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Abstract

As the volume of network traffic increases due to the
proliferation of distributed systems and the growth of
real-time applications, a good understanding of traffic
distribution and patterns becomes critical in network
control and performance management. In this work,
we upgrade the facilities of network management from
traditional file systems to database and knowledge base
systems and apply machine learning technigues to dis-
cover traffic patterns which are difficult to discern by
human operators among a large volume of measure-
ments. An experiment on tnterconnected LANSs 13 con-
ducted where some interesting patterns are found. The
results show a strong traffic localtty and some cyclic
traffic patterns. The discovered rule base can describe
the traffic distribution and patterns which need to be
captured for any sophisticated performance manage-
ment. The expersment has shown the high applicability
of tnduction techniques to network management.

1 Introduction

Network management has become an important is-
sue due to the rapid growth of networks in the busi-
ness and research community and the increasing de-
mand for fast, reliable networks to handle high traf-
fic volume. With the introduction of real-time traffic
including voice and video, the demand for managing
this environment efficiently becomes more significant
because real-time traffic requires massive bandwidth
and fast response time. Flow control and congestion
control problems will become critical since real-time
traffic is not tolerant of delay incurred by traditional
control mechanisms. In particular, the system needs
to predict traffic demands and preallocate resources
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accordingly.

Network management has been classfied into sev-
eral categories: configuration management, perfor-
mance management, fault management, etc. We will
focus on dynamic configuration management which
permits us to tune the network dynamically. In gen-
eral, to manage a system, we need to continously mon-
itor its performance and keep track of its status. Thus,
a lot of efforts has been devoted in the TCP/IP com-
munity on the definition of MIB (Management Infor-
mation Base) [1], which specifies the information to
be gathered, and the definition of SNMP (Simple Net-
work Management Protocol) [2], which permits us to
access local and remote MIBs. System status and per-
formance should be stored in a well-defined informa-
tion base. Based on this information, some short-term
(connection acceptance/rejection, congestion control,
etc.) and long-term (topology reconfiguration, band-
width reallocation, etc.) decisions can be effectively
carried out. One major problem however is how to
handle the large amount of traffic measurements col-
lected in various layers and stations in the network.
Traditional manual operation of network management
by navigating through the system to diagnose a mal-
function or examine system performance will become
extremely difficult. Due to the above reasons, it is
obvious that the tasks of problem diagnosis, decision
making, and control actions need to be handled auto-
matically.

Our proposed approach to solve the problem of traf-
fic measurement interpretation is to upgrade the fa-
cilities of network management from traditional file
systems to database and knowledge base systems and
apply state of the art Artificial Intelligence techniques
to network management. In principle, we will moni-
tor the system at different layers and stations. Then,
we will organize and store the information in the dis-
tributed database. An induction tool will be applied
to the database to discover traffic patterns and net-
work malfunctions. The result is a set of rules stored in
a knowledge base. With the knowledge base, the sys-



tem may be able to diagnose problems, predict traffic,
make decision, and trigger control actions by forward
inference. The ultimate goal of this work is to make
the system self-adjustable.

The stored database will be examined by a machine
learning tool called IXL (Induction on eXtremely
Large database) [3]. IXL is a software tool developed
by IntelligenceWare Inc. and made available to us

under a joint research project. It combines machine -

learning and statistics to distill knowledge from large
databases. Basically, it constructs topological neigh-
borhoods for database records and then performs gen-
eralizations on these neighborhoods to discover rules
which show the correlations between attributes in a re-
lation/view. [4] Discovered rules which represent traf-
fic patterns, network malfunction, system status will
be stored in a knowledge base. A traffic controller
will then use deduction on those rules to diagnose,
predict, and control the network. Thus, the network
management system will integrate three subsystems,
namely, network monitor, induction tool, and traffic
controller. Figure 1 illustrates how induction and de-
duction techniques can be incorporated into network
management.
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Figure 1. Induction/Deduction for Network
Performance Management

Section 2 describes the design and implementation
aspects of an IXL experiment based on interconnected
LANSs. In section 8, the result and analysis of the ex-
periment are presented. Section 4 outlines some possi-
ble directions for improving the experiment and points
to further research.
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2 An Experiment on Interconnected
LANs

The goals of the experiment are to understand the
traffic distribution in the environment of intercon-
nected LANS, to test the ability of IXL in discovering
usual and unexpected traffic patterns, and to observe
the stability of traffic patterns and explore its appli-
cability in performance management.

