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Abstract—Many security and QoS functions have been de-
ployed at edge gateways to provide policy-based network man-
agement. For QoS functions, the bandwidth management system
can manage the narrow WAN access links. When managing the
TCP traffic, pass-through TCP flows can introduce large buffer
requirement, latency, buffer overflows, and unfairness among
flows competing for the same queue. This study evaluates possible
TCP-aware approaches through self-developed implementations
in Linux, testbed emulation, and live WAN measurement. The
widely deployed TCP Rate control (TCR) approach is found to
be more vulnerable to WAN packet losses and less compatible to
several TCP sending operating systems. The proposed PostACK
approach can preserve TCR’s advantages while avoiding TCR’s
drawbacks. PostACK emulates per-flow queuing but relocates the
queuing of data to the queuing of ACKs in the reverse direction,
hence minimizes buffer requirement up to 96%. PostACK also
has 10% goodput improvement against TCR under lossy WAN.
Experimental results can be reproduced through our open
sources: (1) tcp-masq: a modified Linux kernel; (2) wan-emu: a
testbed for conducting switched LAN-to-WAN or WAN-to-LAN
experiments with RTT/loss/jitter emulations.

I. INTRODUCTION

Corporate networks are often connected to the Internet
by subscribing Internet access links. The links are narrow
so network administrators may install a bandwidth manage-
ment system at the link to manage the traffic. Thus, the
important/interactive/mission-critical traffic such as voice over
IP (VoIP), e-business, and ERP (Enterprise Resource Planning)
flows are not blocked by the less-important traffic such as FTP.
A policy rule usually consists of condition and action fields
that define specific actions for specific conditions. The condi-
tion field defines the packet-matching criteria, such as a certain
subnet or application, to classify packets into their correspond-
ing queues. Then the queued packets are scheduled according
to the specified action, such as “at least/most 20kbps”. After
quantitatively evaluating eight major players [1] in the market,
we summarize a general bandwidth management model in §I-
A. The issues, assumptions, and our problem statement are
then detailed in §I-B.

A. General Bandwidth Management Model

Key terms used in this paper are also defined in Fig.1, where
two types of policy rules can be exercised:

1. Class-based bandwidth allocation: Most bandwidth allo-
cation policies are class-based. As shown in Fig.1, each
such policy rule groups a set of flows into a class by the
per-class packet classifier. Each class corresponds to a
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FIFO-based per-class data queue (PCDQ). Data packets
queued at the PCDQ are scheduled out to the WAN links
by the packet scheduler. A packet scheduler is often a
must to control all kinds of traffic including unrespon-
sive flows like UDP and ICMP. Many implementations
employed the Class Based Queuing (CBQ) [3], which
can efficiently utilize newly available bandwidth among
classes. However, multiple TCP flows competing for the
same queue can cause high buffer requirement at the
edge gateway, hence result in large latency, frequent
buffer overflows, and unfairness among the competing
TCP flows within the same class. This is owing to the
mismatch between the growing TCP window and the
fixed bandwidth delay product [4] [6](BDP) of the flow.
The microscopic details will be analyzed in §II-B.

2. Guarantee bandwidth for each flow within a class:
Traditionally, RED [7] can be used to alleviate the
unfairness among competing TCP flows within a class.
However, RED is less effective to achieve perfect fair-
ness [1] [8] [9]. Nowadays, most vendors have incorpo-
rated a per-flow ACK control add-on module (Fig.1) in
the reverse direction to actively control the behavior of
each TCP sender. All evaluated commercial implemen-
tations [1] fairly treat the flows within the class. Namely,
if n TCP flows are now mixed in the PCDQ of class c,
ideally the bandwidth for each flow BW; obtains a share
of BW,/n.

B. Issues and Problem Statements

Guided by the above demand, this section defines the
issues, problem statement, and a representation of a TCP
flow’s bandwidth used throughout this paper.

Issues to Study
This study aims at assessing possible per-flow rate control
approaches for optimizing the following performance metrics:

1. Buffer requirement at the edge gateway, which implies
cost and latency (§IV-A.1).

2. Vulnerability of goodput under lossy environments (av-
erage goodput' under packet losses (§1V-A.2)).

3. Fairness among flows in one class (flow isolation within
one class (§IV-A.3)).

'Goodput means effective throughput, which excludes the throughput
consumed by retransmissions.
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Fig. 1.

