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Abstract—Leveraging mobile cloud computing (MCC) and
mobile edge computing (MEC) for offloading computational
tasks is a promising approach to enabling delay-sensitive
applications executing vehicles. Despite MCC and MEC’s ability
and complementary characteristics, most of the existing works on
offloading focus on only either MCC or MEC. In this paper, we
study their cooperation in a three-tier offloading model of a V2X
network where a vehicle can offload computational tasks to cloud
computing and MEC. Specifically, we investigate the optimal
offloading probabilities of three offloading paths, including
Vehicle-to-Infrastructure, Vehicle-to-Cloud, and Infrastructure-
to-Cloud. Our contribution is twofold. First, we derive a
mathematical model of task execution latency and a formulation
to find an optimal solution for the minimum latency problem.
Second, we propose an approximation algorithm based on the
genetic algorithm toward the optimum. The experiment results
show that by exploiting both MCC and MEC’s complementary
advantages, our proposed algorithm in the three-tier model can
shorten the delay significantly compared to existing two-tier
models. Depending on the traffic load and the number of Road
Side Units, our proposal can reduce the delay by 93.75% on the
average, and 99.9% in the best case.

Index Terms—V2X, offloading, minimum latency, 3-tier, MEC.

I. INTRODUCTION

Along with broadband Internet development, more and more
computation-, delay-sensitive applications, such as intelligent
transport systems and autonomous driving, are being used
on vehicles. The applications require substantial computation
resources to process a massive volume of sensory data
and real-time actions. This demand poses a significant
challenge to resource-constrained vehicles that have limited
computation capability. As a solution, the emerging mobile
edge computing (MEC) technology has been introduced into
Vehicle-to-Everything (V2X) networks. In the MEC-enabled
V2X systems, each Road-Side Unit (RSU) has a collocated
MEC server that can provide computing services. The vehicles
can offload computation tasks to the RSU through the Vehicle-
to-Infrastructure (V2I) information exchange path. Because
the MEC servers are in the proximity of vehicles, the MEC
technology potentially provides low latency, high-reliability
computing services via computation offloading.

In the literature, many efforts have been devoted to
investigating the computation offloading issue in V2X
networks. In [1], the authors studied the problem of resource
allocation. The work in [2] addressed the allocation of
transmit power, bandwidth, and computation resource to obtain
system performance gains. In [3], [4], [5], the focus was
on hybrid offloading of V2I and V2V. Nevertheless, as the
RSUs are limited by a certain level of computation and the
communication range, using only MEC servers for offloading
tasks may induce intractable execution delay, especially under
circumstances of large numbers of the vehicles or tasks.

Mobile cloud computing (MCC) has been known as
a promising approach for providing scalable computing
resources anytime, anywhere. In MCC-assisted vehicular
networks, vehicles’ computations can be offloaded to
the cloud server through the so-called Vehicle-to-Cloud
(V2N) information exchange path. Since the MCC server
possesses an enormous computation resource, it can handle
massive computational tasks. However, due to its inherent
characteristics of centralized deployment and long distance
from the vehicles, using MCC solely to mitigate vehicles’
computations incurs an inevitably significant transmission
delay.

Motivated by the MEC and MCC’s complimentary, we
investigate a three-tier V2X model that enables both MEC
and MCC in this paper. Specifically, the model includes three
exchange paths: V2I, V2N, and Infrastructure-to-Cloud (I2N).
Note that I2N is responsible for offloading tasks from the
RSUs to the cloud server. In the model, vehicles may offload
tasks to their RSU or to the cloud server (hereafter, we name
the gNB). Moreover, the RSU may either locally process the
submitted task or offload it to the gNB. After performing
the task, the RSU and the gNB send the result back to the
vehicle. Under this three-tier model, we study how to optimize
the offloading probabilities between three tiers, i.e., vehicles,
RSUs, and the gNB, to minimize all tasks’ average execution
latency. We focus on two below research questions:

1) How much can the three-tier architecture improve the
performance compared to the two-tier architectures
(vehicle-RSU; vehicle-gNB)?
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Paper Target
network Offloading paths Variables Objectives

[1] 2-tier V2I, I2I RA, OF min(Energy)
[6] 2-tier V2I, I2I OF max(Utility)
[3] 2-tier V2I, V2V OF min(Cost)
[4] 2-tier V2I, V2V OF min(Energy)
[5] 2-tier V2I, V2V OF min(Latency)
[7] 2-tier V2I, I2N RA, OF max(Utility)
Proposal 3-tier V2I, V2N, I2N OF min(Latency)

TABLE I: Comparison of existing offloading strategies
RA: Resource allocation, OF: Offloading decision

2) How can optimal offloading probabilities affect the
performance?

