
VPN Gateways over Network Processors: Implementation and Evaluation

Abstract
Networking applications, such as VPN and content

filtering, demand extra computing power in order to meet
the throughput requirement nowadays. In addition to pure
ASIC solutions, network processor architecture is
emerging as an alternative to scale up data-plane
processing while retaining design flexibility. This article,
rather than proposing new algorithms, illustrates the
experience in developing IPSec-based VPN gateways
over network processors, and investigates the
performance issues. The external benchmarks reveal that
the system can reach 45Mbps for IPSec using 3DES
algorithm, which improves by 350% compared to single
XScale core processor and parallels the throughput of a
PIII 1GHz processor. Through the internal benchmarks,
we analyze the turnaround times of the main functional
blocks, and identify the core processor as the
performance bottleneck for both packet forwarding and
IPSec processing.

I. Introduction
Today’s networking applications, such as virtual

private network (VPN) [1] and content filtering that offer
extra security and application-aware processing, have
demanded more powerful hardware devices to achieve
high performance. The most straight-forward way to
tackle this problem is to increase the clock rate of a
general purpose processor, though some disadvantages,
such as the cost and the technology limit, accompany.
Moreover, the low efficiency is also expected since the
processor, as its name suggests, is not specifically
designed for the processing of networking packets.

Another solution to this problem is to employ the
concept of offloading, that is, to shift the
computing-intensive tasks from the core processor to a
number of additional processors. The
Application-Specific Integrated Circuit (ASIC) [2] has

been a possible candidate to serve as an additional
processor. Nonetheless, this workaround might not be
preferred in two aspects. First, since the functionalities
are fixed once tapped out, it needs to be redesigned for
any modifications. Second, the development period is so
time-consuming that the time-to-market requirement may
not be met.

Network processors [3] are now embraced as an
alternative solution to remedy the above-mentioned
problems because of its re-programmability, specifically
designed instructions for networking purpose and the
hardware threads with minor, if not zero, context switch
overhead. In this work, we explored the feasibility of
implementing VPN, which is a computation intensive
application, over the Intel IXP425 [4] network processor
featuring an XScale core, multiple hardware contexts and
coprocessors, and tried to figure out the performance and
possible bottlenecks of the implementation. The VPN
mechanism, which is usually based on IPSec [5],
comprises several processing stages such as packet
reception (Rx) and transmission (Tx), encryption and
decryption, authentication and table lookups, each of
which needs a certain amount of processing. We analyzed
the detailed packet flow and decided to offload packet
transferring and cryptographic calculation to coprocessors.
Some efforts have also been done to port the VPN
application from ordinary PC to IXP425 in the meantime.
We then externally and internally benchmarked the
resulting prototype. The former characterized
performance figures of the implementation, while the
latter carried out the in-depth analysis of the observations
which were left unexplained in the external benchmarks
such as system bottlenecks. The Xscale is identified to be
the bottleneck for IPSec processing.

Some related works researching the bottlenecks of
network processors can also be found in the literature:
Spalink et al. [6] presented the results of simple IP

Yi-Neng Lin, Chiuan-Hung Lin, Ying-Dar Lin

Department of Computer and Information

Science, National Chiao-Tung University,

Hsinchu, Taiwan

{ynlin,chlin,ydlin}@cis.nctu.edu.tw

Yuan-Chen Lai

Department of Information Management,

National Taiwan University of Science and

Technology, Taipei, Taiwan

laiyc@cs.ntust.edu.tw

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

forwarding and Lin et al. [7] implemented DiffServ, both
over Intel IXP1200. Nevertheless, our work differs from
theirs in that (1) no coprocessor was involved in their
implementations; (2) both the control-plane and part of
the data-plane processing were handled in the core
processor of IXP425 while the core of IXP1200 took care
of the control-plane packets only, and (3) computation
intensive VPN application was considered, as compared
with simple forwarding and memory intensive
classification of these two studies.

This article is organized as follows. We first describe
the hardware and software architectures of IXP425. Next,
we elaborate the details of the design and implementation
of VPN over IXP425. Then we present the results and
observations from the external and internal benchmarks.
Some conclusive remarks of this article are made finally.

II. Hardware and Software Architecture of
IXP425

A. Hardware Architecture of IXP425

The hardware block diagram of IXP425 is depicted in
Fig. 1. The core of IXP425 is a 533MHz XScale
processor handling system initialization and software
objects execution. Three buses interconnected by two
bridges provide the connectivity among components on
IXP425.

