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a b s t r a c t

This study addresses a two-tier job scheduling problem for SaaS cloud service providers which rely on
resources leased from IaaS cloud providers to achieve elasticity to computational power. In our model, a
project represents a user request which consists of multiple jobs; the SaaS is obligated to complete
projects using multiple resources leased from IaaS or PaaS providers. The goals are to reduce the project
turn-around time and to support priority scheduling by employing suitable scheduling algorithms. We
propose a set of two-tier backfilling algorithms which extend the well-known conservative backfilling
algorithmwith project slack-time and priority concepts. Among the proposed algorithms, Two-Tier Strict
Backfilling (2TSB) does not allow preemption in job waiting queues. On the other hand, preemption is
allowable in Two-tier Flexible Backfilling which has two versions: 2TFB and 2TFB-SF (slack factor). In
2TFB, a new incoming project can preempt waiting jobs but not waiting projects, while 2TFB-SF permits
preemption in both job and project waiting queues. Two-Tier Priority Backfilling (2TPB) algorithm takes
priority into account such that only high-priority projects can preempt the low-priority ones. The
experimental results indicate that, compared with 2TSB, 2TPB could reduce the mean turn-around time
of high-priority projects by more than 25%.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cloud computing is an Internet-based computing paradigm
whereby computational resources are delivered to users on demand
over the Internet as a public utility (Ai et al., 2011). Customers can
make use of the cloud as a software (SaaS), platform (PaaS), or infr-
astructure (IaaS) provider on a pay-per-use basis, hence avoiding
maintenance costs while enjoying elasticity to the available com-
putational power. Google cloud platform is a good example of cloud
computing services in which all the infrastructure, software, and
storage are hosted remotely and users only need a Web browser to
access the service.

Here we are particularly interested in the SaaS cloud provider
which relies on resources leased from IaaS or PaaS cloud providers
to achieve elasticity to its computational power. We consider an
SaaS model as described below. Each customer submits his work as
a project to be executed by the system. Once the SaaS accepts a
project, it is obligated to complete a set of jobs belonging to the
project by using multiple computational resources leased from IaaS
or PaaS providers. We assume that each job has its own estimated

service time determined during the pre-processing stage. To start
processing a job, the SaaS must have a specific set of resources, such
as server CPU cycles, disk storage, or network bandwidth, allocated
to the job for its processing. Furthermore, the resource requirement
of a job may involve multiple resource types simultaneously. We
assume that at the moment when a project is submitted to the SaaS,
the project's workload characteristics become available to the SaaS
such that the SaaS must make scheduling decisions immediately
and then inform users of when the project will be finished. As
projects arrive to the system one by one over time, the SaaS must
always make scheduling decisions on the fly without knowledge of
any future project arrivals. This practice is called on-line scheduling
in the literature (Vestjens, 1997).

The objective of this work is to provide an efficient SaaS service
by employing suitable scheduling algorithms and resource alloca-
tion strategies. In specifics, we want to improve the mean project
turn-around time, the mean value of the overall time from submis-
sion to completion of the project, while achieving high utilization of
cloud resources. Even though the concept of two-tier scheduling
has been addressed by several studies (Benoit et al., 2010; Anglano
and Canonico, 2008; Gopalan and Chiueh, 2002; Holenderski et al.,
2012) in recent years, our solution is different from those already
existing because we deal with two-tier scheduling, job priorities,
and multi-type resource allocation at the same time. Our solution
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extends the conservative backfilling (Mu'alem and Feitelson, 2001;
Feitelson, 2005) with the concept of slack factor, by which the
actual departure time of reserved projects can be relaxed up to a
certain slack, in order to make the algorithm more flexible to
support priority scheduling. The idea of slack factor is not new in
the area of scheduling research, but up to now, we are not aware of
any existing work that have applied the slack-factor concept to the
two-tier scheduling problem the way our approach does. So far, we
have developed a set of algorithms by taking the slack time and
project priority into account such that only high-priority projects
can preempt the low-priority ones. In order to evaluate the
performance of our solution set, we have implemented a discrete-
event simulator based on CSIM 20.

We like to emphasize that even though fault tolerance is an
important issue in cloud computing as system reliability is perceived
as part of cloud service-level agreements, due to the limited scope of
this work, we focus on improving the mean project turn-around time
and simply assume that there will be an underlying fault-tolerance
mechanism taking care of reliability-related issues. Generally speak-
ing, high-performance computing systems usually adopt checkpointing
(with rollback-recovery) (Agarwal et al., 2004; Gelenbe, 1979; Ozaki
et al., 2004; Oliner et al., 2006; Katsaros et al., 2007) and job replication
(Silva et al., 2003; Li andMascagni, 2003; Hou and Shin,1994) as fault-
tolerance mechanisms. By checkpointing, resources from time to time
store the states of their running jobs in a stable storage so that once
the failure occurs, the scheduler can place the failed job on another
resource and resume the computation from the checkpoint state on
recovery. On the other hand, replication aims to raise the job success
rate by replicating each job and executing job replicas on different
resources in parallel.

The rest of this paper is organized as follows. In Section 2, we
discuss the background knowledge related to our two-tier sche-
duling problem, including on-line scheduling, existing two-tier
scheduling models, various backfilling algorithms, and data struc-
tures for advanced resource reservation. In Section 3, we introduce
the formal description of our scheduling problem and its model. In
Section 4, we elaborate our proposed algorithms and their imple-
mentation. Simulation study and experimental results are pre-
sented in Section 5. Finally, Section 6 concludes this paper with a
brief discussion on future work.