To the best of our knowledge, this is the first work
addressing the offloading probability optimization in the three-
tier V2X networks. The main contributions of this paper are
as follows.

• We mathematically model the task execution latency
in the three-tier model. We then derive an explicit
formulation of the average latency as a function
of the offloading probabilities. Moreover, we provide
a mathematical formulation of the average latency
minimization problem.

• We propose a genetic algorithm (GA) for approximately
determining near-optimal offloading probabilities for the
addressed problem.

• We extensively evaluate the three-tier model’s
effectiveness and the proposed optimal offloading
probabilities determining algorithm by simulation.

The remainder of the paper is organized as follows. The next
section briefly introduces the related works. In Section III,
we describe the model of task execution latency and problem
formulation. In Section IV, we propose a GA-based algorithm
for determining near-optimal offloading probabilities. Section
V includes performance evaluation. Finally, Section VI
concludes the paper.

II. RELATED WORK

Numerous works have studied MEC-based vehicular
networks. In [1], Feng et al. jointly considered the computation
offloading and resource allocation problems. Targeting at
minimizing the power consumption of collaborative MEC
servers and vehicles, the author divided the original problem
into two sub-problems. The first one is how to optimally
allocating the Ultra-reliable low-latency communication
resource for multi-cells to multi-vehicles. The second one is
determining the offloading decisions among local vehicles, a
serving MEC server, and collaborative MEC servers. Similarly,
the authors in [6] leveraged the collaboration between multiple
MEC servers to achieve resource sharing. Specifically, they
introduced a concept of double-MEC-layers, then exploit
deep Q-learning to make the offloading decision for resource
optimization.

Regarding V2V and V2I, the works in [3], [4], [5] addressed
the offloading decision of collaborative task execution between
platoons and a MEC server. Both [3], [4] studied how to

Fig. 1: The network model
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Fig. 2: The queueing model

decide whether the tasks should be executed locally, offloaded
to the other platoon members, or the associated MEC server.
However, [3] focused on minimizing the offloading cost, while
[4] aimed to reduce the average total energy consumption.
In [3], the authors first mathematically formulated the
problem as a constrained shortest path problem on a directed
acyclic graph. They then exploited the classical Lagrangian
Relaxation-based Aggregated Cost (LARAC) algorithm to
determine an optimal solution under the constraint of task
execution deadlines. In [4], the authors leveraged Lyapunov
algorithm to simplify the research objective and utilized the
greedy approach to determine a sub-optimal solution. [5]
aimed at reducing offloading latency between the vehicles,
each of which necessarily maintains the information of its 1-
hop neighbors. Whenever having a task, the vehicle calculates
the offloading latency for all the relay hop candidates. Then,
the neighbor vehicle with the minimum latency is chosen as
the best relay node. We give a summary of related works in
Table I. Although many works have been done, most of them
rely on only the MEC servers for computation offloading.

Recently, Zhao et al. [7] tried to utilize the MEC and
cloud computing resources simultaneously for offloading via
two paths: V2I and I2N. Specifically, vehicles may offload
their computation tasks to the MEC server or the cloud
server through RSUs. The objective is to maximize the system
utility by optimizing both the offloading strategy and resource
allocation. Unlike previous works, this paper investigates a
three-tier model that provides three offloading paths: V2I,
V2N, and I2N. Our objective is to determine the offloading
probabilities to minimize task execution latency.

III. THEORETICAL ANALYSIS

A. System modeling

1) Preliminaries: Figure 1 shows our investigated V2X
network model. We consider an urban area, where N Roadside
Units (RSUs) is located on the roadsides. The vehicles, each of
which has computational tasks, run along the road. The tasks
can be offloaded to either an RSU or the gNB. Moreover,
the RSU may perform the offloaded task locally or forward
it to the gNB. After completing the task, the RSU and the
gNB send the result back to the vehicle. Accordingly, there
are three types of tasks in the model: (1) tasks are directly
offloaded to the gNB, (2) tasks are offloaded to the RSU and
then forwarded to gNB, and (3) task are offloaded to RSUs.
Example scenarios for type (1), (3) are intuitive, but the one

