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a b s t r a c t 

A variety of anti-malware scanners have been developed for malware detection. Previous research has 

indicated that combining multiple different scanners can achieve better result compared to any single 

scanner. However, given the diversity in detection rates and accuracy of different anti-malware scanners, 

how to determine the best possible outcome of multi-scanner systems in terms of accuracy and how to 

achieve this best outcome remain formidable tasks. In this paper, we propose three models to capture 

the combined output of different combinations of anti-malware scanners based on the limited amount of 

historical information available. These models enable us to predict the accuracy level of each combination, 

which helps us to determine the optimal configuration of the multi-scanner detection system to achieve 

maximum accuracy. We also introduce two methods to identify a near-optimal subset of scanners that 

can help reduce scanning cost while under time constraint. From simulations over randomly generated 

hypothetical datasets and experiments conducted with real world malware and goodware datasets and 

anti-virus scanners, we found that our models perform well in predicting the optimal configuration and 

can achieve an accuracy as high as within 1% of true maximum. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Malicious software (malware) is one of the major tools of cy-

ercriminals. Almost every cyber-attack involves some kind of mal-

are as the facilitator. Therefore, detection of malware is one of

he core problems of modern cyber security. For a long time,

e have been relying on the anti-malware or anti-virus scan-

ers to detect malware and to protect our systems from malware-

ssociated attacks. A variety of anti-malware scanners have been

eveloped over the years with different levels of performances.

n the early days, a single scanner was sufficient and able to de-

ect most of the malware out there. However, as time goes on,

he malware writers have honed their skills and their repository

f malware has evolved and proliferated so much that no single

nti-malware engine can protect us from all of them. Moreover,

esearchers have determined that combining the power of multi-

le anti-malware engines improves detection accuracy and perfor-

ance significantly compared to any single anti-malware scanner

for example, [1 , 2] ). Consequentially, various online multi-AV scan-

ing services and tools (VirusTotal [11] , Jotti [12] , VirScan [13] , etc.)

ave been developed for addressing this concern. 
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Although we have several multi-AV scanning services and tools

t our disposal, most of them are used only for informational pur-

oses or as a source of second opinion. None of them directly pro-

ide an exact decision of whether a given sample is malicious or

enign. Instead, they work as an information aggregator and only

ist the individual results returned from each anti-virus scanning

ngine. The responsibility of making a decision based on these in-

ividual scan results is up to the human user. This may be con-

enient for personal use where an end-user is looking for a sec-

nd opinion for an unknown sample downloaded from the In-

ernet. However, if we want to use these multi-scanner detection

ystems effectively for a large-scale detection and collection op-

ration, we need the system to automatically come up with an

ccurate decision. The importance of this decision making does

ot end with the individual end-users. As pointed out by the re-

earchers in [35 , 38] , the impact of the lack of consensus, consis-

ency and correctness among many available anti-virus scanners’

ecisions is wide ranging, affecting not only academic researchers

nd anti-virus scanner vendors, but also IT professionals who man-

ge security operations in enterprise networks, and government

gencies in charge of protecting critical infrastructure from cyber-

ttacks. Therefore, it is imperative to construct a multi-scanner

ystem with accurate decision-making capabilities that will enable

oth the generation of authoritative ground truth datasets and the

evelopment of real time attack response systems against modern

etwork-based attacks. 

https://doi.org/10.1016/j.comnet.2019.107027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.107027&domain=pdf
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To come up with accurate decisions, a multi-scanner system

would need enormous information about the dataset for training

and calculation purposes. However, there are only two types of

limited information available when the multi-scanner system faces

an unknown sample set, and they are not guaranteed to be reli-

able for the following reasons. The first type of available informa-

tion is the individual scan results from various scanners, but they

at best can only be considered as the scanners’ “opinions” because

we don’t know for sure whether they are right or wrong. The sec-

ond type is the statistics for each scanner indicating their accu-

racy and performance. These statistics are accumulated from pre-

vious scanning results which can be proven as right or wrong over

the course of time with or without the help of manually vetted

ground truth datasets. These statistical accuracy values can be used

to measure how right or wrong these scanners can be. In other

words, these are the ratings that indicate how well these scanners

performed. With only such limited information available, the origi-

nal problem now becomes how to combine the previous detection

accuracy statistics for each scanner and the actual scan results for

a given unknown sample to classify the sample as benign or mali-

cious with the best possible accuracy. 

In this paper, we tried to solve this problem by first deriving a

mathematical model named Combined Probability Model (CPM) to

capture the combined outcome of a specific combination of scan-

ners, given only their individual detection rates. That means, no

information about the interdependency between each pair of two

scanners is available, and therefore, we develop the model based

on the assumption that the scanners are completely independent.

This mathematical model consists of a set of formulas involving

individual detection probabilities of the scanners. Next, we assume

that the pairwise dependency information among the scanners is

available, which means we have the combined probability of de-

tection for all possible pairs of scanners. This dependency among

the scanners are due to the fact that many features that the scan-

ners use to classify malware are common among different scan-

ners (for example, hash of malicious binary, pattern of instruc-

tion sequences, etc.). Using this dependency information, we devel-

oped a Dependency Approximation Model (DAM) to calculate com-

bined probability of scanner sets with size 3 and above. Since we

have some dependency information about the scanners, we don’t

need the assumption of independence for this model. While these

first two models can have good accuracy in calculating combined

probabilities, they have exponential runtime which could become

a problem for a large set of scanners. Therefore, we developed a

greedy heuristic based approximation models called Greedy Ap-

proximation Model (GAM). This model applies greedy approxima-

tion over CPM formulas to improve runtime and at the same time

try to maintain the accuracy as much as possible. These models

give us a good approximation of the combined true and false de-

tection probabilities of the combined system of scanners, which

can be used to calculate the overall accuracy of the multi-scanner

system for a specific configuration. Therefore, if we can calculate

the accuracy of all possible configurations of the system, we can

compare them to determine the optimal configuration that pro-

vides us with the maximum accuracy. 

In addition to the original problem, we also try to answer the

following two questions: (1) Is it always beneficial to increase the

number of scanners in a multi-scanner detection system? (2) How

can we select a subset from all available scanners, which will pro-

vide us with a maximum accuracy for a size of the given subset?

To address the second question, we come up with two methods –

the ranking method and the dependency approximation method,

which allow us to select a best subset from the full set of scan-

ners. To verify the accuracy of our models and to answer these ad-

ditional questions, we first numerically simulate our models over

randomly generated hypothetical datasets and test case scenarios.
rom the simulation results, we found that if the average false

ositive rate of the scanners is high enough, the accuracy value

f multi-scanner system can decrease at some point with the in-

rease in the number of scanners. At the end, we provide exper-

mental evaluation based on real-world malware and goodware

round truth datasets and corresponding anti-virus scanning re-

ults using a popular online multi-AV scanning service, VirusTotal.

rom the evaluations, we can verify the accuracy of our simula-

ion results and establish that our models along with the meth-

ds for finding best subset of scanners perform extremely well in

redicting the optimal configuration to achieve a maximum accu-

acy based on available information, which is within 1% of the true

aximum. 

The remainder of this paper is organized as follows.

ection 2 discusses previous work done on multi-scanner ar-

hitectures and collaborative malware detection architectures.

ection 3 presents the formulation of the problem. Section 4 intro-

uces Combined Probability Model along with the mathematical

erivation of the formulas. Section 5 describes the Dependency Ap-

roximation Model. Section 6 describes the greedy heuristic based

odel. Section 7 provides a background on the evaluation metrics

sed to calculate accuracy and describes our methods to find the

est subset. Section 8 presents numerical evaluation results based

n the proposed models and methods. Section 9 presents the

xperimental evaluation of the models and the methods based

n real-world datasets and VirusTotal scanning reports. Finally, in

ection 10 we provide conclusions and lessons learned from our

odels and experimental results including possible future work. 

. Related work 

In this section, we have briefly described and discussed pre-

ious and existing related research and commercially available

roducts involving multi-scanner systems. This includes research

n multi-scanner model and architecture, collaborative malware

etection, existing multi-AV scanning services and software, and

ommercially available anti-virus scanners with multiple built-in

canning engines. 

