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Abstract

A storage-based anti-virus access gateway is not scalable because it stores the entire mail under processing. This work designs and
evaluates a stream-based mail proxy constructed from several open-source packages. This proxy processes mail in segments, and inter-
leaves MIME parsing, decoding, decompressing and virus scanning. It is seven times faster than the storage-based one on forwarding,
three times faster on virus scanning, and twice as faster on decompressing plus virus scanning. This proxy can keep nearly constant mem-
ory usage and work without disks, while the storage-based one requires memory and disk space proportional to the number of clients and
the mail size.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Anti-virus programs conventionally run on host com-
puters or servers, but not all users install one and update
the signatures in time. To protect all inside users from out-
side viruses, blocking viruses on the access gateway appears
to be a promising approach for centralized management
that can reduce the maintenance cost. Virus scanning on
the gateway can be storage-based or stream-based. The for-
mer receives and stores the entire content before virus scan-
ning, while the latter keeps only the part under processing
and sends it out immediately after processing. The former
is not scalable because it needs large disk space and the
latency is long. The demand for large disk space makes
impossible a diskless design that can be found in many
SOHO (Small Office, Home Office) devices. Moreover, disk
accessing is much slower than memory accessing, so the

performance of a storage-based system is degraded.
Although using a RAM disk can prevent disk accessing
from degrading the performance, the scalability problem
still exists because the demanded space may exceed the size
of physical memory.

Most commercial products are storage-based, such as
InterScan Messaging Security Suite from TrendMicro
(http://www.trendmicro.com) and the FortiGate series
from Fortinet (http://www.fortinet.com). Few products
to date as we know are claimed to be stream-based, e.g.,
the CSG series from CPSecure (http://www.cpsecure.com).
Storage-based anti-virus systems still dominate the market
perhaps because they can handle an infected file in versatile
ways, such as quarantine that stores an infected file so that
the user can retrieve it later. A stream-based system simply
drops the infected part of a file, so the file cannot be used
any longer. Besides, adding a new function to a storage-
based system is easier, e.g., supporting a new compression
format. Despite a few minor drawbacks, a stream-based
system is tantalizing for its high scalability.

Despite existing stream-based products, little informa-
tion about their mechanisms is revealed. For example, the
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CSG series of CPSecure overlaps the receiving, scanning
and outputting stages with pipelining, and assigns a thread
to handle the packet output (CPSecure, 2006). The ZyWall

UTM products of ZyXEL can scan individual packets with-
out packet reassembly (ZyXEL and Kaspersky, 2006).
However, many details of them are not clear, such as how
a compressed file is handled and scanned, and whether a
dedicated thread handles packet output from all connec-
tions or an individual thread for each connection.

Stream-based processing to increase performance has
existed for decades. An early work is the cut-through switch
(Kermani and Kleinrock, 1979) that can send out a portion
of a packet before it receives the entire packet. The segment-
based proxy cache mechanism (Wu et al., 2001) can cache
multimedia streams in variable-sized segments and reduce
the latency of playback. The compression proxy server in
(Chi et al., 1999) can select a compression mechanism for
distinct class of Web objects, such as the gif file and data
stream. Nonetheless, little research literature to date, if
not none, addresses the issues of stream-based virus scan-
ning by interleaving each step in the processing.

This work designs and evaluates a workable software
architecture of a stream-based mail proxy that can interleave
receiving, MIME parsing, decoding, decompressing, virus
scanning and sending of each segment during mail process-
ing. Although mail processing is not the sole application of
stream-based virus scanning, it can typify the flow of
stream-based operation. Unlike known commercial prod-
ucts that are black boxes, this design is completely based on
open-source packages, such as Net::SMTP::Server (http://
www.cpan.org) for SMTP protocol handler and a modified
version of POP3 protocol handler, ClamAV (http://
www.clamav.net) for virus scanning and Zlib (http://
www.zlib.net) plus Compress::Zlib (http://www.cpan.org)
for decompressing. The system is implemented as a single-
process concurrent proxy. The short interleaving processing
of each mail segment allows instant switching between clients
and makes possible single-process concurrency.

