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ABSTRACT 

By assuming network trafic to be independent 
fLom each other, the analysis of network pevformance 
can be simplified However, the real traflc sources may 
have some correlation which makes their behavior tends 
to converge or diverge. This phenomenon has 
tremendous influence on the congestion control. In this 
paper, we explain the possible reasons of the correlated 
behavior, namely, top-down and client-server 
correiation, and analyze their impacts. We also use the 
rapid matrix-geometric solution to investigate the cost 
to pay when applying the Leaky Bucket input control 
scheme on the independent, such as Poisson, trafic 
sources and the correlated, such as ON-OFF and HAP 
(Hierarchical Arrival Process), trafic sources. 

1. Introduction 
In high speed networks, we not only demand 

large volume data transmission but also need to control 
the transmission quality, such as packet delay, packet 
loss, jitters, etc. Because of the uncertainty in the 
behavior pattern of traffic sources, it costs much 
overhead to maintain the quality of services and tends to 
waste more resources. If we have a clear 
understanding of the traffic source behavior, a better 
control can be exercised to lower down network 
operation cost and improve transmission efficiency. 
Thus, efficient control mechanisms certainly require a 
solid understanding of the behavior pattern of traffic 
sources. 

In the past, we ofien assume a traffic source to 
have a Poisson packet arrival rate. That is, the packet 
interarrival times are exponentially distributed. This 
implies that packet arrivals are independent from each 
other. Researches have shown that packet arrivals are 
highly correlated [l-31 and bursty [4-61. Under this 
situation, it is difficult to control the network service 
quality since the results based on the Poisson assumption 
may not be valid. 

In this paper, we present two fundamental reasons 
which cause correlated traffic. They are called top-down 
and client-server correlations. Traffic arrival processes 
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are modulated by their upper-level parent processes or 
their peer processes. For example, when a user arrives, he 
or she will invoke applications. In the top-down 
correlation model, users and applications have 
hierarchical relationships: Only when a user in the upper 
level is active can the application in the lower level be 
activated. In the client-server correlation model, the client 
applications and their corresponding server applications 
have interactive relationships: They are usually activated 
together. We analyze the characteristics of both 
correlation models according to our defmitions of 
burstiness and ratio of burst. 

As we know, Leaky Bucket is an effective control 
mechanism for traffic policing and shaping. It can shape 
bursty traffic into a more regular stream and prevent a 
bursty traffic stream from damaging the performance of 
other traffic. Lots of papers have investigated its 
functions and effectiveness [7-91, but they often ignore 
the fact that it must pay cost at the same time. In this 
paper, we analyze queue length and packet loss Leaky 
Bucket scheme induces, and these conditions should be 
well noted when we use Leaky Bucket to control 
correlated trafic. Correlated traffic may suffer long 
queueing delay and high packet loss while passing the 
Leaky Bucket controller, which may result in violation of 
appointed QoS. 

The paper is organized as follows. Section 2 
describes and analyzes the top-down and client-server 
correlation models. In section 3, we present the cost 
analysis of Leaky Bucket fed by different types of 
correlated traffic; Section 4 presents the results and 
differences calculated from section 3 and compares their 
differences. Finally, conclusion is given in section 5.  

2. Characteristics of Correlated Traffic 
In this section, we present two models (top-down 

correlation model and client-server correlation model) to 
explain the reasons why correlated traffic happens and 
the differences between correlated traffic and non- 
correlated traffic. We quantify the characteristics of 
these models and compare them with the Poisson model 
which is the one we use most frequently to analyze the 
network performance. 
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2. I Analysis of Top-down Correlation Model 
There are many hierarchical relationships in the 

real world. We observe that there are also hierarchical 
relationships between processes in the network. 

The model is composed of many fundamental 
units. Each fundamental unit consists of a user and two 
applications. (See Fig. 1 .) Each user and application is 
either active or inactive. Only when a user in the upper 
level is active can the application in the lower level be 
activated. 

I 
Fundvnenwl unit 

top-down model independent model 
The top-down correlation model and Fig. 1 

independent model 

Assume that there are n fundamental units in the 
model and thus there are 2 n  applications in the lower 
level. The active probability of both user and 
application is, assumed to be identical for simplicity, p . 
The average number of active applications is 

Compare with another model which is composed 
of 2 n independent applications. (See Fig. 1.) The 
probability of each application being active is p 2 .  
Note that both these two will have the same mean 
number of active applications, 2 np2.  But they have 
quite different distributions. 