.1. Multi-scanner model and architecture 

Morales et al. [1] experimentally showed that a single anti-

alware program is not sufficient to detect all malware present on

 system. Though in a limited fashion, their results showed that

ombining multiple anti-malware programs achieves better recall

nd false negative rates. Cukier et al. [2] presented empirical evi-

ence that detection capabilities are considerably improved by di-

ersity with AVs, and their findings also showed that none of the

ingle anti-virus software achieved perfect detection rate. These

wo works ( [1 , 2] ) mainly validate the importance of combining

ultiple scanners instead of investigating how to do it to achieve

aximum accuracy. Oberheide et al. [3] presented a new model

or malware detection on end hosts based on providing anti-virus

s an in-cloud network service. Their model used multiple, het-

rogeneous detection engines in parallel, a technique termed as

N-version protection”. To verify their model, they constructed and

eployed an in-cloud antivirus system called CloudAV. CloudAV in-

ludes a lightweight, cross-platform host agent and a network ser-

ice with ten anti-virus engines and two behavioral detection en-

ines. Their experimental results showed that CloudAV provides

5% better detection coverage against recent threats compared to

 single anti-virus engine and a 98% detection rate across the full

ataset. The similarity between CloudAV and our proposed multi-

canner system is only in the architecture of the system. The result

ggregation in CloudAV is done in a very inefficient way, where
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 manually defined security policy is used to decide on a thresh-

ld value at which a candidate file is deemed unsafe or malicious.

loudAV has no automated result aggregation or decision-making

rocess in place to dynamically select the optimum threshold to

educe false positives or false negatives; in comparison, we pro-

ose three models to solve this problem. Chiriac [28] presented

 comparative analysis of cloud-based scanning and local scan-

ing, and proposed a trade-off to make use of the best parts of

oth. Sebastián et al. presented AVclass [32] , an automatic label-

ng tool that uses the AV labels assigned by multiple AV engines

or a massive number of samples to generate the most likely fam-

ly names for each sample, ranking each potential family name by

he number of AV engines that assign this name to the sample.

oth of these works [28 , 32] are fundamentally different compared

o our work, although the insights from our work could benefit

heir work in many ways. 

The problem of finding the ground truth decision label has been

he focus of several recent research work done in the malware de-

ection area concerning multiple anti-virus scanners. Mohaisen and

lrawi in AV-Meter [35] demonstrate the danger of relying on in-

omplete, inconsistent, and incorrect malware labels provided by

nti-virus vendors. Their study showed that we need many inde-

endent anti-virus scanners to obtain complete and correct labels,

hile it is sometimes impossible to achieve such goal using multi-

le scanners. Kantchelian et al. [27] examined the problem of ag-

regating the results of multiple anti-virus (AV) vendors’ detectors

nto a single authoritative ground-truth label for every binary file,

nd proposed a machine learning based solution using both unsu-

ervised and supervised techniques. This work has a major differ-

nce compared to ours in that it requires a comprehensive training

ataset comprising of same anti-virus scanners and ground truth

abels for the models to be effective, whereas our models only re-

uire detection probability values to be available for the anti-virus

canners regardless of historical datasets being used to calculate

hem. In addition, their models assume independence across anti-

irus scanners and datasets, whereas our DAM model incorporates

ependency information of the scanners and does not require the

ndependence assumption. Furthermore, they did not address ad-

itional questions regarding the size of the scanner set and how to

elect them. Similarly, Charlton et al. [37] proposed an algorithm

o estimate the relative accuracy of the malware detectors in the

bsence of ground truth of their actual detection quality. Hurier

t al. [38] explored the lack of agreement among AV engines and

roposed a set of metrics that quantitatively measure different di-

ensions of this lack of consensus. 

There have been numerous research papers on combining mul-

iple classifiers to achieve highest classification accuracy, which

ight deceptively seem to be related to the problem of combin-

ng multiple anti-virus scanners to achieve maximum accuracy. For

xample, dynamic weighted voting scheme proposed by Valdovi-

os and Sanchez [33] and regression methods proposed by Górecki

nd Krzy ́sko [34] are representative research works on combining

ultiple classifiers. However, we have identified several fundamen-

al differences between the problem of combining multiple classi-

ers and the problem of combining multiple anti-virus scanners,

hich make existing solutions available for the former problem

nsuitable for the latter problem. We list these key differences as

ollows. 

1. Classifiers are completely based on training data. Although anti-

virus scanners might also include training data or detection his-

tory, they are not completely dependent on them. Many scan-

ners apply heuristic rules or other static or dynamic analysis

methods. 

2. We know the underlying methodology of most well-known

classifiers. However, most commercial anti-virus scanners hide
their underlying proprietary methodology. In our proposed

multi-scanner modeling scheme, we treat the scanners as black

boxes. 

3. Classifiers assign a classification score to input samples based

on the features and apply a class label according to this score.

All of these are known. On the other hand, since we don’t know

the internal methodology of most anti-virus scanners, we only

get the output label from a scanner, which is most of the time

either malicious or benign along with a label identifying the

malware type or family if the sample is malicious. We don’t

know the classification score, if there is any, from most scan-

ners. 

In summary, we can see that the differences between combin-

ng classifiers and combining anti-virus scanners lie in the lack of

ecessary information needed by existing multi-classifier models.

n this paper, we aim to find a solution to the problem of combin-

ng multiple anti-virus scanners to achieve maximum possible ac-

uracy using available information which only includes a detection

robability for each scanner which is calculated from the scanner’s

ast detection results, pairwise detection probability (if available)

o account for scanner dependency and the current detection re-

ult. It does not require a classification score or measurement of

ach scanner’s level of confidence in determining the class or label

or an input sample, which is vital for combining multiple classifier

ystems. For this reason, we neither include a thorough study of

elated research done on combining multiple classifiers nor com-

are these works with our proposed models. 

To provide a good understanding of machine learning based

pproaches on the malware detection problem, here we present

 brief discussion on them. The vast amount of existing research

n employing machine learning for malware detection are mainly

ased on three different types of malware analysis [51] – static,

ynamic and hybrid analysis. The static analysis approaches are

ased on static features of malware such as extracted opcode se-

uences, function call graphs, control flow graphs, etc., in which

esearchers have applied hidden Markov models [52] , profile hid-

en Markov models [53] , support vector machine [54] principal

omponent analysis [55 , 56] , clustering [57] , etc. to mention a few

rom the extensive research in this area. In contrast, the dynamic

nalysis approaches focus on malware behavior and interactions

aptured via sandboxing, controlled execution, network traces, etc.

esearchers have used clustering [39 , 40 , 42 , 46 , 50] , classification via

upport vector machine, etc. [39 , 43] , deep learning [41 , 47 , 48] , fam-

ly classification [49 , 50] , multiple classifiers [44] , multiple instance

earning [45] to analyze these dynamic contexts. The hybrid analy-

is approaches combine various aspects of static and dynamic anal-

sis with the hope to benefit from the advantages of both cat-

gories, in which researchers used machine learning techniques

uch as those in [58] and [59] to classify malware. Apart from

hese, there are many existing research works that combine differ-

nt machine-learning or classifier based techniques to improve de-

ection of malware. Examples of such work include [60] where the

uthors use support vector machines to combine scores from three

dvanced malware scoring techniques to obtain improved results

ompared to using individual scores. Similar other works include

61 , 62] , and [63] . A fundamental difference between these exist-

ng machine learning or classifier based works and our proposed

ethod is that these works consider and use the features (both

rom static and dynamic analysis) directly extracted from the mal-

are, whereas our method only considers and uses the detection

ates of the scanners and does not consider or use the features

irectly extracted from the malware at all. In addition, we have al-

eady mentioned the key differences between combining multiple

lassifiers and combining multiple anti-virus scanners, which is the

ay we propose in this paper. 
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Table 1 

Notations. 

Symbol Description 

I Input to the multi-scanner system 

O i Output of i th scanner (0 or 1) 

N Total number of available scanners 

Q Optimal number of scanners to achieve maximum 

accuracy 

Th Threshold to decide the maliciousness of an object 

P i Detection probability of i th scanner 

P T i The probability of classifying a malicious object as 

malicious by i th scanner 

P F i The probability of classifying a benign object as malicious 

by i th scanner 

CP(t) Combined detection probability when Th = t 
2.2. Collaborative malware detection 

There has been some research on the collaborative approach

in detecting malware. Schmidt et al. [4] presented a collabora-

tive malware detection approach to reduce false negative rate for

Android-based malware detection by performing static analysis of

executables and sharing detection information among neighboring

nodes. Fung et al. [5] presented a collaborative decision-making

approach for malware detection systems. They proposed a decision

model called RevMatch [6] , where collaborative malware detection

decisions are made based on the scanning history with multiple

anti-virus systems. They claimed that the experimental evaluation

of their model shows significant improvement over any single anti-

virus engine. RAVE [7] is a centralized collaborative malware scan-

ning system for email infrastructures where email correspondence

is used to contact multiple agents for malware scanning and a vot-

ing mechanism is used to make the final decisions. Marchetti et al.

