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Abstract 

Replaying artificial or real-world traffic is a method 
used to test networking devices. Using real-world traffic 
is desirable as it uncovers more realistic properties such 
as traffic diversity and complicated user behaviors. In 
this paper, we propose an in-lab replay testing (ILRT) 
framework, composed of a monitor, a traffic replayer and 
a library of real-world traffic traces, to replay captured 
packet traces to test networking devices. To demonstrate 
its effectiveness, a total of 28 WLAN routers were tested 
to evaluate whether they could work stably for an extended 
time. In our experiments, 53.57% and 100% of devices 
under test (DUTs) were triggered critical (L1) failures and 
tolerable (L2) failures, respectively. 21.43% and 100% of 
DUTs were triggered more than one L1 and L2 failures, 
respectively. Among high-spec DUTs, there was 25% of 
DUTs which were triggered L1 failures. Furthermore, 
among 458 test results, chance of pass, L1 failure, and 
L2 failure is 2.84%, 7.86%, and 89.3%, respectively. The 
results showed that even though these devices have passed 
traditional lab tests, there is still a good chance for them to 
fail under real-world traffic.

Keywords:	 Traffic capture, Traffic replay, Stability testing.

1	 Introduction

Testing is a method used to discover defects in the 
development stage of a product, and aims at reducing the 
number of after-sale failures found by customers [1]. Even 
though they pass a series of tests during their development 
processes, networking devices may still have customer 
found defects (CFDs) when they are used under real-
world conditions. This could be explained by the fact 
that laboratory testing often uses artificial traces or traces 
containing simple activities which have less realistic 
properties, and are less diverse and complex in terms of 
applications and protocols [2]. For instance, applications 
such as peer-to-peer (P2P), video streaming services, and 
on-line games often have proprietary protocols or diverse 
behaviors. The action of an exploit or a malware may be 
partitioned into several stages to try to shield itself from 
detection. All of these behaviors are hard to mimic under 

artificial conditions. Because there are more unexpected 
usages in real-world user behaviors, replaying real-world 
traffic usually can trigger more product failures not found 
by stimulating artificial traffic. 

However, replaying real-world traffic is non-trivial. 
A primary challenge in traffic replaying is that the activity 
intended for the original host would likely not be accepted 
by another without modification. For example, the activity 
contained may include or depend on states specific to the 
original host, such as its network address, transport layer 
port number, etc. In such cases, a straightforward traffic 
replay to a different host with a state that is incompatible 
with that of the new host would likely fail. Therefore, the 
state-dependent fields must be altered to correspond to the 
different replay scenarios and participants for replay to 
succeed. 

In this work, we propose an in-lab replay testing (ILRT) 
framework to test networking devices, and implement a 
stateful traffic replayer, NATreplay, to test devices which 
support Network Address Translation (NAT) mechanism. 
ILRT consists of three different components, a monitor, a 
traffic replayer and a library of captured traffic traces. The 
monitor, called CheckDev, is a probing tool that regularly 
sends ARP, ICMP and HTTP probes to the DUT and 
monitors its responses. The traffic replayer is responsible 
for parsing the traces, separating the traces into two groups 
and sending the traffic to the DUT from different interfaces 
of the replayer. The traffic replayer is dedicated to the DUT 
and can be replaced for different test plans and criteria. 
The library of packet traces are captured and updated from 
hundreds of volunteers’ daily usage of all kinds of network 
applications, which contains numerous categories and 
activities. 

We capture real-world network traffic generated by the 
operations of hundreds of volunteers without interruption 
and then use the captured traffic traces to test networking 
devices. Each DUT is tested and monitored by a dedicated 
replayer and CheckDev with the distance of one-hop 
separately. Therefore, every time a failure occurs, we can 
ensure that its happening is because the DUT fails. In this 
manner, we can avoid the failures caused by connectivity. 
Besides, a CheckDev can monitor multiple replayers at a 
time and dynamically adjust replay throughput based on the 
feedback of DUTs. When the test is completed, CheckDev 
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required the identification of application-dependent fields 
which had to be modified for successful replay. Accuracy 
was not guaranteed and new heuristics had to be developed 
to handle new related fields. Newsome et al. [5] focused on 
application layer and proposed a static analysis approach 
that takes a binary program as input and outputs the set of 
inputs that the program accepts. In addition to the fact that 
it was not able to statistically determine the complete set of 
inputs of a program in advance, this approach also suffered 
from scalability issues. Therefore, this method was only 
able to use the very simple protocol and small prototype 
applications that they developed. 