4. Robustness under Various TCP implementations (§IV-
A4).

Bandwidth of a TCP Flow

TCP throughput modelling has been extensively studied
in [12] and [13]. Without considering packet losses for
simplicity, the bandwidth (or rate) of a TCP flow can be
measured in various time scales as shown in Eq.l. For a
TCP flow, choosing its RTT (D,,, plus delays at PCDQ.
and PFAQ);) as the measuring time interval can establish a
relation with TCP windows as in Eq.2. Excluding the packets
queued at the edge gateway (A in Fig.1), Eq.2 is transformed
to Eq.3. Apparently, the bandwidth of a TCP flow can be
affected by either shrinking the window size (the TCP rate
control approach) or stretching the RTT (the PostACK and
per-flow queuing approaches).

Bytes Sent

BW;, = ———— 1
Time Interval

_ TCPwindow _ min(We,, Wy,) - MSS; 2
RTT D, + PCDQI! 1 PRAQII™Y
_ Bytesin WAN _ W, - MSS; 3)
Round Trip WAN Delay Doy,

As shown in Fig.1, if the WAN pipe of flow 7 is full, each
bandwidth sample of flow ¢ measured at the end of each D,,,
will approximate BW;; otherwise, the flow is under-utilizing
its bandwidth share. Additionally, the more evenly the packets
are distributed across the D,,,, the less the fluctuations among
the consecutive measured bandwidth samples.

Problem Statement: How to keep flow i to BW; (= BW./n)
with optimizations to the performance metrics
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As explained in §I-A, any flow ¢ € class ¢ should obtain
BW,;(= BW,./n). With the optimizations to the above perfor-
mance metrics, the gateway can have low buffer/latency/cost
while keeping high goodput, fairness, and robustness.

C. Organization of This Work

The following sections are organized as follows: The next
section reviews TCP sender behaviors and previous works
(8II). The PostAck approach is presented in §III. Subsequently,
the effectiveness of the schemes are verified through prototype
experiments, simulations, and live experiments (§IV). Finally
conclusions are given in §V.

II. BACKGROUND AND RELATED WORKS

The following sections assume that readers are familiar with
TCP congestion control schemes.

A. History of Existing Schemes

Karandikar et al. [8] sponsored by Packeteer [11] propose
the TCP Rate control (TCR, a strange acronym named in [8])
approach. While TCR is popular among many commercial
implementations [1], it remains only partially studied. TCR
is only compared with RED and ECN, which are merely
congestion control schemes without keeping per-flow states
as TCR does. Additionally, not a single loss in the TCR
performance study may hide its deficiencies compared with
per-flow queuing®. Because better understanding of TCR is
helpful in presenting the PostACK algorithm, we review the
TCR algorithm in details.

2Per-flow queuing (PFQ) assigns each TCP flow to a queue to isolate the
bandwidth share. The scheduling algorithm can be any, such as weighted
fair queuing [14] (WFQ). In this paper, PFQ results are obtained by simply
applying a token bucket shaper to each flow.
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B. Prior-Art ACK Control Approach: TCR

1) Algorithm Review: Figure 2 displays the TCR [8] ACK
control model that exercises window-sizing and ACK-pacing.
If W,,, denotes the number of packets in the WAN pipe for
flow i with BW; (= BW./n), then

_ BWi - Du,
MSS;

_ BDP;
P MSS;

Wy “

where the equation can be used as follows:

1. Window-sizing: Because normally a TCP sender S;
expands its W, to speedup its rate, window-sizing
tries to slow it down by locking the TCP window
(= min(W,,,W,,)) using the modified W,.,. Window-
sizing periodically measures the D,,, by observing the
sequence numbers, and then rewrites the W, in each
ACK with BDP; bytes (W,,, packets). Thus flow i is
expected to just fill up its WAN pipe without overflowing
excessive packets to the PCDQ.

2. ACK-pacing: To evenly spread W,,, of packets across
the WAN pipe, the inter-ACK spacmg time, A;, can
also be derived from Eq.4 as A; 1“ = A}ga}? The
ACK-pacing module then clocks out AéKs of flow ¢ at

intervals of ”a;q Thus the W,,, packets from .S, are

smoothly paced out and are most likely to be evenly

distributed across the measured D,,,.

