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Abstract— Existing layer 4 load balancers are content-blind
and often have difficulty in redirecting HTTP requests to the
appropriate server in the session manner. Layer 7 load balancers,
also referred to as web switches, are content-aware and support
session persistence. However, most web switches employ a bi-
direction architecture, which means both request and response
traffic must both pass through the load balancer. This makes a
web switch become a bottleneck easily. In this paper, we present
a direct routing architecture to prevent response traffic from
passing through the web switch. Our solution is highly scalable
in the number of back-end servers. In addition, two simple
but effective mechanisms, one-packet TCP state migration and
cookie name rewriting to packet filter, are presented to support
persistent connection and session persistence. Through the exter-
nal benchmark, we prove that our system outperforms existing
solutions. The internal benchmark investigates the bottlenecks of
our system and suggests the future improvement.

I. INTRODUCTION

The booming growth of World Wide Web has driven ex-
tremely high demand for powerful web servers that are able
to handle a large number of user requests. Web clustering is a
common solution to increasing the capacity of web services.
A load balancer is located in front of a cluster of web servers
and redirects requests to one of them according to the pre-
configured policy. The policy allows the load balancer to
choose the best server based on appropriate criteria, such as
server load.

A load balancer can operate at layer 4 or layer 7, depending
on whether it can make redirection decisions according to
the request content. An L4 load balancer establishes two
connections between the client and the server – one from the
client to itself, and the other from itself to the server. It then
keeps forwarding subsequent requests in the same connection
to the same server. Such a solution is efficient because it only
processes information at layer 3 and layer 4, which has a
fixed length and is located in the fixed position of a packet.
Nowadays, many web sites use server side scripts to generate
dynamic content such as database queries and shopping carts.
These scripts establish an application layer session across
multiple TCP connections to keep user data on the web server
for a period of time. However, the L4 load balancer is content-
blind and may redirect these TCP connections to different
servers, which results in errors because the user information is
stored on the server that the user first accesses. A web switch,
also referred to as an L7 load balancer, avoids this problem by

redirecting requests according to the content at layer 7, such
as URLs, cookies and SSL identifiers.

In some existing L7 load balancing solutions, such as TCP
splicing [1] and flow redirection [2], the response traffic must
pass through the load balancer and the capacity of the load
balancer can become the bottleneck easily. TCP handoff [3]
modifies the TCP/IP kernel stack on a server to support a
proprietary protocol, which allows TCP state to be migrated
from the load balancer to the server, but it is hard to implement
and support persistent connections [4]. The goal of our work is
to build a web switch that can bypass response traffic without
the modifying TCP/IP module on the server and support
persistent connections elegantly.

In this paper, we propose three mechanisms to solve the
above issues: one-packet state migration, switch-back mas-
querading, and cookie name rewriting. We implement these
methods as a Linux kernel module, and benchmark its external
and internal performance.

II. ARCHITECTURE DESIGN

The application layer information, such as URLs, is not
available until a connection has been established between
the client and the web switch. To respond directly to the
client, a server must have the TCP state migrated from the
web switch, which requires OS kernel modification and a
proprietary protocol. A different approach, called application
layer proxy, avoids TCP state migration by establishing two
connections on the web switch, one to the client and the other
to the server. An application proxy acts as a bridge between the
client and the server. This approach may not be able to handle
a huge number of requests [5] because the response traffic,
which has much more bytes than the request does, must pass
through and be dealt with by the proxy, making the proxy
a bottleneck easily. TCP splicing belongs to this category. A
better solution is flow redirection, but the response traffic still
has to pass through the web switch.

To design a highly scalable web switch, we reduce the load
of the web switch by preventing response traffic from passing
through it. One feasible solution to date is TCP handoff, which
allows the TCP state to be migrated from the web switch to
the server so that the client and the server can communicate
directly without passing their traffic through the web switch.
Figure 1 illustrates the process of TCP handoff. In step 5,
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Fig. 1. Mechanism of TCP handoff.
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Fig. 2. Process of one-packet TCP state migration.

the established TCP state on the web switch is migrated to
a server with a proprietary protocol. After the migration, the
web switch sends the requests to the server. The server then
can reply with data to the client directly since step 8.

TCP handoff is more scalable than TCP splicing. However,
TCP handoff implementation requires modification in both OS
kernel and applications [6], which is not always feasible. It is
also hard to support persistent connections, and we explain it
in Section III.