This paper discusses the design issues of the seamless
interleaving processing, illustrates the processing flow,
and evaluates the scalability and performance of the new
design by performing a series of external and internal
benchmarks. The proposed proxy is compared with a
popular storage-based open-source mail virus scanner,
AMaViS (http://www.amavis.org) in terms of throughput,
latency and space usage in memory and disk. The rest of
the paper is organized as follows. Section 2 discusses the
design issues. The system architecture and its implementa-
tion are presented in Section 3. The evaluation of both the
stream-based and the storage-based systems by external
and internal benchmarks is presented in Section 4. Section
5 concludes this work.

2. Design issues

It is essential that each step is also stream-based during
the processing in a stream-based mail proxy. The proxy

should store part of a mail in a memory buffer and com-
plete the entire processing in the buffer. Some arising design
issues are discussed below.

Concurrency strategy: A multi-process architecture is not
scalable to handle multiple connections. Although multi-
threading is a lightweight alternative, we choose a single-pro-
cess architecture with socket I/O multiplexing to handle con-
currency for two reasons. First, the Perl interpreter is
duplicated for each new thread in the current Perl distribu-
tion (Liz, 2003), and the duplication is as heavy as forking
a new process. Hence multi-threading does not benefit our
current implementation in Perl. Second, although the sin-
gle-process architecture could not take advantage of a
multi-processor system and could be more complicated to
maintain the code, it consumes the least memory space and
avoids the overheads of context switching and thread syn-
chronization. This architecture is feasible because of the
short processing time of mail segments instead of an entire
mail. The I/O operation is also made non-blocking. The
design is therefore highly scalable for numerous connections.

On-the-fly decompression: A storage-based system needs
to store a decompressed file that could be much larger than
the compressed one. A denial-of-service attack could send
a file that will be expanded over 100 times larger after
the decompression. A storage-based system thus often
bypasses or blocks a file larger than a specified size.

Stream-based decompression is feasible because lossless
data compression methods are often adaptive dictionary

algorithms, such as LZ77 (Ziv and Lempel, 1977) and
LZW (Welch, 1984). Each word is added into a dictionary
in its first appearance. When the same word reappears, the
encoder substitutes a short code for it. The file can be later
decompressed by indexing on this dictionary. This sequen-
tial compression/decompression mechanism makes possi-
ble decompressing portions of data in order. As long as
the dictionary is located in the beginning of the file, and
the proxy receives ordered segments, stream-based decom-
pression should be feasible. Table 1 summarizes the feasi-
bility for common compression formats. Among them,
the BWT algorithm (Burrows and Wheeler, 1994) has to
process data in blocks of 900 kB by default. The proxy
needs to queue the data until the entire block is received.
A self-extracting file embeds the decompression code in
the compressed file. The proxy needs to identify the code
and then decompresses the file with it.

Two cases need special treatment. A file can be com-
pressed more than once, i.e., recursively. A compressed
archive may contain multiple compressed files, e.g., the files
with the extension ‘‘.tar.gz’’ on Unix. On-the-fly decom-
pression needs to parse the decompressed content recur-
sively to check if another compressed file exists to handle
such recursive compression. In comparison, a storage-
based system can simply solve this problem by recursively
invoking an external decompression program. A common
exception that cannot be handled by both types of proxies
is an encrypted file. The proxy cannot deal with an
encrypted file without the keys.
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We modify the low-level decompression libraries in this
design for on-the-fly decompression. The low-level APIs
are called directly. For example, for the files with the
‘‘.gz’’ extension, the modified deflation function in Zlib is
called directly without executing the gzip (http://www.
gzip.org) program. The implementation is detailed in
Section 3.

Virus patterns across segment boundaries: A stream-
based system sequentially scans individual buffers in which
segments of file content are processed, but virus signatures
may exist across the segment boundaries. Two solutions
can address this problem. The system can keep the state
of the virus scanner, i.e., which signature has its prefix
matched with the tail of the last segment and the matched
portion. Another solution is a mechanism called cushioned

scanning (Miretskiy et al., 2004). A cushioned scan extends
the buffer and copies sufficiently large data from the tail of
the previous buffer to the head side. That is, data in the
cushion buffer is scanned twice. The size of a cushion buffer
should not be shorter than the longest pattern in the virus
database. A similar problem also occurs on decompression.
The decompression engine needs to keep the decompress-
ing status throughout the decompressing process.