2) Microscopic Behaviors of TCR-Applied Flows: To de-
velop an efficient ACK-pacing, TCR can be implemented with
a single timer for each class instead of for each flow. The
timer times out at intervals of M S Sl and releases all n ACKs
back to the n senders at a tlme If window-sizing is absent,
the reaction of releasing an ACK to a sender depends on the
congestion control phase the sender is in:

1. TCP Senders in Slow-Start Phase: In TCP slow-start
phase, CWND advances by one whenever an ACK
acknowledges the receipt of a full-size data segment.
So generally every ACK released by the edge gateway
in this condition will trigger out two new data packets
into the corresponding PC'DQ.
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2. FullCWND ACKed TCP Senders in Congestion-
Avoidance Phase: In TCP congestion-avoidance phase,
CWND advances by one whenever an ACK acknowl-
edges the whole window (CWND) of data packets. So
generally each ACK will trigger out one new data packet
but the last ACK of each CWND round® can trigger out
two new data packets into the corresponding PCDQ).

3. TCP Senders Exited from Fast Recovery Phase: Ac-
knowledgements of successfully retransmitted packets
may bring the sender out of the fast recovery phase,
causing the W, to reset to ssthresh (= %min(Wc, W),
where W, herein means the largest W, before conges-
tion occurs) . The reset action can trigger a burst of
packets into the PC'DQ.

Because the edge gateway cannot accurately identify which
sender is in which phase, simultaneous releasing n ACKs to
the n flows of class ¢ may result in unfairness. Some flows may
respond multiple packets while some flows may only respond
one. By window-sizing, TCR can enforce that each ACK will
respond exactly one packet no matter in which phase the TCP
sender is because the sending window is then bounded by the
W, instead of W.,.

3) Expected Side Effects of TCR Approach: Measuring
round-trip WAN delay and modifying the TCP ACK header
are expected to have at least three side effects:

1. Halved-BDP Side Effect: Lower Throughput Since TCR
shrinks the RWND of flow i to its WAN pipe size (BDPF;
bytes or W,,, packets, which is smaller than W), a
single loss can trigger the sender to halve its window

down to %Ww (which is smaller than %Wn) rather
than to  min(W,,, W,,) packets. Thus the performance
degrades even under slight WAN packet losses.

2. Tiny-Window Side Effect: Less Compatibility and even
Lower Throughput For flows with small BDP (either

3CWND round herein means the data packets of the same round that can
advance the CWND by one when all of them are ACKed, in congestion
avoidance phase.
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BW; or D,, is too small), window-sizing may shrink
their RWNDs to the situation that no more than three
unacknowledged data packets are in the WAN pipe. As
such any single loss resorts to a retransmission timeout
(RTO) rather than using fast retransmit (also stated in
RFC 3042 [5]). Some classical Berkeley-derived oper-
ating systems employ a coarse-grained timer (500ms),
which can cause a l-second idle to retransmit the
packet [4]. This significantly degrade the TCR-applied
flows. Many enterprises installing heterogeneous OSes
may encounter such problems. A recent benchmark[15]
among TCR-employed vendors also demonstrate this
phenomenon.

III. ALTERNATIVE ACK CONTROL APPROACH: POSTACK

PostAck is designed to be more intelligent both in retaining
previous TCR benefits and eliminating its deficiencies. Without
measuring the WAN delay and shrinking the RWND in TCP
ACKs, PostAck can avoid the side effects of TCR.

