
n contrast to traditional networks, software-defined net-
working (SDN) decouples the control plane from the data
plane to enhance programmability and flexibility of net-
work control [1]. In SDN, the control plane is a logically

centralized controller, which communicates with the data
plane via a control channel, say the OpenFlow protocol stan-
dardized by the Open Networking Foundation (ONF) [2].
SDN is suitable for managing connectivity because the con-
troller has a global view of the network. If deploying network
function virtualization (NFV) modules [3] as SDN services is
desired, the controller will have to handle numerous control
messages and incoming packets from the data plane to classify
them or even inspect packet payloads.

This work presents an extended SDN architecture to
reduce the traffic overhead to the controller and support NFV
by service chaining [4]. We designed a two-tier mechanism to
classify traffic on the data plane instead of the control plane
as much as possible. In the first tier, a classification module,
which inspects the TCP/IP and application headers, is added
on the switch. If this module is unable to determine the policy
to be applied, a deep packet inspection (DPI) module in the
second tier serves as an NFV module and analyzes the pack-
ets that cannot be classified in the first tier. The controller
determines the services to be invoked based on the classifica-
tion results, and makes the decision about service routing.
Both modules will retain the decision, so subsequent packets

will be directly forwarded to the NFV modules designated by
the controller. We implemented intrusion prevention as the
example for evaluating the extended architecture.

The rest of this article is organized as follows. We first pre-
sent the background of this work. Then we present the extend-
ed architecture, and evaluate its performance. Finally, we
conclude this work.

Background
Traditional network devices have fixed firmware and functions
developed by manufacturers in a closed manner, so experimenting
with network innovations is usually restricted. The tightly coupled
control plane and data plane also reduces the flexibility of net-
work management. SDN is the evolutionary consequence toward
the desire for a programmable network and the separation of the
control plane and the data plane. OpenFlow was proposed by
McKeown et al. to standardize the communications between the
centralized controller and the managed switches in SDN [5]. The
idea is inherited from previous works in programmable networks
such as active networks, which allows instructions to be carried by
packets and executed by network devices. After programmable
networks, projects toward the separation of the control plane and
the data plane, such as the forwarding and control element sepa-
ration (ForCES) framework, were developed to standardize the
communications between multiple control and data elements
within the same network. OpenFlow followed up, and its success
further promoted the wide deployment of SDN. Due to limited
space, we refer the readers to [5] for a complete survey of Open-
Flow development. The technical background and related work
are described in the following.

OpenFlow Protocol and NFV
The OpenFlow switch specification defines the communica-
tion messages between the control plane and the data plane
and their processing [2]. An OpenFlow switch handles incom-

I

48 IEEE Network • May/June 2015

Abstract
In conventional software-defined networking (SDN), a controller classifies the traffic
redirected from a switch to determine the path to network function virtualization
(NFV) modules. The redirection generates a large volume of control-plane traffic.
We propose an extended SDN architecture to reduce the traffic overhead to the
controller for providing NFV. The extension includes two-layer traffic classification
in the data plane, extended OpenFlow protocol messages and service chaining
mechanisms. Network events are analyzed in the data plane instead of the control
plane. The efficiency is evaluated with a case study of intrusion prevention. The
evaluation shows that only 0.12 percent of the input traffic is handled by the con-
troller, while 77.23 percent is handled on the controller in conventional SDN.

An Extended SDN Architecture for
Network Function Virtualization with a

Case Study on Intrusion Prevention
Ying-Dar Lin, Po-Ching Lin, Chih-Hung Yeh, Yao-Chun Wang, and Yuan-Cheng Lai

I

0890-8044/15/$25.00 © 2015 IEEE

Ying-Dar Lin, Chih-Hung Yeh, and Yao-Chun Wang are with National
Chiao Tung University. Yao-Chun Wang is also with Chunghwa Telecom
Laboratories.

Po-Ching Lin is with Nation Chung Cheng University.

