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Abstract 
We propose a new Parallel Automaton string 

matching approach and its hardware architecture for 

content filtering coprocessor. This new approach can 

improve the average matching time of the Parallel 

Automaton with Pre-Hashing and Root-Indexing 

techniques. The Pre-Hashing technique uses a hashing 

function to verify quickly the text against the partial 

patterns in the Automaton, and the Root-Indexing 

technique matches multiple bytes for the root state in 

one single matching. A popular Automaton algorithm, 

Aho-Corasick (AC) is chosen to be implemented by 

adding the two techniques; we employ these two 

techniques in a memory efficient version of AC namely 

Bitmap AC. For the average-case time, our approach 

improves Bitmap AC by 494% and 224% speedup for 

URL and Virus patterns, respectively. Since Pre-

Hashing and Root-Indexing techniques can be 

concurrently executed with Bitmap AC in the hardware, 

our proposed approach has the same worst-case time 

as Bitmap AC.  

1. Introduction 
In recent years, deeper and more complicated 

content filtering is required for internet security 

applications such as intrusion detection, keyword 

blocking, anti-virus and anti-spam. In a content 

filtering system, the string matching usually occupies a 

large workload. Therefore, it is necessary to design an 

appropriate string matching accelerator to reduce the 

workload in such a system. 

For understanding the functional requirements of 

string matching algorithms, we surveyed the real 

patterns from the software of Open Source including 

Snort [1] for intrusion detection, ClamAV [2] for anti-

virus, SpamAssassin [3] for anti-spam, and 

SquidGuard [4] and DansGuardian [5] for Web 

blocking. It is obvious that matching long and multiple 

patterns in real time is necessary for all content 

filtering systems. 

Many existing real time string matching algorithms 

are also reviewed and classified into four categories, 

namely, Dynamic Programming, Bit Parallel, Filtering, 

and Automaton algorithms. The Dynamic 

Programming [6] and Bit Parallel [7] are inappropriate 

for long and multiple patterns, and the Filtering 

algorithms [8] have poor worst-case time complexity 

O( nm ), where n  and m  are the length of text and 

patterns, respectively. Only the Automaton algorithm, 

e.g., Aho-Corasick (AC) [9], supports long and 

multiple patterns, and has the worst-case time 

complexity O( n ). Therefore, the Automaton algorithm 

is a better choice for content filtering system, and 

selected as a base to develop our new approaches. 

In this paper we employ two new techniques in 

Bitmap AC [9]; a variant of AC. AC is a space 

efficient Deterministic Finite Automata (DFA) through 

the failure links to reduce the number of next states. 

Bitmap AC further uses bitmap compression to reduce 

the storage of every state. However, it has the constant 

average-case time complexity O( n ), not good enough 

for the high speed processing. Thus in this paper, Pre-

Hashing and Root-Indexing techniques are added into 

Bitmap AC to speedup its processing time. The Pre-

Hashing approach is a quick testing for avoiding the 

Bitmap AC matching, and the Root-Indexing approach 

is a parallel technique for matching multiple bytes 

simultaneously. In addition to the new proposed 

algorithm, the corresponding hardware architecture is 

developed as well. For measuring the performance, the 

space and time complexities are formally analyzed 

with real patterns. The results demonstrate that our 

proposed approach significantly outperforms Bitmap 

AC.

The reset of this paper is organized as follows: 

Section 2 includes the surveys of related AC 

algorithms and existing string matching hardware. 

Section 3 describes our idea, algorithm, detailed design 

of Pre-Hashing and Root-Indexing, and system 

architecture. The formal analysis and real patterns 

analysis are given in Section 4 to evaluate the 

performance of our proposed algorithm. Finally, we 

draw conclusion in Section 5. 
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2. Background 
In this section, we survey previous related 

literatures for AC and string matching hardware, and 

then describe AC, bitmap AC and Bloom Filter 

algorithms for string matching. 

The previous AC related algorithms are 

summarized in the followings. 

1) AC [9] is an algorithm for processing multiple 

patterns. It searches the patterns in text by 

traversing an automaton. AC has good worst-

case time complexity in O( n ), but poor average-

case time complexity in O( n ).

2) AC_BM [10][11] combines the AC and Boyer 

Moore (BM) algorithm, and intends to improve 

the conventional AC from O( n ) to the sub-

linear time complexity with BM approach. 

However, the main drawback for AC_BM is that 

it has the worst-case time complexity O( nm ).