A number of projects developed tools or plug-ins to 
solve the problem of traffic replay. For example, Tcpreplay 
[6] intuitively replays traffic captured and stored in a 
PCAP file format, based on the timestamps of each packet. 
Because the purpose of Tcpreplay is to send the captured 
traffic back to the test network, it can’t respond to services 
running on a DUT. Therefore, Tcpreplay can’t be used to 
test stateful networking devices because it doesn’t timely 
update the states of connection during traffic replay.

SocketReplay [3] supports stateful replay in the 
network and transport layers because many DUTs, 
including NAT devices, proxies and security appliance, and 
may modify TCP/IP headers. SocketReplay could update 
the response states to prevent from replaying blocked 
connections.

Some tools can maintain the states of the network and 
transport layers for traffic replay. TCPOpera [7] uses four 
heuristics to follow the TCP/IP stack. Monkey [8] replays 
web application traffic by emulating the TCP stack to 
reproduce network conditions. Monkey infers delays caused 
by the client, the applications, the server, and the network 
in each captured flow and replays each flow according to 
them. Although [4, 5] support the states of the application 
layer, they still failed on replaying traffic captured from a 
large network. 

In this work, we develop a stateful traffic replayer, 
NATreplay, which supports stateful traffic replay for 
NAT devices because it is able to identify and update the 
mapping of the address translation between the old and the 
new IP addresses. By timely updating related states during 
replay process, the captured application activities can be 
reproduced and the test configurations can be repeatedly 
used to test products. 

TCPreplay is a commonly used traffic replayer. 
However, compared to our framework, TCPreplay has two 
insufficiencies. First, TCPreplay simply replays the packets 
of the captured traces in the order of the packet timestamps 
at a pre-specified rate and can’t dynamically adjust replay 
throughput based on the feedback of the DUT, which may 

can sort out the reports based on the probe results during 
replay. Compared to other traffic replayer which can only 
be used to replay traffic, our framework is definitely the 
better choice.

To demonst ra te  the  appropr ia teness  and  the 
effectiveness of the ILRT framework, 28 WLAN routers 
were used as the DUTs and were evaluated whether they 
could work stably for an extended time. The triggered 
failures were classified into two groups, critical failures 
(L1) and tolerable failures (L2), based on the severity of 
damage. For a networking device, it is unacceptable if 
triggered failures disrupts its ability to access the Internet, a 
failure which would be definitely be identified as a critical-
level failure; if the triggered failures only degrades the 
performance or slows down the throughput but is still be 
able to access the Internet, they would be identified as 
tolerable failures. 

This paper is organized as follows. In the next section, 
some important related literature is surveyed. Section 3 
describes terminologies and discusses related issues. Our 
proposed algorithm is introduced in Section 4 and their 
performance is evaluated in Session 5. Finally, conclusions 
are given in Session 6.

2	 Related Works

2.1	 Traffic Capture
Testing a networking device with real-world traffic 

requires the capture of traces in a controlled environment. 
The quality of captured traces is a determining factor 
of the accuracy and efficiency of tests performed on 
products or experimental studies [3]. There is a beta site 
testing environment at National Chiao Tung University 
campus where the network traffic generated by volunteers 
can be captured [1]. This environment, called Beta Site, 
evaluates product performance with real-world traffic. 
More than 800 students are invited as volunteers and their 
daily traffic is captured in files in PCAP format. There are 
usually hundreds of types of protocols and applications in 
the traffic, including audio/video streaming, peer-to-peer 
applications, mail protocols, etc. Beta Site provides a good 
way to evaluate DUTs in an in-line live mode or an off-line 
replay mode. 

2.2	 Traffic Replay
There have been several studies which address the 

problem of network traffic replay. Cui et al. [4] proposed a 
heuristic-based mechanism to identify and update related 
fields in an application session. They decoupled application 
semantics, identified state-specific fields and updated them, 
based on the semantics of each field type. The decoupling 
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cause many subsequent packets being dropped. Secondly, 
the connection states of the replayed traffi c by TCPreplay 
does not necessarily conform to the TCP protocol (e.g., 
TCPreplay is unable to synchronize SYN-ACKs to create 
valid TCP sessions), which is harmful to replay test. 
Therefore, our framework has better fl exibility.