Yuan-Cheng Lai is with National Taiwan University of Science and Tech-
nology.

LIN_LAYOUT_Layout 1 5/15/15 12:56 PM Page 48

ing packets by matching the entries in the Open-
Flow pipeline, which consists of one or multiple
flow tables. The switch applies the instructions in
the matched entries, and performs actions such
as packet forwarding. In case of a table miss, the
switch may send an OFPT_PACKET_IN message to
the controller to ask for the actions to be applied,
depending on the configuration. The controller
then replies to the switch with an OFPT_PACK-
ET_OUT or OFPT_FLOW_MOD message containing
an action list. The controller can specify to add,
modify, or delete flow entries on the switch. The
specification also defines the messages for the
controller to collect information from a switch.

The controller is responsible for extracting net-
work events, collecting statistics, and analyzing
payloads for service routing decisions to support
NFV modules, which make up a framework that
decouples network functions from proprietary hardware appli-
ances and enable dynamic methods to construct and manage
network functions with virtualization. The data plane can help
the tasks and notify the controller to relieve its burden. The
amount of traffic from the switch to the controller is also
reduced. However, OpenFlow defines neither flow entries for
various network events nor messages for passing high-level
network states to the controller.

NFV also simplifies the process of service chaining. Fur-
thermore, a network service header (NSH) [6] is metadata
added to a packet for creating a service plane, and it is encap-
sulated in an outer header for transport.

Related Work
Companies such as Cisco, Qosmos, Juniper, Huawei, and
Ericsson [7–11] have solutions for building service chains with
traffic classification functions. On the contrary, we focus on
extending the data plane and the OpenFlow protocol mes-
sages. The primary difference from the prior works in terms
of traffic classification is the two-tier classification, the extend-
ed OpenFlow protocol messages, and service chaining mecha-
nisms. Furthermore, the previous works do not reveal or
evaluate their design in detail. Curtis et al. [12] designed the
DevoFlow framework to keep as many flows as possible in the
data plane and reduce the traffic overheads to the controller,
but that work is irrelevant to traffic classification on the
switch or providing NFV. Shin et al. [13] implemented the
FRESCO architecture to support security services on the con-
troller, but it did not reduce the burden of the controller and
is irrelevant to NFV.

The Extended Architecture
The extended architecture will be presented in three subsec-
tions. First, we present an overview of this architecture, and
then describe the extended OpenFlow protocol messages.
Finally, we illustrate the operation with two case studies of
intrusion prevention.

Overview of the Extended Architecture
The extended architecture is intended to map NFV modules
to SDN. Compared with deploying NFV modules in an Open-
Flow-based SDN, this architecture moves traffic classification
from the controller to the data plane, and extends OpenFlow
messages with a matched field of network events. The data
plane reports network events to the controller after classifica-
tion, and the controller then sets the extended table entries on
the data plane. Thus, the controller’s burden is relieved. Fig-
ure 1 illustrates the extended architecture. The OpenFlow

pipeline is extended to service chaining policies. If the switch
cannot classify the traffic, the DPI module can extend the
data plane and help classification. The OpenFlow messages
are also augmented to support the extension. The SDN appli-
cation implements the service routing logic via the north-
bound interfaces.

This architecture classifies incoming traffic for service
chaining, and refers to network events, statistics, and packet
headers to decide the service chaining policies on the data
plane. The classification (CLA) module is located on the
switch. Payload analysis is shifted to the DPI function as an
NFV module because the analysis is too expensive to be per-
formed on the switch. If the policy tables on the data plane
are missing, the data plane will send an extended OpenFlow
message to query the controller about the policies. The con-
troller will make the decision and reply based on the network
states and the packets on the data plane. OpenFlow is extend-
ed to support such communications between the control plane
and the data plane. In summary, the extensions involve modi-
fications on the switch, the NFV modules, and the extended
OpenFlow to lift the limitations of the conventional SDN
architecture. Other NFV modules, if any, also belong to the
data plane. The service routing (SR) module on the control
plane serves as the decision maker for the policies maintained
on the data plane.

