
R E S E A R C H  F E A T U R E

0018-9162/06/$20.00 © 2006 IEEE58 Computer P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

as Astaro security gateways (www.astaro.com),
Fortinet’s FortiGate series (www.fortinet.com/products),
and L7 Networks’ firewalls (www.l7.com.tw/products.
scan.eng.php) claim to integrate various functions such
as intrusion detection and protection, spam blocking,
and Web filtering. However, these products are black
boxes with no way to study their inner workings.

To address this issue, we integrated five popular open
source content security packages: 

• Snort (www.snort.org) is a network intrusion detec-
tion and prevention system that captures packets on
the network and analyzes their content for the sig-
natures of various attacks and probes. The system
can block as well as detect and log malicious traffic.

• ClamAV (www.clamav.net) is an antivirus toolkit that
includes a virus scanner daemon and command, a
library for developing virus scanners, and an up-to-
date virus database. 

• SpamAssassin (http://spamassassin.apache.org) uses
various tests to identify spam signatures. Written in
Perl, it works with numerous mail servers such as
Sendmail and Postfix.

• AMaViS (www.ijs.si/software/amavisd) is a program
written in Perl that provides an interface between the
mail transfer agent (MTA) and content checkers such
as ClamAV and SpamAssassin.

Installing multiple network security products to detect and block viruses, spam, and other

intrusions introduces substantial overhead in interprocess communications and

kernel/user space interactions.Tightly integrating these functions in a single gateway can

streamline the packet flows and dramatically increase Web and mail traffic throughput.
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M ost network content security systems that
detect and block viruses, worms, Trojan
horses, spam, and other intrusions are
designed to operate independently or re-
direct traffic from cooperating devices.

Increasing computer processing power has made it eco-
nomically feasible to integrate multiple functions into 
a single gateway, but the industry remains divided over
whether that is preferable to an all-in-one solution. 
Separate devices can be matched to specific functions
and are more scalable and reliable; on the other hand,
managing numerous heterogeneous systems can be
costly in terms of both time and money.1

Researchers in this area have primarily focused on
enhancing performance. For example, network security
systems can be distributed for scalability—for example,
by “slicing” traffic into manageable sizes.2 In addition,
packet content processing can be expedited. For example,
various algorithms are designed to speed up packet clas-
sification,3 while proposed signature-matching algorithms
accelerate content inspection in both software and hard-
ware.4,5 Other work has examined architectural aspects
such as software frameworks for more resilient firewall
protection,6 TCP splicing to hasten packet forwarding in
an application proxy,7 and multithreading capability.8

Little research, however, has examined integrated con-
tent security architectures.9 Commercial offerings such
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• DansGuardian (http://
dansguardian.org) is a Web con-
tent filter that analyzes Web
pages using phrase matching,
URL filtering, and other tech-
niques. It is mandated to work
with a proxy such as Squid.

Using a set of external and internal
benchmarks, we compared packet-
flow performance during content
inspection using a loosely integrated
arrangement with a tightly integrated
content security gateway. 

Our research indicated that this
new architecture substantially re-
duces overhead in interprocess com-
munications and kernel/user space
interactions. The study also revealed
that the main bottlenecks of content
processing are string matching in
Web filtering and RAM disk access
in mail processing.  

LOOSELY INTEGRATED ARCHITECTURE
Figure 1 shows the components and packet flows of a

loosely integrated architecture, in which the five content
security packages are simply installed. This approach
introduces overhead, in the form of interprocess com-
munications and duplicate kernel/user space interac-
tions, that consumes system resources and reduces
performance. 

Components
Snort captures packets from the packet-filtering inter-

face libpcap (http://sourceforge.net/projects/libpcap),
executes a series of preprocessing steps such as packet
reassembly and normalization, and sends these packets
to the detection engine for signature matching. Snort
generates alerts and can block and log any intrusion.

After receiving a message from the MTA, AMaViS
invokes the Multipurpose Internet Mail Extensions
(MIME) handler to decode the mail and determine
whether it contains any attached files. AMaViS recog-
nizes the file types and decompresses them if necessary.
It then sends the decoded text to SpamAssassin and
ClamAV. SpamAssassin analyzes the message for spam
by matching it against a list of signatures, while
ClamAV scans for viruses in the attached files. Based
on the results reported back, AMaViS decides whether
to block the mail. 