3 In-Lab Replay Issues

Successfully replaying an application activity may 
require modifying parts of traffic contents specific to the 
original host or scenario. However, blindly changing the 
trace may result in an inconsistent activity, e.g., network 
addresses and checksums on packets may be incorrect. 
Therefore, how to identify which parts of fi elds to change, 
what value to modify, and subsequently making the state 
consistent in an automated fashion is not trivial and is 
diffi cult. 

3.1 Effectiveness of Replay
The replay accuracy affects the effectiveness of 

testing a DUT and reproduction of potential events. To 
effectively replay the traffic traces recognized as valid 
traffi c by a DUT, the replay must follow the state machines 
of applications/protocols and send out the corresponding 
packets in the correct direction and order to the DUT. 
Besides, the replay may consistently modify the outgoing 
packets in response to fit the test scenario at that time. 
Otherwise, the packets may be dropped or discarded by the 
DUT, which makes the replay failed.

Each DUT is tested and monitored by a dedicated 
replayer and CheckDev with the distance of one-hop 
separately. Therefore, every time a failure occurs, we can 
ensure that its happening is because the DUT fails. In this 
manner, we can avoid the failures caused by connectivity. 
Therefore, the number and topology of DUTs would not 
infl uence the overall performance and effectiveness.

3.2 Effi ciency of Replay
The effi ciency affects the time spent during the traffi c 

replay and the effort required in result analysis. The 
effi ciency of replay relies on two things, one is the volume 
of replayed traffic and the other is the time required to 
reproduce an event. For event analysis and debugging, the 
lower the volume of the traffi c traces required to reproduce 
an event, the quicker the testers and the developers can 
analyze and solve them. However, reducing the volume of 
replayed traffi c might unintentionally drop critical events of 
interest, so there are usually tradeoffs between the accuracy 
and the effi ciency of traffi c replay.

4 In-Lab Replay Framework and 
NATreplay

4.1 In-Lab Replay Framework
In this work, we propose a replay testing framework, 

In-Lab Replay Testing, and a traffi c replayer, NATreplay, to 
test network devices. ILRT consists of three different roles, 
the monitor, the traffic replayer, the library of captured 
traffic traces, and the DUT. Figure 1 illustrates the ILRT 
framework. 

The monitor, called CheckDev, is a probing tool that 
regularly sends ARP, ICMP and HTTP probes to the DUT 
to diagnose it during the test. ARP and ICMP probes test 
the reachability of a networking device hosted on the 
local network, and HTTP probes check if the device still 
responds to users’ requests. Furthermore, CheckDev would 
work together with the traffi c replayer to adjust the replay 
throughput based on the response of the DUT.

Figure 1 In-Lab Replay Test Framework

The traffic replayer is dedicated to the DUT and can 
be replaced to qualify the test plans and test requirement. 
The dedicated traffic replayer is responsible for parsing 
captured traffic traces, separating the traffic into two 
groups, updating the states of packets, and sending them 
to the DUT, The traffi c replayer should also log the related 
statistics about the characteristics of replayed traffic and 
the responses from the DUT to help later debugging and 
analysis. 

The library of real-world traffic traces stores the 
traffi c traces captured from Beta Site [1]. The traffi c from 
hundreds of volunteers’ daily usage is captured and contains 
numerous application categories and transactions. The 
traffi c traces are updated and profi led regularly, (1) to keep 
up-to-date all kinds of application behaviors and, (2) to 
double-check the responses and handling results of DUTs. 
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4.2 NATreplay 
We developed a stateful traffic replayer, NATreplay, 

to test NAT devices. NATreplay is a modification of 
TCPreplay and designed to support NAT mechanism. 
TCPreplay provides a variety of features for replaying 
traffic both passive sniffer devices and in-line devices 
such as routers, firewalls, and Intrusion Prevention 
System (IPS). During the usage, the IP addresses can be 
rewritten or randomized, MAC addresses can be rewritten, 
transmission speeds can be adjusted, the truncated packets 
can be repaired, and the packets can be selectively sent or 
dropped. However, TCPreplay cannot maintain application-
dependent states, which limits its applications. In order 
to be able to test NAT devices, NATreplay is designed to 
maintain the mapping between the original and the new 
network addresses during replay. Related fields, such as 
networks addresses and payload checksums, need timely 
updating during replay. Furthermore, the modified values 
should be kept in subsequent packets during the same 
replay process. 

