
49In-Lab Replay Testing under Real Traffic with a Case Study on WLAN Routers

In-Lab Replay Testing under Real Traffic with a
Case Study on WLAN Routers

Ying-Dar Lin1, Ren-Hung Hwang2, Chun-Nan Lu1, Jui-Tsun Hung1

1Department of Computer Science, National Chiao Tung University, Taiwan
2Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan

ydlin@cs.nctu.edu.tw, rhhwang@cs.ccu.edu.tw, {cnlu, jhung}@cs.nctu.edu.tw

Abstract

Replaying artificial or real-world traffic is a method
used to test networking devices. Using real-world traffic
is desirable as it uncovers more realistic properties such
as traffic diversity and complicated user behaviors. In
this paper, we propose an in-lab replay testing (ILRT)
framework, composed of a monitor, a traffic replayer and
a library of real-world traffic traces, to replay captured
packet traces to test networking devices. To demonstrate
its effectiveness, a total of 28 WLAN routers were tested
to evaluate whether they could work stably for an extended
time. In our experiments, 53.57% and 100% of devices
under test (DUTs) were triggered critical (L1) failures and
tolerable (L2) failures, respectively. 21.43% and 100% of
DUTs were triggered more than one L1 and L2 failures,
respectively. Among high-spec DUTs, there was 25% of
DUTs which were triggered L1 failures. Furthermore,
among 458 test results, chance of pass, L1 failure, and
L2 failure is 2.84%, 7.86%, and 89.3%, respectively. The
results showed that even though these devices have passed
traditional lab tests, there is still a good chance for them to
fail under real-world traffic.

Keywords:	 Traffic capture, Traffic replay, Stability testing.

1	 Introduction

Testing is a method used to discover defects in the
development stage of a product, and aims at reducing the
number of after-sale failures found by customers [1]. Even
though they pass a series of tests during their development
processes, networking devices may still have customer
found defects (CFDs) when they are used under real-
world conditions. This could be explained by the fact
that laboratory testing often uses artificial traces or traces
containing simple activities which have less realistic
properties, and are less diverse and complex in terms of
applications and protocols [2]. For instance, applications
such as peer-to-peer (P2P), video streaming services, and
on-line games often have proprietary protocols or diverse
behaviors. The action of an exploit or a malware may be
partitioned into several stages to try to shield itself from
detection. All of these behaviors are hard to mimic under

artificial conditions. Because there are more unexpected
usages in real-world user behaviors, replaying real-world
traffic usually can trigger more product failures not found
by stimulating artificial traffic.

However, replaying real-world traffic is non-trivial.
A primary challenge in traffic replaying is that the activity
intended for the original host would likely not be accepted
by another without modification. For example, the activity
contained may include or depend on states specific to the
original host, such as its network address, transport layer
port number, etc. In such cases, a straightforward traffic
replay to a different host with a state that is incompatible
with that of the new host would likely fail. Therefore, the
state-dependent fields must be altered to correspond to the
different replay scenarios and participants for replay to
succeed.

In this work, we propose an in-lab replay testing (ILRT)
framework to test networking devices, and implement a
stateful traffic replayer, NATreplay, to test devices which
support Network Address Translation (NAT) mechanism.
ILRT consists of three different components, a monitor, a
traffic replayer and a library of captured traffic traces. The
monitor, called CheckDev, is a probing tool that regularly
sends ARP, ICMP and HTTP probes to the DUT and
monitors its responses. The traffic replayer is responsible
for parsing the traces, separating the traces into two groups
and sending the traffic to the DUT from different interfaces
of the replayer. The traffic replayer is dedicated to the DUT
and can be replaced for different test plans and criteria.
The library of packet traces are captured and updated from
hundreds of volunteers’ daily usage of all kinds of network
applications, which contains numerous categories and
activities.