A. Motivation: Delaying the ACKs Instead of Data Packets

As indicated in the problem statement, each flow should ob-
tain a bandwidth share of BW; = BW,_/n. Recall that in Fig.1
the RTT consists of D,,,, the queuing delays at PC'D(). and
PFAQ);, and the neligible round-trip LAN delay. Generally
the delay at PF AQ); approaches zero while the forward-data-
packet queuing delay for TCP is large. Imagine that a Per-
Flow Queuing (PFQ) is placed within the class c¢ to enforce
that each BW; = BW,./n (i € c). Thus, the number of data
packets of flow ¢ queued before the packet scheduler in Fig.1,
PCDQY™, is min(W,,, W,,) — (BDP,/MSS;), namely all
unacknowledged packets excluding the packets in the WAN
pipe. To achieve BW;, each queued data packet should wait
for a period of (PCDQY" « MSS,)/BW;. Imagine that
the packet scheduler in the forward direction were absent.
By delaying each ACK for the same interval (PCDQ?" %
MSS;)/BW;), the bandwidth of flow ¢ will also approach
its target bandwidth BW,. The effects of delaying the data
packets in the forward direction by the packet scheduler
is identical to delaying the ACKs in the reverse direction
since a TCP sender only measures RTT, which consists of
bidirectional delays. Gradually increasing the delay of ACKs
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would not cause Retransmission TimeOuts (RTO) because a
TCP sender can adapt the RTO to the newly measured RTTs.
In summary, the target bandwidth, BW;, which keeps only
BDP;/MSS,; packets in the WAN pipe, can be achieved
through queuing excessive packets. Either queuing the data
packets or the ACKs have the same effects on rate shaping.

B. Efficient Implementation for PostACK

Although the concept of PostACK is quite different from
that of TCR, PostAck can also be efficiently implemented as
an on-off variant of ACK-pacing. Namely it can also employ
a per-class timer and has O(1) per-packet processing time
complexity, which is as efficient as TCR. Recall that the
ACK-pacing interval (A; = M S i ') can be derived without
estimating the RTT. So PostACK implemented as an on-off
variant of ACK-pacing does not need to measure the WAN
delay.

We first recall that TCR achieves the fairness among
the n flows within the class ¢ by using a per-class timer
to simultaneously release n ACKs to the n TCP senders.
Window-sizing forces each ACK to trigger out only one data
packet. So n senders are expected to send n data packets into
the PCDQ.. Since PostACK do not modify the W,, when
using ACK-pacing, among the n ACKs released to the n TCP
senders on a ACK-pacing timeout of class ¢, slow-start TCP
sender 7 € c will be triggered out two data packets while
congestion-avoidance TCP sender j € ¢ may be triggered out
one or two data packets as discussed in §II-B.2. Thus, flow
and j may not get the same share of bandwidth during this
round of ACK-pacing (the interval between two consecutive
ACK-pacing timeouts) because during this time interval only
n data packets in PCDQ). can be scheduled out. To retain
fairness among flows, whenever seeing k£ (k > 1) data packets
of flow ¢ entering the edge gateway after releasing an ACK
of flow i, PostACK stops the pacing of flow ¢’s ACK for the
next k — 1 times. During this silent period, flow i’s feedback
ACKs still come in from the WAN pipe and get queued,
resulting in the delaying of ACKs. Intelligent stopping and
resuming ACK-pacing of flow ¢ € class ¢ guarantee that
BWZ‘ =B Wc / n.
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C. Algorithm

To determine the number of ACK-pacing timeouts to skip
for flow ¢ (the £ — 1 in the above example), Per-Flow
Accounting (PFA in Fig.3 and i.out in Fig.4) of additionally
enqueued packets is introduced. Whenever PFA finds addition-
ally enqueued packets of flow i, Queue Relocator (line 03 in
Fig.4 and QR in Fig.3) quench the pacing of flow i’s ACK
to relocate the queuing delay at PCDQ. to the PF'AQ;. As
implied in Fig.4, i.out is always non-negative because a sender
always emits a packet into the PCDQ. first (i.e. i.out =
1.out 4+ 1 in Fig.4) before its corresponding ACK is released
(i.e. i.out = i.out — 1 in Fig.4). Similar to TCR, generally
PostACK expects one data packet (i.e. i.out = i.out+ 1) after
releasing an ACK of flow ¢ (i.e. i.out = i.out — 1). However,
if two data packets enters PCDQ); (i.e. i.out = i.out + 1 for
two times) after releasing an ACK, one additionally enqueued
data packet (z.out > 1) triggers the QR to stop the next ACK-
pacing of flow <.