The CLA and DPI modules classify incoming traffic for
various NFV modules according to network events. The for-
mer extracts network events from the transport layer and
application headers of incoming packets, while the latter
extracts from the entire packets, particularly the payloads,
after packet reassembly. Both modules extend the OpenFlow
pipeline to classify traffic to different policies based on the
extended Match field composed of network events, besides the
original OpenFlow Match field. The SR module accesses the
statistics of network events, and decides the paths of NFV
modules for various network events. The traffic will then be
redirected to the NFV modules on the path. The SR module
may modify the policies on the CLA and DPI modules due to
the changes of network states.

CLA Module: At the start, the switch initializes the policy table
based on the policy modification messages from the con-
troller. If an incoming packet is from the controller, this mod-
ule processes it based on the message type; otherwise, this
module extracts the network event inside it. This module then
matches the network event against the service chaining policy
table to find the policy to be applied, and forwards the packet
to the original OpenFlow pipeline for connectivity services, to
the DPI module for deep packet inspection, to some other

IEEE Network • May/June 2015 49

Figure 1. The extended architecture.

Messages

Redirected
traffic NFV modules

Deep packet
inspection

Service
chaining

mechanism

* Indicates one or more instances
 Indicates parts to be extended

SDN application

SDN controller

SDN northbound interfaces

Service routing module

Messages

Switch*

OpenFlow
pipelineClassification

LIN_LAYOUT_Layout 1 5/15/15 12:56 PM Page 49

module, etc. The classification in the current
design involves matching the TCP/IP and applica-
tion headers with patterns specified by the con-
troller. The other traffic classification techniques
in the literature, e.g. those based on statistical
features, may also be implemented in future
work. If the table-miss policy is matched, the
module stores the packet into a buffer and
queries the SR module on the controller for the
policy to enforce. The subcomponents of this
module are described as follows.

Initializer: The default policies vary with dif-
ferent service routing logics. The module asks the
SR module for the default policies to be config-
ured, and initializes the policy table with them.

Control/Data Packets Separator: This separa-
tor checks whether the packets are control mes-
sages from the controller or data packets. The
control message handler will process the former,
and the consequent analysis procedures will pro-
cess the latter.

TCP/IP Header Analyzer: This analyzer extracts
the event in the TCP/IP header of an incoming
packet, e.g. a SYN flag. The Event and the Match fields
defined in the OpenFlow specification will be matched against
the policy table. Three default policies are checked before the
other ones. The first checks whether the application analyzer
should analyze the application header of the packet. The sec-
ond checks whether the NFV modules should process the
packet. If they should not, the packet is handed to the conven-
tional OpenFlow pipeline. The third checks whether the pack-
et needs to be forwarded to the DPI module. If none of the
policies are matched, the switch will ask the SR module.

Application Analyzer: This analyzer parses the application
header and matches against the predefined patterns to extract
the event. The packet may need to be processed by the NFV
modules, refer to the policy suggested by the SR module, or
be decided by the DPI module, which extracts the events after
payload inspection.

Control Message Handler: This handler processes the pack-
ets of control messages. It may apply actions to packets,
update the policy table, or reply the statistics to the controller.

Statistics Handler: The statistics are updated according to
the policy after the incoming packet is processed. The SR
module can configure the frequency or the condition for
reporting the statistics from the CLA.

DPI Module: The DPI module inspects the packet payloads
designated by the CLA module. Its subcomponents are
described as follows.

Initializer: This module is initialized by the default policies
that depend on the patterns to be inspected.

Application Payload Analyzer: This module extracts the
events from application payloads by deep packet inspection.
The events and the Match fields defined in the OpenFlow
specification are matched against the policy table. If no match
is found, this module will ask the SR module for the policy to
be applied; otherwise, it applies the matched policy, which
indicates whether the incoming packets need more NFV mod-
ules or not. The other subcomponents, i.e. control/data pack-
ets separator, control message handler, and statistics handler,
are similar to those in the CLA module. Unlike CLA, the DPI
module maintains the policies for the entire packet payloads.