3. System architecture and implementation

This system is designed to meet the following goals. (1)
Scalability: The demanded buffer space can be greatly
reduced to support a large number of connections by inter-
leaving file decompressing and virus scanning on segments
without storing the entire file. (2) Performance: The over-
heads in context switching and inter-process communica-
tion are eliminated due to the single-process architecture.
Besides, the stream-based processing all operates in mem-
ory without disk accessing. (3) Extensibility: The system
should be extensible for new network protocols by modu-
larization. Besides the SMTP and POP3, other mail ser-
vices, say IMAP, could be integrated as a new module in
the future. (4) Transparency: The system should transpar-
ently monitor every connection between the internal and
external networks.

3.1. System overview and processing flow

Fig. 1 illustrates the overview of our system. First, a dis-
patcher intercepts the packets from the user and redirects
them to the right protocol handler. For example, the dis-
patcher redirects packets with destination port 25 to the
SMTP daemon. The SMTP or POP3 handler communi-
cates with the user and the server simultaneously. The
two handlers differ in the direction of mail transmission.
The MIME parser decodes and analyzes the MIME encod-
ing in the mail attachments. The on-the-fly decompression
engine can decompress an attached file if it is compressed.
After the preprocessing, the system has a segment of partial
data from the attached file. If no virus is found, the mail
from the sender is forwarded to the receiver; otherwise,
the proxy will overwrite the infected part and its remaining
data of the attached file. Note that if the proxy breaks the
connection immediately, the server considers this situation
a failure and may keep trying to send the mail with viruses.

Table 1
Feasibility of stream-based decompression for common compression
formats

Format Algorithm File
extension

Stream-
based?

UNIX
compress

LZW .Z Yes

Gzip Deflate(LZ77 + Huffman) .gz or.tgz Yes
Zip Deflate .zip Yes
7zip LZMA .7z Yes
Rar LZSS .rar Yes
Bzip2 BWT .bz2 Yes (in

blocks)
Lha LZ78 + Huffman .lha or.lzh Yes
Self-extracting Depends on the format .exe Yes

User

Dispatcher

SMTP Server

SMTP proxy

(1)
(2)

(4)
SMTP handler

MIME parser and decoder

On-the-fly Decompression
Engine

Virus Scanner

Daemon_SMTP

(3)

(a) SMTP

User

Dispatcher

POP3 Server

POP3 proxy

(1)
(2)

(4)
POP3 handler

MIME parser and decoder

On-the-fly Decompression
Engine

Virus Scanner

Daemon_POP3

(3)

(b) POP3

Fig. 1. System overview of the stream-based architecture. The thin line represents the direction of protocol commands, and the bold line represents the
direction of mail transmission.
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Hence we choose to transparently overwrite the message
herein.

A MIME encoded mail consists of the mail header fol-
lowed by the mail body and the attachment(s), if not none.
Each mail body and each attachment are composed of a
MIME header and a MIME body encoded by the methods
defined in RFC 2045 (Freed and Borenstein, 1996), includ-
ing UUE, BASE64, quoted-printable, etc. The MIME
header contains the information of MIME body, such as
the encoding method, the data type and the file name of
the attachment. The processing flow of each component
is described below.

Processing the mail header: The mail header is the first
part in a mail. A header parser checks if the mail is MIME
encoded. If it is, the MIME parser is ready for parsing the
MIME encoding.

Processing the mail body: The mail body follows the
header. A body parser and a spam filter can be added to
check if the body is a spam. Since we only intend to scan
viruses, no such parser or filter is in this implementation.
The mail body is simply forwarded to the destination.

Processing the mail attachments: Fig. 2 shows the flow of
processing attachments in three possible ways according to
the file name from the MIME header. (a) The non-mali-
cious files identified by the file extension, such as ‘‘jpg’’
and ‘‘txt’’, are ignored since they could not contain viruses.
(b) The files identified as executable files, MS-Word docu-
ments and so on should be scanned for viruses. (c) If a file
is compressed, the proxy decompresses the file before scan-
ning. The file recognizer can analyze the decompressed
data to check if more compressed files are embedded. If
so, the proxy will decompress the data recursively. The
sizes of intermediate buffers for decoding and decompress-
ing are not proportional to the attachment size, but are
decided by the compression rate and the content being
decompressed. The decompressed data should be also
checked for viruses if necessary. When the virus scanner
finds a virus in the attachment, the proxy overwrites the
remaining data of the attachment with null characters
(including the segment with the virus), and thus the desti-
nation is unable to interpret the broken attachment.

Because the attached file cannot be successfully opened, it
will bring no harm to the destination. The proxy also sends
the user a message to notify the broken attachment.