Initialization:
ACK-pacing timeout interval for class ¢ A, = Aéss
ACK-pacing timeout function for class ¢ = OnClass”ﬁmeout
i.out = 0 /* number of additionally enqueued packets +1 */

Algorithm:

01 OnClassTimeout(class c¢){ /* per-class timer for ACK-pacing */
02 for each flow 4 in class ¢{

03 if (.out > 1) /* QR: skip this pacing of ACK for flow ¢ */
04 i.out = i.out — 1

05 else

06 release an ACK

07 i.out = i.out — 1

10 }

11 PCDQ_Enqueue(pkt m, class c¢){ /* enqueue m to PCDQ. */
12 i=PerFlowClassify(m) /* find m’s state information */

13 i.out = t.out + 1
14 /* original PCDQ_Enqueue code for m and c goes here */
15 }

Fig. 4. Efficient PostAck Implementation: On-Off Variant of ACK-Pacing

IV. IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

We have implemented PostACK and TCR into Linux kernel
2.2.17, together with a practical emulation testbed. The per-
flow queuing is achieved by assigning a token bucket policer
(available in Linux kernel 2.2.17) to each TCP flows. We
hereby describe the implementations and experimental results.

A. Numerical Results

1) Buffer Requirement at the Edge Gateway: This section
demonstrates the same effectiveness of PostACK and TCR
in saving the buffer space. Figure 5 quantifies the goodput
degradation due to buffer overflow at the edge gateway. For a
500KB/s class, pure CBQ requires a huge buffer (243 packets
at 32 flows) to achieve the target goodput. For PostAck and
TCR, only a reasonable buffer (< 10 packets) is needed.
Buffer overflow can cause high retransmission ratio* (up to

4The figure for the corresponding retransmission ratio is omitted due to
space limitation.
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22% when 32 flows competing for a 1-packet FIFO), which
consumes a considerable amount of LAN bandwidth.

(a) Average Goodput of the Class

PostAck+CBQ --=--
CR+CBQ -

qlimit
(37n packets)

Num of flows (2/n) 5

Fig. 5. Buffer requirement of a S00KB/s Class

Testbed Confi I%uraltlons WAN delay=50ms, class bandwidth=500KB/s,
default RWND=32KB

2) WAN Loss Behaviors (Sensitivity to Internet Loss):
Figure 6 compares the goodput degradation due to packet
losses in WAN. Under normal WAN loss (below 4% random
loss), PostAck obviously outperforms TCR but remains the
same degree of TCP-friendliness with PFQ. Microscopic view
on the bandwidth fluctuations in 0.5% random WAN loss
(Fig.6(a)(b)(c)) proves the benefit of PostACK against TCR.
Figure 6(d) shows the average goodput over 10-30 seconds.
PostACK can have 10% improvement against TCR under 1%
packet loss rate. Under heavily congested conditions (beyond
4% random loss), no significant difference can be found among
the three. This is because the throughput is not bottlenecked by
the configured rate at the edge gateway anymore. The CWND
becomes too small to achieve its target rate.

(a) Goodput under Per-Fow Queuing

(b) Goodput under TCR

Per-Packet’ 8 )
Random Drop Rate (%)

Per—F’acket4
Random Drop Rate (%)

(c) Goodput under PostAck (d) Average Goodput

over 10~30 Sec

Average Goodput (KB/s)

b Time TCR - l» -
2 = ) (sec) PostAck -
Per-Packet 8 v 0 0
Random Drop Rate (%) 0.5 1 2 4 8 16

Per-Packet Random Drop Rate (%)

Fig. 6.  Goodput degradation under various WAN loss rates

Configuration: A flow bottlenecked by a 200KB/s class runs under
various random packet loss rates set by the WAN emulator.

0-7803-8794-5/04/$20.00 © 2004 IEEE



(a) Sent at will (100Mb/s link) (b) CBQ (200KB/s class)

3000 T T T T T 300 T T T T T

& 2500 N 10ms flow —— | @ 250 : égms gow —
o A P — | o ms flow. ==z=mzm.. .
¢ 2000 150ms flow - g 200 | | 150ms flow - |
by 1500 Y 150 total
2 1000 1 w 100 |/ ]
@ 500 | /s . o 50 [ oy

[0 QAT IO s e s [o QL ! ! ! !

