
A Parallel Automaton String Matching with Pre-Hashing and Root-Indexing

Techniques for Content Filtering Coprocessor

Kuo-Kun Tseng, Ying-Dar Lin and Tsern-Huei Lee Yuan-Cheng Lai

 National Chiao Tung University, Taiwan National Taiwan University

 {kktseng@cis, ydlin@cis and thlee@atm.cm} of Science and Technology, Taiwan

 .nctu.edu.tw laiyc@cs.ntust.edu.tw

Abstract
We propose a new Parallel Automaton string

matching approach and its hardware architecture for

content filtering coprocessor. This new approach can

improve the average matching time of the Parallel

Automaton with Pre-Hashing and Root-Indexing

techniques. The Pre-Hashing technique uses a hashing

function to verify quickly the text against the partial

patterns in the Automaton, and the Root-Indexing

technique matches multiple bytes for the root state in

one single matching. A popular Automaton algorithm,

Aho-Corasick (AC) is chosen to be implemented by

adding the two techniques; we employ these two

techniques in a memory efficient version of AC namely

Bitmap AC. For the average-case time, our approach

improves Bitmap AC by 494% and 224% speedup for

URL and Virus patterns, respectively. Since Pre-

Hashing and Root-Indexing techniques can be

concurrently executed with Bitmap AC in the hardware,

our proposed approach has the same worst-case time

as Bitmap AC.

1. Introduction
In recent years, deeper and more complicated

content filtering is required for internet security

applications such as intrusion detection, keyword

blocking, anti-virus and anti-spam. In a content

filtering system, the string matching usually occupies a

large workload. Therefore, it is necessary to design an

appropriate string matching accelerator to reduce the

workload in such a system.

For understanding the functional requirements of

string matching algorithms, we surveyed the real

patterns from the software of Open Source including

Snort [1] for intrusion detection, ClamAV [2] for anti-

virus, SpamAssassin [3] for anti-spam, and

SquidGuard [4] and DansGuardian [5] for Web

blocking. It is obvious that matching long and multiple

patterns in real time is necessary for all content

filtering systems.

Many existing real time string matching algorithms

are also reviewed and classified into four categories,

namely, Dynamic Programming, Bit Parallel, Filtering,

and Automaton algorithms. The Dynamic

Programming [6] and Bit Parallel [7] are inappropriate

for long and multiple patterns, and the Filtering

algorithms [8] have poor worst-case time complexity

O(nm), where n and m are the length of text and

patterns, respectively. Only the Automaton algorithm,

e.g., Aho-Corasick (AC) [9], supports long and

multiple patterns, and has the worst-case time

complexity O(n). Therefore, the Automaton algorithm

is a better choice for content filtering system, and

selected as a base to develop our new approaches.

In this paper we employ two new techniques in

Bitmap AC [9]; a variant of AC. AC is a space

efficient Deterministic Finite Automata (DFA) through

the failure links to reduce the number of next states.

Bitmap AC further uses bitmap compression to reduce

the storage of every state. However, it has the constant

average-case time complexity O(n), not good enough

for the high speed processing. Thus in this paper, Pre-

Hashing and Root-Indexing techniques are added into

Bitmap AC to speedup its processing time. The Pre-

Hashing approach is a quick testing for avoiding the

Bitmap AC matching, and the Root-Indexing approach

is a parallel technique for matching multiple bytes

simultaneously. In addition to the new proposed

algorithm, the corresponding hardware architecture is

developed as well. For measuring the performance, the

space and time complexities are formally analyzed

with real patterns. The results demonstrate that our

proposed approach significantly outperforms Bitmap

AC.

The reset of this paper is organized as follows:

Section 2 includes the surveys of related AC

algorithms and existing string matching hardware.

Section 3 describes our idea, algorithm, detailed design

of Pre-Hashing and Root-Indexing, and system

architecture. The formal analysis and real patterns

analysis are given in Section 4 to evaluate the

performance of our proposed algorithm. Finally, we

draw conclusion in Section 5.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

2. Background
In this section, we survey previous related

literatures for AC and string matching hardware, and

then describe AC, bitmap AC and Bloom Filter

algorithms for string matching.

The previous AC related algorithms are

summarized in the followings.

1) AC [9] is an algorithm for processing multiple

patterns. It searches the patterns in text by

traversing an automaton. AC has good worst-

case time complexity in O(n), but poor average-

case time complexity in O(n).