The basic approach in this experiment is to monitor
the system at the host and network levels. For each
fixed period, we summarize the statistics and insert
them into a database. After the whole experiment is
completed, we apply IXL to the database to generate
a set of rules. These rules will reflect the traffic pat-
terns, and more specifically will give us a cause/effect
knowledge about such patterns.

The database discovery technique can be applied
to a variety of different traffic and network environ-
ments. The most obvious situation is that of a real
network on which real traffic measurements are col-
lected. In some cases, however, it may be of interest
to inject artificial traffic in the network, to simulate
one or more applications and to evaluate the traffic
patterns resulting by the interaction of such applica- -
tions. In other cases, the experiment may even be
carried out on a computer simulated network environ-
ment, with the purpose of studying the effect of events
which are difficult to control in a real network environ-
ment (e.g. link/node failures, packet loss, overloads,
dynamic network reconfiguration, etc).

In this paper, we describe an experiment on a
real, interconnected LAN environment with real traf-
fic. The schema of a set of relations was defined to or-
ganize and store the management information. A pro-
gram was written to process collected measurements
and perform data analysis.

2.1 Environment

The experiment is based on the interconnected
LAN environment at UCLA, Computer Science De-
partment. There are eight Ethernets and one Ap-
pletalk interconnected by routers and more than 300
hosts (including mini computers, multi-user or single-
user workstations, etc.), many terminal servers, file
gervers, news servers, and printers (see Fig. 2). Most
hosts run under UNIX. The transport layer protocol is
TCP suite. Different networks are interconnected via
IP routers. Because of the structure of the TCP/IP
address [5], we can tell which LAN a station belongs
to by examining its address. This will help in ana-
lyzing the traffic flows between LANs. We monitored



the traffic on the backbone Ethernet (i.e. 131.179.128
on Fig. 2) which is connected to the off-department
network and to Los Nettos. The monitoring program
runs on a SUN-4/280 minicomputer which is attached

to the backbone Ethernet.
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Fig. 2 Interconnected LANSs in Computer Science Dept.

The transparent NFS (Network File System) is
supported in a way that users can access their own
file systems on any host without specifying where
they are. This feature accounts for a significant por-
tion of the traffic because of the large amount of file
transfers between users’ original hosts (or file servers)
and current sites. E-mail delivery, remote procedure
calls, news reading, file printing, tape backup, human-
initiated terminal emulation sessions, and human-
initiated file transfers also account for the accumulated
traffic amount, in addition to the machine-initiated file
transfers mentioned above. It is observed that NFS
and window protocol (e.g. X window, SunView) traf-
fic dominates traffic generated by the other protocols
like "rlogin”, "telnet”, and ”ftp”. With the increasing
number of diskless workstations and window users, the
profile will become clearer.

2.2 Software Design

To monitor an Ethernet, we use the UNIX network
maintainence tool "etherfind”. Etherfind detects all
the packets transmitted on the Ethernet. It dumps
the IP headers and puts a timestamp on them. In the
IP header, the following fields are particularly inter-
esting to this experiment: source address, destination
address, number of bytes, protocol type, and fragmen-
tation flag. We wrote a program to handle the headers
dumped by ”etherfind” and couple them together by
a pipeline.