[8] presented a distributed peer-to-peer architecture for collabo-

rative malware and intrusion detection focusing more on depend-

ability and load-balancing issues. A similar approach was proposed

by Colajanni et al. [9] . Lu et al. [10] presented SCMA, a distributed

malware analysis system with the goal of better collaboration and

scalability. Aldini et al. [30] presented a collaborative approach

to detect repackaged mobile applications. Miller et al. [36] inves-

tigated the effect of integrating expert reviewers into a scalable

malware detection system and demonstrated that even in small

numbers, reviewers can vastly improve the system’s ability to keep

pace with evolving threats. Each of these collaborative approaches

require additional internal information from the anti-virus scan-

ners as well as active collaboration from them, which makes these

works different from our work where we make use of the anti-

virus scanners as static functional blocks with no knowledge of in-

ternal mechanism. 

2.3. Multi-AV scanning services and software 

There are free online public services that provide scanning re-

ports from multiple anti-virus scanners. VirusTotal [11] , a Google

subsidiary, is the most prominent among these services. VirusTo-

tal uses the command-line versions of 59 anti-virus scanners (at

the time of writing) to scan a single file and include the results

returned by each scanner into an aggregated report. In addition to

telling whether a given anti-virus solution detected a submitted

file, it displays the exact detection label returned by each engine.

This service is mainly useful to the anti-virus vendors and to those

private users who want a second opinion. Among other such ser-

vices, there are Jotti [12] , VirSCAN [13] , File2Scan [14] , and Metade-

fender [15] , where File2Scan and Metadefender are paid services.

There are also multi-AV scanning client tools such as HerdPro-

tect [16] , HitmanPro [17] , SecureAPlus [18] , and Multi-AV [19] . Our

work is intended for standalone multi-scanner detection systems

that operate in the same way as these existing multi-scanning ser-

vices and software and also incorporate an automated decision-

making process which will yield maximum accuracy in malware

detection. 

Researchers have done research analyzing VirusTotal data as

well. Algaith et al. [29] compared the detection capabilities of the

version of nine AV products that the vendors make available for

free in VirusTotal versus their full capability versions that they

make available via their own website and found that only one

of the vendors had a full capability version which detected all

the malware that their VirusTotal version could detect. Song et al.

[31] performed a large-scale examination of VirusTotal repository

and their results show that malwares appear in bursts and that

distributions of malwares are highly skewed. 
.4. Commercial AV scanners with multiple scanning engines 

Most of the anti-virus vendors use their own proprietary mal-

are detection engine which usually includes a signature database,

 heuristic-based detection engine, and a reputation-based detec-

ion system. A few of them, namely Emsisoft [20] and G Data [21] ,

se a dual-engine technology where each scan passes through two

ngines, but the benefit of this dual engine technology and how it

orks has not been made publicly available. Therefore, it is safe to

ssume they have not incorporated any extensive multi-scanning

echnology in their products. 

From the above discussion on related research on multi-scanner

ystems, we observe that although a few of them tackled the same

roblem space as ours, most of the previous works were funda-

entally different in their focus and approach and limited in their

ontribution in solving the problem of configuring a multi-scanner

ystem. In comparison, in this paper we address some fundamental

uestions regarding multi-scanner systems as outlined in the next

ection and propose solutions and provide guidelines and insights

o solve them. 

. Problem formulation 

In this section, we present our formulation of the problem of

aximizing accuracy in a multi-scanner detection system using

ppropriate formal notations. Table 1 lists some of these notations

sed in the formulation. Formally, the problem of maximizing ac-

uracy in a multi-scanner detection system can be stated as fol-

ows: 

Given N scanners along with their respective (true positive and

alse positive) detection rates or probabilities P i (where 1 ≤ i ≤ N ),

nd the binary detection results (either true or false) for a given

ample obtained from these N scanners, how can we find the op-

imal value of Th (1 ≤ T ≤ N ) where Th is the threshold to decide

he maliciousness of that given sample. Here, we assume that N is

 finite number and we only have the detection rates or probabili-

ies associated with each scanner that can be calculated from past

etection results of the scanners provided the detection results ac-

urately reflect the decisions generated by the scanners. 

The problem can be extended further to answer the following

uestions: 

1. Assuming that N is the total number of scanners that we can

use, and Q is the optimal number of scanners to achieve maxi-

mum accuracy, what is the relationship between N and Q ? Does

Q = N always hold, or can Q < N be true in some cases? In

other words, does adding another scanner always improve ac-

curacy? 

2. If M is the size of a subset of all N scanners, how do we se-

lect these M scanners from all N scanners to achieve maximum

accuracy that is possible for any subset of scanners of size M .
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In other words, given that there can be ( 
N 

M 

) possible subsets

of size M , which subset is the best subset of M scanners such

that it will provide maximum accuracy among all these possi-

ble subsets? 

. Combined Probability Model (CPM) 

In this section, we will explain the development of the Com-

ined Probability Model (CPM) in detail. As mentioned earlier, we

ave devised a set of formulas to construct the model. In the for-

ulas, we used certain symbols and notations to denote various

erms. Table 1 lists these notations. To help the readers better un-

erstand the model, we will start with a small-scale model con-

isting only three scanners. Then, we will extend the small-scale

odel to a more generalized version. 

.1. Three-scanner CPM 

We start with a simple three-scanner model ( N = 3) to ex-

lain the method of developing the generalized model. The most

eneric multi-scanner system consisting three scanners is depicted

n Fig. 1 . We assume here that all the scanners are binary scan-

ers, i.e., they produce an output of either 1 or 0, where a 1-

utput means that the sample is detected as malicious and 0-

utput means that the sample is detected as benign. We further

ssume that the detection probabilities for each scanner is given

r calculated using a diverse and extremely large sample set with

easonable accuracy to prevent a significant bias towards a par-

icular class of samples. More importantly, we assume that these

etection probabilities are independent of each other, although in

eality they are not. This assumption is simply because of the un-

vailability of such dependency information. For the case of limited

vailability of such information, we designed the Dependency Ap-

roximation Model (DAM) (described in Section 5 ) which does not

equire this independence assumption. 

In the three-scanner model, we have three possible choices of

hreshold Th ( 3, 2 and 1) to decide maliciousness of an input

ample. We derive the equations of our model by adding up the

maller components of the probabilities. For example, for Th = 1,

he combined detection probability is specified as 

P ( 1 ) = P { X ≥ 1 } = P { X = 1 } + P { X = 2 } + P { X = 3 } 
here X denote the random variable defined as the number of

canners that detect a given sample as malicious. Therefore, we

eneralize this equation for Th = t (where 1 ≤ t ≤ 3 ) as 

P ( t ) = 

3 ∑ 

i = t 
P { X = i } . (1) 

P 1 , P 2 , and P 3 denote individual detection probabilities for scan-

er 1, scanner 2 , and scanner 3 respectively. According to the rules

f probabilities (assuming independence) we can write 

 { X = 1 } = P 1 ( 1 − P 2 ) ( 1 − P 3 ) 

+ P 2 ( 1 − P 3 ) ( 1 − P 1 ) 

+ P 3 ( 1 − P 1 ) ( 1 − P 2 ) , (2) 
Fig. 1. A 3-scanner system. 

i

P

 { X = 2 } = P 1 P 2 ( 1 − P 3 ) 

+ P 2 P 3 ( 1 − P 1 ) 

+ P 3 P 1 ( 1 − P 2 ) , (3) 

nd 

 { X = 3 } = P 1 P 2 P 3 . (4) 

The reasoning behind these equations is also illustrated in

ig. 2 . Replacing the values from Eqs. (2) –(4) into Eq. (1) , we can

asily calculate the combined probability ( CP ) for a given Th = t . 

.2. N -scanner CPM 

In Section 4.1 , we limited our discussion to only three scan-

ers for ease of understanding. Next, we extend this three-scanner

odel to a general N -scanner model. Fig. 3 shows an N -scanner

ystem. 

For an N -scanner model with Th = t (where 1 ≤ t ≤ N ),

q. (1) becomes 

P ( t ) = 

N ∑ 

i = t 
P { X = i } . (5) 

Based on Eqs. (2) –(4) , we can come up with a generalized N -

canner equation for the probability P { X = i } as 

 { X = i } = 

( 

N 

i 

) 

∑ 

j=1 

i ∏ 

k =1 

P j 
k 

N ∏ 

l= i +1 

(1 − P j 
l 
) , (6)

here P 
j 

k 
is the probability of the scanner with index k (1 ≤ k ≤ i )

n j th combination in ( 
N 

i 
) and P 

j 

l 
is the probability of the scan-

er with index l ( i + + 1 ≤ l ≤ N ) in all the other scanners that

re not in j th combination. Substituting the value of P { X = i } from

q. (6) into Eq. (5) we get 

P ( t ) = 

N ∑ 

i = t 

( 

N 

i 

) 

∑ 

j=1 

i ∏ 

k =1 

P j 
k 

N ∏ 

l= i +1 

(1 − P j 
l 
) . (7)

Eq. (7) can be used as the generic N -scanner equation for com-

ined detection probability when Th = t . 