2) AC_BM [10][11] combines the AC and Boyer

Moore (BM) algorithm, and intends to improve

the conventional AC from O(n) to the sub-

linear time complexity with BM approach.

However, the main drawback for AC_BM is that

it has the worst-case time complexity O(nm).

3) Vectorized AC [12] implements AC in a vector

processor and performs the string matching in

parallel. This algorithm requires preprocessing

the text, and thus is not suitable for real time

matching.

4) Bitmap AC [13] uses the bitmap to locate the

links of the subsequent next states, and thus

improves the space usage from the conventional

AC. However, the time of loading bitmap and

calculating bitmap to locate the next state slow

down the matching performance.

5) AC_BDM [14] combines AC with Backward

Dawg Matching (BDM). This algorithm can also

improve the average-case time complexity of the

conventional AC algorithm, but it requires the

double space and processing overhead for

switching between AC and BDM.

We also investigated previous hardware

technologies for string matching and summarized their

pros and cons as follows.

1) Systolic array hardware [15] [16] implements

Dynamic Programming for string matching. As

we mentioned, the Dynamic Programming

matching is only proper for short patterns and a

short text, since the circuit size is proportional to

the length of pattern and text.

2) Parallel and pipeline hardware [17] uses the

naïve string matching and only accelerates

processing time by increasing hardware circuit.

Similar to systolic array, this approach also has

the drawback of only suitable for short length

patterns.

3) Reconfigurable hardware [18] [19] directly

transforms the patterns into FPGA and is able to

perform matching for the regular expressions.

However, its main shortcoming is that FPGA is

slower and more expensive than ASIC, causing

the lack of competition in the commercial market.

4) Bloom Filter String Matching (BFSM) [20] [21]

hardware uses Bloom Filter to accelerate the

average-case time complexity for the exact

matching algorithms. However, BFSM builds a

single big bit vector for all patterns, making it

infeasible.

The works most related to our approach is BFSM

algorithms. The main philosophy of BFSM is that it

uses multiple hashing functions to reduce the

probability of false positive, which is the false match,

but AND function reports a positive value. When

BFSM chooses k independent hashing functions to

hash N patterns into a vector with size M , where

the probability of false positive fpP is obtained as

k
Nk

fp
M

P
1

11 , (1)

with referring to [20].

3. Algorithm and Architecture Design
We describe Pre-Hashing and Root-Indexing

matching algorithms in these sections.

3.1. Pre-Hashing Matching
The Pre-Hashing method can test quickly the

multiple partial patterns of the current state against the

compared substring of text to avoid some slow AC

matching. The AC matching can be skipped if True

Negative is indicated in the Pre-Hashing matching.

True Negative is the condition that the compared

substring of text is absent in Pre-hashing vector of the

Suffixes of the current state.

The Pre-Hashing approach can be described in

Figure 1. i is a set of Suffixes for state iS within

the length hashprek , that i also includes the failure

links in the AC tree. When Suffixes are obtained, the

Pre-Hashing algorithm hashes Suffixes into bit vectors.

This procedure of building the bit vectors is illustrated

in Figure 1 (a).

In the searching phase, Pre-Hashing is performed

to match quickly for current state in the AC tree.

Figure 1 (b) shows this searching process, the

matching unit loads the current bit vectors cV , then

perform hashing operations to test whether each

]..1[jw is True Negative or not.

The Pre-Hashing idea is motivated by BFSM.

However, there are two main differences between

BFSM and our Pre-Hashing as follows.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

Si

……

H1 H2 . . .

Searching

phase

Preprocessing

phase

……

.

.

.

.

.

.

.
..

. .
.

. . .

.
.
.

. . .

.
.
.

Hj

Current
state

H1 H2 . . .

……

Hj

Compared substring of text

.

Root
state

… … …

Load bit

vectors

Matched ?

(a)

(b)

Si

.

.

.

.
..

. .
.

. . .

. . .

.
.
.

Root
state

j = kpre-hash

Vi,1 Vi,2 Vi,j

i

w

Vc

Vc,1 Vc,2 Vc,,j
. . .

j = 2

j = 1

Figure 1. Pre-Hashing Matching for state iS (a) Building the bit vector in the preprocessing

phase (b) Load bit vector and compare text in the searching phase.

1) Since BFSM requires multiple Bloom Filters and

builds the bit vector of each Bloom Filter from

all patterns (which will need the large and

multiple access memory for constructing bit

vectors), it makes implementing bit vector

impractical by using neither register nor SRAM.