3) Vectorized AC [12] implements AC in a vector 

processor and performs the string matching in 

parallel. This algorithm requires preprocessing 

the text, and thus is not suitable for real time 

matching. 

4) Bitmap AC [13] uses the bitmap to locate the 

links of the subsequent next states, and thus 

improves the space usage from the conventional 

AC. However, the time of loading bitmap and 

calculating bitmap to locate the next state slow 

down the matching performance. 

5) AC_BDM [14] combines AC with Backward 

Dawg Matching (BDM). This algorithm can also 

improve the average-case time complexity of the 

conventional AC algorithm, but it requires the 

double space and processing overhead for 

switching between AC and BDM. 

We also investigated previous hardware 

technologies for string matching and summarized their 

pros and cons as follows. 

1) Systolic array hardware [15] [16] implements 

Dynamic Programming for string matching. As 

we mentioned, the Dynamic Programming 

matching is only proper for short patterns and a 

short text, since the circuit size is proportional to 

the length of pattern and text. 

2) Parallel and pipeline hardware [17] uses the 

naïve string matching and only accelerates 

processing time by increasing hardware circuit. 

Similar to systolic array, this approach also has 

the drawback of only suitable for short length 

patterns. 

3) Reconfigurable hardware [18] [19] directly 

transforms the patterns into FPGA and is able to 

perform matching for the regular expressions. 

However, its main shortcoming is that FPGA is 

slower and more expensive than ASIC, causing 

the lack of competition in the commercial market. 

4) Bloom Filter String Matching (BFSM) [20] [21] 

hardware uses Bloom Filter to accelerate the 

average-case time complexity for the exact 

matching algorithms. However, BFSM builds a 

single big bit vector for all patterns, making it 

infeasible. 

The works most related to our approach is BFSM 

algorithms. The main philosophy of BFSM is that it 

uses multiple hashing functions to reduce the 

probability of false positive, which is the false match, 

but AND function reports a positive value. When 

BFSM chooses k  independent hashing functions to 

hash N  patterns into a vector with size M , where 

the probability of false positive fpP  is obtained as 

k
Nk

fp
M

P
1

11 ,                       (1)

with referring to [20]. 

3. Algorithm and Architecture Design 
We describe Pre-Hashing and Root-Indexing 

matching algorithms in these sections. 

3.1. Pre-Hashing Matching 
The Pre-Hashing method can test quickly the 

multiple partial patterns of the current state against the 

compared substring of text to avoid some slow AC 

matching. The AC matching can be skipped if True 

Negative is indicated in the Pre-Hashing matching. 

True Negative is the condition that the compared 

substring of text is absent in Pre-hashing vector of the 

Suffixes of the current state. 

The Pre-Hashing approach can be described in 

Figure 1. i  is a set of Suffixes for state iS  within 

the length hashprek , that i  also includes the failure 

links in the AC tree. When Suffixes are obtained, the 

Pre-Hashing algorithm hashes Suffixes into bit vectors. 

This procedure of building the bit vectors is illustrated 

in Figure 1 (a). 

In the searching phase, Pre-Hashing is performed  

to match quickly for current state in the AC tree. 

Figure 1 (b) shows this searching process, the 

matching unit loads the current bit vectors cV , then 

perform hashing operations to test whether each 

]..1[ jw  is True Negative or not. 

The Pre-Hashing idea is motivated by BFSM. 

However, there are two main differences between 

BFSM and our Pre-Hashing as follows. 
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Figure 1. Pre-Hashing Matching for state iS  (a) Building the bit vector in the preprocessing 

phase (b) Load bit vector and compare text in the searching phase. 

1) Since BFSM requires multiple Bloom Filters and 

builds the bit vector of each Bloom Filter from 

all patterns (which will need the large and 

multiple access memory for constructing bit 

vectors), it makes implementing bit vector 

impractical by using neither register nor SRAM. 

However our approach builds the bit vectors 

from the Suffixes of the state iS  only, the 

number of Suffixes is quite small, it makes 

implementing the bit vectors more feasible. 

2) Because more hashing functions will set more 

one bit to one in bit vector, BFSM employs 

multiple hashing functions can reduce the 

probability of False Positive only, and cannot 

reduce the number of the exact matching. Our 

approach intends to improve the probability of 

True Negative for finding out the un-matching 

Suffixes. Thus using one hashing function is 

sufficient and that can significantly reduce the 

hardware cost and latency. The probability of 

True Negative tnP  is adapted from (1) as 

M
Ptn

1
1 ,                            (2) 

where  is the number of Suffixes, and M  is the 

size of bit vector. 