. Dependency Approximation Model (DAM) 

In this section, we present the Dependency Approximation Model

DAM) where we have dependency information among all pairs of

canners in the set of scanners. Let’s start with a three-scanner

odel, as depicted in Fig. 4 . We assume that we have P 1 ∩ P 2 , P 2 
 P 3 and P 3 ∩ P 1 available along with P 1 , P 2 and P 3 . Our goal is to

alculate an estimated value of P 1 ∩ P 2 ∩ P 3 . We observe that all

hree of P 1 ∩ P 2 , P 2 ∩ P 3 and P 3 ∩ P 1 have P 1 ∩ P 2 ∩ P 3 in common.

o, our idea is to estimate the portions from each of P 1 ∩ P 2 , P 2 ∩
 3 and P 3 ∩ P 1 that contributes to P 1 ∩ P 2 ∩ P 3 and take the av-

rage value of them. To calculate this, we notice that the following

ractions are approximately proportional to each other: 

P 1 ∩ P 2 ∩ P 3 
P 1 ∩ P 2 

≈ P 3 ∩ P 1 
P 1 

mplies 

 1 ∩ P 2 ∩ P 3 ≈ P 1 ∩ P 2 × P 3 ∩ P 1 
P 1 

Similarly, since 

P 1 ∩ P 2 ∩ P 3 
P ∩ P 

≈ P 2 ∩ P 3 
P 
1 2 2 
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Fig. 2. Venn diagrams for the three cases. 

Fig. 3. An N -scanner system. 

Fig. 4. A 3-scanner system, white region shows P 1 ∩ P 2 ∩ P 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Dependencyapproximation( L 1 , L 2 ). 

1: L 3-N ← [] //initialize list L 3-N 

2: for i in range(3, N ) do 

3: L comb(i) ← ListCombination( L N , i ) 

4: for each comb i in L comb(i) do 

5: L sum ← [] //initialize list to calculate mean 

6: L comb(i-1) ← ListCombination( comb i , i -1) 

7: for each comb i- 1 in L comb(i- 1) do 

8: CP comb(i-1 ) ← FindValue( L 3-N , comb i-1 ) 

9: r ← RemainingScanner( comb i , comb i-1 ) 

10: P r ← FindValue( L 1 , r ) 

11: for each j in Index( comb i-1 ) do 

12: CP 2 ← FindValue( L 2 , j, r ) 

13: res ← CP comb(i-1) × CP 2 / P r 
14: L sum .append( res ) 

15: CP comb(i) ← Mean( L sum ) 

16: L 3-N .append( comb i , CP comb(i) ) 

17: end for 

18: end for 

19: end for 

20: end for 

21: return L 3-N 

L  

l  

6  

t  

f  

t  

t  

f  

v  

u  

v  

t  

j  

t  

a  

l  

b  

s  

b  

f  

Algorithm 2 CombinedProbabilityCalculation( L 1-N , t ). 

1: CP t ← 0 //initialize combined probability CP t 
2: for i in range(size( L 1-N ) −1, 0) do 

3: val ← ImmediateSuperSet( L 1-N [ i ]) 

4: L 1-N [ i ] ← L 1-N [ i ] – val //update table values 

5: end for 

6: for j in range( N, t ) do 

7: CP t ← CP t + + CalculateSum( L 1-N , j ) 

8: end for 

9: return CP t 
implies 

P 1 ∩ P 2 ∩ P 3 ≈ P 1 ∩ P 2 × P 2 ∩ P 3 
P 2 

In this way, we can calculate four other proportional values for

P 1 ∩ P 2 ∩ P 3 which along with the previous two values can be used

to calculate the estimated value of P 1 ∩ P 2 ∩ P 3 as follows: 

3 ⋂ 

i =1 

P i ≈ MEAN 

⎛ 

⎜ ⎜ ⎜ ⎝ 

P 1 ∩ P 2 × P 3 ∩ P 1 
P 1 

, P 1 ∩ P 2 × P 2 ∩ P 3 
P 2 

, 

P 2 ∩ P 3 × P 1 ∩ P 2 
P 2 

, P 2 ∩ P 3 × P 3 ∩ P 1 
P 3 

, 

P 3 ∩ P 1 × P 1 ∩ P 2 
P 1 

, P 3 ∩ P 1 × P 2 ∩ P 3 
P 3 

⎞ 

⎟ ⎟ ⎟ ⎠ 

where MEAN is a function that takes the average of the parameters

passed to it. 

We can further extend this for N scanners as follows: 

N ⋂ 

i =1 

P i ≈ MEAN 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

P 1 ∩ P 2 ∩ P 3 ∩ . . . ∩ P N−1 × P N ∩ P 1 
P 1 

, 

P 1 ∩ P 2 ∩ P 3 ∩ . . . ∩ P N−1 × P N ∩ P 2 
P 2 

, 

P 1 ∩ P 2 ∩ P 3 ∩ . . . ∩ P N−1 × P N ∩ P 3 
P 3 

, 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

The recurrent nature in this formula can be used to develop

a dynamic programming algorithm which calculates all the values

for N scanners in a bottom-up fashion. Algorithm 1 shows the De-

pendency Approximation algorithm to calculate the table of values

of all possible combinations of N scanners. The input to this al-

gorithm is all the individual and pairwise detection probabilities

( L 1 , L 2 ) of the scanners. Here is a brief explanation of how the al-

gorithm works: in line 1, we initialize the list L 3-N for all combi-

nations of size 3 to N . In line 3, we get the list of combinations
 comb(i) for size i using the ListCombination function that returns a

ist of combinations with size i from a list of numbers ( L N ). In line

, the ListCombination function is similarly used. In line 8, we get

he combined probability value CP comb(i-1) by using the FindValue

unction that takes a combination of scanners ( comb i-1 ) and finds

he combined probability value from L 3-N . In line 9, we identify

he remaining scanner index r using RemainingScanner function

rom comb i and comb i-1 . In line 10, we get the detection probability

alue for scanner index r from L 1 using FindValue. In line 11, we

sed the Index( comb i-1 ) function to get the all the scanner index

alues from comb i-1 . Again, in line 12, we used FindValue function

o find the combined probability value CP 2 from L 2 using scanners

 and r . Lines 13 to 16 follows the above dependency approxima-

ion formula to calculate combined probability value CP comb(i) and

ppend it to list L 3-N . After the complete table of values is calcu-

ated, a top-down update of the values is used to calculate com-

ined probability CP(t) for threshold t ( CP t in the algorithm), as

hown in Algorithm 2 . This is necessary, because the calculated ta-

le in Algorithm 1 contains values for CP comb(i) which means values

or each combination of scanners with size i . That means, there are
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verlaps in values for scanners with size i . We need to remove this

verlap to calculate an accurate sum of probability values for scan-

er combinations with size greater than or equal to threshold t .

his is done in lines 2 to 5 in Algorithm 2 , where the Immediate-

uperSet function returns the immediate super set with size i + 1

hat contains all the combinations with size i . 

. Greedy Approximation Model (GAM) 

Our models do not assume any upper bound on the number of

canners. Popular online multi-AV scanning service VirusTotal now

onsists of more than 70 anti-virus scanners and it is highly likely

hat this number of available anti-virus scanners will continue to

ncrease. Therefore, due to the exponential run-time complexity re-

uirement of the previous two models, we introduce a third model

alled the Greedy Approximation Model ( GAM ), which applies the

reedy heuristic to approximately calculate the combined proba-

ility CP ( t ) for a given threshold t . Here, the greedy heuristic is to

tart by combining the highest t individual detection probabilities

nd moving along in a decreasing order doing the same until less

han t probabilities are available. An example would better illus-

rate this approach. Let’s say we have P 1 , P 2 , P 3 , …, P N individ-

al detection probabilities available sorted in a decreasing order,

hat is, P 1 ≥ P 2 ≥ P 3 ≥ … ≥ P N . To calculate CP ( t ), we initialize

P ( t ) to 0 and calculate P 1 × P 2 × P 3 ×… ×P t and add to CP ( t ).

or the next iteration, we calculate 1 - CP ( t ) and multiply it with

 2 × P 3 × P 4 ×… ×P t + 1 and add the result to CP ( t ). This goes on

ill we add P N-t + 1 × P N-t + 2 × P N-t + 3 ×… ×P N ×(1 - CP ( t )) to CP ( t ).

he final value of CP ( t ) is our desired combined detection proba-

ility. We developed the Greedy Approximation algorithm based on

his approach, as shown in Algorithm 3 . The parameters L p and t

efer to the list of individual detection probabilities and threshold

espectively, and the resulting combined probability is denoted by

P t . 