We capture real-world network traffic generated by the
operations of hundreds of volunteers without interruption
and then use the captured traffic traces to test networking
devices. Each DUT is tested and monitored by a dedicated
replayer and CheckDev with the distance of one-hop
separately. Therefore, every time a failure occurs, we can
ensure that its happening is because the DUT fails. In this
manner, we can avoid the failures caused by connectivity.
Besides, a CheckDev can monitor multiple replayers at a
time and dynamically adjust replay throughput based on the
feedback of DUTs. When the test is completed, CheckDev

*Corresponding author: Chun-Nan Lu; E-mail: cnlu@cs.nctu.edu.tw
DOI: 10.6138/JIT.2017.18.2.20130924

JIT 18(2)-06 Lin.indd 49 2017/3/3 下午 12:02:53

ASUS
螢光標示

ASUS
螢光標示

ASUS
螢光標示

Journal of Internet Technology Volume 18 (2017) No.250

required the identification of application-dependent fields
which had to be modified for successful replay. Accuracy
was not guaranteed and new heuristics had to be developed
to handle new related fields. Newsome et al. [5] focused on
application layer and proposed a static analysis approach
that takes a binary program as input and outputs the set of
inputs that the program accepts. In addition to the fact that
it was not able to statistically determine the complete set of
inputs of a program in advance, this approach also suffered
from scalability issues. Therefore, this method was only
able to use the very simple protocol and small prototype
applications that they developed.

A number of projects developed tools or plug-ins to
solve the problem of traffic replay. For example, Tcpreplay
[6] intuitively replays traffic captured and stored in a
PCAP file format, based on the timestamps of each packet.
Because the purpose of Tcpreplay is to send the captured
traffic back to the test network, it can’t respond to services
running on a DUT. Therefore, Tcpreplay can’t be used to
test stateful networking devices because it doesn’t timely
update the states of connection during traffic replay.

SocketReplay [3] supports stateful replay in the
network and transport layers because many DUTs,
including NAT devices, proxies and security appliance, and
may modify TCP/IP headers. SocketReplay could update
the response states to prevent from replaying blocked
connections.

Some tools can maintain the states of the network and
transport layers for traffic replay. TCPOpera [7] uses four
heuristics to follow the TCP/IP stack. Monkey [8] replays
web application traffic by emulating the TCP stack to
reproduce network conditions. Monkey infers delays caused
by the client, the applications, the server, and the network
in each captured flow and replays each flow according to
them. Although [4, 5] support the states of the application
layer, they still failed on replaying traffic captured from a
large network.

In this work, we develop a stateful traffic replayer,
NATreplay, which supports stateful traffic replay for
NAT devices because it is able to identify and update the
mapping of the address translation between the old and the
new IP addresses. By timely updating related states during
replay process, the captured application activities can be
reproduced and the test configurations can be repeatedly
used to test products.

TCPreplay is a commonly used traffic replayer.
However, compared to our framework, TCPreplay has two
insufficiencies. First, TCPreplay simply replays the packets
of the captured traces in the order of the packet timestamps
at a pre-specified rate and can’t dynamically adjust replay
throughput based on the feedback of the DUT, which may

can sort out the reports based on the probe results during
replay. Compared to other traffic replayer which can only
be used to replay traffic, our framework is definitely the
better choice.

To demonst ra te the appropr ia teness and the
effectiveness of the ILRT framework, 28 WLAN routers
were used as the DUTs and were evaluated whether they
could work stably for an extended time. The triggered
failures were classified into two groups, critical failures
(L1) and tolerable failures (L2), based on the severity of
damage. For a networking device, it is unacceptable if
triggered failures disrupts its ability to access the Internet, a
failure which would be definitely be identified as a critical-
level failure; if the triggered failures only degrades the
performance or slows down the throughput but is still be
able to access the Internet, they would be identified as
tolerable failures.

This paper is organized as follows. In the next section,
some important related literature is surveyed. Section 3
describes terminologies and discusses related issues. Our
proposed algorithm is introduced in Section 4 and their
performance is evaluated in Session 5. Finally, conclusions
are given in Session 6.