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:58:26 UTC from IEEE Xplore.  Restrictions apply. 



of type (2) could be as follows. A vehicle offloads a task to
an RSU, but then leaves the RSU’s coverage before the task is
processed. Thus, the RSU forwards the task to the gNB as gNB
could send back the result to the vehicle. Our objective is to
determine the optimal values of the offloading probabilities to
minimize all the tasks’ average execution delay. A task’s total
execution latency comprises two components: the transmission
delay and the processing delay. For the type (1) (and type
(3)) tasks, the transmission delay is the time for transmitting
packets from the vehicles to the gNB (and the RSU), and
vice versa. In type (2), the transmission delay includes three
transmission periods: vehicle-to-RSU, RSU-to-gNB, and gNB-
back-to-vehicle. The processing time is time for performing
the task at the RSU (concerning type (3)) or the gNB
(concerning type (1) and (2)). Now, we define the notations
and assumptions used throughout this paper. We denote by
PL and PR the probability by that the vehicles and the RSUs
offload to the gNB. We assume that the vehicles enter and
leave an RSU’s coverage according to the Poisson process with
the arrival rate of λv and the departure rate of µv . The task
generation at each vehicle also follows the Poisson distribution
with the arrival rate of λd. We assume that the task processing
time at RSUs and the gNB are exponentially distributed with
the service capacities of each RSU and the gNB, denoted as
µR and µg , respectively. When tasks are offloaded to RSUs
or gNB, they are transmitted through communication links.
Based on the above assumptions, tasks arrive at the links
follow a Poisson process. We also assume the communication
delays are exponentially distributed. The link capacities from
a vehicle to an RSU and vice versa are denoted by µV 2I and
µI2V , respectively. Similarly, we denote the bandwidths for the
vehicle-gNB links by µV 2N and µN2V . The RSU-gNB link’s
capacities are denoted by µI2N and µN2I . Moreover, we use
t1, t2, t3 to denote the average latency of tasks belonging
to type (1), (2) (3), respectively. The queuing model for our
system is illustrated in Fig. 2.

2) Derivation of the latency: In the following, we derive
the average latency of three task types. The average number
of vehicles associated with an RSU is given by E[V ] = ρv

1−ρv
,

where ρv = λv

µv
. As the probability for direct offloading

to the gNB is PL, vehicle offload tasks to RSUs with a
probability of 1−PL. Accordingly, the distribution of packets
offloaded to an RSU can be seen as a Poisson process
with the arrival rate of λV 2I = ρv

1−ρv
λd (1− PL), where

ρv

1−ρv
(1− PL) is the number of vehicles associated with an

RSU; λd is the task arrival rate at each vehicle. As each
vehicle offloads tasks to the gNB with the probability of
PL, the arrival rate at the vehicle-to-gNB link is λV 2N =
ρv

1−ρv
λdNPL. Similarly, the arrival rate at the RSU-to-gNB

link is λI2N = ρv

1−ρv
λdN (1− PL)PR. Hence, the packets at

the gNB can be seen as a Poisson process with the arrival
rate of λg = ρv

1−ρv
λdNPL + ρv

1−ρv
λdN (1− PL)PR, where

ρv

1−ρv
λdNPL is the arrival rate of tasks offloaded by all

vehicles, and ρv

1−ρv
λdN (1− PL)PR is the arrival rate of

tasks offloaded by all RSUs. Let λI2V be the arrival rate of

traffic from RSU to vehicles, then λI2V can be calculated as
λI2V = ρv

1−ρv
λd (1− PL) (1− PR). Assuming that the tasks

are homogeneous, we denote p, q as the size of the packet
conveying a task, the one containing the results of a task,
respectively.
Type 1: Tasks that are offloaded directly to the gNB
The transmission time spent to offload a task from a vehicle
to the gNB is given by

tV 2N =
1

µV 2N − λV 2N
=

1

µV 2N − ρv

1−ρv
λdNPL

. (1)

The time for handling a task at the gNB is calculated by tg =
1

µg−λg
. By substituting the value of µg , we have

tg =
1

µg − ρv

1−ρv
λdNPL − ρv

1−ρv
λdN (1− PL)PR

. (2)

The transmission time from gNB to the vehicle is defined as
tN2V = 1

µN2V −λN2V
, where λN2V is the arrival rate of packets

from gNb to the vehicles. As the results of all task offloaded
from both RSU and vehicle to the gNB then will be sent back
to the vehicle, λN2V equals to λg . Consequently, we have

tN2V =
1

µN2V − ρv

1−ρv
λdNPL − ρv

1−ρv
λdN (1− PL)PR

.