Algorithm 3 GreedyApproximation( L p , t ). 

1: L p ← sort( L p ) //sort list of probabilities L p 
2: CP t ← 0 //initialize combined probability CP t 
3: CP c ← 1 

4: for i in range(0, N - t + 1) do 

5: m ← CP c 
6: for j in range( i , i + t ) do 

7: m ← m × L p [ j ] 

8: end for 

9: CP t ← CP t + + m 

10: CP c ← 1 - CP t 
11: end for 

12: return CP t 

. Finding best subset of scanners 

Using all the scanners available might not be feasible always for

easons such as high cost and exponential execution time needed.

e can decide to reduce the number of scanners being used, but

hen comes the problem of finding the best subset of them. We

ave developed two methods to solve this problem – the rank-

ng method and the dependency approximation method. To un-

erstand these methods and later the experimental evaluation, we

eed to first understand the accuracy metrics. 

.1. Accuracy metrics 

The simplest metric is called Accuracy ( ACC ) or Fraction Correct

 FC ) [22] . It measures the fraction of all instances that are correctly

ategorized and is defined by 

CC = 

T P + T N 

T P + T N + F P + F N 
here TP, TN, FP , and FN refer to true positive, true negative, false

ositive, and false negative respectively. However, since TP and FN

hould add up to the total number of positive instances ( P ), and TN

nd FP should add up to the total number of negative ( N ), we can

alculate FN and TN from TP and FP as follows: 

 N = P − T P 
 N = N − F P 

Another useful metric is the F1 score [23] . It considers both pre-

ision and recall rates of the test to compute the score and is de-

ned by 

 1 = 

2 T P 

2 T P + F P + F N 

. 

A third metric, called the Matthews Correlation Coefficient (MCC)

24] , is used in machine learning as measure of quality of binary

lassifications. It is generally regarded as a balanced measure and

s defined by 

CC = 

T P × T N − F P × F N √ 

( T P + F P ) ( T P + F N ) ( T N + F P ) ( T N + F N ) 
. 

.2. The ranking method 

To identify the best subset of scanners for a given size M out

f N (1 ≤ M ≤ N ), we need to rank the scanners based on a suit-

ble criterion that can help in achieving the maximum accuracy

nd select the top M scanners. But the only information about the

canners is their detection rates. Therefore, we need to create an

ndividual scoring system based on the true positive and false pos-

tive detection probabilities for each scanner. We propose to substi-

ute TP, TN, FP, and FN with true positive rate (TPR), true negative

ate (TNR), false positive rate (FPR) and false negative rate (FNR) in

he accuracy formula ( ACC ) from Section 7.1 and use the resulting

alue as the individual score of scanner i which becomes 

 i = 

P T i + 1 − P F i 
2 

(8) 

Here, S i is the individual score of scanner i, P T i is the true

ositive rate or probability of scanner i and P F i is the false posi-

ive rate or probability of scanner i . Since both (TNR + + FPR) and

TPR + + FNR) are equal to 1, TNR becomes (1 – FPR) or (1- P F i )

nd (TPR + TNR + FPR + FNR) becomes 2. Based on this score, we

an sort all the N scanners in a descending order. Then, to get M

est scanners, we can select the top M scanners from the ordered

et of N scanners. 

.3. The dependency approximation method 

To identify the best subset of scanners, we can use the depen-

ency approximation table calculated for the Dependency Approx-

mation model in Section 5 . There should be two dependency ap-

roximation tables, one for true positive probabilities and one for

he false positive probabilities. Each entry of the tables has two

embers: a scanner subset and a probability value which is ei-

her a true positive probability or a false positive probability de-

ending on the table. In this way, there is a one-to-one corre-

pondence between the two tables. That means, for every entry of

he true positive table, there is a corresponding entry in the false

ositive table. We developed the algorithm FindBestSubset (shown

n Algorithm 4 ), where the input is the dependency approxima-

ion tables and a given size M . Then, for each entry in the tables

here the scanner set (a subset of N scanners) is of size M , we

se Eq. (8) (line 8 in Algorithm 4 ) to calculate the accuracy score.

he subset with the maximum accuracy score is returned. Here

re some explanations on the functions used in the algorithm. The

opyList function (lines 1 and 2) is used to return the portion of
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Algorithm 4 FindBestSubset( L T(1-N) , L F(1-N) , M ). 

1: L T(M) ← CopyList( L T(1-N) , M ) 

2: L F(M) ← CopyList( L F(1-N) , M ) 

3: maxValue ← −1 

4: bestSubset ← {} 

5: for i in range(0, size( L T(M) )) do 

6: CP T ← GetValue( L T(M) [ i ]) 

7: CP F ← GetValue( L F(M) [ i ]) 

8: accValue ← ( CP T + + 1 - CP F )/2 

9: if accValue > maxValue then 

10: maxValue ← accValue 

11: bestSubset ← GetCombination( L T(M) , i ) 

12: end if 

13: end for 

14: return bestSubset 
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the lists L T(1 - N) or L F(1 - N) where the size of the scanner set is ex-

actly M . The GetValue function (lines 6 and 7) is used to return the

combined probability value for the entry in index i . The GetCombi-

nation function (line 11) is used to return the scanner combination

or set for index i . 

8. Numerical simulation 

To verify the accuracy of our models and to answer the ques-

tions mentioned in Section 3 , we performed several numerical

simulation experiments. We developed Python programs that can

simulate the scanning of a set of samples by a set of anti-virus

scanners. In this section, we describe the setup of these experi-

ments and their results in detail. 

8.1. Simulation of the models 

We defined a hypothetical set of 10 0 0 malicious and 10 0 0 be-

nign samples and 10 anti-virus scanners. We randomly decided

whether a sample is detected as malicious or not by a particular

anti-virus scanner. The true labels of the samples are used to cal-

culate the true positive and false positive detection rates of each

individual anti-virus scanner. Then, for the ground truth case, the

true labels of the samples are used again to calculate the com-

bined true positive rate ( CP T ) and false positive rate ( CP F ) for all

the threshold values ranging from 1 to 10. We calculated the com-

bined detection rates ( CP T and CP F ) for all the threshold values

using our models as well. We calculated the pairwise combined

detection probabilities by calculating the ratio of the number of

samples detected as malicious or benign by the scanners in a pair

and the total number of samples in the common sample set. For
Fig. 5. Graphs of combined detection probabi
AM, we used the pairwise detection probabilities for all possible

airs of scanners to construct the dependency approximation table.

hen, we calculated the accuracy values both for the ground truth

ase and for our models based on three metrics of evaluation, as

escribed in Section 7.1 . 

As mentioned earlier, we randomly decided whether a sample

s detected as malicious or not by an anti-virus scanner. To cre-

te different test sets with different detection rates for the anti-

irus scanners, we enforced different maximum values so that all

he anti-virus scanners will have a detection rate that is below the

aximum value for that test set. This means, for example, if the

aximum value is 90, all the anti-virus scanners (10 in our exper-

ments) will have a maximum detection rate of 0.9 or 90%. We var-

ed the maximum value to create all the test sets spanning all pos-

ible detection rates. The range of maximum values for true posi-

ive rates was from 50 to 95 and the range of maximum values for

alse positive rates was from 5 to 50. 

In this simulation experiment, we tried to test uniformly for

ll detection rates within the selected range for an equal number

10 0 0) of samples for both malicious and benign types. Although

e could easily make the sample set unbalanced by using a much

igher number for the benign set, we observed that since the sim-

lation was done using a simple pseudo random function which

ould maintain the same detection rates regardless of the size of

he sample set, an effort to make it unbalanced is unnecessary and

ould not provide any additional insight. 

.1.1. Analysis: detection probability based modeling is good enough 

o achieve a high accuracy that is very close to the maximum 

To better illustrate our simulation results, we show the graphs

f one test case, where the true positive rate and the false positive

ate was limited to 80% and 10% respectively. Fig. 5 (a) shows the

raphs of combined true positive rates generated from the ground

ruth case and the models for different threshold values ranging

rom 1 to 10. Similarly, Fig. 5 (b) shows the graphs of combined

alse positive rates calculated from ground truth case and our mod-

ls for different threshold values. Here, CPM and DAM exhibit the

est results among all three proposed models and follow the actual

rue trend very closely. 

Fig. 6 shows the comparison of true accuracy values when us-

ng the true optimal threshold (labeled in the graph as True Max-

mum ) and when using the thresholds calculated from our mod-

ls for the example test case using three different evaluation met-

ics. We have also included the Simple Majority (SM) method as

 straightforward majority voting method to compare against our

odels. The Simple Majority (SM) method uses the simple rule of

eciding a sample as malicious if at least 51% of the scanners vote
lities against different threshold values. 
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Fig. 6. Comparison of accuracy values using three evaluation metrics based on sim- 

ulation results. 