3.2. System implementation

The system runs on a Linux system. It is implemented in
Perl due to Perl’s outstanding ability of string processing
and rich libraries in Perl modules. Fig. 3 presents the soft-
ware components in the system. Except Zlib and ClamAV

that are shared libraries written in C, the other components
are implemented as Perl modules. The arrows represent the
relationship between components. For example, the virus
scanner interface calls scanbuf() in the ClamAV shared
library to scan a buffer. All the components run within a
single process in the user space.

When the kernel receives the packets, netfilter redirects
the packets with destination port 25 (for SMTP) or port
110 (for POP3) to the proxy server, which then connects
to the target. A mail processor is created as a module object
at run time for each couple of source and target sockets.
The mail processor parses MIME, reads the buffer from
the source socket, scans the buffer, and writes the buffer

MIME parser
MIME header MIME body

MIME
decoder

decoded

Virus
scanner

decoded

Decompressing 
engine

Receive

decompressed

Virus
scanner

MIME
body
end?

MIME body

Send out

File
recognizer

Receive

Receive
MIME body

MIME
decoder MIME

body

Send out

MIME body

Send out

MIME
body
end?

MIME
body
end?

Mail
end?

No

No

No

Yes

Yes

Yes

No

Yes

jpg, txt, wav

exe, dll, doc.

(a) jpg, txt, wav…

(b) exe, dll, doc…

(c) tgz, zip…

tgz, zip (recursive)

Fig. 2. The flow of processing different mail attachments according to their types.

receive dispatcher
(netfilter)

redirect( )

Proxy server
(IO::Socket)

select( )

I/O multiplexing
while loop
(IO::Select)

SMTP/POP3
handler

(Net::SMTP)
smtp( )

MIME
parser( )

new( )

Mail processor
MIME parser

(Anomy)

BASE64 decoder
(MIME::Base64)

Decompressing
interface

(Compress::Zlib)

Virus scanner 
interface

(Mail::ClamAV)

send

write( )

Decompressing
engine
(Zlib)

Virus scanner
(ClamAV)

User space

Kernel space

gzread( )

scanbuf( )

Fig. 3. The software components in the system implementation. The bold
texts are module names, and the name in parentheses denotes the open-
source package used in that component. A shaded block stands for the
package that has been modified for our purposes.
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to the target socket. The MIME parser leverages the code
of an open-source mail sanitizer, Anomy (http://mail-
tools.anomy.net), because it can treat mail as data stream.
The mail processor is protocol independent. It can work
with the SMTP/POP handler or the handlers of other mail
services, say IMAP, in the future work. The packages of
Net::SMTP::Server, Compress::Zlib, Zlib and Anomy are
modified in this architecture. For I/O multiplexing,
Net::SMTP::Server is modified to process one line at a
time when a socket is selected. Compress::Zlib is a Perl
module to call the Zlib shared library. The original Zlib

will fail if it reads the end of data stream that is not the
end of file. We remove this limitation to make partial
decompression possible. A mail transport agent, say Post-
fix, is not part of the system because the system is only a
virus-scanning mail proxy and it does not need a full set
of SMTP functions. These components are well modular-
ized. When the involving packages have new versions, they
can be upgraded in this system as long as the arguments of
their functions are kept the same.

Fig. 4 presents the interface from MIME::Base64 to
Zlib. The current implementation supports only the files
compressed by Zlib, but it can be extended to support other
formats. The original Zlib opens a file with the gzopen

function, and then reads the file with the gzread function
for decompression until an EOF (end of file) symbol is
met. Compresses::Zlib drives the read operation of Zlib.
This system uses the pipe interface (Stevens and Rango,
2005) to pass decoded data from MIME::Base64 to Zlib.
The handlers on both sides, handler_in and handler_out
should be set to be non-blocking to allow interleaving pro-
cessing. The check of the EOF symbol is also eliminated.
This mechanism can be applicable to all compression
libraries originally designed to handle an entire file.

3.3. Single-process concurrency

This proxy runs as a single process and uses I/O multi-
plexing for concurrency. Because only one process handles
all clients in turn, the system should keep the state of every
client. Every time when a client is selected to be handled,
the system calls the corresponding function according to
the state of the client. Fig. 5 is the state-transition diagram
of a client. Except that the SMTP and quit_or_next states
are related to the SMTP protocol, the other states are

MIME parsing states. The states of bypass, scan and
decompress handle the attachment in three ways as
described in Section 3.1. The state of text/plain is used if
keyword filtering or anti-spam is part of the mail
processing.