(3)
From (1), (2) and (3), the execution latency for the tasks
belonging to Type 1 is represented as

t1 =
1

µV 2N − ρv

1−ρv
λdNPL

+
1

µg − ρv

1−ρv
λdNPL − ρv

1−ρv
λdN (1− PL)PR

+
1

µN2V − ρv

1−ρv
λdNPL − ρv

1−ρv
λdN (1− PL)PR

. (4)

Type 2: Tasks that are offloaded to the RSU and then processed
at the RSU
The transmission time from the vehicle to the RSU is
tV 2I = 1

µV 2I−λV 2I
= 1

µV 2I− ρv
1−ρv

λd(1−PL)
. Let us denote

by µR the service rate, and µR the arrival rate of the
tasks at the RSU. The processing time of a task at the
RSU is calculated by tR = 1

µR−λR
. As the arrival rate

of tasks offloaded to a RSU is ρv

1−ρv
(1− PL)λd and the

probability that the RSU transfers a task to the gNB is PR,
the arrival rate of packets being processed by the RSU, i,e,
λR is λR = ρv

1−ρv
λd (1− PL) (1− PR). The transmission

time from the RSU to the vehicles is defined by tI2V =
1

µI2V −λI2V
= 1

µI2V − ρv
1−ρv

λd(1−PL)(1−PR)
. In consequence, the

average latency of tasks belonging to Type 2 is deduced as

t2=
1

µV 2I− ρv

1−ρv
λd (1−PL)

+
1

µR− ρv

1−ρv
λd (1− PL) (1−PR)

+
1

µI2V − ρv

1−ρv
λd (1− PL) (1−PR)

. (5)

Type 3: Tasks that are offloaded to the RSU and then forwarded

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:58:26 UTC from IEEE Xplore.  Restrictions apply. 



to the gNB
At the RSU, the packet has to be queued and then offloaded
to the gNB. Therefore, the time from the RSU to gNB can be
considered as

tI2N =

(
1

µR − λR
− 1

µR

)
+

1

µI2N − λI2N
. (6)

where 1
µR−λR

− 1
µR

is the waiting time at the RSU, and
1

µI2N−λI2N
is the transmission time from RSU to the gNB.

By substituting the value of λI2N and λR into (6), we have

tI2N =

(
1

µR − ρv

1−ρv
λd (1− PL) (1− PR)

− 1

µR

)
+

1

µI2N − ρv

1−ρv
λdN (1− PL)PR

. (7)

The total delay for the Type 3’s tasks is defined as t3 = tV 2I+
tI2N + tg + tN2V . Therefore, from (7), (2), and (3), we have

t3 =
1

µV 2I − ρv

1−ρv
λd (1− PL)

+

(
1

µR − ρv

1−ρv
λd (1− PL) (1− PR)

− 1

µR

)
+

1

µI2N − ρv

1−ρv
λdN (1− PL)PR

+
1

µg − ρv

1−ρv
λdNPL − ρv

1−ρv
λdN (1− PL)PR

+
1

µN2V − ρv

1−ρv
λdNPL − ρv

1−ρv
λdN (1− PL)PR

. (8)

B. Problem statement

Our objective is to determine optimal offloading
probabilities for the vehicles and the RSUs to minimize
all tasks’ average delay. The probability for a packet
belonging Type 1, Type 2, Type 3 are PL, (1− PL)(1− PR)
and (1 − PL)PR, respectively. Therefore, the average delay
of all tasks is determined by

t = PLt1 + (1− PL)(1− PR)t2 + (1− PL)PRt3.

Consequently, our optimization problem can be
mathematically formulated as follows.