However our approach builds the bit vectors

from the Suffixes of the state iS only, the

number of Suffixes is quite small, it makes

implementing the bit vectors more feasible.

2) Because more hashing functions will set more

one bit to one in bit vector, BFSM employs

multiple hashing functions can reduce the

probability of False Positive only, and cannot

reduce the number of the exact matching. Our

approach intends to improve the probability of

True Negative for finding out the un-matching

Suffixes. Thus using one hashing function is

sufficient and that can significantly reduce the

hardware cost and latency. The probability of

True Negative tnP is adapted from (1) as

M
Ptn

1
1 , (2)

where is the number of Suffixes, and M is the

size of bit vector.

3.2. Root-Indexing Matching
When the Pre-Hashing result is True Negative, the

matching transition will return to the root state. Since

most bytes of the text will visit the root state, the

parallel Root-Indexing technique is worth to be used.

Root-Indexing can process multiple characters of the

text at the same time. In fact, the Root-Indexing

matching is a compressed technique for parallel

matching in the Automaton. In Figure 2 (a), Root-

Indexing comprises rootk root index tables

]..1[rootkIDX and a root next table NEXT , where

rootk denotes the length of Root-Indexing matching.

Each IDX stores the ordering number of the

appearing letters for the corresponding byte in Prefixes,

and each IDX has 256 slots for every binary

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

(a) (b)

T

H

.

.

.

.

10

.

.

01

.

.

,

T

H

.

.

.

.

10

.

.

01

.

.

,

H

E

.

.

.

.

.

.

.

10

01

.

,

H

E

.

.

.

.

.

.

.

10

01

.

,

.

.

.

S

E

10

.

.

.

.

01

.

,

.

.

.

S

E

10

.

.

.

.

01

.

,

T

.

.

.

.

1

.

.

.

.

.

.

T

.

.

.

.

1

.

.

.

.

.

.
.

.

.

.

.

.

H

E

H

0

1

2
~

E

S

E

S

T
~
T
~

T
~
T

~

10_01_10_1

~

~

T

E

H

~

E

S

E

S

T
~
T

~

T

~
T

~
~

~

10_10_01_0

Next

state

3

4

5

6

7

8

TEE

10_01_01_0

TEST

THE

TT

10_00_00_0

NEXT
1IDX 2IDX 3IDX

4IDX

NA

|]|[
1

j

k

j

IDX
root

[0
-2

5
5

]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Input

Text

.

.

.

.

.

.

……

…

…

… .

.

.

… …

1IDX ...IDX

z

rootkIDX1rootkIDX NEXT

NA

Figure 2. (a) Root-Indexing Architecture, (b) A Root-Indexing example for matching the texts
“THE”, “TEST”, “TEE” and “TT” with the patterns “TEST”, “THE” and “HE”.

representation of the characters. NEXT stores the

next state addresses of the states, within the length

rootk from root state 0S . The number of next

addresses is equal to ||
1

j

k

j

IDX
root

, that is the product

of the size of each root index table.

In the example of Root-Indexing, we can obtain

next state address NA for the patterns, “TEST”,

“THE”, “HE” in parallel, as shown in Figure 2 (b). In

the matching phase, 10_01_01_0, 10_01_10_1,

10_10_01_0 and 10_00_00_0 are NA to locate next

states 2, 4, 6, 1 for input text z as “TEE”, “TEST”,

“THE” and TT”, respectively. For instance, Root-

Indexing can lookup the

][][][][4321 TIDXSIDXEIDXTIDX to

get the 10_01_10_1 to locate the text “TEST”. Note

that the zero value of jIDX is mapped into the slot of

the symbol (~), which is the termination symbol for the

length of z is shorter than rootk . For example, NA

of the text “TEE” is not

][][][321 EIDXEIDXTIDX , but

[~]][][][4321 IDXEIDXEIDXTIDX ,

because length of “TEE” is less than four. The other

special case is the text “TT”, because the second “T” is

in 2IDX as the NA of][][21 TIDXTIDX

cannot be indexed, thus NA for “TT” will be indexed

by [~]][21 IDXTIDX to locate the next state.

4. Analysis
To evaluate the performance of our proposed

algorithm, the formal formula, the real pattern analysis

are given below.

4.1. Formal Analysis
Since Pre-Hashing, Root-Indexing and AC can be

performed in parallel; the average time can be reduced

as

)1()(

)1(
_

rootrootroot

ACrootrootroot
timeavg

PPk

TPTP
T . (3)

where timeavgT _ is the average time to process a

byte, hashT is the Pre-Hashing matching time, rootP is

the probability of using the Root-Indexing matching,

rootT is the Root-Indexing matching time, and ACT is

the AC matching time.