2. Related work

This section first gives a brief overview about on-line scheduling
and then a survey on existing two-tier scheduling models. After that,
a variety of backfilling algorithms which have been widely studied in
the literature are discussed in depth.

2.1. On-line scheduling

Most classical scheduling problems are concerned with off-line
algorithms which are given complete information about the schedul-
ing problem at hand. In contrast to off-line algorithms, an on-line
scheduling algorithm is intended for a realistic scenario where the
scheduler does not have the access to the whole input instances
(Vestjens, 1997). In other words, at the moment when a job is pre-
sented to the scheduler, on-line scheduling decisions must always be
made without knowledge of any future job arrivals. Furthermore, the
scheduling decision is irreversible once it is made even if we find
other obviously better schedules afterward.

In order to evaluate performance of an on-line algorithm, Sleator
and Tarjan (1985) suggested using competitive analysis. In a compe-
titive analysis, the output of an on-line algorithm is compared to
an optimal value which might be obtained if the entire job inputs
were known in advance. An on-line algorithm is ρ-competitive if its

objective value is no more than ρ times of the optimal off-line value
for any arbitrary sequence of job input instances. Since the assump-
tions of pure on-line scheduling make it impossible to find the
optimal solution, some concepts have been developed to handle
variants of this scheduling problem. For example, semi-online sch-
eduling (Tan, 2011) assumes that partial information about the sche-
duling problem is available to the scheduler before the scheduler
constructs a schedule. The authors in Hoogeveen and Vestjens (1996)
and Lu et al. (2003) presented the concept of delaying the scheduling
time of a job for a period of time and later applying scheduling rules
to the accumulated jobs in the queue.

2.2. Two-tier scheduling

There are several variants of two-tier scheduling models that
have been proposed during the last few years. The Bag-of-Tasks
(BoT) application (Benoit et al., 2010; Anglano and Canonico, 2008)
model, whose tasks are identical and independent, is often
considered as a suitable model for heterogeneous clusters and
desktop grid environment. The objective of BoT application model
is often to minimize the maximum stretch, i.e., the maximum ratio
between the actual time a BoT application has spent in the system
and the time this application would have spent if executed alone.
The authors in Benoit et al. (2010) introduce an optimal off-line
algorithm and a heuristic on-line algorithm to minimize the max-
imum stretch of BoT applications. In Anglano and Canonico (2008),
a set of task selection polices is proposed in order to minimize the
turn-around time of BoT applications.

Gopalan and Chiueh (2002) designed and implemented a sche-
duler for periodic soft real-time applications with the goal of
maximizing the number of applications admitted into the system.
A periodic soft real-time application consists of a sequence of tasks
whose execution repeats itself over the application's lifetime and
is subject to a precedence constraint among the tasks. The two-tier
scheduling model introduced in Holenderski et al. (2012) allows
the processing of a job to be preempted by another job before its
completion.

2.3. Backfilling algorithm

The backfilling algorithm, which was first introduced by Lifka
(1995), aims to balance between the goals of utilizing system
resources and maintaining the FCFS (First Come, First Served) order
of job execution (Feitelson et al., 2004). The spirit behind the
backfilling algorithm is that it allows small jobs from the back of
the waiting queue to be processed before previously submitted jobs
that are delayed due to insufficiency of available resources. This
principle helps exploit idle resources by backfilling with suitable jobs,
thereby increasing system utilization and throughput. Therefore, the
resultant job waiting time and resource idle time are reduced
significantly in comparison with those of FCFS. Backfilling scheduling
might lead to “starvation”, a phenomenon where some jobs never
occupy sufficient resources because they are constantly delayed by
new job arrivals that are granted the use of resources ahead of those
already waiting in the queue. In order to prevent starvation from
happening, a backfilling algorithm needs to make resource reserva-
tion for the waiting jobs in the queue.

There are several variants of backfilling algorithms. The most
popular one is aggressive backfilling (Lifka, 1995; Feitelson et al.,
2004), in which only the first job in the queue can receive a resource
reservation. If an arrived job is the first job in the queue and cannot
be processed immediately, the scheduler calculates the earliest
possible starting time for this job using its resource requirement
and service time, then makes a resource reservation for this job at its
pre-calculated starting time. Other jobs are allowed to backfill only if
they do not violate the first job's reservation. The core problem of

Y.-D. Lin et al. / Journal of Network and Computer Applications 52 (2015) 26–36 27



aggressive backfilling is its unpredictability since except for the first
one in the queue, the waiting jobs do not have a guaranteed starting
time. In contrast to aggressive backfilling, conservative backfilling
(Mu'alem and Feitelson, 2001; Feitelson, 2005) makes reservation for
every queued job which cannot be executed immediately. It means
that a job can be backfilled on condition that it does not delay any
queued job. Clearly, conservative backfilling can guarantee every
job's starting time, but its performance tends to be inferior to that of
aggressive backfilling. There are some variants of backfilling algo-
rithms making reservation for the waiting jobs adaptively. In
Srinivasan et al. (2002), the waiting jobs are not given reservations
until their expected turn-around time exceeds a certain threshold.
Chiang et al. (2002) suggested that making reservations for the first
four waiting jobs in the queue is a good compromise between
aggressive backfilling and conservative backfilling. Ward et al. (2002)
introduced multiple-queue backfilling which divides the system
resources into multiple disjoint partitions. This approach aims at
reducing fragmentation of system resources and hence reducing the
likelihood that a short job is queued behind a long job. Backfilling
with lookahead (Li et al., 2010) algorithmmakes scheduling decisions
by considering a set of jobs at once. It looks ahead into the job queue
and tries to find a packing of jobs which maximizes the scheduler's
objective.