2	 Related Works

2.1	 Traffic Capture
Testing a networking device with real-world traffic

requires the capture of traces in a controlled environment.
The quality of captured traces is a determining factor
of the accuracy and efficiency of tests performed on
products or experimental studies [3]. There is a beta site
testing environment at National Chiao Tung University
campus where the network traffic generated by volunteers
can be captured [1]. This environment, called Beta Site,
evaluates product performance with real-world traffic.
More than 800 students are invited as volunteers and their
daily traffic is captured in files in PCAP format. There are
usually hundreds of types of protocols and applications in
the traffic, including audio/video streaming, peer-to-peer
applications, mail protocols, etc. Beta Site provides a good
way to evaluate DUTs in an in-line live mode or an off-line
replay mode.

2.2	 Traffic Replay
There have been several studies which address the

problem of network traffic replay. Cui et al. [4] proposed a
heuristic-based mechanism to identify and update related
fields in an application session. They decoupled application
semantics, identified state-specific fields and updated them,
based on the semantics of each field type. The decoupling

JIT 18(2)-06 Lin.indd 50 2017/3/3 下午 12:02:53

51In-Lab Replay Testing under Real Traffi c with a Case Study on WLAN Routers

cause many subsequent packets being dropped. Secondly,
the connection states of the replayed traffi c by TCPreplay
does not necessarily conform to the TCP protocol (e.g.,
TCPreplay is unable to synchronize SYN-ACKs to create
valid TCP sessions), which is harmful to replay test.
Therefore, our framework has better fl exibility.

3 In-Lab Replay Issues

Successfully replaying an application activity may
require modifying parts of traffic contents specific to the
original host or scenario. However, blindly changing the
trace may result in an inconsistent activity, e.g., network
addresses and checksums on packets may be incorrect.
Therefore, how to identify which parts of fi elds to change,
what value to modify, and subsequently making the state
consistent in an automated fashion is not trivial and is
diffi cult.

3.1 Effectiveness of Replay
The replay accuracy affects the effectiveness of

testing a DUT and reproduction of potential events. To
effectively replay the traffic traces recognized as valid
traffi c by a DUT, the replay must follow the state machines
of applications/protocols and send out the corresponding
packets in the correct direction and order to the DUT.
Besides, the replay may consistently modify the outgoing
packets in response to fit the test scenario at that time.
Otherwise, the packets may be dropped or discarded by the
DUT, which makes the replay failed.

Each DUT is tested and monitored by a dedicated
replayer and CheckDev with the distance of one-hop
separately. Therefore, every time a failure occurs, we can
ensure that its happening is because the DUT fails. In this
manner, we can avoid the failures caused by connectivity.
Therefore, the number and topology of DUTs would not
infl uence the overall performance and effectiveness.

3.2 Effi ciency of Replay
The effi ciency affects the time spent during the traffi c

replay and the effort required in result analysis. The
effi ciency of replay relies on two things, one is the volume
of replayed traffic and the other is the time required to
reproduce an event. For event analysis and debugging, the
lower the volume of the traffi c traces required to reproduce
an event, the quicker the testers and the developers can
analyze and solve them. However, reducing the volume of
replayed traffi c might unintentionally drop critical events of
interest, so there are usually tradeoffs between the accuracy
and the effi ciency of traffi c replay.

4 In-Lab Replay Framework and
NATreplay

4.1 In-Lab Replay Framework
In this work, we propose a replay testing framework,

In-Lab Replay Testing, and a traffi c replayer, NATreplay, to
test network devices. ILRT consists of three different roles,
the monitor, the traffic replayer, the library of captured
traffic traces, and the DUT. Figure 1 illustrates the ILRT
framework.