The processing time in each state should be short to
minimize the latency. The SMTP protocol handler handles
one protocol message at a time in the SMTP state. The sys-
tem reads only 8 kB data each time when handling the
attachment. The I/O descriptors in mail processing are all
set to be non-blocking by setting the O_NONBLOCK flag
of the fcntl() function. The non-blocking operations allow
fast switching between clients within a single process at the
cost of higher complexity in programming. In comparison,
the latency in handling an entire mail in a storage-based
system forces multiple processes or multi-threading. Both
are heavy in Perl implementation.

4. Performance evaluation

4.1. Test bed

We compare the proposed stream-based mail proxy with
the storage-based AMaViS architecture. Each proxy runs
on a Linux (kernel ver. 2.6.10) PC with 1 GHz Pentium
III CPU, 512 MB SDRAM and a fast Ethernet card. Perl
5.8.5 runs both proxies since they are implemented in Perl.
ClamAV 0.83 is the virus scanning engine. Postfix serves as
the mail transport agent cooperating with AMaViS for its
full support of AMaViS.

For fairness, AMaViS is configured in the following
ways: (1) disabling the anti-spam function since the
stream-based proxy does not check spam, (2) running
ClamAV in the daemon mode which is faster than the com-
mand-line mode and (3) disabling the cache since AMaViS

bypasses the same mail processed within a configurable
period. Both proxies scan the same two mail types in the
benchmarks. The first is a mail with a 1 MB executable
attachment. The second is a mail with the compressed
one from the 1 MB attachment in the first mail (compres-
sion rate: 37%).

Pipe

gzopen()
decoded data

handler_in handler_out
kernel space

user space

gzread()
ZlibMIME::Base64

Compress::Zlib
call

Fig. 4. The interface from MIME::Base64 to Zlib through the pipe

interface.

scan bypass text/plain decompress

MIME header

first body

mail header

SMTP

quit_or_next

Without MIME

infectedattachment

data end

compressedattachment

Process next mail

Fig. 5. The states in mail processing for switching between the clients.
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4.2. The impact of different mail traffic on performance

We measure latency and throughput to compare the per-
formance of both proxies. The mail sender and the target
receiver run on the same computer to synchronize the time
logged on both the sender and the receiver. The latency is
defined to be the elapsed time from the start of sending
one mail to the end of receiving on the target. We observe
the latency without any proxy, with the stream-based
proxy and with the AMaViS architecture. Table 2 presents
the latency in the three conditions. The stream-based proxy
has significantly shorter latency than AMaViS in every test
condition. We have two more observations. (1) The cost in
mail forwarding is much lower in the stream-based proxy
than in AMaViS. The forwarding cost is heavy in AMaViS,
even heavier than virus scanning. (2) Even though compu-
tation in decompressing is involved for a compressed file,
AMaViS still has longer latency in handling an uncom-
pressed file than in handling a compressed file. This again
indicates the high cost in forwarding a long file. In compar-
ison, forwarding in the stream-based proxy is not a domi-
nant factor, but virus scanning is. A closer look at this
observation is presented with the internal benchmark in
Section 4.4.

The benefit of the stream-based proxy for ordinary mail
whose size is on the order of hundreds of bytes to a few kB
is also of concern. We prepared two sets of mail messages
for the observation. The first set contains pure text mes-
sages. The average message size is around 4 kB. The second
set is a mix of 80% of pure text messages (also around 4 kB
on average) and 20% of messages with attached executable
files (around 35 kB on average). These executable files will
be scanned for viruses.

The case for the first set is similar to the processing with
only forwarding and other mail processing in Table 2, but
we observed that the stream-based proxy is 11.24 times fas-
ter than AMaViS for the first set, rather than 7.29 times
faster in Table 2. The stream-based proxy is more beneficial
for pure text messages because storage-based AMaViS has
fundamental cost in disk operation and in inter-process
communications between the daemons of its architecture.
The cost is not proportionally reduced with the mail size.
For the second set, the stream-based proxy is 3.6 times fas-
ter. The value is only slightly higher than 3.48 in the
F + V + O case of Table 2. The reason is that virus scan-
ning is a time-consuming part of the processing, and the

time spent in virus scanning is similar in both the stream-
based proxy and AMaViS.

