Chang Y-L. An LSTM-based deep learning
approach for classifying malicious traffic at the packet level. Appl Sci 2019;9(16).

[22] Zhang X, Xu Y, Lin Q, Qiao B, Zhang H, Dang Y, et al. Robust log-based
anomaly detection on unstable log data. In: Proceedings of the 2019 27th ACM
joint meeting on European software engineering conference and symposium on
the foundations of software engineering. ESEC/FSE 2019, New York, NY, USA:
Association for Computing Machinery; 2019, p. 807–17.

[23] Tan Z, Pan P. Network fault prediction based on CNN-LSTM hybrid neural
network. In: 2019 International conference on communications, information
system and computer engineering. 2019, p. 486–90.

[24] Wang X, Cao Q, Wang Q, Cao Z, Zhang X, Wang P. Robust log anomaly detection
based on contrastive learning and multi-scale MASS. J Supercomput 2022.

[25] Yang R, Qu D, Gao Y, Qian Y, Tang Y. nLSALog: An anomaly detec-
tion framework for log sequence in security management. IEEE Access
2019;7:181152–64.

[26] Sun C-C, Sebastian Cardenas DJ, Hahn A, Liu C-C. Intrusion detection for
cybersecurity of smart meters. IEEE Trans Smart Grid 2021;12(1):612–22.
14
[27] Mudgerikar A, Sharma P, Bertino E. E-Spion: A system-level intrusion detection
system for IoT devices. In: Proceedings of the 2019 ACM asia conference on
computer and communications security. New York, NY, USA: Association for
Computing Machinery; 2019, p. 493–500.

[28] Bui H-K, Lin Y-D, Hwang R-H, Lin P-C, Nguyen V-L, Lai Y-C. CrÉme: A toolchain
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