To assist the XScale core in processing networking
packets, three 133MHz programmable network processor
engines (NPEs) are used to execute in parallel the code
image stored in internal memory for providing functions
such as MAC, CRC checking/generation, AAL2, AES,
DES, SHA-1 and MD5, in cooperate with a number of
application-specific coprocessors. The support of
hardware multithreading with single cycle context switch
overhead further makes NPEs more tolerant to long
memory accesses and thus reduces the number of

processor stalls. The communication between the XScale
core and NPEs is handled by a hardware queue manager
using interrupt and message queue mechanisms. The
queue manager also contains 8KB SRAM divided into 64
independent queues manipulated as circular buffers for
allocating free memory space to incoming packets and for
locating packets in the memory. The SDRAM can be
expanded up to 256MB for storing tables, policies and OS
applications in addition to packets. A PCI interface is
available for an additional PCI NIC. Some peripheral
controllers, like USB and UART controllers, are also
equipped into IXP425 for better extensibility.

B. Detailed Packet Flow in IXP425

The processing flow of an ordinary packet is
elaborated below referring to Fig.1. Upon the arrival of a
packet at the interface of an NPE, it is partitioned into
several 32byte segments and stored at the Receive FIFO
of an Ethernet coprocessor which in turn performs
MAC-related operations. The NPE then moves those
segments into corresponding addresses in SDRAM
allocated by the queue manager, which then interrupts the
XScale of the reception for further processing. During
normal processing procedures such as IP and other higher
layer protocol stacks at XScale, chances are that some
authentic and cryptographic operations are needed. The
XScale core may handle them either by itself or by
offloading the computation overhead to appropriate
coprocessors residing in NPE B. In the latter scenario, the
coprocessors are directly invoked by NPE B, requested by
the XScale, to process a certain data segment in SDRAM,
where a message queue implemented in the queue
manager is exploited to pass the request. The queue
manager is informed by NPE B upon the completion of
the operations and then interrupts the XScale.

C. Software Architecture of IXP425

The software architecture shown in Fig. 2 is divided
into two portions, namely the platform independent
(applications and some higher level components such as
networking protocol stacks in OS) and dependent parts
(mainly device drivers). This design is favorable
especially when an OS migration from a certain H/W
platform to another is demanded, that is, the developers
need to focus only on the dependent part, namely the
development of drivers. When implementing device
drivers, a set of software libraries collectively referred to
as AccessLibrary can be used to drive devices such as
NPEs, coprocessors, peripherals, etc. The AccessLibrary
also provides utilities, such as OSSL and IxOSServices to
implement some OS-related functions such as mutual
exclusion.

The software processing flow is described as follows

Fig. 1. Hardware architecture of IXP425.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

with library functions adopted from the AccessLibrary.
During the boot time a function named IxNpeDl is called
to download the corresponding code image into the
instruction cache of each NPE. Then two functions,
IxQmgr and IxNpeMh, are called to initialize the queue
manager as well as the message handler responsible for
the communications between NPEs and XScale. The
Ethernet-related functions, IxEthAcc and IxEthDB, are
used to receive and transmit Ethernet frames, while the
IxCryptoAcc function is incorporated for possible
cryptographic operations during packet processing.

III. Design and Implementation

In this section, we first introduce basic operations in a
VPN environment and then analyze its packet processing
flow in order to identify possible bottlenecks as
offloading candidates. Finally, we describe how to
implement a VPN gateway over IXP425.

A. VPN Briefing

Virtual Private Network (VPN) provides secure
transmission over un-trusted networks. Normally the
IPSec protocol is adopted as the underlying technique due
to the popularity of the Internet Protocol. It supports data
authentication, integrity and confidentiality, in which two
gateways are employed as endpoints constructing a VPN
tunnel for secure data transmission. Improving the
performance of the gateways is decisive to the VPN
throughput.

B. Identifying Offloading Candidates

To resolve the performance issue, we analyze the VPN
packet processing flow in order to identify possible
candidates to be offloaded to coprocessors. A detailed
inbound IPSec packet flow was displayed in Fig. 3. It
consists of three main blocks, namely the packet

reception, IPSec processing, and packet transmission.
Their operations are elaborated below.