0 2 4 6 8 10 12 0 5 10 15 20 25 30
Time (sec) Time (sec)
(c) CBQ+TCR (200KB/s class) (d) CBQ+PostAck (200KB/s class)
250 T 10' fi T T 250 T 10' fi T T

= L ms.flow. ———...] = | ms flow.. ———...|
& 200 50ms flow --------- & 200 . 50ms flow ---------
¥ 150 . 150ms flow - 1 x 150~ 150ms flow -~ 1
o 100 F total 4 o 100 total 4
© > e © -
o« 50 [; 1 o 50 1

0 Lia ! ! ! ! 0 v ! ! ! !

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (sec) Time (sec)
Fig. 7. Fairness among flows in 200KB/s class

Configuration: Three paths are configured as different WAN delays
(10ms, 50ms, and 150ms) in wan-emu. In (a) each flow sends packets
at its own will; in (b)(c)(d) a 200KB/s class contains the three flows.
These figures are measured at the TCP sender.

3) Fairness Among Flows in One Class (Flow Isolation):
This section investigates the effectiveness of ACK control
modules in resolving the unfairness among TCP flows with
heterogeneous WAN delays. Test configurations are described
in Fig.7. Figure 7(a) demonstrates the classical problem:
throughput of a TCP flow is inversely proportional to its
RTT. However, when the three flows share a 200KB/s class
in a FIFO PCDQ (Fig.7(b)), the unfairness among the
10ms/50ms/100ms flows is alleviated. This is because the RTT
measured by flow i (RT'T}) equals to D,,, + 5, PCDQI™.
The shared PCDQ’s queuing delay, Y, PCDQfel“y, domi-
nates the RT'T; so that the flows are almost fair. Both TCR
(Fig.7(c)) and PostAck (Fig.7(d)) can further eliminate the
little unfairness. Note that these figures are measured at TCP
sender side so each peak corresponds to the phase of pumping
traffic to the edge gateway. The peaks in PostAck are relatively
lower than those in CBQ since whenever a PostAck-applied
flow gets queued at the PCDQ, the QR in PostACK skip the
flow’s ACK-pacing. So the peak diminishes immediately.

4) Robustness under Various TCP Implementations: This
section tests the robustness of TCR and PostAck under major
TCP implementations. The test methodology is self-contained
in Fig.8. In Fig.8(a)(b), the bandwidth policy constrains the
unacknownledged packets in WAN to one (W,, = 1). The
Tiny-Window Side Effect of TCR occurs in Fig.8(a). Linux
takes the finest timer on measuring the RTT and the RTO
fires faster than other systems. So Linux sender has the
best performance. Solaris keeps a coarse-grained timer and
performs badly. Under the condition that five unacknowledged
packets (W,, = 5) can pipeline in the WAN pipe (Fig.8(c)(d)),
goodputs of the TCP flow under Window 2000 or Solaris are
still slightly lower than the others. in a recent benchmark, TCR
employed by PacketShaper also reveals this phenomenon [1].
In contrast, PostAck (Fig.8(b)(d)) can keep the target rate
regardless of TCP implementations.
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(a) TCR: Ww=1 (b) PostAck: Ww=1

600 600 —
m 500 & 500 e
< 400 < 400 ;
§ 300 Linux g § 300 Linux .
Z 200 Win2K -------- 4 Z 200 Win2K - 4
8 100 FreeBSD - 8 100 FreeBSD -
Solaris L Solaris
0 1 1 0 1
0 1020 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70
Time (sec) Time (sec)
(c) TCR: Ww=5 (d) PostAck: Ww=5
8000 4000
—~ 7000 —~ 3500
€ 6000 8 3000
=~ 5000 ot = 2500 s
€ 4000 /éux 4 E 2000 LifOx g
Z 3000 S Win2K 1 Z 1500 Win2K - -
& 2000 ““FreeBSD - . & 1000 FreeBSD - .
1008 Solaris A 508 Solaris .
0 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30 35 40
Time (sec) Time (sec)
Fig. 8. Robustness under Various TCP sender implementations: TCR vs.

PostAck
Testbed Conﬁ%urations: round-trip WAN delay=50ms, MSS=1500
bytes. In (a)(b), periodic drop rate in WAN=1/40, class band-
width=10KB/s and thus W, < 4; In (c)(d), periodic drop rate=1/100,
class bandwidth=100KB/s and thus W5, > ZF Linux 2.2.17, FreeBSD
4.0, Solaris 8, and Windows 2000 are tested.
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Fig. 9. OurSite-to-UCLA Live Experiments

Configuration: The live experiments were conducted for seven times.
Each time a 100KB/s TCP flow is separately run over each scheme
for 60 seconds. Data from 10 to 50 seconds is analyzed. The loss rate
ranges from 0.002 to 0.007, with corresponding WAN delays ranging
from 102 ms to 168 ms.