A. One-packet TCP state migration to packet filter

To avoid kernel modification, we propose a mechanism,
one-packet TCP state migration to packet filter. We implement
a packet filter that intercepts the connection from the web
switch to the server without modifying the kernel. The mech-
anism is shown and discussed in Figure 2 and the following
description.

• Steps 1-3: The client completes three-way handshake
with the web switch.

• Steps 4-5: The client sends the request to the web switch.
The web switch sends this request to the chosen server
while keeping the ACK bit and the acknowledgment
number WSEQ+1.
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Fig. 3. Pre-allocation scheme with a right guess.

• Step 6: The packet filter intercepts the request and starts
to replay three-way handshake with the TCP module on
the same server, using the same sequence number as that
from the client.

• Step 7: The packet filter receives SYN+ACK with the
sequence number RSEQ from the TCP module. The
packet filter records RSEQ for TCP masquerading.

• Step 8-9: After completing three-way handshake, the
packet filter changes the request’s acknowledgment num-
ber to RSEQ+1 and sends it to the TCP module.

• Step 10: The packet filter changes the sequence number
of the response packet from RSEQ+1 to WSEQ+1.

• Steps 11-12: The subsequent packets from the client to
the web switch in the same connection will be redirected
to the same server, and the packet filter will masquerade
the sequence number in the packets between them. The
client is totally oblivious of the transition that makes the
connection with the web switch be inherited by the server.

The above method is not highly scalable because the web
switch has to play TCP three-way handshake for every new
connection. For the scalability, we use a pre-allocation scheme,
as shown in Figure 3 and Figure 4. When a client sends
a SYN packet to the web switch, the web switch selects a
server based on some heuristic first, say connection statistics.
After receiving the HTTP request, the web switch knows if
its selection is right (i.e., the requested content is on the
selected server). If it is right, it passes the request to the pre-
allocated server. If not, the web switch sends an RST packet
to disconnect the pre-allocated connection, and then redirects
the request to an appropriate server.

We notice a similar architecture by Chow [7], which also has
a filtering concept and a pre-allocation scheme. However, our
architecture supports persistent connections. Each request in a
TCP connection must pass through the web switch. The web
switch can redirect the request to another server if the content
is located on that server, as described in Section III. If we
delegate the whole TCP connection to the client and the server,
the packet filter must be responsible for redirecting a request to
the right server. Our architecture also allows reusing a previous
connection because an RST packet instead of a FIN packet
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is sent to cease a connection (See Section III). Besides, it
supports session persistence by cookie name rewriting, which
is not described in Chow’s architecture.

However, our solution still has two drawbacks in spite of its
simplicity and high scalability. First, in a pipeline connection
[8], which allows multiple requests to be sent before the
response of a previous request returns, the acknowledgment
number in the request may be that for another response.
Fortunately, pipeline connections are rarely used and we can
ignore this possibility when we refer to persistent connections
herein. Second, TCP options such as SACK or ECN are
negotiated during three-way handshake. All TCP options are
decided in the connection between the client and the web
switch, so all of the servers are required to support and have
the same options as the web switch.

III. SUPPORTING HTTP PERSISTENT CONNECTIONS

It is difficult for a web switch to support HTTP persistent
connections because multiple requests in a connection may be
assigned to different servers, but only the first assigned server
has the TCP state from the web switch. The other servers do
not know what to do upon receiving an unexpected HTTP
request. Some existing solutions to the support are HTTP
header rewriting, HTTP 302 redirection [8], and multiple TCP
connection handoff and backend request forwarding [4].

A. Switch-back masquerading at packet filter

One-packet TCP state migration to packet filter uses the
sequence number of a request to rebuild the TCP state, which
can be used to solve the problem with persistent connections
easily. For example, after the first request has been redirected
to server 1, the second request in the same connection is sent
to the web switch. The process is illustrated in Figure 5.

• Step 23: The web switch receives the request. After
parsing the HTTP header, it notices the requested content
is located on server 2.

• Step 24-25: The web switch sends RST to server 1 to
close the connection and then redirects the request to
server 2.
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Fig. 6. Process of the third request.