Once an Ethernet frame is received by the physical
interface, checking for frame check sequence screens out
broken frames and the remaining frames are examined in
accordance with possible MAC address filtering
configurations. Reception is accomplished after the frame
is moved into memory, followed by a classification
recognizing it as an IPSec packet. At this time, some table
lookups for processing rules and cryptographic
parameters are performed and payload of this IPSec
packet is decrypted or checked for authentication. Finally,
a new packet decrypted from the original IP payload is
further processed by higher-level protocols, or is
transmitted according to the routing table.

Tasks suitable to be offloaded to coprocessors can be
identified by two characteristics: whether those tasks are
repeated routines or computation intensive ones. As
mentioned earlier this section, we know that IPSec
processing, especially the cryptographic operation, is
computation intensive. Hence, we decide to pick the
cryptographic processing as an offloading candidate.
Another candidate comprises the packet transfer, CRC
checking/generation, MAC filtering, and packet
movement between NPE and memory, since the
procedures are precisely the same for every packet. From
the hardware block diagram in Section II, it is obvious
that the IXP425 has the hardware components for the
identified candidates.

C. Implementation

We adopt the NetBSD [8], a secure, highly portable
and open-source OS derived from 4.4BSD, as our
operating system. Clean design between platform
dependent and independent parts and the driver support
for various networking interfaces make it a good
implementation target for new hardware platform.
Following relates three major components in prototyping
a security gateway over IXP425.

Operating System Porting. The most efficient way to
porting an OS to a new platform is refer to the port of
another similar platform and then implement drivers for
the target platform based on that port [9]. To port NetBSD
over IXP425, therefore, we adopt the “EvbARM” port in
NetBSD. It supports various evaluation boards that equip
with XScale or other ARM-based core processors, so that
only system-level modifications have to be done to enable
normal operations of IXP425. Example modifications
include the CPU identification, setup of board-specific
memory map, and system initialization procedures.

Driver Development. A number of drivers for devices

Fig. 2. Software architecture of IXP425.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

such as UART, NPEs and coprocessors need to be
implemented for communication between the operating
system and those devices. This effort can be alleviated
with the help of the AccessLibrary introduced in Section
II. Besides drivers, we have to modify two OS dependent
modules, namely OSSL and IxOSServices, in
AccessLibrary to ensure proper operations of the
OS-related services.

Offloading the Cryptographic Operations. The last
modification to kernel concerns the offloading of
in-kernel IPSec cryptographic computations from XScale
to coprocessor. Ordinary method requires that the kernel
performs and subsequently waits on the
encryption/decryption operations carried out by the
coprocessor. However, NetBSD provides another option
named FAST_IPSec that makes use of the Open Crypto
Framework (OCF) for offloading. In OCF, the
cryptographic operations can be handled by a registered
function. The FAST_IPSec prevails over the original
offloading technique in that the XScale would not
suspend during cryptographic operations. We exploit this
technique by pre-registering the crypto driver, which
drives the crypto coprocessor using functions in
AccessLibrary, to the OCF.

IV. System Benchmark and Bottleneck
Analysis

In this section, we investigate the benefits from
offloading by externally benchmarking the
implementation using various offloading schemes. A
number of internal tests are also conducted in order to
observe what cannot be obtained in the external
benchmarks.

A. System Benchmark Setup

To have a better understanding of the improvement

from the network processor architecture as well as the
offloading mechanisms, we design and benchmark
systems of different offloading schemes, and compare
their performance results. Four offloading schemes are
adopted: (1) offload both crypto operations and packet
Rx/Tx to the corresponding coprocessors; (2) offload
crypto operations only; (3) offload Tx/Rx only, and (4) no
offloading. Figure 4 diagrams the corresponding data
paths for the four schemes.

As for the external benchmark environments for packet
forwarding and IPSec, we use SmartBits to generate the
input traffic and to collect and analyze the performance
results. For internal tests, some system utilities such as
vmstat, top and GProf, are employed to obtain the system
state as well as other internal behaviors such as CPU and
memory utilizations.

B. Scalability Test

Scalability tests aim to derive the maximum
throughput of the prototypes of different offloading
schemes. Another gateway implementation using Pentium
III 1GHz processor and 256MB SDRAM is also included
for comparison between IXP425 and x86-based systems.

Packet Forwarding. Figure 5 shows the performance

Fig. 3. Processing flow of an inbound IPSec packet. Shaded blocks are candidates to be offloaded.

