
DiffServ over Network Processors: Implementation and Evaluation t

Ying-Dar Lin, Yi-Neng Lin
Department of Computer and Information

Science, National Chiao Tung University,
Hsinchu, Taiwan

{ydlin, ynlin}@cis. nctu.edu.tw

Shun-Chin Yang, and Yu-Sheng Lin

Computer and Communications Laboratories,
Industrial Technology Research Institute,

Hsinchu, Taiwan

{890047, 870932}@itri.org.tw

Abstract

Network processors are emerging as a programmable
alternative to the traditional ASIC-based solutions in
scaling up the data-plane processing of network services.
This work. rather than proposing new algorithms,
illustrates the process of, and examines the performance
issues in, prototyping a DifjServ edge router with
IXP 1200. The external benchmarks reveal that though the
system can scale to wire-speed of I.8Gbps in simple IP
forwarding, the throughput declines to
180Mbps-290Mbps when DifjServ is performed due to
the double bottlenecks of SRAM and microengines.
Through internal benchmarks, the performance bottleneck
was found to be able to shift from one place to another
given different network services and algorithms. Most of
the result reported here shall remain the same for other
NPs since they have similar architectures and

components.

I. Introduction

Increasing link bandwidth demands faster nodal
processing, especially of data-plane traffic. Nodal data-
plane processing ranges from routing table lookup to
various classifications for firewall, DiffServ and Web
switching. The traditional general-purpose processor
architecture is no longer sufficiently scalable for wire-
speed processing, and some ASIC components or co-
processors are commonly used to ofJload the data-plane
processing, while leaving only control-plane processing to
the original processor.

Several ASIC-driven products have been announced in
the market, such as the acceleration cards for
encryption/decryption, VPN gateways, Layer 3 switches,
DiffServ routers and Web switches. While accelerating the
data-plane packet processing with special hardware
blocks, much wider memory buses, and faster execution
processes, these ASICs lack the flexibility of
reprogrammability and have a long development cycle

usually of months or even years. The cost of possible
design failures is also high.

Network processors are emerging as an alternative
solution to ASICs for providing reprogrammability while
retaining scalability for data-plane packet processing. This
study employed the Intel IXPl200 [1] network processor,
which consists of one StrongARM core and six co-
processors, referred to as microengines, so that developers
can embed the control-plane and data-plane traffic
management modules into the StrongARM core and
microengines, respectively. Scalability concerns in data-
plane packet processing could be satisfied with the four
zero context switching overhead hardware contexts in
each of the six microengines and the instructions
specifically for networking.

Spalink, Karlin, Peterson and Gottlieb [2] demonstrated
and evaluated the IXPl200 in IP forwarding, concluding
that the SDRAM storing packets is the bottleneck.
However, such results cannot be generalized to today's
complex services which may need much SRAM table
accesses and computing power. This work therefore aims
to implement a more sophisticated service, Differentiated
Services (DiffServ), using two existing algorithms for
classification and scheduling, and identify scalability
issues and possible performance bottlenecks in IXP1200.
Two topics in benchmarking the implemented system are
investigated. First, how well can this DiffServ
implementation scale in terms of throughput for different
numbers of classification rules? The reason we evaluate
the scalability in terms of the number of classification
rules is that since the number of classes in DiffServ is
limited, it equals the number of flows, which is, in a sense,
the number of classification rules. Second, where are the
potential bottlenecks and their causes? The exact
bottleneck is anticipated to depend on the specific service
and its algorithmic implementation.

The rest of this paper is organized as follows. Section II
briefly reviews the architecture of IXP1200. Section III
then presents the design and implementation of DiffServ
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over IXP1200. Next, Section IV illustrates the results of
external and internal benchmarks through experiment and
simulation, respectively. Conclusions are finally made in
Section V.

microengines. The system is now ready to receive packets.
When the Ready Bus Sequencer detects an incoming
packet in a MAC, it notifies the corresponding receiver
thread to retrieve and store the packet in the RFIFO. After
completing the routing table lookup, the receiver thread
moves the packet to SDRAM in order to wait to be
forwarded. A transmitter thread of another microengine
later forwards the packet in SDRAM through TFIFO to
another MAC. Multiple receiver, transmitter, and
scheduler threads may be distributed to six microengines,
although some restrictions apply.