DansGuardian receives a request from the client and
then matches the requested URL or IP address against its
blacklist or whitelist. If the request is permitted,
DansGuardian passes it to Squid; otherwise, it blocks
the request. DansGuardian also analyzes the responses

to decide whether to block the content according to 
its configuration.

Packet flows
When intrusion protection and Web-filtering functions

are activated, HTTP traffic flow is as follows:

1. Snort captures packets from libpcap.
2. DansGuardian receives the request through the

TCP/IP protocol stack at port 80.
3. DansGuardian checks whether the request is per-

mitted.
4. If permitted, DansGuardian passes the request to

Squid, which then connects to the Web server.

This process involves three user/kernel interactions (steps
1, 2, and 4) and one interprocess communication (step 4). 

SMTP traffic flow is as follows:

1. Snort captures packets from libpcap.
2. The MTA receives the mail through the TCP/IP pro-

tocol stack at port 25.
3. The MTA forwards the mail to AMaViS, which

keeps the mail in the RAM disk.
4. AMaViS calls SpamAssassin to check the mail.
5. AMaViS sends the attached files to ClamAV for virus

scanning.
6. AMaViS forwards the mail back to the MTA.
7. The MTA relays the mail to the next MTA.

This process involves four user/kernel interactions 
(steps 1,  2, 3, and 6), two interprocess communications
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Figure 1. Components and packet flows of a loosely integrated content security 
architecture.
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(steps 3 and 6), one process invocation (step 5), and one
RAM disk access (step 3). 

Overhead
The loosely integrated architecture incurs three types

of overhead. First, interprocess communications
between cooperating packages require additional
packet copying between the kernel and user spaces.
Second, AMaViS and DansGuardian fork processes to
serve multiple clients concurrently; context switching
between these processes is expensive. Third, Snort cap-
tures packets from libpcap, but the other packages
acquire them through the TCP/IP protocol stack—the
system must copy packets from the kernel space to the
user space and reassemble them individually in both
packet flows.  

TIGHTLY INTEGRATED ARCHITECTURE
To address these problems, we propose a more tightly

integrated architecture, shown in Figure 2, that mini-
mizes interprocess communications and eliminates
duplicate kernel/user space interactions. To avoid
process forking, the new gateway uses a combination of
multithreading and I/O multiplexing. In addition, Snort
functions as a shared library that derives content to be
detected from the other packages.

Snort as shared library
To avoid redundant packet reassembly and packet

copying, Snort source files are compiled with the option
–fPIC for dynamic linking and made into a shared
library with the command ld–share. An application

program, say a proxy program, that
needs intrusion detection and pro-
tection calls fpInitDetection
Engine to initialize the detection
engine, and CreateDefaultRule
to include default rules. The pro-
gram fills the Packet structure with
reassembled packet content from the
TCP/IP protocol stack port 25 
or from the raw socket and calls
fpEvalPacket to analyze Packet.
Snort returns detection results to the
caller, which can block and log any
intrusion.

The new architecture can be
extended to detect and prevent 
nonapplication attacks by running 
a packet-capturing program that
passes nonapplication packets, such
as Internet Control Message Proto-
col packets or SYN (synchronize) seg-
ments, to the shared library. This
program can refer to the related
Snort rules, such as those for distrib-

uted denial of service, to do preliminary filtering to min-
imize packets passed to the shared library.

Stand-alone AMaViS
To handle SMTP traffic, we modified AMaViS to serve

as a stand-alone mail proxy that can receive mail from
port 25 (it is not intended to replace a typical mail
server’s full functionality). We also upgraded AMaViS
from a multiprocess proxy to a multithreaded one to be
more scalable. We use multithreading instead of the
select system call because the latter processes each
incoming mail sequentially, which degrades concurrency. 

Two important modifications make AMaViS a multi-
threaded stand-alone server without MTA support.
First, we replaced the Net::Server::PreFork
Simple module, which forks a new process to handle
each incoming connection, with the Net::Server:
:Thread module, which implements a multithreaded
server. Second, we changed the mail_via_smtp_
single subroutine to relay checked mail directly to the
next mail server rather than to the MTA.

ClamAV operates in the daemon mode to save the
loading time of itself and its signatures during each invo-
cation. AMaViS communicates with the ClamAV dae-
mon via the socket interface. SpamAssassin is still a
PERL library residing in the memory. AMaViS also calls
the Snort shared library to detect possible intrusions. 