Fig. 4. Data paths of the four offloading schemes.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

results of 1-to-1 packet forwarding under the condition of
zero packet loss. From the figure we can see that
throughput of the IXP425 offloaded by two NPEs
parallels the one of Pentium III 1GHz. Both of them can
support wired speed for packet lengths larger than 512
bytes. Besides, a performance improvement of up to 60%
contributed by NPEs can also be gained. We also
observed that the maximum throughput occurs when the
packet length is 1024 bytes, rather than other larger
lengths. This is because the longer processing time of
larger packets counteracts the benefit from their reduced
header processing overhead.

IPSec Processing. Figure 6 depicts the throughput of
DES for different packet lengths. Some observations can
be made. First, offloading IPSec processing to
coprocessors in NPE B improves the performance by
350%; in some cases IXP425 even outperforms the
Pentium III 1GHz. Second, the maximum throughput
occurs when the packet length is 1450 bytes, instead of
1518 bytes. This is because 1450 bytes is the largest
length for a packet not to be fragmented when being
encapsulated into an IPSec one. Third, the throughput of
3DES on IXP425, as shown in Fig. 7, is similar to the one
of DES whereas the computation requirement of the
former is almost triple of the later. The reason is that it is
the XScale, not the coprocessors, that becomes the
bottleneck.

C. Bottleneck Analysis

Bottleneck of Packet Rx/Tx. To proceed the bottleneck
analysis, we considered four main functional units likely
to affect system performance: bus, memory system, NPE
and XScale. It is obvious that neither the bus nor the
memory is a bottleneck because wired speed can be
achieved for some larger packet lengths. The NPE is not a
bottleneck either, since, as observed by the netstat utility,
all packets are received and stored at the memory. The
bottleneck can therefore be identified as the XScale since
the packet processing is carried out mostly by it. Figure 8
shows that the utilization of the XScale linearly advances
as the traffic load increases.

Bottleneck of IPSec Processing. The bottleneck in the
IPSec processing is known to be the XScale before
offloading is applied, since the cryptographic calculation
demands much computing power. However, the XScale is
again found to be the bottleneck even after offloaded by
the crypto coprocessors. Figure 9 shows that when traffic
load is 50Mbps exceeding the maximum system
throughput of 46Mbps, the utilization of XScale
approaches 100% and the success ratio of IPSec packets
significantly drops to 22%. This is because the processor
is so busy that incoming packets are dropped due to
limited buffer space.

�

��

��

��

��

��

��

��

��

	�

���

�� �� �� �� �� �� �� �� 	� ���

�����������	�
��
��

�
�
�
�
��
��
�	
�	

�
�	
�
�
�

�
�

���

����

Fig. 8. Input traffic load vs. XScale utilization
for two packet lengths (bytes).

0

10

20

30

40

50

60

1518 1450 1024 512 64
Packet Length (bytes)

T
hr

ou
gh

pu
t (

M
bp

s) Xscale+NPE+Cop
Xscale+CoP
Xscale+NPE
Xscale
x86

Fig. 7. IPSec Throughput: the 3DES case.

Fig. 6. IPSec Throughput: the DES case.

0

20

40

60

80

100

1518 1280 1024 512 256 128 64

Packet Length (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

IXP425: NPE-NPE

IXP425: NPE-NIC

IXP425: NIC-NIC

PIII 1G

Fig. 5. Throughput of packet forwarding when
different numbers of NPEs are used.

0

10

20

30

40

50

60

1518 1450 1024 512 64

Packet Length (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

Xscale+NPE+Cop
Xscale+CoP
Xscale+NPE
Xscale
x86

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

The XScale bottleneck can be further confirmed with
the turnaround times of the DES and 3DES requests,
respectively, as shown in Fig. 10. The turnaround time
means the duration from the time a request of
cryptographic operations is issued by XScale to the queue
manager, to the time the XScale is notified of the
completion. As mentioned previously, the throughputs of
DES and 3DES are similar, indicating that their
turnaround times should also be the same. However, this
contradicts the results in Fig. 10 in which the turnaround
times of DES and 3DES are different, justifying that the
XScale, rather than the crypto coprocessor, is the
bottleneck when performing DES and 3DES. The
throughputs of DES and 3DES are the same because they
are bound by XScale.

We can also estimate the maximum throughput of the
crypto coprocessor as the processing times of encryption
and decryption are proportional to the data length. The
estimated performances can be computed by �s/�t,
where �s and �t represent the differences of two packet
lengths and two latencies, respectively. Therefore, the
crypto coprocessor is estimated to scale approximately to

sec)/(4.162sec)u/(3.20
97117

10521458
Mbbytes =≅

−
− for DES,

and to 101Mbps for 3DES likewise.