2. Architecture of IXP1200

3. Design and Implementation of DiffServ on
IXP1200

This section briefly introduces DiflServ and then
explains how to map DiflServ components onto an
IXPl200 program, The implementation of two major
components, classifier and scheduler, in DiflServ using
two algorithms, Multi-dimensional Range Matching and
the weighted form of Deficit Round Robin, respectively, is
described.

Closely examining the hardware architecture of
IXP1200, shown in Fig. 1, helps to elucidate our DiffServ
implementation. The 32-bit, 200MHz StrongARM core
governs the initialization of the whole system and part of
the packet processing. A Memory Management Unit is
also included to translate virtual addresses into physical
addresses and control memory access permission.

The six 200MHz microengines, supporting four
hardware contexts, i.e. threads, are primarily used to
receive, manipulate, and transmit packets. For networking
purposes, microengines also support zero context
switching overhead, single-cycle ALU with shifter, and
other specifically designed instructions for bit, byte, and

longword operations.
The SRAM is used for storing lookup tables and

pointers in scheduling queues for packet forwarding, while
the SDRAM is used for storing mass data of packets. The
64-bit IX bus Interface Unit is responsible for servicing
MAC interface ports on the IX Bus, and moving data to
and from the Receive and Transmit FIFOs. It provides a
4.2Gbps (64bit at 66MHz) interface to MAC devices,
meaning that it can afford 2.1 Gbps of the input ports and
2.1Gbps of the output ports. In addition, two IXP1200
network processors can be directly supported on the IX
Bus without additional support logic.

3.1. DiffServ Briefing

Differentiated Services (DiffServ) [3] mechanisms
enable users to receive different levels of service from a
provider to support various types of applications.
According to the service configuration in a DiffServ edge
node, packets are classified with multiple fields (MF),
leaky bucket policed, and marked to receive a particular
per-hop forwarding behavior (PHB), which defines how
packets with a particular behavior are treated at this node.
Each predefined PHB is mapped to one DSCP (DiffServ
Code Point) value used in class-based scheduling, i.e.,
Expedited Forwarding (EF) or one of four Assured
Forwarding's (AF's).

The service differentiation of packets is often manifest
as delay and loss rate. Packets of higher classes are more
likely to be scheduled before those of lower classes,
resulting in lower latency and loss rate.

Fig. 2 illustrates the key components and the packet
processing flow. The Ready Bus Sequencer periodically
polls the MAC buffer and sets the receive flag in a global
rec-rdy register when a packet comes. Once the receiver
thread responsible for the MAC port detects the flag, it
asks the Receive State Machine to move the packet, in
units of 64-byte MAC packet, referred as MP which is a
basic data unit in the system, from the MAC buffer into
RFIFO.

Fig. 1 Hardware architecture of IXP1200

The operations of IXP1200 hardware components,
when handling packet-forwarding services, are described
below. At boot time, the StrongARM loads the boot image
from Boot ROM or via seriaVEthernet connection, and
initializes other functional units, including loading the
routing table into SRAM and microcode into
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from I to 4, then skip to 9

Fig. 2. Detailed DiffServ packet flow in IXP1200
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3.3. Mapping DiffServ Components Otherwise, the thread examines the next queue for packets
to be sent, and the quanta.

The twenty four threads are equally divided into two
groups, eight lO/lOOM ports and one giga port. Each
group has twelve threads: eight of which are used as
receivers (assigned to two microengines), three of which
are used as transmitters and one as a scheduler (assigned
to one microengine). Each lO/lOOM receiver thread is
responsible for a specific lO/lOOM port, while eight giga
receiver threads serve one giga port. The transmitter
threads, however, are not bound to specific ports. They
output packets to ports according to assignments from the
scheduler thread. Static task allocation, instead of dynamic
task allocation, is employed for the following reasons.
First, the lK Control Store of a microengine may not be
sufficiently large to hold microcode of two threads of
different types, for example, receiver (1012 instructions)
and transmitter (552 instructions), whose summed size of
instructions exceeds the Control Store size. However, the
transmitter and scheduler (144 instructions), whose
summed size is below 1024, can co-exist in one
microengine. Therefore, threads of the same type are best
grouped in one microengine. Second, choosing dynamic
allocation complicates the programming, and the
communication overhead between threads or microengines
would be huge as tasks could not be clearly divided
among threads.