The throughput is defined as the total mail size divided
by the elapsed time. A stress test of a large number of iden-
tical mails are sent through both proxies to measure the
total elapsed time. Because BASE64 encoding expands
the file size by a factor of 4/3, we calculate the throughput
based on the original attachment size. The throughput of
the stream-based proxy on simple forwarding is 65.2 Mb/
s, very close to that of 69.93 Mbps without a proxy.
AMaViS achieves only 9.51 Mbps even though it disables
both anti-virus and anti-spam functions, meaning this stor-
age-based proxy itself is a bottleneck even on mail forward-
ing. Table 3 presents the throughput with virus scanning
and decompressing. Virus scanning degrades the through-
put of the stream-based proxy from 65.2 Mb/s on mail for-
warding to 21.79 Mb/s, meaning virus scanning is a
bottleneck. AMaViS achieves 6.9 Mb/s with virus scan-
ning, slightly dropped from 9.51 Mb/s on mail forwarding.
This result coincides with the observation on the latency
that mail forwarding is heavier than virus scanning in
AMaViS. The throughput for a compressed attachment is
measured in two values. The higher one, denoted by
appending ‘‘_effective’’, is the effective throughput calcu-
lated from the file size after decompression. Because it is
the decompressed file to be scanned, the effective through-
put represents the real throughput of virus scanning.

4.3. Buffer requirement

We monitor the disk and memory usage of the two prox-
ies with variable number of clients. Each client sends one
mail with a 300 kB attachment compressed from a 1 MB
file. Fig. 6 presents the space usage of both proxies. The
space usage of the AMaViS architecture is not scalable
because it grows much faster than that of the stream-based
one as the number of clients increases. It must be noted
that the memory usage is measured in its virtual size. The
usage could exceed the size of physical memory, up to
nearly 800 MB herein. The use of virtual memory cripples
the system further by slower disk accesses.

The space usage in the AMaViS architecture come from
runtime processes and mail storage. The space of the for-
mer is allocated for each process, so it is proportional to
the number of clients. The mail storage space is often pro-
portional to both the mail size and the number of clients. In
the AMaViS architecture, a Postfix daemon receives mail
from the client and passes it to AMaViS. Another Postfix

daemon receives mail from AMaViS and sends it out toTable 2
Latency of sending a mail with a 1 MB file and the compressed one from
the 1 MB attachment. (Notations—F: forwarding, D: decompressing, V:
virus scanning, O: other mail processing)

Latency (ms) No proxy AMaViS Stream-based

F + O (original) 102 1553 213
F + O (compressed) 75 780 105
F + V + O (original) N/A 1802 518
F + D + V + O (compressed) N/A 1267 527

Table 3
Throughput of the two proxies with virus scanning and decompressing

Average throughput (Mb/s) AMaViS Stream-based

Scan 6.90 21.79
Decompress 3.82 8.05
Decompress_effective 10.37 21.86

1522 Y.-D. Lin et al. / The Journal of Systems and Software 81 (2008) 1517–1524



Author's personal copy

the target. The number of AMaViS daemons is configura-
ble and is fixed at run time. The number of Postfix child
processes is the sum of the number of clients and the num-
ber of AMaViS daemons since the Postfix should commu-
nicate with both sides. Table 4 lists the names of all related
programs, as well as the size and the number of the pro-
cesses. Let m denotes the number of clients and n denotes
the number of AMaViS child processes. The total memory
usage is

ð4491þ 2859Þ � ðmþ nÞ þ 4259 � 2nþ 20430 � nþ 19000

þ 2759þ 7463:

The memory usage grows about 7350 kB per client in the
AMaViS architecture. This value is the total memory usage
by smtpd and cleanup.

Fig. 7 compares the space usage for different mail sizes.
We add another sample mail with a 1 MB attachment com-
pressed from a 5 MB file. The disk usage in storage-based
proxy is proportional to the mail size. The memory usage

in our proxy remains constant to the mail size because of
the streaming operation with interleaving decompressing
and virus scanning. The stream-based proxy consumes run-
time process space of 13.7 MB in memory when there is no
client. The memory usage increases only 176 kB per client
for the mail processor that contains the buffers and vari-
ables to record the mail states.