• Steps 26-28: When the packet filter on server 2 receives
the request, it checks if the kernel has the TCP state of
this connection. If not, the packet filter plays three-way
handshake with the kernel to rebuild the TCP state. Oth-
erwise, the packet filter masquerades the TCP sequence
number and then sends the request to the kernel.

• Step 29: After rebuilding the TCP state, the packet filter
masquerades the TCP sequence number and then sends
the packet into the kernel.

• Step 30: The response packets pass through the packet
filter and are de-masqueraded.

• Steps 31-32: The subsequent packets are redirected be-
tween the client and server 2 and are masqueraded by the
packet filter.

If the content of the third request is again on server 1, the
web switch can reuse the previous connection to it. To reuse
this connection, we cannot close it in step 24. We send RST
to tell server 1 to keep silent and take over the connection
when the connection is switched back, as shown in Figure 6.
When the packet filter receives RST, it stalls this RST for 15
seconds. During this period, if there are no more requests in
this connection, the RST packet will be sent into kernel to
close the connection. The web switch can send one more RST
packet to close the connection to a server in the silent mode
immediately. The process is illustrated in Figure 6.

• Step 33: The web switch receives the third request and
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Fig. 7. Cookie name rewrite at packet filter.

decides to switch back to server 1.
• Step 34: The web switch sends an RST packet to tell

server 2. Server 2 can close the connection later if no
more requests are received.

• Step 35: The web switch sends the request to server 1.
• Step 36: Server 1 reuses the previous state without a new

three-way handshake.
• Steps 37-39: The subsequent packets are masqueraded as

usual.

IV. SUPPORTING SESSION PERSISTENCE

Session persistence is usually implemented by cookies.
When a server initiates a session, it inserts a unique session
cookie. The requests from the same client in the following
connections will carry the cookie and the server will use it to
identify the client in different connections. Since a web switch
is content aware, it can redirect requests based on cookies to
solve this problem. Some existing solutions are pre-defined
cookie name, automatic cookie insertion, and cookie learning.

A. Cookie name rewriting at packet filter

The forementioned solutions are not designed for direct
routing. Automatic cookie insertion and cookie learning are
infeasible because the response packets must pass through the
web switch. Pre-defined cookie name can be used for direct
routing, but it is not transparent to servers. All of them also
have a common restriction that the session should persist in
a single server. This disallows URL switching and session
persistence to be coexistent. We hope to design a mechanism
that allows the possibility. Our solution avoids modifying
HTTP header length and packet size. When the response
packets pass through the packet filter, the packet filter finds
out the session cookie and rewrites the first eight characters of
the cookie name to carry switching information. The format is
illustrated in Figure 7. The first two characters are a keyword
to indicate the cookie has been modified to carry switching
information. The following three characters is the identifier
of content types. The last three characters represent the server
identifier. All following requests in the same session carry this
special cookie, and the web switch redirects the request by the
cookie name. The restriction is that the original cookie name
should be at least eight characters long, which is acceptable
in real situations. Figure 8 shows the details.

In step 2, the packet filter rewrites the first eight characters
of the session cookie name, say ”DR0189C1”. This is unique
to each server. In step 4, the web switch parses the URL
for the requested content type, say ”0x018”. If it finds the
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Fig. 8. Session persistence with multiple back-end servers - part 1.
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Fig. 9. Session persistence with multiple back-end servers - part 2.

cookie name with the first five characters ”DR018”, it retrieves
the server identifier and redirects the packet to that server.
Otherwise, it redirects based on the request content. In step 5,
the packet filter searches the HTTP header to find the string
”DR0189C1” and writes the first eight characters of the session
cookie name back to ”PHPSESSI”.

After several requests, the client may carry multiple cookies
such as those shown in Figure 9. Our solution allows URL
switching in cookie persistence.

V. IMPLEMENTATION AND BENCHMARK

We integrate our mechanism into Linux Virtual Server
(IPVS) [9], a popular open source project of L4 load balancer.
IPVS is a Netfilter module in Linux kernel 2.4.x [10]. Our
implementation consists of a DWSR web switch and DWSR
packet filters on the servers. Figure 10 shows the functional
blocks of the system. The shaded block on the left is the
web switch, which has a packet filter module to intercept the
request packets before they enter the TCP/IP module. Then,
the dispatcher looks up the connection table and rule table
to make a redirection decision. The MAC Changer module
then changes the destination MAC address to that of the
target server. The packet filter on the server intercepts the
packet. If the server has the TCP state of the connection, the
packet is passed to the TCP masquerading module to adjust
the TCP sequence number. Otherwise, the filter replays three-
way handshake with the kernel to rebuild the TCP state of
the connection. The response packets pass through the TCP
masquerading module to adjust the TCP sequence number,
and then go to the client directly.