Fig. 3 shows the software architecture of DifiServ and
its corresponding task allocation on IXP1200. Six
modules (the shaded blocks) are inserted into the original
software of simple IP forwarding.
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Fig. 3 Data-plane architecture of DiffServ edge router

over IXP1200

The DiffServ processing is described below. Once
received at a transfer register from an RFIFO and verified
as legal, a packet header is passed to the Range Matching
classifier for the matching process. If the packet's header
matches one of the classification rules and is classified as,
for example, EF traffic, it is admitted or discarded
according to the policing bandwidth specified in the
classification rule. If admitted, it is marked with a DSCP
in the header. After longest prefix matching in routing
table lookup, the packet is queued in the corresponding
queue of the output port, and waits to be scheduled; that
is, the packet's descriptor is enqueued in SRAM while the
packet itself is stored in SDRAM. The scheduler thread
chooses one transmitter thread and assigns it a port, which
contains six queues (I EF, 4 AF's and I BE), to serve. The
transmitter thread examines the queue with the highest
priority to determine whether a packet is waiting to be
sent, and whether the queue has sufficient quanta as
credits for transmitting that packet in Deficit Round Robin
scheduling. If having enough quanta, then the transmitter
thread fetches the packet's descriptor in SRAM and then
sends the entire packet in SDRAM to TFIFO for output.

3.4. Algorithm Adoption and Implementation

3.4.1. Related Works. Classification and scheduling have
been two critical modules that influence the performance
of a DifiServ implementation. Several methods have been
proposed for the above two purposes, however, many of
them are not practically applicable due to limitations of
the platform, including memory size (2Mbytes of SRAM)
and coding overhead. For example, Recursive Flow
Classification [4] which has an unstable memory size
requirement ranging from 1 Mbytes to lOOOMbytes;
similar behavior can also be seen in Cross-Producting [5].

Another example is the Grid-of-Tries [5], which is also
a classification algorithm and has a lower memory
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I. Poll MAC buffer and set the rec-rdy
flag of the port

2. Poll rec-rdy of the port

3 Issue a reference to Rx State Machine

4. Move one MP to RFIFO

5. If SOP, move half of the MP(header)

to SRAM xfer regs for classification,
half to SDRAM

6. Load rules into SRAM xfer regs

(classification iteration)

7. Policing, marking, routing table lookup

and enqueue (after classification)

8. Store the packet header to SDRAM

9. Store the rest of the MPs to SDRAM

10. DRR scheduling and then transmit to

TFIFO, MAC buffer

* If SOP, process from I to 8, otherwise



per-flow Leaky Bucket. A timer is implemented by
StrongARM to determine timing information. The
last-arrival-time is the arrival time of the previous
packet, and the token represents the number of quanta left
in the processing of the last packet and is available for the
next one. The total tokens available to the incoming
packet can thus be determined and a decision regarding its
admission can be made.

requirement. Nontheless, the complexity of the algorithm
makes implementation with microcode difficult. Several
scheduling algorithms are not considered for the same
reason, including, for example, Weighted Fair Queueing
[6], which involves complex multiplications.

Multi-dimensional Range Matching [7] is thus used as a
classifier, to exploit its more stable and lower memory
requirement, and efficiency in setting up flexible
classification rules. The weighted form of Deficit Round
Robin [8] is adopted in the scheduler, which can be easily
implemented (requiring only addition) and effectively
ensures weighted sharing among various flows. The
following two subsections briefly describe the
implementation of these two algorithms.