Below is the probability distribution function of 
the number of active applications in the top-down 
correlation model : 

n x p x 2 p = 2 n p  2 . 

p ( x )  = i p p y 1 -  p)”-i x C,2ip”(l- 
1 7  

I = [ ; ]  
I L I  

where x is the number of active applications. 
In the formula above, we compute the production 

of the probability that i users are active, 

C:p’(l- P)~- ‘ ,  and the conditional probability that x 
applications are active when there are i active users, 
C,21p‘(l - p ) 2 i - x ,  for every possible i (from to 

n >. 
The probability distribution function of the 

number of active applications in the independent model 
is 

q ( x ) =  C ~ n ( p 2 ~ ( 1 - p 2 ) 2 n - x ,  where x is the number 

of active applications. 
In Fig. 2, we can see that the independent model 

has a distribution that is more concentrated around the 
mean. That is, a top-down correlated model will 

produce more bursty behavior pattem than the 
independent model. In the following, we compare the 
top-down correlated models with the same mean but 
different n , the scale of the system. From Fig. 3, we can 
find when n becomes larger, the distribution will scatter 
even wider and there is a higher probability that more 
applications will be active simultaneously. 
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Fig. 2 The top-down model vs. independent model 
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Fig. 3 The top-down model under n =50 and n =500, 

with same mean. 

For this particular model, we define when the 
number of active applications exceed 1.5 times of its 
mean as “bursty state“. And define “burstiness“ as the 
probability that the system is in the bursty state, and the 
“ratio of burst” as the probability that an active 
application becomes active in a bursty state. We define 
these two as follows: 

burstiness = C p(x)  

ratio of burst = Ex x p(x )  X 

Let we use Fig. 4 to explain the term “ratio of 
burst”. In the long run, the area under the curve of x is 
X which is the denominator of the definition formula. 
The nominator, on the other hand, is the sum of gray 
areas. Thus, the intuitive meaning of the definition is the 
percentage of bursty traffic among total traffic, or the 
probability that an application becomes active when the 
system is in a bursty state. 

X > l 5 X *  

x>l5x? I 
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Fig. 4 The number of active applications 

From Table 1, we can observe that under the 
same mean rate, the top-down model will raise variance 
by 1.17-1.39 times, , burstiness by 2.23-13 times and 
ratio of burst traffic by 2.24-13.1 times. 

i 2n=200 *variance-.-",--,----"-...-..- 41.9 32.0 1 1.31 4 

* .  

j ( m e a n 4 0  ) ratio ofbunt 3.32 x10-3 I 1.48 x10-3 2.24 [ 
The difference of variance, burstiness and ratio 

of burst between top-down correlation model and 
independent model under same mean 

4 
Table 1 

. H  

211400 variance 83.8 j 64.0 1.31 4 

mean=200), ratioofburst 4.13 x l o - ~ ~  3 x 1 0 - ~ 4  
~sx->-v-----w---*m- 

Table 2 The difference of variance, burstiness and 
ratio of burst between top-down correlation model and 

independent model under same mean 

From this result, variance, burstiness or ratio of 
burst of the top-down model are obviously higher than 
those of the independent model. So, if we replace the 

top-down model with the independent model to analyze 
some traffic behavior, it is very probable the result will 
be very different from that in the real situation. On the 
other hand, under the condition of a fixed mean, the 
difference between the top-down model and the 
independent model in variance, burstiness and the ratio 
of burst will shrink as n increases. That is, if the mean 
is fixed, the top-down model will resemble the 
independent model as n increases. 

Table 2 shows the variance, burstiness or the ratio 
of burst with some parameterp2. From this rable, we 

can see if the active probability p 2  is fixed, as n 
increases, the burstiness and the ratio of burst will 
decrease in both the top-down model and independent 
model. But they shrink much faster in the independent 
model than in the top-down model. As a result, the 
difference between the two models is getting larger and 
larger. 

2.2 Analysis of Client-server Correlation Model 
In addition to the hierarchical relationships, there 

are also interactive relationships, such as the cooperation 
between departments in a company to reach some goal. 
Applications in the networks also have this kind of 
relationship. 

The model is composed of 2 n applications. (See 
Fig. 5.) There are n pairs with each pair being either 
active or inactive. The active probability is, again 
assumed to be identical, p .  The average number of 
active applications is 2 n * p =2 n p . Compare with 
2 n applications which are independent. They have the 
same active probability and thus the same mean. 