D. Turnaround Time Analysis of Functional
Blocks

Figure 11 depicts the turnaround time analysis of the
functional blocks when processing DES and 3DES
packets. Functional blocks considered consist of the IP
processing, IPSec preprocessing including identity and
SAD/SPD lookups, and IPSec encryption. Three kinds of
testbed configurations are conducted for testing DES and
3DES: IXP425 with the cryptographic operations
offloaded to the coprocessor; IXP425 without offloading,
namely XScale only; and PIII processor.

From the figure we can see that cryptographic
calculation accounts for a major portion, from 80% to
90%, in the packet processing time before offloading.
After offloading to the coprocessor, the time for
cryptographic calculation is reduced from 700 us to 100
us. Notably both the IXP425 and single XScale
configurations have the same IP processing and IP
preprocessing periods because those tasks are executed
only by XScale.

V. Conclusions and Future Works

In this work, we elaborate the implementation of a
VPN gateway over the IXP425 network processor, where
a number of coprocessors are provided for offloading
computation intensive tasks from the Xscale core. We
introduce the hardware and software architectures of the
platform, analyze the VPN, i.e. IPSec, processing flow,
and then identify the packet Rx/Tx as well as
encryption/decryption as the ones to be offloaded to
coprocessors. We realize the offloading design by
implementing a number of drivers in NetBSD, and finally
externally and internally benchmark the system in order
to find possible performance bottlenecks.

The benchmark results show that the throughputs of
packet Rx/Tx and IPSec processing are improved by 60%
and 350%, respectively, after offloading. However, the
Xscale is again found to be the bottleneck for both packet

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45 50 55

Traffic Load (Mbps)

Pe
rc

en
ta

ge
 (%

)

Pkt success ratio

XScale utilization

Fig 9. IPSec packet success ratio vs. XScale
utilization.

Fig. 10. Turnaround time of a cryptographic
request for a packet. Packet size varies.

0

40

80

120

160

1458 1052 540 284

Packet length (bytes)

L
at

en
cy

 (

µ

se
c)

DES

3DES

��

��
��

������

������
������

������

������
������

���

���
���

����

����
����

����

����
����

�����������������������

�������������
�������������

���

�����������������������������������
�����������������������������������

���������������

������������
������������

0 100 200 300 400 500 600 700 800

3DES@PIII

DES@PIII

3DES@XScale

DES@XScale

3DES@IXP425

DES@IXP425

Turnaround time (µSec)

���
IP processing���
IPsec preprocessing���
IPsec encrypt ion

Fig. 11. Turnaround time of functional blocks.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Rx/Tx and IPSec processing.
Two issues are to be investigated in the future. First,

more tasks may be offloaded to NPEs or to coprocessors.
An example of this is the IPSec database lookup, which
determines the policy to be applied to a certain IPSec
packet. Second, the performance may be further improved
if we call the related functions in the AccessLibrary
directly for cryptographic operations, instead of going
through the Open Crypto Framework.

References

[1] T. Braun, M. Günter, M. Kasumi and I. Khalil,
“Virtual Private Network Architecture,” Technical
Report IAM-99-001, CATI, April 1999.

[2] M. John and S. Smith, “Application-Specific
Integrated Circuits,” Addison-Wesley Publishing
Company, ISBN 0-201-50022-1, June 1997.

[3] P. C. Lekkas, “Network Processors: Architectures,
Protocols and Platforms (Telecom Engineering),”
McGraw-Hill Professional, ISBN 0071409866,
July 2003.

[4] Intel IXP425 Network Processor,
http://developer.intel.com/design/network/products
/npfamily/ixp425.htm.

[5] R. Atkinson, “Security architecture for the Internet
protocol,” RFC1825, IETF Network Working
Group, August 1995.

[6] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb,
“Building a Robust Software-Based Router Using
Network Processors,” Proceedings of the 18th
ACM Symposium on Operating Systems
Principles (SOSP), 2001.

[7] Ying-Dar Lin, Yi-Neng Lin, Shun-Chin Yang,
Yu-Sheng Lin, “DiffServ Edge Routers over
Network Processors: Implementation and
Evaluation,” IEEE Network, Special Issue on
Network Processors, July 2003.

[8] The NetBSD Project, http://www.netbsd.org/.
[9] Lawrence Kesteloot, “Porting BSD UNIX to a New

Platform,” January 1995.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