3.4.3. Scheduler. The quantum size of each class can be
set arbitrarily. Here, we set the ratio of quantum between
two adjacent classes in this system to two for simplicity. A
packet is represented as a queue descriptor when queued
in SRAM. Each queue descriptor contains the count Mac
Packet (MP) and points to a link list of buffer descriptors,
which point to the MPs of the packet stored in the
SDRAM. Once a packet is scheduled for transfer, the
transmitter thread uses the addresses of the buffer
descriptors and the buffer handle in the last buffer
descriptor to locate all MPs. The former are used to map
the start addresses of the MPs (buf-des-addr*64 ), and the
latter is used to determine the number of valid bytes at the
EOP (End of Packet).

3.4.2. Classifier. The concept of Multi-dimensional Range
Matching used to implement the classifier is described
below. The rules in a dimension form intervals, in which
multiple rules may overlap. Each interval is associated
with a BV (Bit Vector, which is 5l2-bit in this
implementation and is stored in SRAM), which keeps
track of what rules overlap in this interval. The space
complexity is O(nA2), where n is the number of
classification rules, since there are at most 2n-l intervals,
and each of which keeps track of the n rules.

Fig. 4 presents an example of the matching process in
the source IP dimension. When a packet arrives, the
classifier searches the interval table of each dimension for
a match with the corresponding field in the packet. When
an interval is found for a dimension, the classifier retrieves
the corresponding BV in the BV table. If all six fields of a
packet match an interval in six dimensions, the classifier
ANDs the BVs of the intervals, and the index of the first
non-zero bit in the result vector becomes the index of the
matched classification rule.

4. External and Internal Benchmarks

The performance of DiflServ has been evaluated in a
number of studies [9, 10, II, 12]. However, most of these
involve only simulations. Accordingly, this section
considers two kinds of experiments, external and internal
benchmarks. Firstly, the aggregated throughput that can be
scaled by the system, while conforming the PREs, is
exarniend to determine scalability. A Linear Search
classifier is also included for comparison with the Range
Matching classifier.

The internal benchmark involves simulations of two
DiflServ implementations on IXPl200 whose classifiers
are implemented with Linear Search and Range Matching.
The aim is to identify what cannot be seen in the external
benchmarks, and the performance bottlenecks. The
number of classification rules is 64 with a worst case
configuration with respect to the number of classification
rule matching for both simulations.

Source IP rules ~

4.1. Scalability Test

Fig. 4. Example and relative tables for lookup in
Source IP dimension 4.1.1. Traffic Load. The methodology for testing fairness

between input flows is described below. The maximum
load, which is 58%, is first measured for a flow that yields
no packet loss. The fairness of the system for more flows
is then obtained for input loads below or above 58%. Each
flow is set to have the same bandwidth, and the aggregated
bandwidth is 50% of the link. The input load is evenly
distributed over 500 flows in the following test.

After the classifier returns the index of the matched
classification rule, the policer and marker use the
information contained in the rule in further processing.
Each rule is associated with two additional fields,
last-arrival-time and token, which are used to maintain
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thread cannot finish the processing of a packet in time to
receive later packets. In the test of four IOOMbps input
ports, whose threads are all in the same rnicroengine, the
bottleneck becomes the rnicroengine because of a lack of
computing power. However, in the test of the whole
system throughput, the bottleneck is again the SRAM,
since the aggregated throughput is not the sum of the
throughputs of eight looMbps ports and one gigabit port,
although the computing power is doubled. The SRAM and
rnicroengines are called double bottlenecks, because the
system can still suffer from one bottleneck after the other
is solved.

Fig. 5 presents the throughputs of 500 flows under two
load conditions, with each flow exactly matches one of the
500 classification rules. The flows strictly follow their
bandwidth settings when the input load is 50% and
become unstable when overloaded. However, most of the
flows are liroited to their bandwidth settings.
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~ 80
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-with Linear Search classifier4.2. Simulation-

400

flow inde

Fig. 5. Flow fairness test (Len=64bytes, 500 flows,

BW=74400/500=148pps, average case)

4.1.2. Number of Microengines. Fig. 6 presents the
throughput of the receiver threads of different
configurations. Naturally, the throughput of two threads in
two rnicroengines is around double that of a single thread.
However, the throughput of four threads in a rnicroengine
is not four times that of one thread due to a lack of
computing power. Furthermore, the throughput of eight
threads is not double that of four threads, because of
memory contention. Besides, the aggregated system
throughput ranges from 180Mbps to 290Mbps, according
to the number of classification rules, while the throughput
of IP forwarding, which does the work of unshaded blocks
in Fig. 3, is at wire-speed.