SR Module: This module maintains network states according
to the network events, statistics, and packets from the data
plane. If an incoming packet is a message of OpenFlow con-

nection establishment, this module initializes the policy table
on the switch. If it is a message like OFPT_PACKET_IN in
Openflow [2], this module will reply with the messages to
update the policy table in the data plane. This module also
updates the network states by the statistics reported from the
data plane.

Extended OpenFlow Protocol Messages
We added the concept of network events into the original
OpenFlow protocol. The original Match field was extended
with the Event List field. We also extended the OFPT_PACK-
ET_IN, OFPT_FLOW_MOD messages and the original OpenFlow
table entries, as well as the OFPT_PACKET_OUT message with
the action list of the Apply-Actions instruction in OpenFlow.
The added action defines the path identification of the NFV
modules. The actions of the instruction field in the original
OpenFlow table entry were also extended. For the OFPT_MUL-
TIPART_REQUEST and OFPT_MULTIPART_REPLY messages,
we extended OFP_MULTIPART_TYPE for the statistics of the
extended service chaining policy.

Cases of Intrusion Prevention
We use two cases of intrusion prevention for the study. The
first case is detecting SYN flooding from the TCP/IP headers.
The second is detecting SQL injection and cross-site scripting
(XSS) attacks for web applications. The messages in the form
of OFPT_*_EXT support high-level network events and service
chaining, and are the extended version of their counterparts
without the suffix _EXT in the OpenFlow specification.

SYN Flooding Attack: Figure 2 presents the stages in the
sequence diagram. The CLA module extracts events from the
TCP flags. In stage (1), this module extracts the SYN event
from the first SYN packet, and sends an OFPT_PACKET_
IN_EXT message with this event to the SR module because
there are no corresponding policies in this module. After the
SR module replies with the OFPT_PACKET_OUT_EXT and
OFPT_FLOW_MOD_EXT messages, the policy to detect SYN
flooding attack is set in CLA to handle the SYN packet,
which is still forwarded to the subsequent NFV modules
before being detected as an attack. The destination IP address
and port of a SYN packet are critical fields in the policy, and
the other fields are wildcard. In stage (2), the following SYN
packets to the same destination IP address and port will

IEEE Network • May/June 201550

Figure 2. The scenario of detecting SYN flooding.

Drop

 Indicates that it happens one or more times
* Indicates that it comes with one or more instances
+ Indicates that it happens depending on what is configured by SR

NFVSR

(1)

(2)

(3)

(5)

(4)

CLA

OFPT_PACKET_IN_EXT

OFPT_MULTIPART_REQUEST_EXT

+OFPT_FLOW_OUT_EXT

*OFPT_MULTIPART_REPLY_EXT

+OFPT_MULTIPART_REPLY_EXT

OFPT_FLOW_MOD_EXT
OFPT_PACKET_OUT_EXT

SYN flood packet

SYN flood packet

SYN flood packet

SYN flood packet

LIN_LAYOUT_Layout 1 5/15/15 12:56 PM Page 50

match this policy. By sending an OFPT_MULTIPART_REQUEST_
EXT message in stage (3), the SR module inquires about the
count of matched packets in incomplete connections (i.e. the
connections without the complete three-way handshake),
which are reported with one or more OFPT_MULTIPART_
REPLY messages from CLA. In stage (4), the SR module
detects that the count increases in a short time from the
statistics, and realizes the occurrence of SYN flooding. It then
sends an OFPT_FLOW_MOD_EXT message to the CLA module
to modify the policy into a DROP action. After that, in stage (5),
all the SYN flooding packets will match this policy and be
dropped by CLA.