Table 2 

Average deviation from maximum accuracy. 

Metric Used CPM DAM GAM SM 

ACC 0.03 0.02 0.1 0.15 

F1 0.04 0.05 0.12 0.19 

MCC 0.06 0.04 0.18 0.27 
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or it. In Fig. 6 , we can see that both CPM and DAM perform as

ood as the true maximum, whereas GAM and SM are also very

lose to them. In this particular case, we see that SM slightly out-

erforms GAM. 

To evaluate how our models perform against the ground truth

ases, we varied the limiting maximum values for randomization

nd created different test cases. As mentioned earlier, the range of

imiting maximum values for true positive rates was from 50 to 95

nd the range for false positive rates was from 5 to 50. We varied

he values with a step size of 5, creating a total of 10 × 10 = 100

est cases. Table 2 shows average deviation from the true maxi-

um accuracy value for all three models and Simple Majority (SM)

ethod based on three evaluation metrics we used. Results from

able 2 indicate that DAM performs best and is within 2% of true

aximum accuracy, whereas CPM and GAM is within 3% and 10%

espectively, based on the ACC metric. It is also evident from the

esults for SM that although it can outperform GAM in specific sce-

arios, on average it performs poorly compared to all our models. 

The implication of these simulation results is that, our models,

hich are solely based on detection probabilities of the scanners,

an be used to predict an optimal configuration which can achieve

 high accuracy close to the maximum. This is very important and
Fig. 7. Trends of changes in Q vs.
seful for the cases where we can only collect minimal information

bout the detection capabilities of the scanners. 

.2. Simulation of optimal size for scanner set ( Q ) 

The optimal size of the scanner set ( Q ) refers to the minimum

umber of scanners in a scanner set that achieves the maximum

ccuracy value among all available N scanners. Here, the goal of

ur simulation test is to determine whether adding new scanners

o a multi-scanner system can always improve or maintain the

aximum accuracy. In other words, if we have a total of N scan-

ers available, should we use all of them (i.e., Q = N ), or is it pos-

ible to remove some scanners from the set (i.e., Q < N ) to achieve

aximum accuracy? 

In the simulation test, we vary the average false positive detec-

ion rate of the scanners and calculate the value of Q . The value of

 is selected as 10 as in previous tests. The value of average false

ositive rate is varied from 0.01 to 0.1 with a step size of 0.01. We

un the tests for each average false positive rate value 100 times to

et an average estimate. 

.2.1. Analysis: whether we should use all N scanners or not depends 

n the false positive rate 

Fig. 7 (a) shows the percentage of times when Q is less than N

ut of all instances as we increase the average false positive rate

f scanners. Here, the increase is almost linear, and it reaches up

o more than 50% when the average false positive rate reaches 0.1. 

Fig. 7 (b) shows the calculated average values of Q when N is

0, as we increase the average false positive rate. Here, the average

alue of Q almost linearly decreases with the increase in average

alse positive rate and it goes down by more than 10% when the

alse positive rate reaches 0.1. 

Both graphs in Fig. 7 verify that if the false positive rates of

he scanners are high enough, the optimal number of scanners that

ill yield the maximum accuracy can be lower than the total num-

er of available scanners. This means, if the false positive rate is

ery low, it does not impact the overall accuracy. To explain, let’s

onsider the extreme case where the false positive rates of all the

canners are zero. In this case, the accuracy of the multi-scanner

ystem only depends on the true positive detection rates of the

canners. Therefore, adding a new scanner to the system where

he new scanner also has a zero false positive rate will either im-

rove or maintain the level of accuracy, since the new scanner can

nly either detect a previously undetected malicious sample, or de-

ect an already detected sample. From this scenario, if we start in-

reasing the false positive rates of the scanners, we must consider
 average false positive rate. 
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the effect of a new scanner which also has a non-zero false posi-

tive rate. This means, the new scanner may falsely detect a benign

sample as malicious, which will ultimately add to the overall false

positive rate. The overall accuracy might still improve or stay the

same if the new scanner’s contribution to true positive is greater

or equal to its contribution to false positive. However, as the false

positive rate increases, the probability that the new scanner will

add more to true positive than false positive decreases. Again, we

can verify this from the fact that for a new scanner in a multi-

scanner system that already has a high number of scanners, the

probability of detecting an undetected malicious sample is lower

than the probability of falsely detecting an undetected benign sam-

ple when the false positive rate is high enough. The graphs in

Fig. 7 also confirm this trend. In conclusion, we can say that the

decision of whether to use all available scanners in a total of N

scanners or whether to go beyond that by adding a newly available

scanner should be made based on the false positive detection rates

of the scanners. In other words, we need to determine the optimal

number of scanners ( Q ) to achieve maximum accuracy. Our models

can be effectively used for this purpose. 

8.3. Simulation of finding best subset of scanners 

In Section 7.2 , we proposed two methods for finding the best

subset of scanners with size M . We conducted simulations to test

how the performance of the subsets generated by these methods

fit into the range of maximum accuracy values achieved by any M

scanner subset. 

Fig. 8 shows the graph for a sample simulation test done to

compare the maximum accuracy values achieved by the best com-

bination, the worst combination, and the combinations derived by

the ranking method and the dependency approximation method.

The individual scanner’s true positive and false positive detection

rates were randomized as in the previous simulation tests and

were limited to a maximum value. In this test case, true positive

rates were limited to 80% and false positive rates were limited to

5%. Here, our methods perform much better than the worst com-

bination selected and perform almost at the same level as the best

combination for higher M values. The dependency approximation

method-based combinations perform slightly better than the rank-

ing method based combinations for lower M values, which means

if the dependency information of the scanners is available, we can

make use of it to find better subset of scanners. We executed sim-

ilar simulation test 100 times to get an average estimate of how

our methods perform. This simulation experiment yielded the fol-

lowing results. 
Fig. 8. Comparison of maximum accuracy by best and worst combinations and 

combinations generated by our methods based on simulation results. 
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.3.1. Analysis: selecting the best scanners is crucial to achieve 

aximum accuracy 

We saw that it is important to determine the optimal number

f scanners to achieve maximum accuracy. But after the optimal

umber is determined, how important is it to choose which scan-

ers to use? From the experimental results, we found that on av-

rage the difference between the best combination and the worst

ombination in terms of accuracy is 0.085 or 8.5%. This is a con-

iderable gap, which means it is very important to optimize the

election of scanners in the subset. 

.3.2. Analysis: both ranking method and dependency approximation 

ethod can achieve an accuracy within 2% of the maximum 

On average, our ranking method and dependency approxima-

ion method provides a combination which achieves an accuracy

alue that is 0.0195 and 0.013 lower than the maximum accuracy

chieved by the best combination respectively and is 0.0655 and

.072 higher than the maximum achieved by the worst combi-

ation respectively. This means that using these methods we can

chieve at least 2% within the maximum and improve by more

han 6.5% from the minimum. These results are calculated using

he first metric ( ACC ). 

.3.3. Analysis: the dependency information of the scanners is useful 

o determine better subset of scanners 

On average, the dependency approximation method based sub-

et combinations can achieve slightly higher (0.0065) accuracy

han the ranking method based subset combinations. This is due

o our use of the pairwise dependency information to generate the

ependency approximation table. Although this is a small improve-

ent, we can argue that the more dependency information that is

vailable to be used, the better subset combination can be identi-

ed. 

. Experimental evaluation using real data 

.1. Malware and goodware dataset 

We discussed the practical issues associated with accurate com-

utation of detection rates of the scanners in a real multi-scanner

ystem in Section 9.5 . For our experimental evaluation, we col-

ected a large dataset of malware samples from VirusSign [25] ,

hich commercially provides a significant amount of high-quality

alware samples. Our malware dataset consisted 38,789 malware

amples in total. Our goodware dataset consisted of 21,624 be-

ign portable executable (PE) binary files collected from Source-

orge [26] . We downloaded these files by crawling the SourceForge

ebsite in order of user ratings to ensure they are not malicious.

able 3 lists the details of each of the malware and goodware

atasets. 

We divided both the malware and goodware dataset further

nto training and test sets. The training datasets are used to cal-

ulate individual true and false detection probabilities ( P T and P F )

or each anti-virus scanner. These values are used by our mod-

ls to calculate combined detection probabilities ( CP T ( t ) and CP F ( t ))

ccording to our CPM formula ( Eq. (7) ) and DAM and GAM algo-

ithms. Then, the test datasets are used to calculate the true com-

ined detection probabilities ( CP T ( t ) and CP F ( t )) for each threshold

. Table 4 lists the division of malware and goodware dataset into

orresponding training sets and test sets. We used multiple test

ets of varying sizes by dividing the full test set to add diversity

nto the experiments. 