We name it the client-server correlation. 

A 

client-server correlation model independent model 
The client-server correlation model and Fig. 5 

independent model 

The probability distribution function of the 
number of active applications in the client-server 
correlation model is 

, where x p(x) = [ "1: p 5 (1 - p)n-; , x is even 

0 , x is odd 
is the number of active applications. 

The probability distribution function of the 
number of active applications in the independent model 
is q(x )  = C:"px (1 - p)2n-x ,  where x is the number of 
active applications. 
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Fig. 7 p ( ~ )  of client-server model under n =50 an( 
n ~ 5 0 0 ,  with the same mean. 

In Fig. 6,  same with top-down correlation model, 
we can see that independent model has a distribution 
that is more concentrated around the mean than the 
client-server model. In Fig. 7 and Table 3, we compare 
the client-server model with different n under the same 
mean number of active applications. We can observe, 
as n increases, the distribution will scatter wider and the 
divergence between the client-server model and the 
independent model will decrease. 

From Table 3, we observe that under the same 
mean, the client-server correlation model will raise 
variance by 2 times, burstiness by 12.5-76.1 times and 
ratio of bursty traffic by 12.9-78 times! 

From Table 4, we observe that under the same p , 
the client-server correlation model will raise variance by 
2 times, burstiness by 5.08-1809000 times and ratio of 
bursty traffic by 5.34-1 823000 times! Obviously, 
when p is fixed and n is increased, the difference 
between the client-server model and the independent 
model will increase tremendously as a result. The 
behavior of the client-server model is much more bursty 
than that of the independent model, which is especially 
true when we scale up the system. 

Table 3 The difference of variance, burstiness and 
ratio of burst between client-server correlation model 

and independent model under the same mean. 

Table 4 The difference of variance, burstiness and 
ratio of burst between client-server correlation model 
and independent model under the same parameter p .  

3. Leaky Bucket Traffic ~ 0 ~ ~ ~ 0 ~  
We have mentioned the two reasons to cause 

correlation : top-down and client-server correlation. 
Because Leaky Bucket scheme is used in one end; it can 
not control the traffic in both ways, it is meaningless to 
use Leaky Bucket to control the traffic with the client- 
server correlation, Thus, we only introduce the HAP 
model [lo] which generalizes the top-down model for 
our analysis. We analyze and compare the cost Leaky 
Bucket will pay under different input traffic sources, 
including Poisson model [l I], ON-OFF model [12,13] 
and HAP model . The cost we focus includes system's 
throughput, the average queueing time of the packets, 
and the packet loss rate under the condition of limited 
buffer. 
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As we know, Leaky Bucket has constant token 
arrival rate and service rate, and this makes it very 
difficult to quantify the result of the Leaky Bucket by 
mathematical analysis. Therefore, in this section, we 
apply an approximate Poisson-Leaky-Bucket model by 
assuming both the token arrival rate and service rate are 
of Poisson distribution rather than a constant rate. This 
simplifies our analysis, but the accuracy of this 
approximation should be further evaluated. 

3. I Survey on Trafic Models 
Below are three classic models. With these 

models, we can analyze the performance of traffic 
control and resource management schemes. 

(1) Poisson Model: This classic model has been 
used extensively due to its simplicity in analytical 
derivations. However, this model has its limitation. 
Packets generated from Poisson processes have 
exponentially distributed interarrival times. That is, 
packet arrivals are independent from each others, which 
is not true in the real world. The index of dispersion of 
Poisson processes is always one, while the real traffic 
has a monotonically increasing index of dispersion [ 1 11. 

(2) ON-OFF Model: An ON-OFF source 
alternates between two states: ON and OFF. When an 
ON-OFF source is in the ON state, it generates packets 
at the peak rate. When it is in the OFF state, it keeps 
silent. 

The ON-OFF model, generating bursty traffic, 
represents the characteristics of, for example, graphic 
sources and voice sources with silent removal [12,13]. 

(3) HAP (Hierarchical Arrival Process) Model: 
A HAP has three levels--user, application and message. 
A set of parameters describes the arrival and departure 
processes at each level. The model captures the fact that 
a packet arrival process is modulated by its upper-level 
arrival processes. 