The monitor, called CheckDev, is a probing tool that
regularly sends ARP, ICMP and HTTP probes to the DUT
to diagnose it during the test. ARP and ICMP probes test
the reachability of a networking device hosted on the
local network, and HTTP probes check if the device still
responds to users’ requests. Furthermore, CheckDev would
work together with the traffi c replayer to adjust the replay
throughput based on the response of the DUT.

Figure 1 In-Lab Replay Test Framework

The traffic replayer is dedicated to the DUT and can
be replaced to qualify the test plans and test requirement.
The dedicated traffic replayer is responsible for parsing
captured traffic traces, separating the traffic into two
groups, updating the states of packets, and sending them
to the DUT, The traffi c replayer should also log the related
statistics about the characteristics of replayed traffic and
the responses from the DUT to help later debugging and
analysis.

The library of real-world traffic traces stores the
traffi c traces captured from Beta Site [1]. The traffi c from
hundreds of volunteers’ daily usage is captured and contains
numerous application categories and transactions. The
traffi c traces are updated and profi led regularly, (1) to keep
up-to-date all kinds of application behaviors and, (2) to
double-check the responses and handling results of DUTs.

JIT 18(2)-06 Lin.indd 51 2017/3/3 下午 12:02:53

Journal of Internet Technology Volume 18 (2017) No.252

4.2 NATreplay
We developed a stateful traffic replayer, NATreplay,

to test NAT devices. NATreplay is a modification of
TCPreplay and designed to support NAT mechanism.
TCPreplay provides a variety of features for replaying
traffic both passive sniffer devices and in-line devices
such as routers, firewalls, and Intrusion Prevention
System (IPS). During the usage, the IP addresses can be
rewritten or randomized, MAC addresses can be rewritten,
transmission speeds can be adjusted, the truncated packets
can be repaired, and the packets can be selectively sent or
dropped. However, TCPreplay cannot maintain application-
dependent states, which limits its applications. In order
to be able to test NAT devices, NATreplay is designed to
maintain the mapping between the original and the new
network addresses during replay. Related fields, such as
networks addresses and payload checksums, need timely
updating during replay. Furthermore, the modified values
should be kept in subsequent packets during the same
replay process.

The mechanism of how NATreplay replay packets is
shown in Figure 2. At the beginning, a packet with (Lip, Lport,
Eip, Eport) as its source IP address, port number, destination
IP address, and port number, respectively, is sent from the
LAN interface of the replayer to the DUT. When the packet
passes through the DUT, its source IP and port number are
modified by the DUT. A mapping entry (Lip, Lport, Wip, Wport)
is created in a NAT table. Upon receiving the packet at the
WAN interface, the replayer at the WAN interface sends a
response packet (destination Wip, destination port: Wport) to
the DUT. Once the response packet reaches the DUT, the
DUT will look up the NAT table and check if a mapping
entry (Lip, Lport, Wip, Wport) exists to allow the packet to pass.
If yes, the packet will be forwarded to the LAN interface
after replacing its destination address (Wip, Wport) with (Lip,
Lport).

Figure 2 The Mechanism How NATreplay Works

5 Experiment Studies and Case Study

NBL [9] utilizes ILRT framework with real-world
traffi c to test many kinds of networking devices, including
WLAN routers, switches, and application layer proxies. In
the following, 28 retailed WLAN routers are used as the
DUTs and are evaluated whether they can stably work for
an extended time to demonstrate the correctness and the
effectiveness of the ILRT framework and NATreplay.

5.1 Trace Selection and Experimental Testbed
To conduct the experiments, we used the network

traffic captured from NCTU Beta Site [1]. During peak
hour traffic, the captured network traffic volume could
reach 60 GB in 30 minutes, and even during regular hours
around midnight, the traffic volume could still reach at
least 20 GB in 30 minutes. The total volume of the traffi c
captured ranges from 1.0 to 1.4 TB a day, and the common
application profi le of the traffi c is listed in Table 1. There
are always hundreds of applications detected and only
the applications with a volume ratio larger than 0.01%
are listed, including P2P applications, video streaming
applications, file transferring, on-line games, instance
messaging, web mails, and DNS queries. Lin et al. [1]
suggest that one month and one year of beta site testing are
minimum test durations for low-end and high-end products,
respectively. The usage of HTTP and video streaming
applications dominates the captured network traffic, and
among those applications detected, the top 10 mostly
belongs to Web and P2P applications. The 28 retailed
WLAN routers that were used as the DUTs were numbered
from 1 to 28.