Several buffer arrays are used to monitor the

current active communication entities. When the
"etherfind” handler receives a packet header, it checks
the buffer arrays to see if the entity exists. If a match
is found, the corresponding entry is updated. Oth-
erwise, a new entry is created. This buffer is swept
periodically, for each time slot T, and each entry is
either promoted to file entry or flushed. In order to
reduce the storage requirements while capturing the
most significant traffic components, we promote only
those entries which percentagewise contribute most to
the traffic in that time slot. The entry with largest
contribution will be promoted first and then the sec-
ond one, etc. When the promoted entries capture P%
of total traffic, the promotion process stops and the
buffers are flushed. A new time slot then begins. This
promotion process for data reduction is shown in fig-
ure 3. A typical experiment lasts one to several days.
In our experiment, the capture ratio was set to P =
80.
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The structure of the buffer space is identical to the
schema for storing promoted entries in a relational



database. Four tables are defined for this experi-
ment. *Summary” just summarizes the total traffic
and connections. Traffic is also classified into local
(within the local Ethernet), incoming (coming from
remote LANs), outgoing (going to remote LANs), and
transit (both source and destination are not on this
LAN). (see Fig. 4) *Connections” keeps track of the
current active communicating node pairs. The traffic
amount and type for each pair are recorded. *BLANs”
is similar to ?Connections” except it is between source
LAN and destination LAN, instead of between nodes.
»Sources” traces the source nodes which contribute to
the traffic on the monitored Ethernet. Here are the
definitions of these tables: (note: the fields with un-
derline are keys.)

SUMMARY :

Slot : start time of this time slot

Bytes : # of Kbytes successfully transmitted

TCP : % of tep traffic transmitted

UDP : % of udp traffic transmitted

Connections : number of node connections

Promoted : %connections being promoted

Captured : %traffic contributed by promoted connections
LocalTraffic : %traffic with source and dest on this LAN
IncomingTraffic : %traffic with only dest on this LAN
OutgoingTraffic : %traffic with only source on this LAN
TransitTraffic : %traffic with source and dest not on this LAN

SOURCES :

Slot : start time of this time slot

Source : source statién address

Bytes : #Kbytes transmitted from this station
Percentage : %traffic from this station
Nodetype : local or remote node

CONNECTIONS :

lot : start time of this time slot

ource : source station address

est : destination station address

Bytes : #Kbytes transmitted between this pair
Percentage : %traffic between this pair

Type : (local, incoming, outgoing, transit)

ta

d

]

BLANS :

Slot : start time of this time slot

SourceLLAN : source LAN address

DestLAN : destination LAN address

Bytes : #Kbytes transmitted between this LAN pair
Percentage : %traffic between this LAN pair

Type : (local, incoming, outgoing, transit)

The traffic measurements are transfered from SUN-
4/280 to PC DOS disks via IBM RT after the moni-
toring process is completed. IXL then runs on those
relational tables in an IBM PC/AT. Each IXL run
takes from several minutes to several hours, depending
on the size of relational tables and various discovery
parameters set in IXL. Also, the number of generated
rules depends heavily on the settings of discovery pa-
rameters. By properly setting these parameters, we
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can direct IXL to find the traffic distribution and pat-
terns we need. In this experiment, we monitored for
5 days. The sizes of generated tables are from 300 to
5000 tuples. The running times of IXL on these ta-
bles are between 10 minutes to 5 hours. The numbers
of discovered rules are between 10 to 100. Typically,
several rounds of experiments are required in order
to adjust table size, IXL running time, and focus of
discovery.