The probability rootP is calculated by

hashprek

j

jtnroot PP
1

'_
, (4)

where rootP is computed by summing the

dependent probabilities of True Negative '_ jtnP ,

which is the dependent probability of True Negative

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

for length j . Because the (1j)th Pre-Hashing is

not matched, then the j th Pre-Hashing function can

not be matched either. Thus '_ jtnP is determined from

the independent probability of True Negative jtnP _ ,

which can be obtained from (2). Thus '_ jtnP is the

first Pre-Hashing function, it can be obtained by

11_'1_ THPP tntn
, (5)

and subsequent '_ jtnP for length j is computed by

jjtn

j

y

ytnjtn THPPP _

1

1

'_'_ 1 . (6)

As state before, a large number of Suffixes will

need a big bit vector, a jThreshold parameter is

applied to limit the rapid growth of the bit vector size.

jTH is the jThreshold rate for Suffixes of length

j , and it can be obtained from

S

N
TH

j

j
, (7)

where jN is the number of states in which the

number of Suffixes is less than jThreshold , and S

is the number of states.

The higher tnP results in a better matching

performance, since the low probability of text need to

be matched for high tnP . That less length can also

achieve acceptable rootP . Therefore, setting the

maximum Suffix length hashprek to 2 is sufficient.

For example, when tnP is set to 0.6 and hashprek is set

to 2, rootP is equal to 0.84.

For the space evaluation, first of all, we need to

determine the bit vector size M . Becasue the

probability of True Negative is defined as (2), the M

can be determined by given and tnP as

1

1

1

tnp

M . (8)

In Section 4.2, our real pattern analysis shows

is small for most of the states and the proper

jThreshold value is about 8 for the URL and Virus

patterns.

The space requirement can be determined by

summing the Bitmap AC space ACSize , the Pre-

Hashing space hashpreSize , and the Root-Indexing

space rootSize , as

hashprerootACtotal SizeSizeSizeSize . (9)

The original space requirement of AC, ACSize , is

mainly dominated by the state table, which is equal to

the number of states S multiplying with the state size

stateSize ,

stateAC SizeSSize . (10)

The Pre-Hashing size hashpreSize is the sum of bit

vector size for the states which the number of Suffixes

is smaller than jThreshold . Because hashpreSize is

affected by S , jTH , the bit vector size jM for

length j and the maximum length of Pre-Hashing

hashprek . Thus hashpreSize is obtained from

j

k

j

jhashpre THMSSize
hashpre

1

. (11)

rootSize includes root index table and root next

table. The size of root index table is 256 multiplying

rootk , and the root next table is the number of next

state address multiplying with the state address size

addressstateSize _ . The number of root next state address

is the cross product of the number of appearing letters

for each length jRN . Then rootSize is formulated as

addressstate

k

j

jrootroot SizeRNkSize
root

_

1

256 (12)

4.2. Real Pattern Analysis
In this analysis, we choose the URL blacklists and

Virus signatures from

http://www.squidguard.org/blacklist/ and

http://www.clamav.net, respectively. Because the URL

blacklists and Virus signatures have a lot of patterns

and long patterns, these patterns are sufficient to

evaluate the performance of our Parallel Automaton

algorithm.

Our analyzed URL blacklist has 21,302 patterns and

generates 194,096 states, and Virus signature has

10,000 patterns and generates 402,173 states. In the

Suffix counting to obtain jTH for the Suffixes of

length 1 and 2. Our results show that, when the

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

counting number is less than 8 for length 1, URL and

Virus patterns have 68% and 49% states in using Pre-

Hashing matching, respectively. Our results show 41%

and 32% states for length 2 of URL and Virus patterns,

respectively. These results show most states of the

URL and Virus patterns have few numbers of Suffixes,

so Pre-Hashing approach are useful to reduce the

matching time.

5. Conclusion
A Parallel Automaton algorithm with the Pre-

Hashing and Root-Indexing techniques is proposed in

this paper. Our Pre-Hashing technique is used to verify

quickly the text to avoid AC matching; it has two

distinguished enhancements from previous BFSM.

First, Bloom Filter uses all patterns to build a big

vector, but our approach builds the bit vector from

partial patterns. Second, BFSM uses multiple hashing

key, but our approach uses only one hashing key.