Web Application Attack: Attacks on web applications such as
SQL injections usually come with malicious patterns in HTTP
requests. Figure 3 presents an example, where Fig. 3a and Fig. 3b
present the scenarios without and with malicious patterns in
the HTTP packets. If malicious patterns are present in the
HTTP headers, the CLA module can parse the headers and
check for malicious patterns. However, if malicious patterns
are in the HTTP payloads, the DPI module will inspect the
payloads to check for them.

In stage (1) of Fig. 3a, the CLA module does not extract
any events about malicious patterns in the HTTP packet,
while in stage (1’) of Fig. 3b, the module identifies malicious
patterns. In either case, this module sends an OFPT_PACKET_
IN_EXT message to the SR module because the corresponding
policy has not been set, and receives OFPT_PACKET_OUT_EXT
and OFPT_FLOW_MOD_EXT messages from the controller. The
messages instruct CLA to forward the HTTP packet to the
subsequent NFV modules and set the corresponding policy in
stage (1), and to drop the packet in stage (1’), since a DROP

action is set for the events about malicious pat-
terns. The subsequent HTTP packets arriving at
CLA in stage (2) and (2’) will be forwarded to
NFV modules or dropped directly.

In stages (3) and (3’), suppose an HTTP pack-
et with an application payload arrives at the CLA
module, with the default policies set to forward
such packets that need DPI to the DPI module.
After payload inspection, the DPI module will
send an OFPT_PACKET_IN_EXT message to the
SR module because of no corresponding policies,
and then sets the policies from the OFPT_PACKET_
OUT_EXT and OFPT_FLOW_MOD_EXT messages.
The packet with malicious patterns will be
dropped in stage (3’), or forwarded to the NFV
modules in stage (3) otherwise. The DPI module
will not ask the SR module for the following
HTTP packets that need DPI after the policies
have been set. In stage (4), the DPI module sends
the incoming packets to NFV modules while in
stage (4’), and it drops the incoming packets
directly by the policy for malicious patterns.

Experiment and Analysis
Experiments for Throughput Analysis
In the first experiment, the performance of trans-
mission (1) with classification in the control plane
and (2) with classification in the data plane were
compared. We used mininet (mininet.org) and a
Ryu controller (osrg.github.io/ryu) to build Open-
Flow-based SDN for a network service. We also
implemented a Ryu application to handle service
routing by the TCP header. Two hosts simulate
the client and the server, between which are

three switches controlled by Ryu, numbered from 1 to 3 from
the client. Between switches 1 and 2 is a firewall running
iptables (allowing web traffic or SYN packets) or a direct link,
and between switches 2 and 3 is a Snort IDS with default
rules or a direct link. Thus, four types of service paths are
possible with this topology.

We simulated each scenario by adjusting the SDN applica-
tion design. For classification in the control plane, the scenario
was as follows. The switches handle incoming traffic by sending
each incoming packet with an OFPT_PACKET_IN message to
the controller, which then replies with an OFPT_PACKET_OUT
message to forward the packet. As a result, each packet needs
to pass through the controller and be classified by its TCP
header to emulate classification in the control plane.

On the other hand, for classification in the data plane, the
scenario was as follows. Switch 1 handles incoming client traf-
fic by sending the first packet with an OFPT_PACKET_IN mes-
sage to the controller, which then sends an OFPT_FLOW_MOD
message with the OFPFC_ADD command to switche 1, switch 2,
and switch 3 to forward the packets. As a result, the rest of
the packets do not pass through the control plane because of
the classification on each switch. We used Iperf (iperf.fr) to
send traffic with destination TCP port 80 through each service
path in the above two scenarios, and measured the TCP
throughput in 30 seconds. Iperf sent data in one connection
with a default TCP window size of 85.3 Kbytes. The band-
width of network interfaces of the switches is 525 Mb/s. The
experimental results demonstrate the relationship between
transmission performance and the location of classification.