.2. Experimental setup 

We used online multi-scanning service VirusTotal for our exper-

ments. VirusTotal generates scanning reports based on scanning
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Table 3 

Malware and goodware dataset. 

Name Source Number of Samples Period of Collection 

Malware Dataset VirusSign 38,789 April 26 to April 29, 2014 

Goodware Dataset SourceForge 21,624 July 20 to July 31, 2015 

Table 4 

Training and test sets. 

Name Number of Samples 

Malware Training Set 28,789 

Malware Test Set 10,000 

Goodware Training Set 11,624 

Goodware Test Set 10,000 

Table 5 

List of anti-virus scanners. 

Kaspersky ESET-NOD32 VBA32 

Antivir GData VIPRE 

Agnitum Ikarus TrendMicro-HouseCall 

Avast K7GW BitDefender 

AVG McAfee-GW-Edition Emsisoft 

Comodo Malwarebytes NANO-Antivirus 

DrWeb Sophos Panda 
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Table 6 

Distribution of test sets for combined accuracy test. 

Test Set Number of Malware Samples Number of Goodware Samples 

1 4000 4000 

2 4000 2000 

3 2000 4000 
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erformed by more than 70 anti-virus scanners (at the time of the

riting). But not all the reports contain the same anti-virus scan-

ers all the time. Therefore, we identified a set of 21 anti-virus

canners (listed in Table 5 ) that were common to all the generated

canning reports. 

We developed a program in C#.NET that is based on the Virus-

otal API to generate the scanning reports from VirusTotal, and an-

ther program in Python to parse and calculate our desired com-

ined detection probability and accuracy values from them. We

lso implemented our models using Python. 

.3. Results and analysis 

.3.1. Analysis: detection probability based modeling can achieve an 

ccuracy that is almost as good as the maximum 

Fig. 9 (a) shows the graphs of combined true positive detection

robability ( CP T ( t )) against threshold values ( t ) from 1 to 21. Here,

e divide the full test set (both malware and goodware) into 5 test
Fig. 9. Comparison of graphs of combined detection probabilities against thr
ets ( Test 1 to Test 5 in the figure) containing 20 0 0 samples each,

hich serve as our ground truth cases here. From the graphs, we

an see that the combined true positive detection rate varies from

est 1 to Test 5 . In the graphs generated from the models, CPM

nd GAM generate a smooth mathematical curve, whereas DAM

isplays a trend which resembles the curves generated from true

ata, although we see some divergence from the other curves at

he beginning. This is because we are using more information from

ctual or true data (pairwise dependency information) to even-

ually calculate the final values. A similar trend can be found in

ig. 9 (b), which demonstrates the graphs of combined false positive

etection probabilities ( CP F ( t )) against threshold values ( t ) from 1

o 21. 

We use the combined true and false positive detection proba-

ilities to calculate accuracy values according to three evaluation

etrics from Section 7.1 and use them to determine the optimal

hreshold. To add diversity in test sizes, we created 3 test sets from

he malware and goodware test set according to Table 6 . However,

s we can see from the results, it does not have any effect on the

valuation. Fig. 10 shows the comparative graphs for these accu-

acy values. The accuracy values calculated using the models are

he true accuracy values for the model-predicted optimal thresh-

lds. Fig. 10 (a) presents the comparative accuracy values for test

et #1 (from Table 6 ) based on three accuracy metrics. Fig. 10 (b)

hows the comparison for all three test cases based on the first ac-

uracy metric ACC. To compare against alternative straightforward

ethods, we have included here two additional methods, namely

he Simple Majority (SM) method, where at least 51% vote from

he scanners are needed to label a sample malicious, and the Fixed
eshold values generated from ground truth test cases and our models. 
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Fig. 10. (a) Comparison of accuracy values using three evaluation metrics based on 

real world test set 1, (b) Comparison of accuracy values using only ACC metric based 

on all three test sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. (a) Comparison of maximum accuracy by best and worst combinations and 

combinations generated by our methods based on real world dataset, (b) Compari- 

son of only the maximum accuracy by best combinations and combinations gener- 

ated by our methods (scale changed to show finer details). 
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Threshold (FT) method, where a fixed threshold of 7 (1/3 of to-

tal number of scanners) is used. We can see that for all the test

cases, the model-predicted accuracy values are very close (within

1%) to true maximum accuracy values. We also see that there is

a very small difference in accuracy values among CPM, DAM, and

GAM, where CPM and DAM perform better in comparison to GAM.

Moreover, we see that both SM and FT methods perform poorly

compared to our models. 

Confirming our findings in Section 8.1 , these results show that

modeling based on detection probabilities can achieve an even bet-

ter accuracy level in real scenarios. This also confirms the impor-

tance of considering detection capabilities when building a multi-

scanner system. 

9.3.2. Analysis: both ranking method and dependency approximation 

method can achieve a combination that is almost as good as the best 

combination 

Next, we conduct all combination tests where we take a sub-

set of M scanners from all N scanners and calculate maximum

accuracy values for the best combination, the worst combination

and the combinations from ranking method and dependency ap-

proximation method. Fig. 11 shows the graphs for this experiment

done only on the test set #1 from Table 6 . Experiments on test

sets #2 and #3 yield similar results and so are omitted here for

space constraints. In Fig. 11 , we see that both the ranking method

and dependency approximation method yield accuracy values that

are very close to the maximum accuracy values achieved by the

best combination and much higher than the maximum accuracy

achieved by the worst combination. We have also calculated an

average among all 3 test sets to find out the average difference
f the accuracy values for the combinations. We found that on

verage the maximum accuracy value calculated using the rank-

ng method and dependency approximation method is lower than

he maximum accuracy for the best combination by 0.00164 and

.0 0 084 respectively and is higher than the maximum accuracy

or the worst combination by 0.05468 and 0.04187 respectively.

his means that our methods can provide a combination that is

lmost as good as the best combination (within at least 0.2% in

erms of accuracy). Again, these results confirm our findings from

ection 8.3 and show that in the real scenarios our ranking method

nd dependency approximation method performs even better. In

ddition, it also confirms that adding the dependency information

elps in finding a better subset combination compared to straight-

orward ranking of the scanners. 

.3.3. Analysis: we should use all N scanners to achieve maximum 

ccuracy due to very low false positive rates in practical scenarios 

Another important observation from Fig. 11 is that the accu-

acy values tend to always increase with the increase of M , which

eans the value of Q is always equal to N . This is because the

verage false positive rate for all the scanners is 0.00864 which

s lower than 0.01. This also verifies our simulation results from

ection 7.2 , where we have seen that for very low average false

ositive rates Q is almost equal to N and the probability of Q be-

ng lower than N is very low. Therefore, in practical scenarios we

an say that more scanners will never reduce accuracy of a multi-
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canner system and we should use all N scanners to achieve a

aximum accuracy. There can be only two cases where this might

ot be true. First, if a subset of all N scanners can already achieve a

aximum possible accuracy of 1, and second, there is a cost issue

here using all N scanners will be too expensive, since as we in-

rease the number of scanners, the cost continues to increase but

he additional improvement in accuracy becomes extremely low. 

In Section 8.2 , we explained why the decision to use all N scan-

ers depend on the false positive rates of the scanners. The same

easoning is applicable here. If we assume an average false positive

ate of less than 0.01 as zero false positive rate, then the trend of

ncreasing accuracy as we increase the number of scanners can be

nderstood very easily. The implications from these results can be

urther extended to provide guidelines for adding a new scanner

eyond the total of N scanners as follows: 

1 Whether the new scanner should be added to the multi-

scanner system depends on the false positive detection prob-

ability associated with the new scanner. Using our models, we

can effectively calculate whether the ( N + 1)-scanner system

(with the new scanner included) has higher accuracy than the

previous N -scanner system and make a decision on the new

scanner. 

2 If the decision is not to increase the number of scanners to

N + 1, then we can check whether we should replace one of the

existing scanners in the N -scanner system with the new scan-

ner. A straightforward approach is to use our ranking method

and rank the new scanner among the existing set of scanners.

A more extensive approach would be to replace each of the ex-

isting scanners by the new scanner one by one and determine

whether the overall accuracy is improved or not. 