Table 5 analyzes the disk usage in the AMaViS architec-
ture. AMaViS saves a copy of each mail from Postfix in its
repository, then calls the external program to decompress
the files from the original archives, and scans these files
for viruses. Let msi denotes the size of i-th mail in Postfix
or AMaViS, and d(msi) is the size after decompression.
The disk usage in AMaViS and Postfix is

Pm
i¼1msiþPn

i¼1ðmsi þ 2dðmsiÞÞ.

4.4. Analysis of internal bottleneck

We use the Perl module Devel::Profile (http://www.cpan.
org) to record the processing time of each stage in the
AMaViS architecture and the stream-based proxy. This
test uses a mail with an attachment that is 1 MB large after
decompression. Table 6 presents the processing time of
each stage. The bottleneck in the stream-based proxy is
virus scanning, which occupies 67.89% of the execution
time. In comparison, the inter-process communications
between software components are the dominant factor in
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Fig. 6. The space usage of AMaViS and the stream-based proxy.
AMaViS_mem and AMaViS_disk denote the memory usage and disk
usage of the AMaViS architecture, and AMaViS_total is the sum of both.
Stream_mem denotes the memory usage of the stream-based proxy, which
is diskless in operation, so no disk usage is there.

Table 4
Programs related to AMaViS and Postfix, where m denotes the number of
clients and n denotes the number of AMaViS child processes

Program Description Size
(kB)

Number

smtpd Postfix SMTP server child process 4491 m + n

Cleanup Process the queue received by
smtpd

2859 m + n

SMTP Postfix SMTP sender 4259 2n

AMaViS child AMaViS child process 20,430 n

AMaViS
master

AMaViS listening on port 10,025 19,000 1

Postfix master Postfix listening on port 25 and
10,026

2759 1

Clamd ClamAV daemon 7463 1
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Fig. 7. The space usage of a mail with a 300 kB attachment compressed
from a 1 MB file and a mail with a 1 MB attachment compressed from a
5 MB file. AMaViS_disk denotes the disk usage in the AMaViS

architecture.

Table 5
Disk usage in AMaViS and Postfix, where m denotes the number of clients
and n denotes the number of AMaViS child processes

Program Description Size

Postfix Store all mails on the disk
Pm

i¼1msi

AMaViS Save the mail being processed
Pn

i¼1msi

Decompress the file
Pn

i¼1dðmsiÞ
Copy the files from the archive

Pn
i¼1dðmsiÞ
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the AMaViS architecture. This also explains why the for-
warding alone takes much time. Virus scanning is not the
primary bottleneck as in the storage-based mail proxy.

5. Conclusion and future work

In this work, we design and evaluate a stream-based
mail proxy with interleaving decompression and virus scan-
ning. The file system access is eliminated and the buffer
space is saved. The single-process concurrency is made pos-
sible with the stream-based design. Compared with the
storage-based proxy, the stream-based proxy has the bene-
fits of higher performance, lower latency and economical
space usage. The external benchmark shows our proxy
has shorter latency and higher throughput in the test con-
ditions. When the proxy just forwards the mail to the tar-
get, the decreased percentage of the throughput is 6.7%
from 69.93 Mbps to 65.2 Mbps in our proxy while it is
86.4% from 69.93 Mbps to 9.51 Mbps in AMaViS. The
throughput of our proxy is 21.79 Mbps, higher than
6.9 Mbps in AMaViS for virus scanning, and it is
8.05 Mbps for decompressing plus scanning, higher than
3.82 Mbps in AMaViS. In the space usage, the stream-
based proxy grows 176 KB per client in memory while
the storage-based proxy grows 7350 KB per client. Besides,
the stream-based proxy uses no temporary files on disks,
while the disk usage of storage-based proxy is proportional
to both the number of clients and the mail size. This system
is feasible for an embedded system without a hard disk.

An internal profiling analyzes the bottleneck of both
systems. Mail forwarding is the main factor that dominates
the processing time in the storage-based proxy, but virus
scanning is the main bottleneck in the stream-based system.

For future work, we plan to implement the anti-spam
function on the system. Another improvement is imple-
menting the system in C rather than Perl. C is efficient
but it takes more effort due to its worse ability of string
processing.
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Table 6
Percentage of the processing time of each stage. The total processing time
for AMaViS is 1267 ms, while that for the stream-based proxy is 527 ms

Percentage
(%)

Scan Decompress Handle
MIME

Receive Send IPC

AMaViS 25.29 8.78 14.31 8.78 5.53 37.31
Stream-

based
67.89 10.78 15.52 3.45 2.36 0
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