In this experiment, the throughput is presented for four
service paths. The first service path is composed of no ser-
vices; the second of firewall only; the third of IDS only; the

IEEE Network • May/June 2015 51

Figure 3. The scenario for web application attacks.

NFVSR

(1)

(3)

(2)

(4)

HTTP packet

HTTP packet

DPI

(a)

CLA

OFPT_PACKET_IN_EXT

OFPT_PACKET_IN_EXT

OFPT_FLOW_MOD_EXT
OFPT_PACKET_OUT_EXT

OFPT_FLOW_MOD_EXT
OFPT_PACKET_OUT_EXT

HTTP packet that
needs payload

analysis

HTTP packet that
needs payload

analysis

NFVSR

(1’)

(3’)

(2’)

(4’)

HTTP packet

HTTP packet

DPI

Drop

(b)

Indicates that it happens one or more times

CLA

OFPT_PACKET_IN_EXT

OFPT_PACKET_IN_EXT

OFPT_FLOW_MOD_EXT
OFPT_PACKET_OUT_EXT

HTTP packet that
needs payload

analysis

HTTP packet that
needs payload

analysis

Drop

Drop

Drop

OFPT_FLOW_MOD_EXT
OFPT_PACKET_OUT_EXT

LIN_LAYOUT_Layout 1 5/15/15 12:56 PM Page 51

fourth is composed of firewall and IDS. In Fig. 4, we compare
the throughput in the scenarios of classification in the control
plane and in the data plane. In the first scenario, each packet
needs to pass through the control plane and to be classified by
its TCP header. In the second, only the first packet passes
through the control plane and the rest of the packets are clas-
sified by the data plane and redirected to the service path.
The short transmission path with the classification in the data
plane significantly increases the throughput.

Experiments for Analysis of Controller Overhead and
Redirection Ratios
In the second experiment, we implemented the modules of
the extended SDN architecture with a C/C++ program for
traffic simulation and analysis. We ran Endace NinjaBox with
Endace DAG Cards (www.emulex.com) to capture the input
traffic from the campus network of National Chiao Tung Uni-
versity. The traffic included 1,224,895 packets. The TCP traf-
fic accounted for 77.23 percent, and 23.63 percent of the
packets come with the source or destination port number 80.
The amount of traffic to be processed by the SR, DPI, and
NFV modules can be derived by analyzing the input traffic,
and the results are compared with those in the conventional
OpenFlow-based network.

At first, CLA reads the input traffic, and then forwards the
output traffic to the SR, DPI, and NFV modules. DPI pro-
cesses the traffic from CLA, and then forwards the output
traffic to the SR and NFV modules. The transmission delay
between the data plane and the control plane was negligible,
and the lifetime of the service chaining policy entries was set
to infinity. We can also learn how much traffic went to the
NFV modules by checking the traffic from CLA to DPI and
the other NFV modules.

We study the controller overhead and the redirection ratio
for the NFV modules in this experiment. The former is the
amount of traffic from the data plane to the control plane,
and the latter is the amount of traffic going to DPI and the
other NFV modules. The experiment involved four scenarios.
The first enabled an intrusion prevention system (IPS) for the
campus traffic; the second enabled a layer-7 load balancer for
the same traffic; the third enabled IPS for only the HTTP
traffic retrieved from the campus traffic; the fourth enabled a
layer-7 load balancer for the same traffic. We also enabled the
aforementioned services for detecting SYN flooding and web
application attacks.

In Fig. 5, the controller overheads are compared between
the result from the OpenFlow-based network and that from
the extended architecture. We also analyzed the events in the
TCP packets. In the first two scenarios, since the data plane
cannot extract the events, all the TCP packets, which account
for 77.23 percent of the input traffic, will be redirected to the
controller for event extraction. However, the extended data
plane can extract the events, and only 0.12 percent of the
input traffic is processed by SR for the policy-miss cases. In
the third and fourth scenarios, since the data plane cannot
extract the HTTP events, the input (pure HTTP) traffic all
needs to be redirected to the controller. However, the extend-
ed data plane can extract the application layer events, and
only 0.054 percent and 0.053 percent of the input traffic is
processed by SR.