Minimize

PLt1 + (1− PL)(1− PR)t2 + (1− PL)PRt3 (9)

Subject to
ρv

1− ρv
(1− PL)λd ≤ µV 2I (10)

ρv
1− ρv

λd (1− PL) (1− PR) ≤ µI2V (11)
ρv

1− ρv
λdPLN ≤ µV 2N (12)

ρv
1− ρv

λdNPL +
ρv

1− ρv
(1− PL)λdNPR ≤ µN2V (13)

ρv
1− ρv

λd (1− PL)PRN ≤ µI2N (14)
ρv

1− ρv
(1− PL) (1− PR)λd ≤ µR (15)

ρv
1− ρv

λdNPL +
ρv

1− ρv
(1− PL)λdNPR ≤ µg (16)

Constraints (10), (11), (13) and (14) shows that the total
traffic offloaded should not exceed the links’ bandwidth.
Specifically, (10) and (11) depict the constraint concerning the
links between the vehicles and RSU; (13) refers to the vehicle
to the gNB’s link; and (14) represents the constraint regarding
the link from gNB to the vehicle. (15) and (16) depict that the
task arrival rates at the RSUs and the gNB should not exceed
their service rates.

IV. GA-BASED OPTIMIZATION ALGORITHM

We propose a GA-based approximation algorithm to
determine the optimal solution for the problem formulated in
the previous section.

A. Chromosome representation, fitness function, and
initialization

A chromosome consists of two genes representing the
values of PL and PR, respectively. The fitness value is the
average delay obtained when applying PL and PR, which
can be calculated by using formula (9). We aim to determine
the individual with a minimal fitness value and satisfying
all constraints from (10) to (16). We randomly initialize N
individuals, where N is a tunable parameter. To increase
the population’s diversity, we create 70% of individuals
that satisfy the constraints from (10) to (16) and 30% of
the individuals that do not. Moreover, we also include the
boundary values (i.e., [0, 0], [1, 1], [0, 1], [1, 0]) to diversify the
initial population.

B. Crossover and mutation
We propose a crossover algorithm that combines two

approaches: average crossover and swap crossover. In the
following, we denote I1 = {I1.x, I1.y}, I2 = {I2.x, I2.y}
as the two parents. Note that x and y represent the values of
PL and PR, respectively. In the average crossover, we create a
random number α in the range [0, 1] and take the α-weighted
average of the parents. Specifically, the genes of the offspring
O = {O.x,O.y} is defined as: O.x = αI1.x+(1−α)I2.x and
O.y = αI1.y+(1−α)I2.y. In the swap crossover, we swap the
parents’ two genes and select among the two offsprings the
one with better fitness value. Specifically, we first generate
two offsprings O1 = {I1.x, I2.y} and O1 = {I2.x, I1.y}.
Then, we select among O1 and O1, the one whose fitness value
is smaller. Consequently, by applying both average crossover
and swap crossover, we obtain two offsprings after performing
the crossover operation. Concerning the mutation operation,
we mutate an individual by taking the individual’s average
with a random individual in the range of [0, 1]. Specifically,
let I = {I.x, I.y} be the individual that will be mutated,
then the mutated offspring O = {O.x,O.y} is defined by
O.x = (x0 + I.x)/2 and O.y = (y0 + I.y)/2. where x0, y0
are two random numbers belonging to the range [0, 1].
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C. Selection and termination condition

Note that the offsprings obtained by the crossover and
mutation operations may not satisfy the constraints. We
do not remove these offsprings from the population but
assign them a significantly tremendous fitness value. The
reason is to maintain the diversity of the population. After
performing crossover and mutation operations, we select N
individuals whose fitness values are smallest among the current
population. The algorithm terminates when the number of
generations reaches a predefined number.

V. PERFORMANCE EVALUATION

In this section, we compare the 2-tier and 3-tier models and
investigate how much the offloading probabilities determined
by our proposal can improve the 3-tier model’s performance.
We perform the evaluations with various configurations of PL

and PR, as shown in Table II. In total, we have two 2-tier
models and six 3-tier models. We conduct three experiments
to see the impacts of the packet arrival rate, the number of the
RSUs, and the vehicle arrival rates on the average delay. We
build an in-house simulator that is written in Java language
for the experiments. In our simulation, the vehicle arriving,
packet processing, and packet transmission processes follow
the Poisson process. Other parameters are presented in Table
III, in which the configurations of the gNB, RSU, and vehicles
are suggested by [8]. Moreover, the RSUs are placed evenly
in a straight-lined road.