2.4. Slack-based backfilling

To make backfilling scheduling more flexible and also to
increase resource utilization, slack-based backfilling algorithms
(Lawson and Smirni, 2002; Shmueli and Feitelson, 2003; Jones and
Nitzberg, 1999; Talby and Feitelson, 1999) have introduced the
concept of slack factor, by which the actual starting time of
reserved jobs can be relaxed up to a certain slack. In other words,
a newly submitted job can move to the head of the waiting queue
on condition that it will not delay the existing reservations by
more than a specific threshold. In these algorithms, the system's
slack factor is used to control for how long jobs will have to wait
before the start of its execution.

The idea of slack factor has already been introduced to real time
scheduling and grid scheduling environments, and has been
confirmed to be effective (Lifka, 1995). Dynamic backfilling allows
the scheduler to overrule a previous reservation by a slight delay if
doing so can improve system utilization considerably (Lawson and
Smirni, 2002). In order to enhance backfilling and support priority
scheduling, Shmueli and Feitelson (2003) combined three para-
meters – the target job's individual priority, tunable system slack
factor, and the average job waiting time – to assign each waiting
job a slack value. The authors also provided several heuristics to
reduce the search space of finding the least costly schedule profile
from all possible candidates. The cost of a schedule is calculated
based on its jobs' delay and resource requirements. Jones and
Nitzberg (1999) suggested a relaxed backfilling strategy in which a
backfill candidate is selected from the job waiting queue based on
the job's waiting time, its estimated service time and resource
requirement. Li et al. (2010) introduced a different slack-based
backfilling which supports more than one reservation.

3. Model description

This section first describes the two-tier scheduling model of
our work. Figure 1 provides a schematic illustration of our
scheduling model, where the notations for this model are shown
in Table 1. In our system model, the cloud has N types of resources.
Each type of resources has limited capacity Mi which denotes the
maximum number of type-i resources that are available for use
simultaneously. A resource in the cloud can be allocated to only

one job at any time; i.e., a resource cannot be shared among
multiple jobs concurrently. Let R¼ fMi j1r irNg denote a set of N
types of cloud resources of the system.

A project with multiple jobs represents a request submitted by
the SaaS user. Let P ¼ fpu j1rur jP j g denote a set of projects of
the SaaS where jP j is the number of projects. A project pu arrives
to the cloud at time tau. It is also the earliest time when the cloud
can start processing the jobs that belong to pu. Let Ju ¼ fju;v j1rv
r j Ju j g denote a set of j Ju j jobs that are to be processed for project pu.

The processing of job ju;v requires a service time teu;v. The
moment when the processing of job ju;v begins is referred to as its
starting time tsu;v and the moment when the processing of job ju;v
is completed is referred to as its finish time tfu;v. Let ltsu;v denote
the latest starting time of job ju;v. The resource requirement of job
ju;v is given by Eu;v ¼ fqiu;v j1r irNg where qiu;v is the number of
type-i resources required by ju;v, 0rqiu;vrMi.

It is assumed that job service time and resource requirement are
precisely determined during the pre-processing stage. Besides, there
is non-precedence constraint between jobs. In other words, the cloud
can process a set of jobs in any order. It is further assumed that the
processing of a job is non-preemptive. Once it is started, it cannot be
stopped until its completion. Next we define important time nota-
tions for projects.

Definition 1 (Project starting time). The starting time tcu of a
project pu, defined as

tcu ¼minðJu � tsÞ where Ju � ts¼ ftsu;v j1rvr j Ju j ð1Þ
is the time moment when the first job of pu starts its processing.

Definition 2 (Project departure time). The departure time tdu of a
project pu, defined as

tdu ¼maxðJu � tf Þ where Ju � tf ¼ ftfu;v j1rvr j Ju j g ð2Þ
is the time moment when the last job of pu finishes its processing.

Definition 3 (Project waiting time). The waiting time twu of a
project pu, defined as

twu ¼ tcu�tau ð3Þ
is the time period from its arrival time tau to its starting time tcu.

Definition 4 (Project running time). The running time tru of a
project pu, defined as

tru ¼ tdu�tcu ð4Þ
is the time period from its starting time tcu to its departure time tdu.

Definition 5 (Project turn-around time). The turn-around time tnu

of a project pu, defined as

tnu ¼ tdu�tau ð5Þ
is the time period from its arrival time tau to its departure time tdu.

Fig. 1. Two-tier scheduling model.
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A good practical example for our two-tier scheduling model is
SaaS software services which use resources leased from IaaS or
PaaS cloud providers to provide software services for customers
across the Internet. In the SaaS system, a project represents a user
request submitted by the SaaS customers. Once the SaaS accepts a
project, it is obligated to complete a set of jobs specified in the
project. The processing of a job requires a certain amount of cloud
resources such as server CPU cycles, storage space and network
bandwidth. Since the customers need to plan their work ahead of
time, the departure time of a submitted project should be reported
to the corresponding customer at the moment when the SaaS
accepts the project.