IXL also supports the definition of ”concepts”,
which are virtual fields derived from other existing
fields. These "concepts” can reduce the running time
of IXL and help focusing the discovery process. In our
experiment, we define the concept ” Traffic® to classify
the levels of traffic volume. For example:

Traffic = very high if Bytes > 10 Mbytes;

Traffic = high if 10 Mbytes > Bytes > 5 Mbytes;
Traffic = medium if 5 Mbytes > Bytes > 1 Mbytes;
Traffic = low if 1 Mbytes > Bytes;

IXL has a set of parameters which tailor its per-
formance to the user’s need. [3] Major discovery pa-
rameters include the following: maximum number of
clauses in rules (an upper limit for the length of a
rule), minimum number of records (a lower limit for
the number of records involved in forming a rule), min-
imum confidence in rules (a lower limit for the confi-
dence in a rule), maximum margin of error (an upper
limit for the error invloved in estimating the confi-
dence in a rule), minimum percentage of database (a
lower limit for the fraction of the database invloved
in forming a rule), minimum significance (a measure-
ment of the quality of a range in terms of how the
distribution of values in that range varies from the
rest of the database where 0 means that almost all
ranges are considered and 100 means that only highly
significant ranges are considered), minimum general-
ity (a upper boundary for the range sizes determined
by IXL), maximum generality (a lower boundary for
the range sizes), generality increments (an indicator
of the number of ranges between the maximum and
minimum generality parameters where 0 means only
two ranges, maximum and minimum generality, are
considered and 100 means up to 20 ranges are consid-
ered), and interest level (user’s interest in the effect
that a field has on the goal).

2.3 Architecture of the Traffic Pattern
Observer

Figure 5 is the overview of the Traffic Pattern Ob-
server which is composed of several tools integrated



by user interface. The major components of the sys-
tem are Monitors, IXL, and a set of utilities. Monitors
will activate a set of tools to monitor traffic and, at the
same time, a set of handlers to handle the traffic data
generated by those tools. The utilities will provide an
interface to the database query language and also con-
tain tools for defining and setting up database. The
Database Interface is the one providing transparency
of the DBMS (Data Base Management System) used
so that we can switch to another DBMS without af-
fecting other components of the system.
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Figure 5. System Architecture for the Traffic
Pattern Observer
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Before the experiment can be conducted, the
database schema must be defined in the DBMS. For
each tool, there should be a base table in the database
and a handler associated with it so that all of the tool
handlers can work concurrently. Also, the structures
of the tool handlers depend on the schema specified in
the DBMS.

At the conceptual level of the database, the base
table schema is fixed; however, the user may have the
freedom to supply the view definition which depends
on the expected knowledge to be discovered. If the
user supplies his/her own view definition, there may be
some meaningless results generated by IXL if the view
definition has some defects like join of two base tables
with no common column. To guarantee a reasonable
result, the system will provide a set of view definition
for users to choose from.

During the monitoring process, there are a set of
processes working concurrently. Some are listening
to the Ethernet and pumping the information they
have captured, some are processing the pumped data
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and maintaining the data structures to keep track of
the summarized statistics, some are busy with the
database interface to insert records into the base ta-
bles. The data structures maintained in the handlers
are inserted into base tables and purged every period
of time. Although there are a lot of process working
on this job, which can be considered as a considerable
overhead to the system, only processes which fetch
the host information by some remote execution mech-
anism will transmit packets on the Ethernets. The
influence on the results concerning network traffic can
be small. However, the performance of the local host
may be affected. If the experiement program is run
on a dedicated workstation, there will be no influence
to other hosts. Furthermore, the communication over-
head can be minimized if we run IXL at the same site
where the database is located.

It is expected that we may have new tools for mon-
itoring some other activities. If a new tool needs to
be included, the system maintainer needs to do the
following:

1. Supply a handler associated with the new tool
and insert a new entry in the tool table of Mon-
itors subsystem which may invoke the new tool
during monitoring process.

2. Insert new base table definitions into the original
schema and those new base tables will contain
the information available via the tool.

3. Create new view definition associated with the
new base tables and those new view definitions
will be new alternatives for users to choose from

before IXL is invoked.