A. 2-tier vs. 3-tier and RSU vs. gNB

Figure 3 presents the impacts of the tasks’ arrival rate,
vehicles’ arrival rate, and the number of RSUs on the average
delay. From Fig. 3(a), 3(b), we can see that the offloading
schemes all increase the average delay along with the
increment of the arrival rate of tasks and vehicles, respectively.
Increasing the number of RSUs improves the performance of
the scheme that mainly relies on RSUs for offloading, i.e.,
PL = PR = 0, (as shown in Fig. 3(c)). For the schemes
(PR = 0, PL = 0.5) and (PR = 0.5, PL = 0), we observe
that the processing time at the gNB contributes the most to
the delay; thus, increasing the number of RSUs cannot help
to reduce the average delay. Another observation is that the
2-tier models suffer from significantly higher delay compare
to 3-tier models. The model using only the gNB (i.e., PL = 1)
shows the worst performance (see Fig.3(a) and 3(b)). The 3-
tier models with (PL = 0.5, PR = 1) or (PL = 0, PR = 1) are
special cases where the RSUs only provide the communication
but not computing. As computing contributes to the latency’s
main part, leveraging RSUs for only communication does not
take many advantages. Consequently, the delay when using
(PL = 0.5, PR = 1) or (PL = 0, PR = 1) is almost the same
as using only the gNB. The 2-tier model using only RSUs
(i.e., (PL = PR = 0)) improves the performance significantly
compared to the one using only the gNB. Specifically, as
shown in Fig. 3(a), the average delay when using only RSUs
is only about half of those when using only the gNB. In

PL PR Model Meaning
0 0 2-tier All tasks are offloaded and processed at RSUs.
1 0 2-tier Vehicles offload all tasks to the gNB.

0 0.5 3-tier Vehicles offload all tasks to RSU. RSUs offload
50% of the tasks to the gNB.

0 1 3-tier Vehicles offload all tasks to RSU. RSUs offload
all tasks to the gNB.

0.5 0 3-tier
Vehicles offload 50% of the tasks to the gNB,
50% of the tasks to RSU; RSUs process all the
tasks locally.

0.5 0.5 3-tier
Vehicles offload 50% of the tasks to the gNB,
50% of the tasks to RSUs; RSUs offload 50%
of the tasks to the gNB.

0.5 1 3-tier
Vehicles offload 50% of the tasks to the gNB,
50% of the tasks to RSU; RSUs offload all the
tasks to the gNB.

opt opt 3-tier the probabilities provided by our algorithm

TABLE II: Offloading probability configurations

Factor Value
the gNB’s CPU 256 GHz
RSU’s CPU 64 GHz
CPU cycles for a task 0.2 GHz
Mean packet size 500 kb
RSU-gNB’s link bandwidth 10 Gbps
Vehicle-RSU’s link bandwidth 1 Gbps
Vehicle-gNB’s link bandwidth 500 Mbps
Vehicle arrival interval ( 1

λv
) 5 ∼ 9

Task arrival rate (λd) 80 ∼ 100
Road length 1500 m
Vehicle speed 12 m/s

TABLE III: Simulation parameters

comparison with the 2-tier models, our proposed algorithm
reduces the delay up to 99.9%.