.4. Runtime analysis and comparison of the models 

A comparison of the models in terms of runtime analysis is

iven in Table 7 , which shows that CPM and DAM are more com-

utationally expensive than GAM. The reason behind this is the

ombinatorial component in the formula for CPM and DAM. For

AM, there is also a one-time execution cost of O ( N 

2 ( 
N 

N/ 2 
) ) to cal-

ulate the Dependency Approximation table values, which is not

ncluded here (it takes several hours to calculate, but it is a one-

ime cost that won’t be needed in future scans). We have cal-

ulated the actual execution time from our experiments for each

odel, which is also listed in Table 7 . The execution time was

easured on an Intel Core i3 2.10 GHz laptop for a scenario where

 was assigned to be 20. We found that CPM takes almost more

han 6 min and DAM takes slightly less than a minute to execute,

hereas GAM takes about 1 ms. Based on the runtime complexity

iven in Table 7 and the actual execution time that we measured,

 proportional calculation done for the same computing platform

nd 30 scanners ( N = 30) shows that it will take more than 200 h

or CPM and more than 17 h for DAM to finish execution. This

esult shows that both CPM and DAM are not the best choice in

erms of scalability, and GAM provide an efficient alternative. If we

ant to reduce the execution time even more, we can consider us-

ng a subset of M scanners instead of all N scanners, where M < N .

f it is desired to make the best tradeoff between scalability and
Table 7 

Comparison of the models. 

Criteria CPM DAM GAM 

Runtime Complexity O(N 2 ( 
N 

N/ 2 
) ) O(2 N ) O(NlgN) 

Actual Execution Time 402.55 s 57.38 s 0.00099 s 

 

 

 

 

 

 

 

 

 

ccuracy, GAM could be preferable to either CPM or DAM. On the

ther hand, in any practical scenario where accuracy is highly pri-

ritized than scalability, CPM and DAM should be the option to

se. For example, if we are creating a ground truth dataset, where

he slightest inaccuracy could have a major impact, we should go

or CPM and DAM instead of GAM. 

.5. Discussion on practical applications and challenges 

In this section, we discussed some applicative scenarios and

hallenges for a real-world implementation of our proposed mod-

ls and algorithms. Some applicative scenarios are discussed be-

ow: 

1. Depending on whether we have the dependency information of

the scanners, we have the option to use the following combina-

tions of multi-scanner models and optimal scanner subset se-

lection methods: 

a. If dependency information is not available: 

i. CPM and Ranking method, 

ii. GAM and Ranking method, 

b. If dependency information is available: 

i. DAM and Dependency Approximation method. 

2. The optimal scanner subset computation (using either Ranking

method or Dependency Approximation method) should only be

necessary for the following cases: 

a. Initial selection of scanners for the multi-scanner system, 

b. Every time a scanner is added to or removed from the set

of scanners, 

c. Every time there is a change to the detection probabilities

of one or more scanners. 

3. The Dependency Approximation table (for DAM and Depen-

dency Approximation method) computation should only be

necessary for the following cases: 

a. Initial computation for the multi-scanner system, 

b. Every time there is a change in the dependency information

of one or more pairs of scanners. 

4. It might seem that the need for computation of optimal subset

and Dependency Approximation table is quite frequent, but we

anticipate that this is only true for the very early stages of de-

velopment of the multi-scanner system. As the detection and

dependency information of the scanners become more stabi-

lized, the need for such computation should become less fre-

quent. 

We acknowledge that there are several practical challenges in

mplementing our proposed solution, as discussed below: 

1. One of the biggest practical challenges for our proposed system

is to compute accurate detection rates for the scanners in the

system. The accuracy of this detection rate computation mainly

depends on the following two things: 

a. The accuracy of the labels of the samples in the dataset

that is used for the computation. In other words, we need

ground truth datasets for both malware and goodware. 

b. Considerable amount of detection results for each scan-

ner, where the samples from the ground truth dataset are

scanned by the scanners to produce these detection results. 

For the first requirement, we need to establish ground truth

datasets. One way to establish a ground truth dataset is by

manual vetting and analysis of the samples in the set, un-

less there already exist commercially available ground truth

datasets with claims of very high (almost 100%) accuracy. But it

is extremely difficult and time consuming to do that on a large

scale. Our proposed multi-scanner system models can be used

to generate a ground truth dataset, by initially using a manu-

ally vetted ground truth dataset as the training set and itera-

tively adding new labeled samples to that ground truth dataset.
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For the second requirement, we need considerable amount of

detection results for each scanner. One way to achieve this is

by collecting past detection history of the scanners for sev-

eral years. But it might be difficult to ensure consistency, va-

lidity and authenticity of the results, since anti-virus scanners

are constantly updated and detection results for a given sam-

ple might differ from one version to another. Moreover, the de-

tection history must be based on our established ground truth

dataset and from a reliable source. Therefore, one solution to

generate considerable amount of detection results is to fol-

low the same iterative approach as we mentioned for develop-

ing a ground truth dataset. Both the development of a ground

truth dataset and the accumulation of detection results can be

done together by starting with a manually vetted ground truth

dataset and generating the detection results for that dataset us-

ing the actual scanners that the multi-scanner system should

own. Then, computing detection rates for the scanners and

using our models we can identify more ground truth labels

and again use them to generate more detection results. Here,

we should mention that we have used the VirusSign malware

database and highly rated binary files from SourceForge as the

ground truth dataset and VirusTotal as the source for detection

results in this paper, which is only for experimental purposes

and obviously less than ideal for a real scenario. An impor-

tant aspect in this process of developing the database of ground

truth samples and detection results is the optimal selection of

scanners. Since initially we are starting with no detection rates,

we must include all available scanners to compute their de-

tection rates. But as we proceed further into the process with

each iteration, we can use the newly computed detection rates

to decide on an optimal selection of scanners, if necessary. We

acknowledge that it might take several such iterations before

we can have a considerable database of ground truth samples

and detection results to effectively utilize our multi-scanner

system. 

2. Another significant challenge is to maintain the consistency and

accuracy of the detection results with update and upgrade of

the anti-virus scanners. Since a previously undetected sample

could now be detected with the newest version of a scanner,

we must re-scan previously scanned samples by the newest

version to maintain consistency and accuracy of detection re-

sults and detection rates of the scanner. As the ground truth

datasets grow, it might become a time-consuming task to re-

scan all the samples for every update of the scanners. 

3. We acknowledge that it is extremely difficult to completely re-

move bias from anti-virus detection results. However, for prac-

tical purposes and for our models to work with reasonable

accuracy, we can select a dataset with a reasonable non-bias

through the following steps: 

a. Identify datasets with as much diversity as possible. Diver-

sity should be considered with respect to the following: 

i. Origin 

ii. First occurrence 

iii. Behavior 

b. Make the dataset as large as possible. 

4. The size of the dataset to be considered unbiased depends on

the number of anti-virus scanners that will be used in a multi-

scanner detection system and the level of diversity that can be

ensured in that dataset. The more anti-virus scanners are used,

the larger the dataset it should be. Also, if we can ensure a high

level of diversity in a relatively smaller dataset, it could still be

considered unbiased. 

5. For better comparative analysis and collection of dependency

information among the scanners, we recommend that the scan-

ners are tested on the same dataset. But we also acknowledge

that it might be infeasible to ensure that in a practical scenario.
0. Conclusion and future work 

Protecting computer systems from malicious contents has been

nd will remain a top priority for cyber security practitioners, and

he first and foremost step in the protection mechanism is the de-

ection of malware and other malicious contents. In this paper, we

rovided a new set of guidelines in achieving the optimal detec-

ion capabilities of malware using multiple anti-virus scanners. To

apture the behavior of a multi-scanning malware detection sys-

em, we presented two theoretical approximation models based on

nly the individual detection capabilities or ratings of the member

canners in the system and one additional model based on pair-

ise dependency information among the scanners in addition to

he individual detection rates. These models can effectively help

s in finding the optimal threshold to achieve maximum accu-

acy in an N -scanner system, which we verified with experimental

valuations. Furthermore, we learn the following important lessons

hrough these models: 

1. Whether we should use all available scanners or not depend on

the false positive detection rates of the scanners. Addition of

new scanners with poor false positive detection rates can lower

the overall accuracy rather than improving it. 

2. Selection of scanners is crucial to achieve the maximum accu-

racy. 

3. Ranking the scanners based on accuracy scores helps in select-

ing a combination of scanners that is almost as good as the best

combination. 

4. Incorporating pairwise dependency information of the scanners

into the selection of best scanners is beneficial. 

These findings along with our models together provide a set of

mportant guidelines for any multi-scanner detection system con-

isting of only third-party anti-virus scanners where very little in-

ormation is available about the internal design and working mech-

nism of them. 

In the future, we plan to extend our models to incorporate ad-

itional information such as internal mechanism and behavior of

he anti-virus scanners and include experimental evaluation for

uch cases. In addition, we anticipate to further extend this work

nto other areas of malicious content detection, such as intrusion

etection and anti-spam filtering. 
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