3.2. Root-Indexing Matching 
When the Pre-Hashing result is True Negative, the 

matching transition will return to the root state. Since 

most bytes of the text will visit the root state, the 

parallel Root-Indexing technique is worth to be used. 

Root-Indexing can process multiple characters of the 

text at the same time. In fact, the Root-Indexing 

matching is a compressed technique for parallel 

matching in the Automaton. In Figure 2 (a), Root-

Indexing comprises rootk  root index tables 

]..1[ rootkIDX  and a root next table NEXT , where 

rootk  denotes the length of Root-Indexing matching. 

Each IDX  stores the ordering number of the 

appearing letters for the corresponding byte in Prefixes, 

and each IDX  has 256 slots for every binary 
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Figure 2. (a) Root-Indexing Architecture, (b) A Root-Indexing example for matching the texts 
“THE”, “TEST”, “TEE” and “TT” with the patterns “TEST”, “THE” and “HE”. 

representation of the characters. NEXT  stores the 

next state addresses of the states, within the length 

rootk  from root state 0S .  The number of next 

addresses is equal to ||
1

j

k

j

IDX
root

, that is the product 

of the size of each root index table. 

In the example of Root-Indexing, we can obtain 

next state address NA  for the patterns, “TEST”, 

“THE”, “HE” in parallel, as shown in Figure 2 (b). In 

the matching phase, 10_01_01_0, 10_01_10_1, 

10_10_01_0 and 10_00_00_0 are NA  to locate next 

states 2, 4, 6, 1 for input text z  as “TEE”, “TEST”, 

“THE” and TT”, respectively. For instance, Root-

Indexing can lookup the 

][][][][ 4321 TIDXSIDXEIDXTIDX  to 

get the 10_01_10_1 to locate the text “TEST”. Note 

that the zero value of jIDX  is mapped into the slot of 

the symbol (~), which is the termination symbol for the 

length of z  is shorter than rootk . For example, NA

of the text “TEE” is not 

][][][ 321 EIDXEIDXTIDX , but 

[~]][][][ 4321 IDXEIDXEIDXTIDX ,

because length of “TEE” is less than four. The other 

special case is the text “TT”, because the second “T” is 

in 2IDX  as the NA  of ][][ 21 TIDXTIDX

cannot be indexed, thus NA  for “TT” will be indexed 

by [~]][ 21 IDXTIDX  to locate the next state. 

4. Analysis 
To evaluate the performance of our proposed 

algorithm, the formal formula, the real pattern analysis  

are given below. 

4.1. Formal Analysis 
Since Pre-Hashing, Root-Indexing and AC can be 

performed in parallel; the average time can be reduced 

as 

)1()(

)1(
_

rootrootroot

ACrootrootroot
timeavg

PPk

TPTP
T .        (3)

where timeavgT _ is the average time to process a 

byte, hashT  is the Pre-Hashing matching time, rootP  is 

the probability of using the Root-Indexing matching, 

rootT  is the Root-Indexing matching time, and ACT  is 

the AC matching time. 

The probability rootP  is calculated by 

hashprek

j

jtnroot PP
1

'_
,              (4)

where rootP  is computed by summing the 

dependent probabilities of True Negative '_ jtnP ,

which is the dependent probability of True Negative 
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for length j . Because the ( 1j )th Pre-Hashing is 

not matched, then the j th Pre-Hashing function can 

not be matched either. Thus '_ jtnP  is determined from 

the independent probability of True Negative jtnP _ ,

which can be obtained from (2). Thus '_ jtnP  is the 

first Pre-Hashing function, it can be obtained by 

11_'1_ THPP tntn
,              (5)

and subsequent '_ jtnP  for length j  is computed by 

jjtn

j

y

ytnjtn THPPP _

1

1

'_'_ 1 .             (6) 

As state before, a large number of Suffixes will 

need a big bit vector, a jThreshold  parameter is 

applied to limit the rapid growth of the bit vector size. 

jTH  is the jThreshold  rate for Suffixes of length 

j , and it can be obtained from 

S

N
TH

j

j
,                          (7)

where jN  is the number of states in which the 

number of Suffixes is less than jThreshold , and S

is the number of states. 