Figure 6 presents the redirection ratios in the four scenar-
ios. We consider HTTP POST requests and HTTP responses
with status code 200 as the packets to be inspected in the
application payload, and DPI is the destined NFV module for
these packets. We found that only 0.06 percent of the input
traffic needed to be sent to DPI for traffic classification in the
first two scenarios, and the redirection ratios to the NFV
modules were 23.63 percent and 0.42 percent. The amount of
traffic to the NFV modules varied with the enabled NFV
modules. In the first scenario, all the TCP packets with source
port or destination port of 80 were redirected to the IPS ser-
vice. On the contrary, only the packets to the web application
server with load balance service enabled needed to be redi-
rected to NFV modules in the second scenario.

In the third and fourth scenarios, the input traffic is all
HTTP, all of which was redirected to NFV modules in the
third scenario for IPS service, while that to the web applica-
tion server was redirected to the NFV modules in the fourth
scenario. The results show only the necessary traffic will be
redirected to the NFV modules.

Conclusions
Compared with OpenFlow-based SDN, the extended architec-
ture causes little controller overhead for providing NFV mod-
ules. The CLA module on the switch classifies most traffic,
and the DPI module is responsible for the rest that cannot be
classified by CLA. We studied the controller overhead and
the redirection ratios in various scenarios. The results show
that controller overhead can be reduced from 77.23 percent to
0.12 percent, demonstrating the feasibility of this extended

IEEE Network • May/June 201552

Figure 4. The throughput in various scenarios.

Service path
None

4.52

510

FW

3.56

148

IDS

3.35

122

FW + IDS

3.15

103

100

Th
ro

ug
hp

ut
 (M

bp
s)

0

200

300

400

500

600
Classification function in
control plane
Classification function in
data plane

Figure 5. The comparison of controller overheads between the
OpenFlow and the extended architectures.

Campus traffic
with service

of IPS

0.12%

77.23%

Campus traffic
with service
of layer 7

load balancer

Controller overheads

0.12%

77.23%

HTTP from
campus traffic
with service

 of IPS

0.05%

100.00%

HTTP from
campus traffic
with service
 of layer 7

load balancer

0.05%

100.00%
OpenFlow architecture
Extended architecture

LIN_LAYOUT_Layout 1 5/15/15 12:56 PM Page 52

architecture. The throughput is improved from a few Mb/s to
more than 100 Mb/s because of the short transmission path.
Moreover, only the necessary traffic will be redirected to the
NFV modules, so the redirection ratios vary with the composi-
tion of traffic types and the required NFV modules. There-
fore, the extended architecture is a feasible approach to
extend the OpenFlow specification for supporting NFV mod-
ules in SDN in the future.

Acknowledgment
This work was supported in part by the Ministry of Science
and Technology (MoST), Chung-Hwa Telecom (CHT), and
the Industrial Technology Research Institute (ITRI) in Tai-
wan, and also in part by Mediatek Inc.

References
[1] ONF, “SDN Architecture Overview,” Dec. 12, 2013.
[2] ONF, “OpenFlow Switch Specification version 1.4.0,” Oct. 14, 2013.
[3] ETSI, “Network Functions Virtualization — Introductory White Paper,”

http://portal.etsi.org/NFV/NFV_White_Paper.pdf.
[4] P. Quinn, Ed, et al., “Service Function Chaining Problem Statement,” IETF

Internet-Draft, draft-ietf-sfc-problem-statement-02.txt, Feb. 14, 2014.
[5] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using

OpenFlow: A Survey,” IEEE Commun. Surveys & Tutorials, vol. 16, issue
1, 1st Quarter, 2014, pp. 493–512.

[6] P. Quinn, et al., “Network Service Header,” IETF Internet-Draft, draft-quinn-
sfc-nsh-02.txt, Feb. 14, 2014.