The HAP model parameters are defined below. 
Suppose that the reciprocal of each parameter is the 
mean of its distribution: 

A : user interarrival time distribution, 
p : user service time distribution, 
/2, : interarrival time distribution for application 

type i , (Application arrivals are enabled only 
during user service time), 

,U, 
A,, : interarrival time distribution for message type j  

of application type i, (Again, messages are 
generated during application life span.) 

,U,, : service time distribution for message type j of 

application type I ,  where i = 1 .. l and j = 1 .. mi . 

: service time distribution for application type I ,  

Fig. 8 shows the hierarchy of the HAP model. A 
user may invoke up to I different application types 

simultaneously. Each application i can generate mi 
types of messages. 

3.2. Leaky Bucket on Poisson Trafic 
For the sake of apprehending the influence of the 

Leaky Bucket on the Poisson traffic, we obtain the 
solution in numerical form by the method below. In 
Fig. 9, the Markov chain represents a Leaky Bucket with 
a Poisson data input rate, Poisson token input rate, and 
Poisson service time. 

The state ( i j )  means the buffer in the Leaky 
Bucket has i packets and there are j tokens in the token 
pool. We use a two-dimension array 

q,+l)x(J+l) = [e, to indicate the probability array, 

where P , , ~  is the probability of state (i,j), and 
a is the input rate of the token, 
p is the rate that the packet finishes being serviced, 
h is the rate that the traffic source produces new 

I is the size of the buffer, and J is the size of the 
packets, 

token pool. 

Fig. 9 The state-transition-rate diagram of 
Leaky Bucket on Poisson traffic 

In the following operations, pi., represents the 
probability of state ( i j )  in next iterative stage, which 
equals to the conditional probability that the system 
move from other states into state ( i j )  minus the 
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conditional probability that the system leaves state (i, j). 
Thus, we can write down the state transition equations as 

~ ; , j  = A x Pi-l,j + a x P1,j-I + P x Pi+l,J+l 
+ ( l - a - P - - - ) x  PI,, , 

~ b , j  = a x Po,]-1 + P x P I ,  j+l + ( 1  - a - 1) x PO,] 

PI,] = A x P I - I , ~  + a x PI,J-I  + (1 - 

p;,o = A x Pl-l,O + P x Pi+l,l + (1 - - A> x Pl,O 7 

Pb,o = P PI,I + (1 - a - 2) 

Pi,o = A PI-1,o + (1 - a )  P1,o 3 

pi,J = A x ~ 1 - 1 ,  J + a x P I ,  J-I + (1 - P )  x PI ,  J . 
where O<i<l; WjU. 

- P )  x PI,, 9 

P;,J = A x  P A , J  + a  Pi,J-l + ( l - P - A ) x P i , J  2 

P0,o Y 

Pb, J = a PO, J-1 ( l -  A) P0,J > 

By repeating the operations above until the 
change of every element in P is less than some default 
value ( 10 - 9 ) ,  we can obtain the convergence 
probability of every state in the Markov chain. 

By doing so, we can compute the effective 
throughput, say T , of the system. T equals the product 
of the probability of the server being busy and the 
service rate of the server, which is 

= ( i*;+opl>J) X P U .  

We can get the packet loss rate, L . L is equal 
to the difference of the rate of the input packets and the 
rate of the output packets divided by the rate of the 
input packets. And that is, 

L = ( A - T ) / A .  

3.3 Leaky Bucket on ON-OFF Trafic 
We use a similar method to analyze the Leaky 

bucket on On-Off traffic. We represents this system by 
the state-transition-rate diagram in Fig. 10. 

In the notation of state ( f ,  i, j ) , f represents 
the state of the which the traffic source (f = O  means 
the off-state; f = 1 means the on-state), i represents 
the number of data packets in the buffer, and j 
represents the number of tokens in the token pool. 

In Fig. 10, we use the following parameters: 

on-state to off-state. 

off-state to on-state. 

serviced. 

packets in on-state. 

Similarly, we use a three-dimension array to 
represent the Markov chain probability array and use the 

p, is the rate at which the traffic source transits from 

pz is the rate at which the traffic source transits from 

p is the rate at which the packet finishes being 

h is the rate at which the traffic source produces new 

a is the input rate of the token. 

operations like those in section 4.2 to acquire the 
convergence solution in numerical form. 