The mechanism of how NATreplay replay packets is 
shown in Figure 2. At the beginning, a packet with (Lip, Lport, 
Eip, Eport) as its source IP address, port number, destination 
IP address, and port number, respectively, is sent from the 
LAN interface of the replayer to the DUT. When the packet 
passes through the DUT, its source IP and port number are 
modified by the DUT. A mapping entry (Lip, Lport, Wip, Wport) 
is created in a NAT table. Upon receiving the packet at the 
WAN interface, the replayer at the WAN interface sends a 
response packet (destination Wip, destination port: Wport) to 
the DUT. Once the response packet reaches the DUT, the 
DUT will look up the NAT table and check if a mapping 
entry (Lip, Lport, Wip, Wport) exists to allow the packet to pass. 
If yes, the packet will be forwarded to the LAN interface 
after replacing its destination address (Wip, Wport) with (Lip, 
Lport). 

Figure 2 The Mechanism How NATreplay Works

5 Experiment Studies and Case Study

NBL [9] utilizes ILRT framework with real-world 
traffi c to test many kinds of networking devices, including 
WLAN routers, switches, and application layer proxies. In 
the following, 28 retailed WLAN routers are used as the 
DUTs and are evaluated whether they can stably work for 
an extended time to demonstrate the correctness and the 
effectiveness of the ILRT framework and NATreplay.

5.1 Trace Selection and Experimental Testbed
To conduct the experiments, we used the network 

traffic captured from NCTU Beta Site [1]. During peak 
hour traffic, the captured network traffic volume could 
reach 60 GB in 30 minutes, and even during regular hours 
around midnight, the traffic volume could still reach at 
least 20 GB in 30 minutes. The total volume of the traffi c 
captured ranges from 1.0 to 1.4 TB a day, and the common 
application profi le of the traffi c is listed in Table 1. There 
are always hundreds of applications detected and only 
the applications with a volume ratio larger than 0.01% 
are listed, including P2P applications, video streaming 
applications, file transferring, on-line games, instance 
messaging, web mails, and DNS queries. Lin et al. [1] 
suggest that one month and one year of beta site testing are 
minimum test durations for low-end and high-end products, 
respectively. The usage of HTTP and video streaming 
applications dominates the captured network traffic, and 
among those applications detected, the top 10 mostly 
belongs to Web and P2P applications. The 28 retailed 
WLAN routers that were used as the DUTs were numbered 
from 1 to 28.

5.2 Testbed Confi guration
Throughout our experiments the initial replay 

throughput was set to 50 Mbps while NATreplay would 
dynamically adjust the throughput according to the 
responses of a DUT during the test. CheckDev was 
confi gured with the information of MAC and IP addresses 
of the DUT and NATreplay, the LAN and WAN subnets and 
the timeout. The timeout is the maximal allowable interval 
between the probe and the corresponding response from the 
DUT. If CheckDev could not collect the responses from the 
DUT in time, the issued probes would be judged to have 
failed. The traffi c captured in PCAP fi les is separated into 
two parts, called primary and secondary, and the network 
addresses contained are bound to different interfaces of 
NATreplay. In this way, the DUT can see the traffic that 
a host in the primary side initiating to another host in the 
secondary side, will go through it one way and the response 
will go through it the other way.

Furthermore, multiple instances of Tcpdump [10] were 
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deployed between every two roles of ILRT framework 
during traffic replay to monitor activities in the links. The 
logs recorded by Tcpdump can be used to verify the status 
of DUT and NATreplay to check if they work correctly.

5.3	 Profile of DUTs 
The 28 retailed WLAN routers were used as the DUTs 

and were evaluated whether they can stably work for an 
extended time. Table 2 shows the profile of the 28 retailed 
WLAN routers, including CPU types, RAM size, and Flash 
RAM size. Over 70% of DUTs support gigabit link and 
IEEE 802.11 b/g/n technology. For most DUTs, the sizes of 
RAM and Flash are limited except the only one equipped 
with large sizes of RAM and Flash.

Table 2 The Profile of 28 Retailed WLAN Routers

Counts CPU Types (MHz) RAM (MB) Flash (MB)
2 133     8   2
2 133   16   2
6 220, 266, 320   16   4
10 266, 384, 400   32   4
4 266, 400   32   8
1 470   64   8
1 384   64 16
1 400   64 32
1 480 128 32

The triggered failures were classified into two groups, 
critical level (L1) and tolerable failures (L2), based on 

the severity of damage. Table 3 shows the classification, 
impact and possible errors of failures occurred on WLAN 
routers. Because the connectivity of accessing the network 
or Internet is the fundamental requirement of WLAN 
routers, we separated the NAT functionality from other 
functionalities. If the failures disrupted the connectivity 
with the Internet, they would be identified as critical 
failures, while if the failures just degraded the performance 
or slow down the throughputs but still be able to access 
the Internet, they were identified as tolerable failures. 
Each occurred failure was double-checked by the logs of 
NATreplay and CheckDev. The logs recorded the order, 
the time, and the interface of packets that were sent and 
received. 