Webfd
To accelerate Web request processing time, we

replaced DansGuardian with our own Web proxy,
Webfd. Unlike DansGuardian, which forks processes to
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Figure 2.Tightly integrated content security architecture with new packet flows.The
gateway uses a combination of multithreading and I/O multiplexing.



serve new clients, Webfd uses the select system call
to serve multiple clients concurrently. 

DansGuardian’s content-filtering component is com-
piled as a library that Webfd calls. The function
inBannedRegExpURL checks whether the requested
URL contains specified keywords in regular expressions,
while BannedURLList and inBannedSiteList
check whether the URL and site are permitted, respec-
tively. Webfd calls these functions sequentially when
processing the request. Webfd also calls the checkme
function to determine whether the statistical score of the
specified keywords exceeds the
threshold and, if so, blocks the
response.

Caching Web pages implies large
disk storage. Many security devices
are diskless, making caching infeasi-
ble. Our proposed architecture can
fit in a diskless device, which is 
typical of a small office/home office
gateway. Future work includes
implementing caching capability in
Webfd.

Packet flows
HTTP traffic flow in the tightly integrated gateway is

as follows:

1. Webfd receives the request at port 80 through the
TCP/IP protocol stack.

2. Webfd checks whether the URL of the request is per-
mitted.

3. Webfd calls the Snort library to check whether the
request contains intrusion signatures.

4. Webfd makes a connection to the Web server if the
request is permitted.

After integration, SMTP traffic flow is as follows:

1. AMaViS receives the mail at port 25 through the
TCP/IP protocol stack.

2. AMaViS calls the Snort library to check if the SMTP
message contains intrusion signatures.

3. AMaViS calls SpamAssassin to check mail.
4. AMaViS sends message to ClamAV to scan the

attached files.
5. AMaViS relays the mail to the next MTA.

Thus, the new architecture requires only two user/
kernel space interactions (step 2) for both types of traf-
fic and one interprocess communication (step 4) for
SMTP traffic. 

Integration cost
Our proposed architecture should be able to accom-

modate future revisions of the open source security

packages, which are updated frequently. The architec-
ture does not alter core functions such as fpInit
DetectionEngine in Snort; they can therefore be
extracted in the same way as in current versions as long
as function names and parameters remain the same. The
integration cost would only be high if the relevant func-
tions have dramatic revisions, such as modified para-
meters or new APIs, which are not common in practice.

BENCHMARK RESULTS
To quantitatively assess the tightly integrated archi-

tecture, we compared its packet-flow
performance during content inspec-
tion to that of the loosely integrated
architecture using a set of external
benchmarks. We also used several
internal benchmarks to determine
which security functions were most
impacting processing time. We per-
formed the tests on PCs with a 
1-GHz Pentium III CPU, 256 Mbytes
SDRAM, a 20-Gbyte hard disk, and
the operating system NetBSD 1.6.1. 

External benchmarks
For the HTTP benchmark, we used WebBench (www.

veritest.com/benchmarks/webbench/default.asp) to mea-
sure the maximum requests per second and maximum
throughput in megabits per second (Mbps). The setup
included an Apache 1.3.12 Web server on one side of
the gateway and eight PCs, each emulating 10 clients,
running WebBench on the other side. The system deter-
mined whether requested Web pages were permitted by
checking their text against a keyword database. The
benchmark revealed differences in performance between
the old and new architectures as well as the influence of
URL blocking, keyword filtering, and intrusion detec-
tion functions.

For the SMTP benchmark, we modified Postal (www.
coker.com.au/postal) to measure the maximum number
of messages per second as well as maximum through-
put in Mbps. We set up a mail server on one side of the
gateway, while Postal acted as the mail client on the
other side. We altered the original program, which only
generates mail messages of random data, to support
attaching files. The gateway determined whether each
message, which contained one line of text and a 1-Mbyte
file, was spam and whether the attached file contained
a virus. The benchmark also revealed the influence of
the antispam and antivirus functions.

HTTP test results. Web-filtering performance is pro-
portional to response content size. A Web page is typi-
cally 4 to 8 Kbytes and rarely exceeds 40 Kbytes. Our
test used both 5- and 40-Kbyte Web pages. Because
Webfd does not yet have cache capability, we turned off
Squid’s caching function for fairness.
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pages. The degradation by Snort in Webfd (0.48 Mbps)
is smaller than that in DansGuardian (0.86 Mbps).