As the last section, we can compute the effective 
throughput T , of the system. T equals the production of 
the probability of the server is busy and the service rate 
of the server, 

f ,i+O, j+O 

a 

PI P* 

Fig. 10 The state-transition-rate diagram of 
Leaky Bucket on On-Off traffic 

On the other hand, the average input rate of the 
traffic source, say x, is equal to the product of the 

probability of processing the data in on-state, ( - >, 
P1 +P2 

and the data input rate in on-state. Thus, 
- 
A = (*) x A. 

By doing so, we can get the packet loss rate L . 
L is equal the difference of the rate of the input packets 
and the rate of the output packets divided by the rate of 
the input packets. And that is, 

( L T )  
L=- - .  

A. 

3.4 Leaky Bucket on HAP Trafic 
Analogous to the methods we mentioned in the 

previous two sections, we use the state-transition-rate 
diagram (Fig. 12(a)(b) ) to represent the Leaky Bucket 
on HAP traffic. As we assume homogeneous user, 
application, and message, we have only one type in each 
level of the HAP hierarchy. Below are the parameters 
used in Fig. 1 1 : 
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Fig. 1 1  The HAP model and its parameters 

Input rate: Token on Leaky 
rate: Transmission Bucket 

rate on pure 
Input rate: Poisson 

A,, is the rate of the user's arrivals in HAP. 
puser is the rate of the user's departures in HAP. 
A,,, is the rate of the application's arrivals in HAP. 

pupp is the rate of the application's departures in 

Adutu is the rate of the application produces the 

pLserver is the rate that the packet finishes being 

a is the input rate of the token. 

HAP. 

packets. 

serviced. 

In the notation of state(x,y , i , J ') , x represents 
the number of the users in HAP. y represents the total 
number of the applications in HAP, J represents the 
number of the packets in the buffer, j represents the 
number of the tokens in the token pool. 

Similarly, we use a four-dimension array to 
represent the Markov chain probability array and then 
use the repetitive operations to compute the convergence 
solution in numerical form. 

Then, we can compute the effective throughput 
of the system, T , as 

T=( c Px,y,i , j  x p s e r w r  
x , Y , r + O , P o  1 

The average input rate of the traffic source, n ,  is 
computed by multiplying the rate at which every 
application produces the packets and the average 
number of applications, which is 

Leaky Bucket pure Poisson 
on Poisson 

Packet loss rate, L , is equal to the difference of 
the rate of the input packets and the rate of the output 
packets divided by the rate of the input packets. And 
that is, 

( Z T )  
L=- - 

A 

Fig 12 The state-transition-rate diagram of Leaky 
Bucket on HAP traffic 

4. Analytical Results and Discussion 
In this section, we use the method introduced in 

section 3 to quantify the behavior of Leaky Bucket and 
then compute and compare the cost Leaky Bucket will 
pay when the different traffic models as the input 
sources, including Poisson, ON-OFF and HAP models. 
The cost we are interested in includes queueing delay, 
and packet loss. 

We use the parameters in the simulation: buffer 
size I = 50, token tool size J = 25. 

Transmission rate 
k=0.008 : a=0.009 :I Queueing 14.000 13.999 

a=0.00975 :p=o.ol I length I I 
h=0.0095 : p=O.Ol (Packet loss(O.4523% 10.4387% I 

Table 5 The difference between Leaky Bucket on 
Poisson traffic and pure Poisson traffic 

In Table 5 ,  under the condition of different loads, 
we compare the Leaky Bucket on Poisson tfaffic and 
pure Poisson traffic. Then, we can observe, their 
average queueing lengths and packet loss rates are of 
few differences at various parametets, even when the 
load is as high as 95%. The Leaky Bucket could limit 
the long-term transmission rate of the Poisson traffic to 
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an amount which is not greater than the token input rate 
but does not raise the packet loss rate and average 
queueing delay too much, under the condition that the 
short-term transmission rate remains the same. 

(2) Leaky Bucket on ON-OFF vs. Pure ON-OFF 

Table 6 The difference between Leaky Bucket on 
ON-OFF traffic and pure ON-OFF traffic 

In Table 6,  we compare the Leaky Bucket on 
ON-OFF traffic source and pure ON-OFF traffic source 
with different parameters. Using Leaky Bucket method, 
only long-term transmission rate is guaranteed to be not 
greater than the token input rate and the short-term 
transmission rate is allowed to reach the server rate. 
Therefore, compared with the pure ON-OFF traffic, 
Leaky Bucket on ON-OFF traffic would have more 
packets waiting in the buffer. This phenomenon makes 
both the queueing delay and packet loss rate raise. 