3 Experimental Results

Table 1 contains sample data for the defined rela-
tions. The experiment includes two sample runs on the
tables "summary” (288 tuples) and "BLANs” (2151
tuples) where numbers of rules found are 43 and 53,
respectively. The IXL running time is 13 minutes for
?summary” and 1 hour 50 minutes for "BLANs”. In
these sample runs, we focus on the discovery of rela-
tionship between traffic volume and other fields. Thus,
we make the defined concept ® Traffic as our goal at-
tribute in the rules to be discovered.

SUMMARY:



time Wpkts #bytes tcp udp #con P <

2188 187387 23890293 L34 41 37¢ 13 81 IF

T 12:26" < "timeslot? < 158"
.1 839828 278930170 7 2 asT 0 89

188 371640 160324249 96 3 394 ] £l AND
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e Mesere 5. 4 e 5 0 destLAN” = *131.179.192" ;

SUMMARY:(cont.)
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°
n
B
°
a
-
-«
S
v
]

A+ i age of records satisfying the goal among the records
%N w o satisfying the conditions of the rule. The first rule is
P 0w al discovered for summary” where "very high® means
won o 3 volume is larger than 10 Mbytes in a 5-minute slot.
non oo : This rule indicates that from 0:55AM to 1:40AM,
S ! outgoing traffic accounts for around 90larger than 10
CONNBCTIONS: Mbytes/slot. Actually, this happens when the sys-
sme e den gpkts gbgter % trpe tem is backing up its file system to tapes every morn-
158 ‘hassi  12s1  'sers 2033508 & local ing around 1:00AM to 2:00AM. That most traffic is
16858 128.34 138.61 11476 1800923 4 focal . . . .
185 o0 outide sodr  itea0s 3 trans outgoing implies that the backup tape is not on the
1688 ‘i‘iil ::::: Ger mests 3 :n:f):n backbone Ethernet. Indeed, the backup machine is
1988 Chaeisi  osside 19880 6786346 16  outgo 131.179.82.11”, a SUN-4/280 on another LAN. We
1788 128.34 1328.61 14007 3106248 [ local . . A .
178 outside 1817 1aTs 20Tagdy b fncom believe a peer rule will be discovered if we run the same
ontalde ) neom experiment also on the LAN where the backup ma-
BLANs chineresides, except that ”outgoing” becomes ”incom-
Ume e dost  pkts  dbstes X twpe ing’.'. Since the trafﬁc. volu{ne caused by tape ba-zclufp
1088 128 ounide  288a¢ 4600078 11 owbee varies each day, there is a high degree of fluctuation in
1688 ve 128 12463 2636949 6  Incom the periods of tape backup as shown in figure 8. How-
1635 128 193 132971 1998301 1] outgo " .
1688 s oumlde  dorr  isatar 3 erabe ever, we can still find the correlation and the cycle.
1788 138 138 75883 8006668 24 local
1788 128 outside [254 %0 6952494 19 outgo
1788 outside 138 38894 8135791 4 lncom
1788 64 128 14468 2501906 [] incom
~ 600
SOURCES: g 500 .
time sre Wpkts #bytes % type Q
1655 138.11 41513 50654132 13 loc h‘a‘ .
1685  138.13 31232 4543570 11 loc s 400
1685 138.61 33790 2131233 1] loc =
1685 96,11 8738 2016056 8 rem
1685 96.44 4361  1BT4839 4  rem B 13004
1785 138.34 42783 11623013 33 loc =
1788 outside 48160 5618506 18 rem &0 n
1755 13813 29100 4390897 12 loc g 200
1788 128.11 34189 4146715 11 loc Eg
1788 128.¢61 35884 2381736 [] loc <
1788 04.12 837 2108048 8 rem 100
0 )
Table 1 Sample relation tables 0 20 40 60 80 100 120

Hour
Figure 6. Traffic Cycle and Correlation

Of those discovered rules, some are particularly in-

teresting to us:
The second rule above is discovered for * BLANs"