A. External Benchmark

We benchmark DWSR and compare it with KTCPVS [11]
and some commercial products without the direct routing
schemes. We use the same hardware platform, which is
equipped with dual Athlon XP 1700+ CPUs and gigabit NICs,
to execute both DWSR and KTCPVS. Six PCs equipped with
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TABLE I

RESULTS OF EXTERNAL BENCHMARK.

Throughput Requests/second Mbps
Number of servers 2 4 6 2 4 6

DWSR with 100Mbps NIC 3,328 6,584 8,878 177 350 472
KTCPVS with 100Mbps NIC 1,865 1,866 1,866 89 89 89
KTCPVS with 1000Mbps NIC 3,210 5,639 5,654 170 298 295

Intel Pentium III 1 GHz CPUs act as the web servers, each of
which runs Apache 1.3 and can service 1,700 requests/second
in 85 Mbps of response traffic.

The result is shown in Table I. When KTCPVS, a non-
direct routing architecture, comes with a 100 Mbps NIC, the
six servers can inundate the NIC easily because one server
alone can produce 85 to 89 Mbps of response. With a 1000
Mbps NIC, the performance of KTCPVS will boost, but the
bottleneck becomes the CPU. In DWSR, the response bypasses
the web switch, so neither the NIC nor the CPU is the
bottleneck and the performance of the DWSR grows linearly.
DWSR delegates most burdens, such as TCP masquerading
and setting up connections with clients to the servers, so the
performance is much better. Because of lack of enough clients
and servers, we did not reach the upper-bound performance of
DWSR. The time for DWSR to process a request is 69.723
µs, and we estimate an Intel Pentium III 1 GHz PC can
process about 14,285 requests/second. We also benchmark
some existing products in the same way, and the result is
shown in Table II.

B. Internal Benchmark

To identify the bottleneck of DWSR, we measure how much
time each function takes. The result is listed in Table III. For
each request, DWSR may need to create a new connection
entry, look up the entry if it has been created, or redirect

TABLE II

BENCHMARKING DWSR WITH EXISTING PRODUCTS.

Solution Requests/second

DWSR 8,878
Cisco CSS 11154 6,020

KTCPVS 5,654
Nortel ACE Switch 180e 5,402
F5 Big-IP HA+Controller 5,151

Radware WSD 2,763
Foundry ServerIron XL 2,840

TABLE III

RESULTS OF INTERNAL BENCHMARK.

DWSR Time DWSR-filter Time

IPVS 46 µs Rebuild TCP state 101.39 µs
L7 overhead 24 µs TCP masquerading 3.54 µs

Enabling cookie persistence 12 µs Enabling cookie persistence 4.47 µs

it. This process totally takes about 46 µs on average. Layer
7 processing takes about 24 µs in which 43% of the time to
generate a TCP RST packet, 40% to look up service entry and
17% to parse the file extension of the URL pattern. Content
parser can be a bottleneck if we parse the entire content, which
alone takes about 10 to 15 µs to search the URL pattern.
Another bottleneck is to generate a TCP RST packet, but it
only happens when the chosen server is changed.

The bottleneck of the DWSR filter is rebuilding the TCP
state because it alone takes about 100 µs to replay three-
way handshake with the kernel. Enabling cookie persistence
takes much more time because it has to search the cookie and
extract the destination server identifier from that cookie. A
good pattern matching algorithm is required to speed up the
process.

VI. CONCLUSION AND FUTURE WORK

We propose a direct routing architecture of web switch and
show this architecture is indeed a scalable way to construct
a web switch. One-packet TCP state migration to packet
filter makes TCP state migrate to servers and support per-
sistent connections easily. Cookie name rewriting is an easy
and powerful idea to support session persistence when URL
switching is enabled. However, some pending issues are not
well solved, such as supporting SSL while URL switching is
enabled and accelerating content rule matching. These topics
deserve further study to build a fully-functional web switch.
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