Time (sec)

5) Live WAN Experiments: So far the results are obtained
from the tcp-masq over the wan-emu testbed. This section
tries to seek empirical validation from live WAN experiments
between our site and UCLA. The focus is on how a single
TCR/PostACK-applied flow pumping traffic across the Pacific
is degraded by the lossy WAN. The test parameters are
contained in the Fig.9. The results (Fig.9(a)) confirm that
throughput of TCR-applied flows suffer even under slight
Internet losses. Figure 9(b) displays the rate fluctuations of
one data set. The PostAck scheme has the smallest degree of
rate fluctuation.

6) Scalability: The primary overhead in PostAck/TCR is
ACK-Pacing, which uses a kernel timer for each class to pace
out ACKs. Since TCR in Packeteer’s PacketShaper can support
20,000 flows [8] in 1999 (now it is upgraded to at least P-III
600MHz), the kernel timer scales well in modern computers.
In fact, the overhead of the per-class timer does not increase
as the number of flows, n, sharing the class increases. When
n increases, the target bandwidth of flow i, BW; (= BZVi ),
decreases such that the ACK-pacing interval becomes larger,
causing the timer to even less busy. Therefore, scalability

0-7803-8794-5/04/$20.00 © 2004 IEEE



depends mostly on the bandwidth of the class rather than the
number of flows sharing the same class. For PostACK, the
stopping/resuming operations in Fig.4 does not introduce any
new processing overhead but only skip the flows that send
more than expected.

V. CONCLUSIONS

This study re-evaluates possible TCP rate shaping ap-
proaches, including the TCP Rate control (TCR), the proposed
PostAck, and the Per-Flow Queuing (PFQ) approaches, to
shape TCP traffic at the organizational edge gateways. Specif-
ically, this study demonstrates the throughput vulnerability
(a degradation of 10% shown in §II-B.3) and incompatibil-
ity (Solaris’ poor RTO) of TCR, which exercises window-
sizing and ACK-pacing techniques. Window-sizing is espe-
cially widespread among vendors [1] but with only partially
studied. An alternative robust and simple approach, PostAck,
is hereby proposed (§I1I) to combine the virtues of TCR (good
fairness, low buffer/cost/latency) and PFQ (better performance
under loss) without the drawbacks of TCR. All numerical
results can be re-produced through our open sources [15].
Notice that PostACK/TCR is not limited to only apply on
CBQ, but can also apply on any queuing-based link-sharing
mechanisms. However, this study customizes PostACK/TCR
to work for CBQ because CBQ is the most popular link-
sharing mechanism.

Table I summarizes the pros and cons among them. Notice
that under WAN without any loss, PostACK can also achieve
perfect fairness, as PFQ and TCR can, if the measuring time
scale lasts for several RTTs. But if we measure the bandwidth
with a very fine-grained time scale, PostACK’s fairness is
slightly degraded. However, in lossy WAN environments,
several found side-effects of TCR question its perfect fairness.
Honestly speaking, ACK control has always been a cool
hack, but not a deep solution. This study is perhaps most
interesting as a big picture of how much you can shape TCP
traffic transparently, especially in lossy WAN environments.
Hence, the comparison sometimes shows tradeoffs among the
schemes. In lossy environments, TCR does not always work
perfectly both in their commercial implementation [1] and our
tcp-masq implementation. PostACK can be an alternative.

TABLE 1
COMPARISON OF PFQ, TCR, AND POSTACK: PERFORMANCE METRICS

grained packet scheduler such as WFQ. They all require O(N)
space where N denotes the number of TCP flows passing
through.

TABLE 11
COMPARISON OF PFQ, TCR, AND POSTACK: COMPLEXITY

Complexity PFQ TCR  PostACK
Classification per-flow  per-flow per-flow
Time O(1) O(1) o(1)
Space O(N) O(N) O(N)
RTT Measurement No Yes No
Header Modification No Yes No
Checksum Recalculation No Yes No

Some bandwidth management vendors use GPL-licensed
open sources, such as Linux kernel, but never do they open
their modifications. Currently tcpmasq is under the process of
applying GPL license. After all, open source should be open.
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