5.2 Testbed Confi guration
Throughout our experiments the initial replay

throughput was set to 50 Mbps while NATreplay would
dynamically adjust the throughput according to the
responses of a DUT during the test. CheckDev was
confi gured with the information of MAC and IP addresses
of the DUT and NATreplay, the LAN and WAN subnets and
the timeout. The timeout is the maximal allowable interval
between the probe and the corresponding response from the
DUT. If CheckDev could not collect the responses from the
DUT in time, the issued probes would be judged to have
failed. The traffi c captured in PCAP fi les is separated into
two parts, called primary and secondary, and the network
addresses contained are bound to different interfaces of
NATreplay. In this way, the DUT can see the traffic that
a host in the primary side initiating to another host in the
secondary side, will go through it one way and the response
will go through it the other way.

Furthermore, multiple instances of Tcpdump [10] were

JIT 18(2)-06 Lin.indd 52 2017/3/3 下午 12:02:54

53In-Lab Replay Testing under Real Traffic with a Case Study on WLAN Routers

deployed between every two roles of ILRT framework
during traffic replay to monitor activities in the links. The
logs recorded by Tcpdump can be used to verify the status
of DUT and NATreplay to check if they work correctly.

5.3	 Profile of DUTs
The 28 retailed WLAN routers were used as the DUTs

and were evaluated whether they can stably work for an
extended time. Table 2 shows the profile of the 28 retailed
WLAN routers, including CPU types, RAM size, and Flash
RAM size. Over 70% of DUTs support gigabit link and
IEEE 802.11 b/g/n technology. For most DUTs, the sizes of
RAM and Flash are limited except the only one equipped
with large sizes of RAM and Flash.

Table 2 The Profile of 28 Retailed WLAN Routers

Counts CPU Types (MHz) RAM (MB) Flash (MB)
2 133 8 2
2 133 16 2
6 220, 266, 320 16 4
10 266, 384, 400 32 4
4 266, 400 32 8
1 470 64 8
1 384 64 16
1 400 64 32
1 480 128 32

The triggered failures were classified into two groups,
critical level (L1) and tolerable failures (L2), based on

the severity of damage. Table 3 shows the classification,
impact and possible errors of failures occurred on WLAN
routers. Because the connectivity of accessing the network
or Internet is the fundamental requirement of WLAN
routers, we separated the NAT functionality from other
functionalities. If the failures disrupted the connectivity
with the Internet, they would be identified as critical
failures, while if the failures just degraded the performance
or slow down the throughputs but still be able to access
the Internet, they were identified as tolerable failures.
Each occurred failure was double-checked by the logs of
NATreplay and CheckDev. The logs recorded the order,
the time, and the interface of packets that were sent and
received.

To assess the stability of DUTs, we developed the
metric stability score to differentiate the stability of device
by the equation, stability score = Vt / (1 + pL1 × nL1 + pL2 ×
nL2), where nL1, nL2 are the individual number of L1 and L2
failures occurred, pL1, pL2 are the relative weights of L1 and
L2 failures and Vt is the accumulated volume of replayed
traffic (GB). In this experiment, pL1 was set to 10 times pL2
to emphasize the importance of proper functioning [11].

In our experiments, we tried to apply the same number
of test rounds except hardware breakdown. However,
because the replayer would dynamically adjust the
throughput according to the response of the DUT, different
replayed traffic per test round and different accumulated
replayed traffic may be obtained.