To assess the stability of DUTs, we developed the 
metric stability score to differentiate the stability of device 
by the equation, stability score = Vt / (1 + pL1 × nL1 + pL2 × 
nL2), where nL1, nL2 are the individual number of L1 and L2 
failures occurred, pL1, pL2 are the relative weights of L1 and 
L2 failures and Vt is the accumulated volume of replayed 
traffic (GB). In this experiment, pL1 was set to 10 times pL2 
to emphasize the importance of proper functioning [11].

In our experiments, we tried to apply the same number 
of test rounds except hardware breakdown. However, 
because the replayer would dynamically adjust the 
throughput according to the response of the DUT, different 
replayed traffic per test round and different accumulated 
replayed traffic may be obtained. 

Figure 3 shows the results of stability testing. The 
horizontal axis shows individual DUTs, and the vertical axis 
shows the corresponding stability score and replayed traffic 

Table 1 The Application Profile of the Original Raw Traces

Name Ratio (%) Name Ratio (%) Name Ratio (%)
Http` 31.4 QVOD 0.95 VNC 0.06

PPStream 11.76 Skype 0.56 qingyule 0.06
FTP 10.33 HTTPS 0.48 KuGoo 0.06
TCP   9.84 Garena 0.43 Telnet 0.05

PPLive   9.44 SSH 0.3 Direct Play 7 0.05
RDP   4.61 RTSP 0.23 Gnutella 0.05

BitTorrent   3.78 tudou 0.21 Webmail 0.05
Funshion   3.69 Gmail 0.2 YouKu 0.04
Xunlei   3.52 iTunes 0.16 DNS 0.04
UDP   2.91 Fs2you 0.14 Dropbox 0.03

YouTuBe   1.9 RTP 0.13 Shoutcast 0.03
Flashcom   1.4 TeamViewer 0.12 Warcraft 0.02

MSN   1.35 Ku6speedup 0.12 SMB 0.02
QQTV   1.32 Steam 0.07 TTPlayer 0.01

eDonkey   0.96 FlashGet 0.06
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volume. In order to be more easily to compare intuitively, 
the unit of the replayed volume was set to 10 GB. Take 
DUT1 as an example. DUT1 was tested with the amount 
of 2051.7 GB traffi c, and the stability score was 2564.23. 
From Figure 3, three interesting observations could be 
found that (1) even though the DUTs passed laboratory 
tests, there was still a good chance to fail the test, (2) the 
stability score was not in proportional to the replayed 
volume, and (3) even if the hardware spec of a DUT was 
more powerful, the stability score was not necessarily high. 

Figure 3 Stability testing results of 28 retailed WLAN routers

Figure 4 showed the relationship of the replayed traffi c 
volume and the triggered failures. The horizontal axis 
shows individual DUTs, and the vertical axis shows the 
corresponding number of triggered failures. Take DUT21 as 
an example. DUT21 was tested with the amount of 14.35 TB 
traffic, and the number of L1 and L2 failures were 2 and 
32, respectively. Among 458 test results, chance of pass, 
L1 failure, and L2 failure, is 2.84%, 7.86%, and 89.3%, 
respectively. 

Figure 5 illustrated the relationship of the stability score 
and triggered failures. The horizontal axis shows individual 
DUTs, and the vertical axis shows the corresponding 
stability score and the number of triggered failures. Take 

DUT21 as an example. The stability score of DUT21 was 
274.5, and the number of L1 and L2 failures were 2 and 32, 
respectively. From Figure 5, it could be found that more 
number of triggered failures caused lower stability score.