Problem statement. Given a set of resources R and a set of
projects P, each project puAP consists of a set of jobs Ju. Each job
ju;vA Ju requires a set of resources Eu;v for its processing. The
objective of this work is determining the starting time tsu;v and
the departure time tdu of each job ju;v of project pu, 8puAP such
that the mean turn-around time PTA is minimized while the
service level agreement is abided. The formula

PTA ¼ ¼ 1
jP j

Xj P j

u ¼ 1

tnu ð6Þ

is used to calculate the mean turn-around time of projects.
Service level agreement (SLA): We assume that at the moment

when a project is submitted to our proposed SaaS scheduler, the
project's workload characteristics become available to the sche-
duler such that the scheduler must make scheduling decisions
immediately and then inform the submitter of when the project is
planned to be finished (i.e. the project departure time or the
relaxed project departure time). As projects arrive to the system
one by one over time, the scheduler must always make scheduling
decisions on the fly without knowledge of any future project
arrivals, and it must abide by the decisions of the (relaxed) project
departure time which were reported earlier to the submitters.

4. Two-tier backfilling scheduling with slack factor and job
priority

In this section, we describe our proposed scheduling policies for
solving the two-tier scheduling problem defined in Section 3. We
first give an overview on two-tier backfilling algorithm with a slack
factor of project turn-around time. The details of our approach are
then elaborated in the subsequent subsections. Finally, we introduce

a data structure for resource reservation which is used to implement
our proposed scheduling policies.

4.1. Overview

One of the fundamental requirements for our scheduling model is
predictability. In other words, every project should be granted a
guaranteed departure time at its arrival time. This requirement can
be satisfied by conservative backfilling algorithm, which provides
resource reservation for every waiting job. Besides, the system must
calculate a precise estimate on job service time and resource require-
ment before applying the scheduling algorithm, which is satisfied by
our scheduling model as well. From this point of view, the choice of
conservative backfilling for our problem is straightforward.

In order to make the scheduling algorithm more flexible and
also to support priority scheduling, we enhance conservative
backfilling with the concept of slack factor, by which the departure
time of reserved projects can be delayed for up to a certain slack
time. The idea of slack factor has already been introduced to many
scheduling problems, and has been confirmed to be effective in
solving these problems (Lawson and Smirni, 2002; Shmueli and
Feitelson, 2003; Jones and Nitzberg, 1999; Talby and Feitelson,
1999). However, up to now, it has not been applied to two-tier
scheduling problem like our study does.

Our method calculates the slack of each project pu by multi-
plying its turn-around time tnu with a system parameter SF. The
actual departure time of the project can be relaxed to a value in
the time range ½tdu; tduþtnu � SF�. When the latest departure time
of the project is determined, the scheduler can easily calculate the
latest starting time ltsu;v of each job ju;v which belongs to Ju by

ltsu;v ¼ tduþtnu � SF�teu;v ð7Þ
Newly arrived jobs cannot delay job ju;v beyond its latest starting
time ltsu;v which is set by the SaaS scheduler.

Furthermore, another system parameter PL is also introduced
to control the number of preempted projects not to exceed PL. The
implication of using parameter PL is that we can limit the number
of projects whose departure time will be re-arranged. By doing so,
the behavior of the SaaS scheduler is controlled as well.

Job finish time and project departure time could be determined at
the project arrival time or be relaxed later. In general, we have three
core scheduling policies as shown in Table 2 where the last one has
two versions: single type of projects, two types of projects (high-pri-
ority and low-priority ones). For each scheduling policy, we have deve-
loped a scheduling algorithm with particular attributes, i.e. objective

Table 1
Notations used in the two-tier scheduling model.

Symbol Meaning

R¼ fMi j1r irNg A set of N types of cloud resources where Mi is the capacity of type-i resources
P ¼ fpu j1rur jP j g A set of projects submitted to the SaaS where pu is the uth project and jP j is the number of projects
Ju ¼ fju;v j1rvr j Ju j g The set of jobs which are required to be processed for the uth project where ju;v is the vth job of the uth project and j Ju j is the number of jobs

belonging to pu
tau The arrival time of the uth project
tcu The starting time of the uth project: tcu ¼minðJu � tsÞ where Ju � ts¼ ftsu;v j1rvr j Ju j g
tdu The departure time of the uth project: tdu ¼maxðJu � tfÞ where Ju � tf ¼ ftfu;v j1rvr j Ju j g
twu The waiting time of the uth project: twu ¼ tcu�tau
tru The running time of the uth project: tru ¼ tdu�tcu
tnu The turn-around time of the uth project: tnu ¼ tdu�tau
PTA The mean turn-around time of projects: PTA ¼ 1

j P j
Pj P j

u ¼ 1 tnu , where jP j is the number of projects

teu;v The service time of the vth job of the uth project
tsu;v The starting time of the vth job of the uth project
ltsu;v The latest starting time of the vth job of the uth project
tfu;v The finish time of the vth job of the uth project
Eu;v ¼ fqiu;v j1r irNg The resource requirement of the vth job of the uth project where qiu;v is the number of type-i resource
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and priority. Hence, it is up to the SaaS administrator to select an
appropriate scheduling policy.