Figure 3 shows the results of stability testing. The
horizontal axis shows individual DUTs, and the vertical axis
shows the corresponding stability score and replayed traffic

Table 1 The Application Profile of the Original Raw Traces

Name Ratio (%) Name Ratio (%) Name Ratio (%)
Http` 31.4 QVOD 0.95 VNC 0.06

PPStream 11.76 Skype 0.56 qingyule 0.06
FTP 10.33 HTTPS 0.48 KuGoo 0.06
TCP 9.84 Garena 0.43 Telnet 0.05

PPLive 9.44 SSH 0.3 Direct Play 7 0.05
RDP 4.61 RTSP 0.23 Gnutella 0.05

BitTorrent 3.78 tudou 0.21 Webmail 0.05
Funshion 3.69 Gmail 0.2 YouKu 0.04
Xunlei 3.52 iTunes 0.16 DNS 0.04
UDP 2.91 Fs2you 0.14 Dropbox 0.03

YouTuBe 1.9 RTP 0.13 Shoutcast 0.03
Flashcom 1.4 TeamViewer 0.12 Warcraft 0.02

MSN 1.35 Ku6speedup 0.12 SMB 0.02
QQTV 1.32 Steam 0.07 TTPlayer 0.01

eDonkey 0.96 FlashGet 0.06

JIT 18(2)-06 Lin.indd 53 2017/3/3 下午 12:02:54

Journal of Internet Technology Volume 18 (2017) No.254

volume. In order to be more easily to compare intuitively,
the unit of the replayed volume was set to 10 GB. Take
DUT1 as an example. DUT1 was tested with the amount
of 2051.7 GB traffi c, and the stability score was 2564.23.
From Figure 3, three interesting observations could be
found that (1) even though the DUTs passed laboratory
tests, there was still a good chance to fail the test, (2) the
stability score was not in proportional to the replayed
volume, and (3) even if the hardware spec of a DUT was
more powerful, the stability score was not necessarily high.

Figure 3 Stability testing results of 28 retailed WLAN routers

Figure 4 showed the relationship of the replayed traffi c
volume and the triggered failures. The horizontal axis
shows individual DUTs, and the vertical axis shows the
corresponding number of triggered failures. Take DUT21 as
an example. DUT21 was tested with the amount of 14.35 TB
traffic, and the number of L1 and L2 failures were 2 and
32, respectively. Among 458 test results, chance of pass,
L1 failure, and L2 failure, is 2.84%, 7.86%, and 89.3%,
respectively.

Figure 5 illustrated the relationship of the stability score
and triggered failures. The horizontal axis shows individual
DUTs, and the vertical axis shows the corresponding
stability score and the number of triggered failures. Take

DUT21 as an example. The stability score of DUT21 was
274.5, and the number of L1 and L2 failures were 2 and 32,
respectively. From Figure 5, it could be found that more
number of triggered failures caused lower stability score.

Figure 5 The Relationship of Stability Score and Triggered
Failures

From above figures, the quality of a DUT could be
easily differentiated from each other even though we had
no details of how the mechanism of packet processing was

Figure 4 The Relationship of Replayed Traffic and Triggered
Failures

Table 3 Triggered Failures Severity Classifi cation

Level Failure Impact Possible Errors

L1

Hanging DUT crashes or hangs Ran out of memory or memory leak
Reboot DUT shutdown and reboot again Ran out of memory or memory leak
NAT failure NAT functionality fails NAT maintenance fails
Connection failure TCP connections fail to build Ran out of memory or memory leak

L2

Resources exhausted
Fail to accept requests during replay but
recover while stopping replay