On the other hand, the higher the switching rate, 
(P,,P2), of the traffic source between On and OFF state, 
the lower the average queueing delay and packet loss 
rate. Because when this switching rate is high, the ON- 
OFF traffic source will have a more smooth traffic 
pattern. On the contrary, when this switching rate is 
low, the traffic source may remain in ON state for a 
long period of time. A stream of bursty traffic will be 
produced. 

(3) Leaky Bucket on HAP vs. Pure HAP 
In Table 7, we compare the Leaky Bucket on 

HAP traffic source and pure HAP traffic source with 
different parameters. No matter there exist a Leaky 
Bucket or not, we can observe the obvious queueing 
delay and packet loss using the HAP traffic model. 

Owing to the high correlation of HAP traffic 
model, its traffic pattern is very bursty. Unless there 
are huge amount of buffers, the packet loss rate is still 
very high even when the average load is only medium. 

Table 7 The difference of average queueing length 
and packet loss rate between Leaky Bucket on HAP 

traffic and pure HAP traffic(average loadZ0.7, 
pserver ~0.012; a =0.01). 

(4) Leaky Bucket on Poisson vs. Leaky Bucket on On- 

We now observe an ON-OFF traffic source. 
When it is in the ON state, it will behave as a Poisson 
traffic source with a generating rate 2h. However, 
when it is in the OFF state, it does not produce any 
traffic. If this ON-OFF traffic source switches between 
the ON and OFF state very rapidly, then the whole 
behavior is just like a Poisson traffic source with a 
generating rate h. In contrast, if the switching rate 
between the ON and OFF state is low, then the whole 
behavior is very different from that of the Poisson traffic 
source though their average input rates are the same. 

Comparing Table 5 with Table 6, when ON-OFF 
traffic source has larger switching rate a and p, the 
queueing delay and packet loss rate are very close to 
those of Poisson traffic source. When a and /3 are 
smaller, the ON-OFF traffic source produces a more 
bursty traffic pattern. The pattern causes higher 
queueing delay and packet loss rate. 

(S) Leaky Bucket on Poisson vs. Leaky Bucket on HAP 
From Table 5 and Table 7, when we use Leaky 

Bucket to adjust the Poisson traffic source, the long-term 
transmission rate of the traffic is restricted and the short- 
term transmission rate is unchanged at the same time. 
It does not raise the delay and loss rate much. 
However, in a HAP traffic source, the high correlation 
of HAP will cause a long period of bursty traffic, it is 
hard to shape the HAP traffic. 

As we can see, Leaky Bucket could achieve, with 
little cost, its claimed effect on less bursty traffic. But 
for highly bursty traffic, it produces extremely large 
queueing delay and packet loss, and this is what users do 
not expect. Therefore, we have to improve the network 
control scheme to lower down the cost in controlling 
bursty traffic. 

off 
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5. Conclusion and Future work 
In this paper, we analyze the differences between 

the correlated traffic models and noncorrelated traffic 
models. A findamental analysis on the top-down and 
client-server correlation is conducted. We observe, that 
the correlated traffic has higher burstiness than 
noncorrelated traffic, and this phenomenon becomes 
more serious as the network scale increases. When the 
network size increases, burstiness and ratio of burst are 
lowered in the correlation model and independent model. 
But it shrinks much faster in the independent model than 
in the correlation model. As a result, the difference 
between the two models is getting larger and larger. 

Moreover, we use an approximate but rapid 
Matrix-geometric solution to analyze the control effects 
?he Leaky Bucket has on various traffic sources. Then, 
we observe, the Leaky Bucket can control Poisson 
traffic effectively and it will not bring about too high 
packet loss and too long queueing delay. 

However, under the condition of bursty traffic 
from HAP and ON-OFF models, Leaky Bucket is not as 
effective. It produces much higher queueing delay and 
packet loss in both models than in Poisson model, which 
may result in violation of appointed QoS. 

In the fiture, we shall continue analyzing the 
performance of Leaky Bucket fed by different input 
traffic models, while using the constant token and server 
rate rather than Poisson distribution. We shall run 
simulations to verify our analysis results. Also, we 
hope to obtain more solid knowledge about the real 
traffic in the future and try to find the correspondence 
between the real traffic and HAP traffic model. Finally, 
using the knowledge of real traffic and realistic traffic 
models, we could develop much better congestion 
control schemes. 
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