4.2. Non-preemptive job/project scheduling

In this scheduling policy, job finish time tfu;v and project
departure time tdu are determined when projects arrive to the
system. New jobs can be backfilled only if they do not delay any
existing reservation. For this policy, we have designed Two-tier
Strict Backfilling (2TSB) algorithm whose pseudo-code is listed in
Figure 2. 2TSB is an algorithm similar to first-fit conservative
backfilling since submitted jobs are scheduled at the earliest
possible starting time. When project pu and its jobs Ju arrive to
the system, they are scheduled as follows. For each job ju;v of pu, if
it is feasible to allocate enough resources for ju;v and the proces-
sing of ju;v does not delay any existing reservation, ju;v will be
backfilled to start immediately (line 4). Otherwise, the earliest
possible starting time of ju;v is determined by the operation
earliestStartingTime (line 6). Since the algorithm does not allow
newly arrived jobs to delay existing reservations, tsu;v and ltsu;v are
the same (line 7). Finally, the job is granted a resource reservation
(line 8).

4.3. Non-preemptive project scheduling with preemptive job
scheduling

The design philosophy behind this policy is that we try to
accommodate newly submitted jobs by delaying the job finish time
of reserved ones without changing the departure time of the
waiting projects. Put it in another way, newly arrived jobs can delay

the starting time of any queued job if and only if the job is not the
last job of any waiting project (i.e. the job with the largest finish
time). Given slack factor SF¼0, the latest starting time ltsu;v of job
ju;v cannot exceed ðtdu�teu;vÞ. We devise Two-tier Flexible Back-
filling (2TFB) algorithm to implement this policy. Figure 3 shows the
pseudo-code of 2TFB algorithm, which are summarized as follows.
The steps listed on lines 2–4 are similar to those of 2TSB algorithm
because job ju;v can start immediately as long as there are sufficient
resources for job ju;v and no existing reservations are delayed over
their latest starting time. Otherwise, the set of all feasible backfilling
times, BT, is determined for job ju;v based on the current scheduling
plan by the operation feasibleBackfillingTimes (line 6). A feasible
backfilling time btABT is the starting time of a gap in the job
waiting queue at which qiu;vrai, 8 i : 1r irM, where ai is the
number of available type-i resources at the time slot bt. Then, we set
up a resource reservation for job ju;v (line 10) at a feasible backfilling
time btABT. After that, the operation shiftReservations (line 11)
checks the availability of system resources and may relax some
existing reservations if necessary. One should notice that if
there is more than one possible reservation which could be
delayed by the operation shiftReservations, the reservation with
the largest latest starting time is chosen. By this scheduling
policy, the number of allowable preempted projects PL is
obviously zero. If the operation shiftReservations fails and job
ju;v cannot be backfilled at bt, then the current scheduling plan
Sold is restored (line 13) and the next feasible backfilling time is
considered. Note that there is always at least one feasible
backfilling time at which the job can be backfilled successfully,
and that is the job's earliest possible starting time. After
finishing the scheduling of all the jobs ju;vA Ju and determining

Table 2
Summary of two-tier scheduling policies.

Algorithm Policy Objective Job Finish Time Project Departure Time

Two-tier Strict
Backfilling

Non-preemptive: job/project
scheduling

Minimize project turn-
around time

Determined at project arrival time Determined at project arrival time

Two-tier Flexible
Backfilling
(SF¼0)

Non-preemptive: project
scheduling Preemptive: job
scheduling

Minimize project turn-
around time

Flexible Determined at project arrival time

Two-tier Flexible
Backfilling
(SF40:0)

Preemptive: job/project scheduling
(Single type of projects)

Minimize project turn-
around time

Flexible Flexible

Two-tier Priority
Backfilling

Preemptive: job/project scheduling
(Two types of projects)

Minimize high-priority
project turn-around time

High-priority: Determined at project
arrival time Low-priority: Flexible

High-priority: Determined at project
arrival time Low-priority: Flexible

Fig. 2. Pseudo-code for Two-tier Strict Backfilling algorithm.
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the turn-around time tnu, 2TFB algorithm updates the latest
starting time ltsu;v for each job (lines 21–22).

4.4. Preemptive job/project scheduling

This scheduling policy allows both job finish time and project
departure time to be re-arranged after a project has been accepted
only if the resultant delay does not exceed the maximum amount
of delay defined by the slack factor. Furthermore, we extend the
policy into two versions: single type of projects, and two types of
projects. In the former, all projects have the same priority, which
means that new projects can delay any existing reservation up to
the maximum number of allowable times. On the other hand, the
latter po icy takes priority into account such that only some high-
priority projects can preempt the low-priority ones.

4.4.1. Single type of projects
The difference between this policy and 2TFB is slack factor SF40.

As a result, both waiting projects and jobs could be preempted by the
newly arrived ones. The maximum amount of allowable delay for
project pu is tnu � SF, and the starting time of job ju;v can be relaxed to
a value in the time range ½tsu;v; tduþtnu � SF�teu;v�. This, in compar-
ison with 2TFB, could increase the number of successfully backfilled
jobs. Two-tier Flexible Backfilling algorithm with the slack factor
SF40 (2TFB-SF) implements this scheduling policy. Besides, 2TFB-SF
uses parameter PL40 to control the number of preempted projects.

4.4.2. Two types of projects
This scheduling policy considers a realistic scenario of a cloud

environment where some projects are more important than the
others. Therefore, they need to be severed as soon as possible.
Here we just consider two types of projects, i.e., high-priority
project and low-priority project. We design this Two-tier Priority
Backfilling (2TPB) in order to fulfill the requirement such that
high-priority projects are scheduled by 2TFB-SF while low-priority
projects are scheduled by 2TSB. Moreover, the priority of a project,

0rpiur1, is taken into account in recalculating the slack factor,
SF¼ ð1�piuÞ � SF, for each project.