The simulation result of the Linear Search classifier
yields two observations. First is the low bandwidth
utilization of SDRAM, sinice packet forwarding, which is
the main consumer of SDRAM, is not essential in
DiftServ. Second, both receiver microengines and SRAM
are not fully utilized, but are 80% and 55% utilized,
respectively, when the actual throughput of the system is
low.

The following explanation applies. Although the
utilization of SRAM is only 55%, it is a bottleneck
because the SRAM access in the Linear Search classifier
is bursty, meaning that the bandwidth of SRAM is not
used until bursty access from rnicroengines. Furthermore,
sometimes all the threads in a microengine wait for SRAM
access and thus cause the rnicroengine to be idle.

4.3. Simulation-with Range Matching classifier

The utilizations ofSDRAM and SRAM are again low at
13% and 35.3%, respectively, which result can be
explained as for the Linear Search classifier. However, the
receiver microengines are almost fully utilized in this
simulation. Computing power can be identified as a
performance bottleneck that leads to slow classification in
the Range Matching Diffierv since both SRAM access
and computing power are critical to the classification

process.
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5. Conclusions

This study explains the needs of network processors in
today's complex applications, and introduces the
architecture and packet flow in IXP1200. The mapping of
DiflServ onto IXP1200 is detailed. DiflServ includes two
very important modules, classifier and scheduler, which
are implemented with Multi-dimensional Range Matching
and Deficit Round Robin. Finally, external and internal
benchmarks were applied to determine the bottlenecks in
the implementation. Most of the result reported here shall

Number ofpolicy rules

Fig. 6. Aggregated throughput (Len=64bytes, worst

case)

Fig. 6 yields some interesting observations concerning
the bottlenecks of DiffServ for various input traffic
allocations. A single port receiver thread can obtain
sufficient computing power because the other three
threads do not process packets but just poll the flag
register, but the memory access takes so long that the
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remain the same for other NPs since they have similar
architectures and components.

The external benchmarks, which are in terms of number
of rules or flows, traffic load and number of microengines,
have established that the implementation can well support
PHBs in DiffServ at an aggregated throughput of 568kpps.
Both external and internal benchmarks identify the double
bottlenecks of both SRAM and microengines in the Range
Matching DiffServ-- the Range Matching DiffServ could
still suffer from one bottleneck after the other is solved.
Although the SDRAM is the bottleneck in IP forwarding,
the bottleneck may shift from one functional unit to
another, depending on the specific service, algorithm and
the way input traffic is allocated to threads. Moreover, the
SRAM bottleneck is found not necessarily to occur at
100% utilization, but can even occur at 55% when the
access is bursty.

Four methods are presented to solve the
bottleneck of SRAM access that results in a low
utilization of receiver microengines. First, the
routing table may be stored in SDRAM in the hope
of offioading SRAM. Second, one large SRAM may
be divided into many smaller banks at different
interfaces, reducing the queuing delay of requests in

the command queue, if the requested addresses are
in different memory banks. Even some redundant
memory modules may also be used, possibly with an

access arbitrator, to store many copies of the routing
table and classification rules to enhance
accessibility. Third, a new memory architecture, for
example, QDR (Quad Data Rate) SRAM which has
a peak bandwidth of up to 1.6GBps per channel
(which is two to three times that supported by
SRAM), may be adopted. However, a new interface
between the memory and other functional units may
be required. Finally, an additional cache (or content
addressable memory, CAM) can be used to reduce
the number of times memory is accessed, because
traffic in the same time period normally shows
locality in lookups of classification rules and routing
tables.
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