Ran out of memory or resources

Functionality failure
Other functionalities except connecting
fail

Functionality implementation error

Slowdown Throughput degradation Memory leak or too small memory size

JIT 18(2)-06 Lin.indd 54 2017/3/3 下午 12:02:55

55In-Lab Replay Testing under Real Traffi c with a Case Study on WLAN Routers

implemented. Among 28 retailed WLAN routers, 53.57%
and 100% of DUTs were triggered critical (L1) failures and
tolerable (L2) failures, respectively. 21.43% and 100% of
DUTs were triggered more than one L1 and L2 failures,
respectively. In these experiments, the most L2 failure
of a DUT is to not to respond to any request for a while
although the DUT was still alive to process incoming and
outgoing packets, which could be observed by Tcpdump.
Among high-spec DUTs, there was 25% of DUTs which
were triggered L1 failures. Therefore, it might be able
to conclude that although high-spec products are more
powerful, what really matters is the quality of the fi rmware.

In order to evaluate their performance, we used Spirent
SmartBits 600 and WebSuite v2.6 [12] to test the maximum
session rate of the 28 DUTs. A fixed number of requests
issued to establish TCP sessions per test round can be
configured to evaluate the performance of a DUT. Here,
the fi xed amount requested of TCP sessions/round was set
to 15,000 and the experiment for a DUT lasted for a whole
day.

The final results were averaged and are shown in
Figure 6. Two interesting observations were made: that (1)
for each test round, even the rate that a DUT could handle
was much lower than the fixed testing rate, but did not
crash or stop the DUT, and (2) the hardware specifi cation
was not closely linked to the results because some low-spec
DUTs outperformed some high-spec ones.

Figure 6 The Maximal Session Test Results Using SmartBits
600 and WebSuite v2.6

6 Conclusions

Testing networking devices before releasing them
onto the market is a way of ensuring their quality and
robustness. Replaying artificial or real-world traffic is a
method used to test networking devices. Using real-world
traffi c is desirable as it uncovers more realistic properties
such as traffi c diversity and complicated user behaviors.

In this work, we developed an In-Lab Replay Testing

(ILRT) framework, composed of a monitor, a dedicated
traffic replayer and a library of real-world traffic traces.
We also developed a stateful traffic replayer, NATreplay,
which was designed to test NAT devices while keeping
the original captured transaction scenarios. The monitor,
called CheckDev, is a probing tool that regularly sends
ARP, ICMP and HTTP probes and monitors the status of
the DUT. The dedicated traffi c replayer is responsible for
parsing the captured traffic traces, separating the traffic
into two sides and sending them to different interfaces of
the DUT. The traffic replayer can be replaced to qualify
the test requirement, and the library of real-world traffic
traces should contain numerous application categories and
transactions for comprehensive verifi cation.

28 retailed WLAN routers were used as the DUTs, and
were evaluated as to whether they were able to work stably
for an extended time, so as to demonstrate the correctness
and the effectiveness of the ILRT framework. The triggered
failures were classified into two groups, critical level
(L1) and tolerable level (L2) based on the severity of the
damage. If the failures disrupted the ability to access the
Internet, they would be identifi ed as critical failures, while
the triggered failures that only degraded performance but
were still able to access the Internet, were identified as
tolerable failures. By comparing the logs, observed DUT
status, and the triggered failures, the effectiveness of ILRT
framework can be ensured because IRLT framework is very
suitable to test networking devices.

In our experiments, 53.57% and 100% of DUTs were
triggered critical (L1) failures and tolerable (L2) failures,
respectively. 21.43% and 100% of DUTs were triggered
more than one L1 and L2 failures, respectively. Among
high-spec DUTs, there was 25% of DUTs which were
triggered L1 failures. Furthermore, among total 458 test
results, three types of results, namely pass, L1 failures,
L2 failures, were 2.84%, 7.86%, and 89.3%, respectively.
The results showed that (1) even though the DUTs have
passed traditional lab tests, there is still a good chance for
them to fail under real-world traffic, (2) although high-
spec products are more powerful, what really matters is the
quality of the fi rmware, (3) even though having no details
of the implementation of a DUT, ILRT could still be used
to evaluate the quality of a DUT and (4) in artificial test,
even the rate that a DUT could handle was much lower
than the fi xed testing rate, the DUT still didn’t crash or stop
working.