The higher tnP  results in a better matching 

performance, since the low probability of text need to 

be matched for high tnP . That less length can also 

achieve acceptable rootP . Therefore, setting the 

maximum Suffix length hashprek  to 2 is sufficient. 

For example, when tnP is set to 0.6 and hashprek  is set 

to 2, rootP  is equal to 0.84. 

For the space evaluation, first of all, we need to 

determine the bit vector size M . Becasue the 

probability of True Negative is defined as (2), the M

can be determined by given  and tnP  as 

1

1

1

tnp

M .                            (8) 

In Section 4.2, our real pattern analysis shows 

is small for most of the states and the proper 

jThreshold  value is about 8 for the URL and Virus 

patterns. 

The space requirement can be determined by 

summing the Bitmap AC space ACSize , the Pre-

Hashing space hashpreSize , and the Root-Indexing 

space rootSize , as 

hashprerootACtotal SizeSizeSizeSize .          (9) 

The original space requirement of AC, ACSize , is 

mainly dominated by the state table, which is equal to 

the number of states S  multiplying with the state size 

stateSize ,

stateAC SizeSSize .            (10)

The Pre-Hashing size hashpreSize  is the sum of bit 

vector size for the states which the number of Suffixes 

is smaller than jThreshold . Because hashpreSize  is 

affected by S , jTH , the bit vector size jM  for 

length j  and the maximum length of Pre-Hashing 

hashprek . Thus hashpreSize  is obtained from 

j

k

j

jhashpre THMSSize
hashpre

1

.             (11) 

rootSize  includes root index table and root next 

table. The size of root index table is 256 multiplying 

rootk , and the root next table is the number of next 

state address multiplying with the state address size 

addressstateSize _ . The number of root next state address 

is the cross product of the number of appearing letters 

for each length jRN . Then rootSize  is formulated as 

addressstate

k

j

jrootroot SizeRNkSize
root

_

1

256    (12)

4.2. Real Pattern Analysis 
In this analysis, we choose the URL blacklists and 

Virus signatures from 

http://www.squidguard.org/blacklist/ and 

http://www.clamav.net, respectively. Because the URL 

blacklists and Virus signatures have a lot of patterns 

and long patterns, these patterns are sufficient to 

evaluate the performance of our Parallel Automaton 

algorithm. 

Our analyzed URL blacklist has 21,302 patterns and 

generates 194,096 states, and Virus signature has 

10,000 patterns and generates 402,173 states. In the 

Suffix counting to obtain jTH  for the Suffixes of 

length 1 and 2. Our results show that, when the 
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counting number is less than 8 for length 1, URL and 

Virus patterns have 68% and 49% states in using Pre-

Hashing matching, respectively. Our results show 41% 

and 32% states for length 2 of URL and Virus patterns, 

respectively. These results show most states of the 

URL and Virus patterns have few numbers of Suffixes, 

so Pre-Hashing approach are useful to reduce the 

matching time. 

5. Conclusion 
A Parallel Automaton algorithm with the Pre-

Hashing and Root-Indexing techniques is proposed in 

this paper. Our Pre-Hashing technique is used to verify 

quickly the text to avoid AC matching; it has two 

distinguished enhancements from previous BFSM. 

First, Bloom Filter uses all patterns to build a big 

vector, but our approach builds the bit vector from 

partial patterns. Second, BFSM uses multiple hashing 

key, but our approach uses only one hashing key. 

Therefore, our Pre-Hashing significantly reduces the 

hardware complexity, and makes hashing technique 

feasible in string matching. 

Also our Root-Indexing matching is a size efficient 

and parallel matching technique for matching the 

multiple bytes in one single matching. Since root state 

is frequently visited in the string matching, it is an 

effective approach to accelerate the Automaton. 

In the substantial evaluation, our Parallel 

Automaton can achieve at least the 494% and 224% 

speedup for Bitmap AC in the URL and Virus patterns. 

Since the Threshold is an upper bound for the number 

of Suffixes, many states will have the higher 

probability of True Negative. Thus, these results are 

the conservative evaluation. Moreover, our Parallel 

Automaton increases no worst-case time to Bitmap AC 

by performing the Pre-Hashing, Root-Indexing, and 

AC in parallel. 

For the space requirement, our Parallel Automaton 

only increases 4 bytes in each state and one Root-

Indexing size for root state. Therefore, the increased 

space 10.73 MB and 5.22 MB for URL and Virus 

patterns are quite acceptable with present technologies. 
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