The steps of 2TPB algorithm are briefed in Figure 4. If the newly
arrived project pu is high-priority, it is scheduled by 2TFB-SF (line
4) with slack factor SF recomputed with pu (line 3). Otherwise, it is
scheduled by 2TSB (line 6). After that, we update the latest starting
time ltsu;v for each job ju;vA Ju with recomputed slack factor SF
(lines 8–10).

4.5. Implementation of two-tier backfilling

In order to implement the proposed scheduling algorithms, it is
important to organize the information of resource availability
and reservations in a data structure which can provide efficient
operations for searching, adding, deleting, and updating. In this
section, we introduce a data structure for advanced resource
reservation which is used to implement our proposed scheduling
algorithms.

The description of our proposed data structure is illustrated in
Figure 5 while Table 3 shows the implemented operations on the
data structure. The data structure is based on the linked-list data
structure (Xiong et al., 2005) because of its simplicity and
flexibility. Each node in the list is defined as a node(timeslot,
availability, reservation), where timeslot denotes a time moment at
which changes in reservations or resource availability occur,
availability denotes the number of available resources from the
node to the next node, and reservations is a linked list of resource
reservation records at timeslot. Each record is a 5-tuple informa-
tion consisting of project index u, job index v, job service time
teu;v, the latest starting time of job ju;v which is ltsu;v, and the res-
ource requirement Eu;v.

5. Performance evaluation

This section presents the experimental evaluation where the
effectiveness of proposed algorithms is verified. We first analyze
the time complexity of our proposed scheduling algorithms and
then present the simulation methodology, the experimental res-
ults and the analysis.

5.1. Complexity analysis

5.1.1. Algorithm 1: Two_Tier_StrictBackfilling (pu)
The Two-tier Strict Backfilling algorithm (2TSB) is based on the

key operation earliestStartingTime, which is basically a constrained
sorting algorithm traversing through resource reservation records
of N-type cloud resources. For each job ju;vApu, 2TSB has to
traverse through N-type resource reservation records with sorting
complexity bounded by OðN � log ðNÞÞ, so 2TSB has a time com-
plexity of Oðj J j � N � log ðNÞÞ per project, where j J j denotes the
mean number of jobs contained in a project.

Fig. 3. Pseudo-code for Two-tier Flexible Backfilling algorithm. Fig. 4. Pseudo-code for Two-tier Priority Backfilling algorithm.
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5.1.2. Algorithm 2: Two_Tier_FlexibleBackfilling (pu, SF, PL)
Here we use the same analytic method from Shmueli and

Feitelson (2003) to perform the time complexity analysis. For each
job ju;vApu, Two-tier Flexible algorithm (2TFB) first calls the
operation feasibleBackfillingTimes to go through all the jobs in the
waiting queue and find the set of all feasible backfilling times BT.
Then, 2TFB iterates through all the feasible backfilling times in BT
and selects the one that complies with relaxed backfilling and also
has the largest latest starting time. Apparently, 2TFB has a time
complexity of Oðj J j � N � log ðNÞ � jWQ j2Þ because the mean size
of BT is bounded by the mean length of the waiting queue which is
denoted by jWQ j .

It is difficult to derive a close-form solution or a good approx-
imation to jWQ j of our two-tier scheduling model because unlike
traditional queuing models, our model does not have a specific
number of servers. Nevertheless, if given that the averaged system
capacity is μ jobs per unit time, the averaged project arrival rate
leads to λ job arrivals per unit time and on average the system can
process m jobs in parallel, then we can use the well-known
M=M=m or M=G=m queuing model to find out an approximate
solution to jWQ j (Kleinrock, 1975).

5.1.3. Algorithm 3: Two_Tier_PriorityBackfilling(pu, SF, PL)
In this algorithm, if the newly arrived project pu is high-priority, it

is scheduled by 2TFB-SF while low-priority ones are scheduled by
2TSB. After that, the scheduler updates the latest starting time for
each job. Therefore, Two-tier Priority Backfilling (STPB) algorithm has
a time complexity of Oðj J j � N � log ðNÞ � jWQ j2Þ.

5.2. Simulation methodology

In order to evaluate the proposed scheduling algorithms, we
have developed a simulator for our scheduling problem. The
simulator is implemented based on CSIM 20 which is a simulation
package with a process-oriented discrete-event scheduling model.
CSIM 20 has been widely used to simulate complex systems in
academia as well as industry. The simulation time is set in unit of
seconds.

Table 4 summarizes our simulation parameters which are
randomly generated according to some well-known distributions.
One should notice that the values of two parameters, j Ju j and qiu;v,
are integer parts of the floating-point value generated by random
functions. In our experiments, the inter-arrival time ita between

Fig. 5. Data structure used for resource reservation.

Table 3
Data structure operations.

Operations Explanation

earliestStartingTimeðju;vÞ Search the earliest possible starting time for ju;v
feasibleBackfillingTimesðju;vÞ Find all the feasible backfilling times for ju;v
addReservationðju;vÞ Add a resource reservation for ju;v at tsu;v
deleteReservationðju;vÞ Delete the existing reservation of waiting job ju;v
shiftReservationsðju;v ; PLÞ Check the resource availability and delay some reservations to accommodate ju;v if necessary, given that the number of delayed projects

rPL

Table 4
Simulation parameters.