References

[1] Y.-D. Lin, I-W. Chen, P.-C. Lin, C.-S. Chen and C.-
H. Hsu, On Campus Beta Site: Architecture Designs,
Operational Experience, and Top Product Defects,

JIT 18(2)-06 Lin.indd 55 2017/3/3 下午 12:02:56

ASUS
螢光標示

Journal of Internet Technology Volume 18 (2017) No.256

IEEE Communications Magazine, Vol. 48, No. 12,
December, 2010.

[2] M. K. Daskalantonakis, A Practical View of Software
Management and Implementation Experiences
within Motorola, IEEE Transactions on Software
Engineering , Vol. 18, No. 11, pp. 998-1010,
November, 1992.

[3] Y.-D. Lin, P.-C. Lin, T.-H. Cheng, I-W. Chen
and Y.-C. Lai, Low-Storage Capture and Loss-
Recovery Selective Replay of Real Flows, IEEE
Communication Magazine, Vol. 50, No. 4, pp. 114-
121, April, 2012.

[4] W. Cui, V. Paxson, N. C. Weaver and R. H. Katz.,
Protocol-Independent Adaptive Replay of Application
Dialog, Proceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSS), San
Diego, CA, 2006, pp. XX-XX.

[5] J. Newsome, D. Brumley, J. Franklin and D. Song,
Replayer: Automatic Protocol Replay by Binary
Analysis, Proceedings of the 13th ACM Conference
on Computer and Communications Security ,
Alexandria, VA, 2006, pp. 311-321.

[6] Tcpreplay, Important: Tcpreplay development is now
being done by AppNeta, http://tcpreplay.synfi n.net

[7] S.-S. Hong and S. F. Wu, On Interactive Internet
Traffi c Replay, Proceedings of the 8th International
Conference on Recent Advances in Intrusion
Detection (RAID), Seattle, WA, 2005, pp. 247-264.

[8] Y.-C. Cheng, U. Holzle, N. Cardwell, S. Savage and
G. M. Voelker, Monkey See, Monkey Do: A Tool for
TCP Tracing and Replaying, Proceedings of the 2004
USENIX Annual Technical Conference, Boston, MA,
2004, pp. 87-98.

[9] Network Benchmarking Lab, http://www.nbl.org.tw.
[10] Tcpdump & Libpcap, http://www.tcpdump.org/
[11] NBL RealFlow Certifi cation Testing, http://web2010.

nbl.org.tw/en/services/real_fl ow_certi.php
[12] Spirent, Spirent TestCenter, http://www.spirent.com/

Products/Smartbits

Biographies

Ying-Dar Lin i s a Dis t inguished
Professor a t Nat ional Chiao Tung
University. He received his PhD from
UCLA in 1993. He is the director of
Network Benchmarking Lab, a certified
t e s t l ab o f t he Open Ne twork ing
Foundation (ONF). He is an IEEE Fellow,

IEEE Distinguished Lecturer and ONF Research Associate.

Ren-Hung Hwang received his PhD
from University of Massachusetts. He is
distinguished professor of the department
of Computer Science and Information
Engineer ing and the Dean o f the
Engineering College at National Chung
Cheng University, Taiwan. His research

interests include wireless networks, software defined
networking, and mobile edge computing.

Chun-Nan Lu received his PhD from
National Chiao Tung University in 2014.
His researches focus on network security
and traffi c measurement/analysis.

Jui-Tsun Hung received his PhD from
the State University of New York in
2003. His current research interests
include computer networks, computer
architecture, wireless communications,
and signal processing.

JIT 18(2)-06 Lin.indd 56 2017/3/3 下午 12:02:56

ASUS
螢光標示

ASUS
螢光標示

ASUS
螢光標示

ASUS
螢光標示

ASUS
螢光標示

ASUS
螢光標示

ASUS
螢光標示