[7] Cisco, “Enabling Service Chaining on Cisco Nexus 1000V Series,”
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-
1000v-switch-vmware-vsphere/white_paper_c11-716028.pdf.

[8] Qosmos, “Service-Aware Network Architecture Based on SDN, NFV, and
Network Intelligence,” http://www.qosmos.com/wp-content/uploads/
2014/01/Intel_Qosmos_SDN_NFV_329290-002US-secured.pdf.

[9] Juniper Networks, “Contrail Architecture,” http://www.juniper.net/us/en/
local/pdf/whitepapers/2000535-en.pdf.

[10] Huawei, “Enabling Agile Service Chaining with Service Based Routing,”
http://www.huawei.com/ilink/en/download/HW_308622.

[11] W. John et al. “Research Directions in Network Service Chaining,” IEEE
SDN for Future Networks and Services (SDN4FNS), 2013.

[12] A. R. Curtis et al., “DevoFlow: Scaling Flow Management for High-Perfor-
mance Networks,” ACM SIGCOMM, Aug. 2011.

[13] S. Shin et al., “Fresco: Modular Composable Security Services for Soft-
ware-Defined Networks,” Network & Distributed System Security Symp.
(NDSS), Feb. 2013.

Biographies
YING-DAR LIN [F’13] is a distinguished professor at National Chiao Tung Uni-
versity (NCTU). He received his Ph.D. from UCLA in 1993. He was a visiting
scholar at Cisco in 2007–2008. He directs the Network Benchmarking Lab
(NBL), an approved lab of the Open Networking Foundation (ONF). His work
on “multi-hop cellular” has been highly cited and standardized. He is an IEEE
Distinguished Lecturer, and ONF research associate, and serves on several
editorial boards. He co-authored Computer Networks: An Open Source
Approach (McGraw-Hill, 2011).

PO-CHING LIN received the M.S. and Ph.D. degrees in computer science from
National Chiao Tung University, Hsinchu, Taiwan, in 2001 and 2008, respec-
tively. He joined the faculty of the Department of Computer and Information
Science, National Chung Cheng University (CCU), Chiayi, Taiwan, in August
2009. He is currently an assistant professor. His research interests include net-
work security, network traffic analysis, and performance evaluation of network
systems.

CHIH-HUNG YEH received his master’s degree in computer science from Nation-
al Chiao Tung University in 2014. He is currently fulfilling his alternative mili-
tary service, which will end in September 2015, as a project assistant under
the Information and Communication Technology Project of Taiwan ICDF in the
Taiwan Technical Mission in Saint Christopher and Nevis. His research inter-
ests include network architecture, software-defined networking and cloud com-
puting.

YAO-CHUN WANG is an associate researcher at Chunghwa Telecom (CHT). He
received his M.S. degree from National Chiao Tung University (NCTU) in
2011. He is a Ph.D. student at National Chiao Tung University (NCTU).

YUANG-CHENG LAI received the Ph.D. degree in computer science from Nation-
al Chiao Tung University in 1997. He joined the faculty of the Department of
Information Management at National Taiwan University of Science and Tech-
nology in 2001, and he has been a professor since 2008. His research inter-
ests include wireless networks, network performance evaluation, network
security, and social networks.

IEEE Network • May/June 2015 53

Figure 6. The redirection ratios in the four scenarios.

Campus traffic
with service

of IPS

Campus traffic
with service of

layer 7 load
balancer

Redirection ratio

23.63% 23.57%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110% To NFV

To DPI
To IPS/L7LB

0.06%

HTTP from campus
traffic with service

of layer 7 load
balancer

1.77% 1.51%
0.27%

HTTP from campus
traffic with service

of IPS

100.01% 99.74%

0.27%0.42% 0.06% 0.36%

LIN_LAYOUT_Layout 1 5/15/15 12:56 PM Page 53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