Therefore, our Pre-Hashing significantly reduces the

hardware complexity, and makes hashing technique

feasible in string matching.

Also our Root-Indexing matching is a size efficient

and parallel matching technique for matching the

multiple bytes in one single matching. Since root state

is frequently visited in the string matching, it is an

effective approach to accelerate the Automaton.

In the substantial evaluation, our Parallel

Automaton can achieve at least the 494% and 224%

speedup for Bitmap AC in the URL and Virus patterns.

Since the Threshold is an upper bound for the number

of Suffixes, many states will have the higher

probability of True Negative. Thus, these results are

the conservative evaluation. Moreover, our Parallel

Automaton increases no worst-case time to Bitmap AC

by performing the Pre-Hashing, Root-Indexing, and

AC in parallel.

For the space requirement, our Parallel Automaton

only increases 4 bytes in each state and one Root-

Indexing size for root state. Therefore, the increased

space 10.73 MB and 5.22 MB for URL and Virus

patterns are quite acceptable with present technologies.

6. References
[1] The Open Source Network Intrusion Detection System,

http://www.snort.org/.

[2] Clam AntiVirus , http://www.clamav.net/.

[3] The Apache SpamAssassin Project,

http://spamassassin.apache.org/.

[4] DansGuardian content filter, http://dansguardian.org/.

[5] SquidGuard filter, http://www.squidguard.org/.

[6] G. Navarro, “A guided tour to approximate string

matching,” ACM Computing Surveys, 33(1):31-88, 2001.

[7] S. Wu and U. Manber, “Fast text searching allowing

errors,” Communication of the ACM, 35:83-91, 1992.

[8] R. S Boyer and J. S. Moore, “A fast string searching

algorithm,” Communications of the ACM, 20, 10, 762–

772, 1977.

[9] A. V. Aho and M. J. Corasick, “Efficient string matching:

An aid to bibliographic search,” Communications of the

ACM, pp.333–340, 1975.

[10] C. Coit, S. Staniford and J. McAlerney, "Towards Faster

String Matching for Intrusion Detection," In Proceedings

of the DARPA Information Survivability Conference and

Exhibition, pp. 367-373, 2002.

[11] N. Desai, “Increasing Performance in High Speed

NIDS,” www.snort.org/

docs/Increasing_Performance_in_High_Speed_NIDS.pdf,

2002.

[12] Y. Mishina and K. Kojima, “String matching on IDP: A

string matching algorithm for vector processors and its

implementation,” In Proceedings of 1993 IEEE

International Conference on Computer Design, 1993.

[13] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,

“Deterministic Memory-Efficient String Matching

Algorithms for Intrusion Detection,” In Proceedings of

the IEEE Infocom Conference, Hong Kong, China, 2004.

[14] M. Raffinot, “On the multi backward dawg matching

algorithm (MultiBDM),” In Proceedings of the 4th South

American Workshop on String Processing, Carleton U.

Press, pp.149-165, 1997.

[15] H. M. Blüthgen, T. Noll and R. Aachen, “A

programmable processor for approximate string matching

with high throughput rate,” In Proceedings of IEEE

International Conference on Application-Specific

Systems, Architectures, and Processors, pp.309 -316,

2000.

[16] R. Sastry, N. Ranganathan and K. Remedios, “CASM: a

VLSI chip for approximate string matching,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Volume:17 Issue: 8, pp. 824 -830, Aug

1995.

[17] J. H. Park and K. M. George, “Parallel String Matching

Algorithms based on Dataflow,” 32nd Annual Hawaii

International Conference on System Sciences, 1999.

[18] R. Franklin, D. Carver, and B. L. Hutchings, “Assisting

network intrusion detectionwith reconfigurable

hardware,” In IEEE Symposium on Field-Programmable

Custom Computing Machines, Napa, CA, Apr. 2002.

[19] J. Moscola, M. Pachos, J. W Lockwood and R. P. Loui,

“FPsed: a streaming content search-and-replace module

for an Internet firewall,” 11th Symposium on High

Performance Interconnects, Stanford, CA, pp. 122- 129,

2003.

[20] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull and J.

W. Lockwood, “Deep Packet Inspection using Parallel

Bloom Filters,” IEEE Micro, Vol. 24, No. 1, Jan. 2004.

[21] M. Attig, S. Dharmapurikar, and J. Lockwood,

“Implementation Results of Bloom Filters for String

Matching,” 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa, CA,

2004.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