B. Comparison of various offloading probability
configurations in the 3-tier model

In the following, we compare the offloading scheme
determined by our algorithm and the others in the 3-tier
model. As can be observed, our proposed algorithm achieves
the best performance reflected by the smallest average delay.
Especially, our proposal shows the superiority over the other
schemes in the cases when the arrival rate of tasks and vehicles
are significant (i.e., being higher than 85, less than 6 in Fig.
3(a), Fig. 3(b), respectively). The proposal shortens the delay
by at least 4.5% and more than 90% in the best case compared
to other offloading schemes. Figure 4 depicts the cumulative
distribution function of the delay caused by various offloading
strategies. As all the experiment scenarios show similar trends,
we plot the results regarding the task arrival rate of 100,
vehicle arrival interval of 5, and the number of RSUs of 5. The
optimal values of PL and PR determined by our algorithm
are 0.355 and 0.064, respectively. As the performance of
(PL = 0.5, PR = 1) and (PL = 0, PR = 1) are almost the
same, we plot only the delay of (PL = 0.5, PR = 1). As
shown, the delay values of three-tier with our proposal are all
smaller than 0.1 seconds. Meanwhile, the offloading strategies
using only the gNB computing capability (i.e., PR = 1)
incurs an extremely high latency (i.e., more than 80% of
tasks endure the latency higher than 100 seconds). That is
because the task arrival rate exceeds the service capacities
of the gNB. By leveraging the resource of both the gNB
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(b) Impacts of the vehicle arrival rate
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Fig. 3: Average delay concerning various offloading probability configurations
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Fig. 5: Delay over time
and RSUs for offloading the computing, the schemes (PL =
PR = 0.5), (PL = 0.5, PR = 0) and (PL = 0, PR = 0.5)
shorten the latency significantly. However, in such cases, many
packets (approximately 80%) have a higher latency than 1
seconds. Also, around 60% of those packets suffer from the
latency of 10 seconds or above. Although the configuration
(PL = 0.5, PR = 0) is quite close to those determined by
our proposal, their performance gap is significant. The reason
is that in (PL = 0.5, PR = 0), the task arrival rate at the
gNB is slightly higher than the service capacity. Therefore,
the processing time at the RSUs increases severely. Figure
5 plots the delay of the tasks over time. Interestingly, while
the delay caused by other schemes gradually increases, that
achieved by our proposal is quite stable. In (PL = PR = 0),
(PL = PR = 0.5), (PL = 1), and (PL = 0.5, PR = 1),
most of the computational tasks are processed at only either
RSUs and the gNB. This mechanism causes the bottleneck
phenomenon and leads to overload as time goes on. As a
consequence, the delay in these cases gradually increases.
By leveraging the computational resource of both RSUs and
the gNB, the configurations (PL = 0, PR = 0.5) and
(PL = 0.5, PR = 0) balance the traffic loads better and thereby
reduce the bottleneck phenomenon. It can be seen that the
increasing slopes of the delay in (PL = 0, PR = 0.5) and
(PL = 0.5, PR = 0) are much smaller compared to the others.

VI. CONCLUSION

In this paper, we have investigated the computational
task offloading issue in the 3-tiers V2X network (i.e.,
vehicles, RSUs, and gNB). Specifically, we have addressed
two problems: 1) performance comparison between the 3-
tiers and 2-tiers model; 2) finding the optimal offloading
probabilities for minimizing the average delay of the tasks.
We derived the delay model to solve those problems, which

is for the comparison and the mathematical formulation of
the optimization problem. We have also proposed a GA-based
approximation algorithm to determine near-optimal offloading
probabilities. We have conducted simulations to validate the
mathematical model’s feasibility and evaluate the proposed
algorithm’s performance. The experimental results showed that
our offloading algorithm could reduce the delay up to 99.9%
in the best case, and 93.75% on the average.

ACKNOWLEDGMENT

This research is funded by Ministry of Education and
Training of Vietnam under grant number B2020-BKA-13.

REFERENCES

[1] L. Feng, W. Li, Y. Lin, L. Zhu, S. Guo, and Z. Zhen, “Joint computation
offloading and urllc resource allocation for collaborative mec assisted
cellular-v2x networks,” IEEE Access, vol. 8, pp. 24 914–24 926, 2020.

[2] E. Pateromichelakis, C. Zhou, P. Keshavamurthy, and K. Samdanis, “End-
to-end qos optimization for v2x service localization,” in Proc. IEEE
GLOBECOM, 2019, pp. 1–6.

[3] X. Fan, T. Cui, C. Cao, Q. Chen, and K. Kwak, “Minimum-cost offloading
for collaborative task execution of mec-assisted platooning,” Sensors,
vol. 19, no. 847, 2019.

[4] T. Cui, Y. Hu, B. Shen, and Q. Chen, “Task offloading based on lyapunov
optimization for mec-assisted vehicular platooning networks,” Sensors,
vol. 19, no. 4974, 2019.

[5] H. Wang, X. Li, H. Ji, and H. Zhang, “Federated offloading scheme
to minimize latency in mec-enabled vehicular networks,” in Proc. IEEE
GLOBECOM Workshops, 2018, pp. 1–6.

[6] G. Wang and F. Xu, “Regional intelligent resource allocation in mobile
edge computing based vehicular network,” IEEE Access, vol. 8, pp. 7173–
7182, 2020.

[7] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
2019.

[8] A. Weissberger, “Fastest 5G network in the U.S.?
T-Mobile vs Verizon; Nokia’s fastest 5G claim,”
https://techblog.comsoc.org/2020/05/20/fastest-5g-network-in-the-u-
s-t-mobile-vs-verizon-nokias-fastest-5g-claim/, 2020, [Online; accessed
25-May-2020].

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:58:26 UTC from IEEE Xplore.  Restrictions apply. 