CF=85 where "high® means volume is larger than 500
®traffic” = "very high” Kbytes/slot but smaller than 1 Mbytes/slot between
IF source and destination LANs. This rule means that
»0:55” < timeslot” < *1:35” the traffic volume from LAN ”131.179.64” to LAN
AND #131.179.192” between 12:28PM and 13:58PM is be-
?91%” < ?outgoing” < "M% ; tween 500 Kbytes/slot and 1 Mbytes/slot. This type

of rule can be very useful in understanding the traf-
CF=95 fic distribution with respect to topology and time. It
®traffic’ = *high” captures the traffic distribution in a three-dimentional
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traffic matrix shown in figure 7.

time,
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Figure 7. A Conceptual 3-D Traffic Matrix

The analysis of the rules discovered during the ex-
periment leads to the following general observation:

Locality:
More than 80% of the traffic is contributed by
less than 10% of communicating pairs, ie. traf-
fic is not uniformally distributed. It is essential
to capture this distribution in order to optimize
the network configuration. A typical degree of
locality is shown in table 2.

Correlation:

A temporal cycle exists in the traffic distribu-
tion. Being able to keep track of the distribu-
tion cycle will enable the dynamic configuration
management which tunes the network dynami-

cally.

Burstiness:

If we consider the burstiness in terms of different
time scale, the inter-slot burstiness (long-term)
is reflected by the cycle, while the intra-slot
burstiness (short-term) can be approximated by
a Batch Poisson or Markov-Modulated Poisson
process. This is due to the fact that we summa-
rize the measurements for each slot, thus some
details within the slot are lost and can only be
approximated by a stochastic process.

For the discovery process, tuning the learning pa-
rameters to fit the need of the application is not a
trivial task. In order to have a reasonable set of dis-
covered rules, IXL parameters must be carefully set.
For example, too few rules will be generated if the min-
imum confidence is too high. The sizes of the ranges
for ”timeslot” in the rules will be too small if the gen-
erality increments are set to zero (default). One of the
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limitation of IXL is that it is not suitable to learn the
correlation within the numerical values. It must rely
on the proper classification of the numerical domain
to reduce the number of unique values to be handled.

Since the discovered knowledge is expressed in pro-
duction rules, the system administrator can easily un-
derstand the semantics of the traffic measurements.
Meanwhile, as illustrated in figure 1, deduction engine
can be applied to this knowledge base to diagnose and
control the network.

C % P %
10 0.9
20 1.3
30 1.9
40 2.7
50 3.6
60 4.7
70 6.8
80 9.7
90 16.5
95 284
98 41.2

Table 2 Degree of Traffic Locality

4 Conclusion and Future Work

Current applications of Al techniques to network
management are mainly for fault management by ex-
pert systems where the knowledge is specified by the
human experts, instead of being learnt from the his-
torical data. [6][7] The experiment on the intercon-
nected LANs of UCLA Computer Science Department
has shown the high applicability of induction tech-
niques to network performance management, espe-
cially for medium-term and long-term control schemes.
An evaluation is made on the semantics of the rules
generated. The discovered rule base can describe the
traffic distribution and patterns which need to be cap-
tured for any sophisticated performance management.
Our testbed has strong traffic locality where only a
small subset of possible connections contribute signif-
icantly to overall traffic at any given time. We be-
lieve that the traffic locality in a large network with
real-time applications is more stable and hence more
predictable on a medium- to long- term basis.

We plan to run our experiment extensively to fur-
ther justify our observations and explore other traffic
patterns that can be captured from the database into



the knowledge base within the interconnected LAN
environment. The experiment will be augmented and
refined to capture the exact information we need for
our application. For example, we need to see the effect
of adjusting the length of time slot and find its opti-
mal value for a particular application. Each numeric
attribute in the relations can be classified into several
levels in order to cut down the running time for in-
duction where too many distinct values will lengthen
the discovery process.
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