Object type Parameters Distribution Random function parameters

Project Inter-arrival time ðitaÞ Exponential ita can be adjusted
Project Number of jobs ðj Ju j Þ Normal j Ju j ¼ 5:0; σJu ¼ 2:0
Job Service time ðteu;vÞ Exponential teu;v ¼ 500:0
Job Resource requirement ðqiu;vÞ Exponential qiu;v ¼ 2:0
Resource Types of resources ðNÞ Constant 5
Resource Capacity of type-i resources ðMiÞ Uniform minMi

¼ 20:0; maxMi
¼ 40:0
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any two successive project arrivals is exponentially distributed
with an adjustable mean value in order to control project arrivals.
By doing so, we can observe the performance of the proposed
algorithms under different system loads. All the simulation results
shown here are obtained by averaging the results of five simula-
tion runs with different seeds for random number generation.
Each simulation run is terminated upon the successful completion
of 1000 projects. The overall performance of the proposed sche-
duling algorithms could be evaluated by two major metrics: mean
project turn-around time and average resource utilization. The
former is used to measure the performance from the customer's
point of view, while the latter is the most common system-centric
metric.

5.3. Result analysis

5.3.1. Job scheduling vs. project scheduling
In this experiment, we compare the performance of three

algorithms: Two-tier Strict Backfilling (2TSB), Two-tier Flexible
Backfilling with SF¼0 (2TFB), and Two-tier Flexible Backfilling
with SF40 (2TFB-SF). For 2TFB-SF, we use the parameters SF¼0.5
and PL¼1. 2TSB algorithm is used as the baseline for the
performance comparison purpose. In addition to the mean project
turn-around time PTA, the mean job turn-around time JTA, which
is defined as

JTA ¼ 1
jP j

Xj P j

u ¼ 1

1
j Ju j

Xj Ju j

v ¼ 1

ðtfu;v�tauÞ ð8Þ

is another performance metric to investigate.
As shown in Figure 6(a), it is not surprising that the mean job

turn-around time is reduced by 2TFB-SF algorithm because the
effectiveness of the concept of slack factor has already been
confirmed in several existing one-tier scheduling literatures
(Talby and Feitelson, 1999; Ward et al., 2002; Li et al., 2010).
Furthermore, the reduction in the mean job turn-around time
greatly depends on the system load. For example, for the case
where the mean project inter-arrival time is set to 10, the
performance difference between 2TSB and 2TFB-SF is about
4000 time units, which means a 7.5% improvement in the mean
job turn-around time. On the other hand, in the case of the mean
project inter-arrival time being set to 160, the difference is merely
700 time units but an improvement of 15.5%. Figure 6(a) also
demonstrates that 2TSB and 2TFB have almost identical perfor-
mance for all the values of the mean project inter-arrival time used
in this experiment. This can be explained by the fact that the
opportunities of carrying out the flexible backfilling mechanism
are rare in 2TFB because of SF¼0.

Figure 6(b) clearly indicates that the performance of 2TSB, 2TFB,
and 2TFB-SF in terms of the mean project turn-around time is
roughly the same. This observed phenomenon can be explained by
Figure 7 where 2TFB and 2TFB-SF can reduce neither the mean
project waiting time nor the mean project running time. Take 2TFB-
SF for example; on the average, the mean project waiting time is
decreased by from 5% to 33% when the mean project inter-arrival
time is changed from 10 to 160, but meanwhile, the mean project
running time is increased by from 0.7% to 7%. These results indicate
that 2TFB-SF can decrease the waiting time of the first job of a project
but lead to an increase in the waiting time of other remaining jobs of
the project. Overall, adopting 2TFB-SF does not lead to a significant
improvement on the mean project turn-around time.

In order to understand more about the relationship between two
metrics PTA and JTA, we conduct another experiment whose results
are shown in Figure 8. In this experiment, we measure and observe
the performance of 2TFB-SF while varying the SF parameter. The
experiment results show that using larger slack factors improves the
mean job turn-around time significantly. However, this causes a
modest increase in the mean project turn-around time. Based on our
observation, the decrease of JTA does not lead to the decrease of PTA.

To sum up, although 2TFB and 2TFB-SF can reduce the mean
job turn-around time notably in comparison with 2TSB, the
improvement on the mean project turn-around time is negligible.
One can suggest that 2TSB might be a good choice for two-tier
cloud scheduling since it achieves the same performance as 2TFB
and 2TFB-SF in terms of the mean project turn-around time, but its
complexity is comparatively light weight.

Figure 9 displays the results of five simulation runs of 2TSB,
2TFB, and 2TFB-SF experiments in terms of resource utilization
rate. To test the robustness of our proposed algorithms with
dynamic workload attributes, our simulation experiments gener-
ate resource requirements of the offered load randomly based on
exponential distributions, meaning that the workload's demand
on system resources is unevenly distributed. Hence, when some
types of system resources are highly utilized or overloaded, they
become the system bottleneck which stalls the job processing and
causes other types of system resources under-utilized. For exam-
ple, Resource Type 5 and Resource Type 3 are the bottleneck res-
ources in Run 1 and Run 2, respectively. Figure 10 plots the
simulation results in terms of average resource utilization rate.
For the mean project inter-arrival time equal to 160, the average
resource utilization rates of 2TSB, 2TFB, and 2TFB-SF fall at some
points around 74%. For the mean project inter-arrival time equal to
or above 80, the average resource utilization rates of 2TSB, 2TFB,
and 2TFB-SF remainwithin a fixed range between 81.9% and 83.9%.
In summary, all our policies contribute to a high system uti-
lization rate.