Figure 5 The Relationship of Stability Score and Triggered 
Failures

From above figures, the quality of a DUT could be 
easily differentiated from each other even though we had 
no details of how the mechanism of packet processing was 

Figure 4 The Relationship of Replayed Traffic and Triggered 
Failures

Table 3 Triggered Failures Severity Classifi cation

Level Failure Impact Possible Errors

L1

Hanging DUT crashes or hangs Ran out of memory or memory leak
Reboot DUT shutdown and reboot again Ran out of memory or memory leak
NAT failure NAT functionality fails NAT maintenance fails
Connection failure TCP connections fail to build Ran out of memory or memory leak

L2

Resources exhausted
Fail to accept requests during replay but 
recover while stopping replay

Ran out of memory or resources

Functionality failure
Other functionalities except connecting 
fail

Functionality implementation error

Slowdown Throughput degradation Memory leak or too small memory size
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implemented. Among 28 retailed WLAN routers, 53.57% 
and 100% of DUTs were triggered critical (L1) failures and 
tolerable (L2) failures, respectively. 21.43% and 100% of 
DUTs were triggered more than one L1 and L2 failures, 
respectively. In these experiments, the most L2 failure 
of a DUT is to not to respond to any request for a while 
although the DUT was still alive to process incoming and 
outgoing packets, which could be observed by Tcpdump. 
Among high-spec DUTs, there was 25% of DUTs which 
were triggered L1 failures. Therefore, it might be able 
to conclude that although high-spec products are more 
powerful, what really matters is the quality of the fi rmware. 

In order to evaluate their performance, we used Spirent 
SmartBits 600 and WebSuite v2.6 [12] to test the maximum 
session rate of the 28 DUTs. A fixed number of requests 
issued to establish TCP sessions per test round can be 
configured to evaluate the performance of a DUT. Here, 
the fi xed amount requested of TCP sessions/round was set 
to 15,000 and the experiment for a DUT lasted for a whole 
day. 

The final results were averaged and are shown in 
Figure 6. Two interesting observations were made: that (1) 
for each test round, even the rate that a DUT could handle 
was much lower than the fixed testing rate, but did not 
crash or stop the DUT, and (2) the hardware specifi cation 
was not closely linked to the results because some low-spec 
DUTs outperformed some high-spec ones.

Figure 6 The Maximal Session Test Results Using SmartBits 
600 and WebSuite v2.6

6 Conclusions

Testing networking devices before releasing them 
onto the market is a way of ensuring their quality and 
robustness. Replaying artificial or real-world traffic is a 
method used to test networking devices. Using real-world 
traffi c is desirable as it uncovers more realistic properties 
such as traffi c diversity and complicated user behaviors. 

In this work, we developed an In-Lab Replay Testing 

(ILRT) framework, composed of a monitor, a dedicated 
traffic replayer and a library of real-world traffic traces. 
We also developed a stateful traffic replayer, NATreplay, 
which was designed to test NAT devices while keeping 
the original captured transaction scenarios. The monitor, 
called CheckDev, is a probing tool that regularly sends 
ARP, ICMP and HTTP probes and monitors the status of 
the DUT. The dedicated traffi c replayer is responsible for 
parsing the captured traffic traces, separating the traffic 
into two sides and sending them to different interfaces of 
the DUT. The traffic replayer can be replaced to qualify 
the test requirement, and the library of real-world traffic 
traces should contain numerous application categories and 
transactions for comprehensive verifi cation. 

28 retailed WLAN routers were used as the DUTs, and 
were evaluated as to whether they were able to work stably 
for an extended time, so as to demonstrate the correctness 
and the effectiveness of the ILRT framework. The triggered 
failures were classified into two groups, critical level 
(L1) and tolerable level (L2) based on the severity of the 
damage. If the failures disrupted the ability to access the 
Internet, they would be identifi ed as critical failures, while 
the triggered failures that only degraded performance but 
were still able to access the Internet, were identified as 
tolerable failures. By comparing the logs, observed DUT 
status, and the triggered failures, the effectiveness of ILRT 
framework can be ensured because IRLT framework is very 
suitable to test networking devices.

In our experiments, 53.57% and 100% of DUTs were 
triggered critical (L1) failures and tolerable (L2) failures, 
respectively. 21.43% and 100% of DUTs were triggered 
more than one L1 and L2 failures, respectively. Among 
high-spec DUTs, there was 25% of DUTs which were 
triggered L1 failures. Furthermore, among total 458 test 
results, three types of results, namely pass, L1 failures, 
L2 failures, were 2.84%, 7.86%, and 89.3%, respectively. 
The results showed that (1) even though the DUTs have 
passed traditional lab tests, there is still a good chance for 
them to fail under real-world traffic, (2) although high-
spec products are more powerful, what really matters is the 
quality of the fi rmware, (3) even though having no details 
of the implementation of a DUT, ILRT could still be used 
to evaluate the quality of a DUT and (4) in artificial test, 
even the rate that a DUT could handle was much lower 
than the fi xed testing rate, the DUT still didn’t crash or stop 
working.
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