SMTP test results. Figure 3b compares the maximum
throughput of the old and new architectures, with and

without the antispam and antivirus func-
tions enabled. When only the MTA relays
the mail, maximum throughput achieves 25
Mbps. Passing mail through both the MTA
and AMaViS significantly degrades perfor-
mance to 4.4 Mbps, even without enabling
the functions. Because AMaViS involves
complex processing such as decoding and
decompressing, its throughput is much
lower than that of a pure MTA. Never-
theless, AMaViS’s maximum throughput
doubles in every configuration of the new
architecture.

Internal benchmarks
To assess the Web-filtering functions’ 

relative impact on HTTP request and
response processing, we measured the
elapsed time of each code segment by
inserting timestamps from the system call
gettimeofday before and after the seg-
ment. The tool gprof records each func-
tion’s elapsed time and number of calls
during program execution. Chariot (www.
netiq.com/products/chr/default.asp) gen-
erates the traffic, and fragroute (http://
monkey.org/~dugsong/fragroute) breaks
the packets into fragments to force Snort

to reassemble them. For
SMTP processing, we took
timestamps from AMaViS’s
built-in logging system.

HTTP test results. Figure
4a shows each function’s
HTTP request processing
time percentage. Banned
RegExpURL checks whether
specified keywords in regu-
lar expressions are in the
request, and BannedURL
and BannedSite check
whether the URL or Web site
is in the banned list, respec-
tively. Although BannedReg
ExpURL’s keyword database
is much smaller than the
databases for BannedURL
and BannedSite, it con-
sumes more than 60 percent
of the processing time, com-
pared to 24 percent for the
other functions combined.

Figure 3a compares the maximum throughput of
DansGuardian and Webfd, with and without Snort.
Webfd with Snort improves performance by 83 percent
for 40-Kbyte pages and more than doubles it for 5-Kbyte
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Checking specified keywords in
the URL negligibly increased
precision; we suggest turning off
this function to accelerate re-
quest processing.

Figure 4b shows each func-
tion’s HTTP response process-
ing time percentage. Content
checks whether the statistical
score of specified keywords
appearing in the response ex-
ceeds the threshold, and MIME
Type and BannedExtension
check MIME and file exten-
sions, respectively. Content
consumes more than 90 percent
of the processing time, which is
consistent with earlier findings
in the literature on intrusion
detection systems that string
matching dominates the total
processing for Web-intensive
traffic.10

Figure 5 shows each Snort
component’s HTTP processing
time percentage. String match-
ing occupies the largest propor-
tion and even exceeds 45 per-
cent with 40- and 80-byte pack-
ets. Because the number of ses-
sions is fixed, however, the
relative proportions of session
finding and rule operation
decrease as packet length in-
creases. TCP reassembly is
smaller than anticipated and
not a bottleneck in the detection phase.

SMTP test results.Figure 6 compares the old and new
architectures in terms of the latency of each security
function during mail-traffic processing. These functions
include content decoding and file decompression
(AMaViS) and invocation of the external virus-scanning
engine (Avscan). 

The new architecture runs the scanning daemon in
memory instead of invoking an external program, sig-
nificantly reducing the time required to load signatures.
Moreover, making AMaViS a stand-alone proxy elimi-
nates the need for mail-server processes including mail
receive, Enqueue, and mail send. However, because
AMaViS must receive and send the mail itself, the SMTP
receive and SMTP forward processing time increase by
21 and 62 percent, respectively. These two functions
become the new bottlenecks.

Because the mail’s content size is much larger than the
request size, mail must be saved before further process-
ing. The remaining processing, decoding, decompres-

sion, virus-scanning, and spam-checking operations all
involve RAM disk accesses. SMTP processing through-
put is thus much lower than in HTTP processing.

T ightly integrating open source content security
packages substantially reduces overhead between
the software components and the kernel. Our tests

indicate that modifying the Web filter to use I/O multi-
plexing improves throughput by 83 percent and that sub-
stituting multithreading for multiple processes in
antivirus and antispam functions roughly doubles
throughput. 