Fig. 6. Job scheduling vs. Project scheduling.
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5.3.2. The impact of priority scheduling
In order to test how well Two-tier Priority Backfilling algorithm

(2TPB) schedules high-priority projects, we devise the following two
scenarios for the experiments. In the first scenario, all the submitted
projects are scheduled by 2TSB. On the other hand, 2TPB is used to

schedule projects in the second scenario. High-priority projects are
given the priority value piu¼1.0, while the rest low-priority projects
are given piu¼0.0. In both of these two scenarios, the probability
that a submitted project is high-priority is 0.2. Since the performa-
nce of 2TPB can be influenced by slack-factor parameter SF and the

Fig. 7. Mean project waiting time vs. Mean project running time.

Fig. 8. The impact of slack factor SF on 2TFB-SF.

Fig. 9. Results of five simulation runs of 2TSB, 2TFB, and 2TFB-SF experiments in terms of resource utilization rate.
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preemption-limit parameter PL, we conduct the following two
experiments to observe the effect of these parameters.

In the first experiment, we study the performance of 2TPB with
PL¼1 by observing the mean project inter-arrival time ita and
slack factor SF. Figure 11 shows the improvement on the mean
turn-around time of all the high-priority and low-priority projects
in comparison with the 2TSB's performance. As expected, 2TPB
decreases the mean turn-around time of the high-priority projects
by from 6% to 27% but increases the turn-around time of others by
from 1% to 26% when the value of ðita; SFÞ is increased from
ð10;0:2Þ to ð160;1:0Þ. Surprisingly, the mean turn-around time of
all the projects remains almost unchanged except for the last case
where the value of ðita; SFÞ is ð160;1:0Þ. For the last case, the mean
turn-around time is increased by 16%.

Figure 12 presents the results of the second experiment in
which the performance of 2TPB with SF¼0.5 is measured at

different values of the mean project inter-arrival time ita and
preemption limit PL. The results are similar to those in the first
experiment. The mean turn-around time of all the projects stays
stable except for the case with the lowest project arrival rate. As
the value of ðita;PLÞ increases from ð10;1Þ to ð160;1Þ, the mean
turn-around time of the high-priority projects is reduced remark-
ably from 1.5% to 20%. On the other hand, this also leads to an
increase in the mean turn-around time of the low-priority projects
by around 0.01% to 10.7%. The above experimental results indicate
that 2TPB works well with priority scheduling where some pro-
jects are preferred over the others. Besides, 2TPB does not lead to a
general degradation in system service in most cases. Since two
system parameters SF and PL have a strong impact on the mean
turn-around time of both types of projects, the system behavior
can be controlled by adjusting these parameters.

6. Conclusion

In this work, we study a two-tier scheduling problem which is
present in the cloud computing environments. This scheduling
problem differs from the traditional one-tier scheduling problems
since a submitted project consists of multiple jobs each requiring
several resources for its processing. In order to reduce cloud
service's turn-around time and support priority scheduling, we
have developed a set of scheduling algorithms of different attri-
butes. All the algorithms are derived from conservative backfilling
algorithm, but enhanced with the concept of project's slack factor
which is calculated by multiplying project turn-around time with a
system parameter slack factor. Besides, another system parameter
preemption limit is also proposed to control the behavior of the
cloud scheduler.

The algorithms developed in this study have been experimen-
tally evaluated under different system loads by computer simula-
tion. The experimental results indicate that Two-tier Flexible
Backfilling with SF40 (2TFB-SF) can reduce the job turn-around
time by from 7.5% to 15.5% and achieve almost the same perfor-
mance in terms of the mean project turn-around time metric as
Two-tier Strict Backfilling (2TSB) when the mean project inter-
arrival time is changed from 10.0 to 160.0. Based on these results,
we also reach an interesting conclusion that the decrease in the
mean job turn-around time does not always lead to a decrease in
the mean project turn-around time.

The experimental results also indicate that Two-tier Priority
Backfilling (2TPB) can efficiently reduce the mean turn-around
time of high-priority projects, but does not lead to an increase in
the mean turn-around of all the projects in most cases. Further-
more, the behavior of the algorithm can be easily controlled by
tuning two system parameters: slack factor SF and preemption
limit PL, whose impact is analyzed in this work as well. More
specifically, the mean turn-around time of high-priority projects is
decreased by from 6% to 27% when the value of ðita; SFÞ is
increased from ð10;0:2Þ to ð160;1:0Þ. As the value of ðita;PLÞ is
relaxed from ð10;1Þ to ð160;1Þ, the mean turn-around time of
high-priority projects is reduced by from 1.5% to 20%.

Our proposed algorithms satisfy one fundamental requirement
of the two-tier scheduling problem that a project should be
granted a guaranteed departure time at the project's arrival time.
For future work, we plan to consider a less conservative backfilling
approach in which only the jobs belonging to the first project in
the waiting queue can receive resource reservations. Furthermore,
an optimal algorithm for the off-line version of the scheduling
problem, in which all projects' characteristics are known before-
hand, will be studied in our future work. Other scheduling obje-
ctives, i.e. project success ratio, cloud provider revenue, are cons-
idered as well.

Fig. 10. Average resource utilization rates as the simulation results of 2TSB, 2TFB,
and 2TFB-SF experiments.

Fig. 11. Improvement on the mean project turn-around time by 2TPB algorithm
with differential values of slack factor SF.

Fig. 12. Improvement of project turn-around time of 2TPB with differential limits
on the number of allowable delayed projects PL.
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