In addition, we have determined that the main con-
tent-processing bottlenecks in a security gateway are
string matching in Web filtering and RAM disk access in
mail processing—in our tests, these occupied 48 and 62
percent of the processing time, respectively. These results
prompt research on ways to further increase processing
efficiency.
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Our architecture can be extended to proxies of other
traffic types. Some software components can also be
improved to be fully functional. For example, in the
future we plan on revising Webfd to support caching
capability and upgrading AMaViS to support on-the-fly
streaming operation in memory. ■

Acknowledgment
This work was supported in part by the Taiwan

National Science Council’s Program of Excellence in
Research, and in part by grants from Cisco and Intel.

References
1. K. Tolly and C. Bruno, “Measuring the Value of Integrated

Perimeter Security,” white paper, The Tolly Group, July 2004;
www.astaro.com/firewall_network_security/why_integrated_
security.

2. C. Kruegel et al., “Stateful Intrusion Detection for High-Speed
Networks,” Proc. 2002 IEEE Symp. Security and Privacy,
IEEE CS Press, 2002, pp. 285-293.

3. P. Gupta and N. McKeown, “Algorithms for Packet Classifi-
cation,” IEEE Network, vol. 15, no. 2, 2001, pp. 24-32.

4. M. Norton, “Optimizing Pattern Matching for Intrusion
Detection,” white paper, Sourcefire Inc., 2004; http://docs.
idsresearch.org/OptimizingPatternMatchingForIDS.pdf.

5. S. Dharmapurikar et al., “Deep Packet Inspection Using Par-
allel Bloom Filters,” IEEE Micro, vol. 24, no. 1, 2004, pp.
52-61.

6. R. Knobbe, A. Purtell, and S. Schwab, “Advanced Security
Proxies: An Architecture and Implementation for High-Per-
formance Network Firewalls,” Proc. 2000 DARPA Informa-
tion Survivability Conf. and Exposition, vol. 1, IEEE CS Press,
2000, pp. 140-148.

7. O. Spatscheck et al., “Optimizing TCP Forwarder Perfor-
mance,” IEEE/ACM Trans. Networking, vol. 8, no. 2, 2000,
pp. 146-157.

8. D.C. Schmidt, T. Harrison, and N. Pryce, “Thread-Specific
Storage for C/C++: An Object Behavioral Pattern for Access-
ing Per-Thread State Efficiently,” tech. report 97-34, Wash-
ington Univ., Sept. 1997; http://st-www.cs.uiuc.edu/users/
hanmer/PLoP-97/Proceedings/schmidt.tss.pdf.

9. Y-D. Lin, H-Y. Wei, and S-T. Yu, “Building an Integrated Secu-
rity Gateway: Mechanisms, Performance Evaluations, Imple-
mentations, and Research Issues,” IEEE Communications
Surveys and Tutorials, vol. 4, no. 1, 2002; www.comsoc.org/
livepubs/surveys/Public/2002/Dec/wei.html. 

10. S. Antonatos et al., “Performance Analysis of Content Match-
ing Intrusion Detection Systems,” Proc. 2004 Symp. Appli-
cations and the Internet, IEEE CS Press, 2004; www.ics.
forth.gr/carv/papers/2003.SAINT04.idsperf.pdf.

Ying-Dar Lin is a professor in Department of Computer
Science at National Chiao Tung University, Hsinchu, Tai-
wan. His research interests include design, analysis, imple-
mentation, and benchmarking of network protocols and
algorithms; wire-speed switching and routing; and embed-
ded hardware-software codesign. Lin received a PhD in
computer science from the University of California, Los
Angeles. He is a member of the IEEE and the ACM. Con-
tact him at ydlin@cis.nctu.edu.tw.

Chih-Wei Jan is an MS student in the Department of Com-
puter Science at National Chiao Tung University. His
research interests include network security, content net-
working, embedded system design, high-speed networking,
and performance evaluation. Jan received a BS in computer
science from National Chiao Tung University. Contact him
at cwjan@cis.nctu.edu.tw.

Po-Ching Lin is a PhD candidate in the Department of
Computer Science at National Chiao Tung University. His
research interests include network security, string-match-
ing algorithms, hardware-software codesign, content net-
working, and performance evaluation. Lin received an MS
in computer science from National Chiao Tung University.
Contact him at pclin@cis.nctu.edu.tw.

Yuan-Cheng Lai is an associate professor in the Depart-
ment of Information Management at National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan. His
research interests include high-speed networking, wireless
network and network performance evaluation, Internet
applicastions, and content networking. Lai received a PhD
degree in computer science from National Chiao Tung Uni-
versity. Contact him at laiyc@cs.ntust.edu.tw.


