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ARTICLE INFO ABSTRACT
Keywords: In Software-Defined Networking (SDN), a switch is a forwarding device that moves data packets in a network.
Modelling A software switch handles forwarding functions in software and thus cannot forward packet at line speed while

Software-defined network
Software switch
Hardware switch
Queueing theory

a hardware switch leverages optimised forwarding hardware to forward packets at line speed. However, there
has been very little research in the literature to help network engineers understand the tradeoffs in choosing
one over the other. In this paper, we develop a unified queueing model for characterizing the performance of
hardware switches and software switches in SDN. The unified queueing model is an analytical tool for engineers
to predict delay, packet loss and throughput in their SDN deployments. Existing queueing models of SDN have
focused on performance analysis of software switches, while our work presented herein is the first to present
a unified analysis of hardware and software switches. Our proposed models exhibit errors below 5% compared
to simulation. Between a hardware and software switch, the evaluation shows that a hardware switch achieves
an average 80% lower delay and up to 100% lower packet loss probability compared to a software switch. The
more a hardware switch involves the controller for decisioning, the lower the gains in terms of packet delays

through the switch.

1. Introduction

Software-Defined Networking (SDN) is an emerging network archi-
tecture that decouples the control plane from the data plane in the
switch. With this decoupling, the control plane is logically central-
ized and has a network-wide view of packet forwarding that occurs
in any given end-to-end path. The logically centralized control plane
(also termed controller) programs the data plane via a “southbound
interface” which is interface between controller and switch. OpenFlow
is the de-facto protocol for southbound interface championed by the
Open Networking Foundation (ONF) (ONF, 2014).

While the controller plays an important role in managing the net-
work and handling control information, the work of moving data across
the network is done by the switch, and therefore the performance of
SDN is a function of the switch forwarding speeds and the switch-
controller interaction. Analytical models of SDN switches are a key
step for SDN performance characterization and these models will help
network engineers design networks suitable for delay and packet loss
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sensitive applications like industrial automation system (Haiyan et al.,
2016), interactive video (Nayak et al., 2016), online surgery (Kumar et
al., 2017) etc.

In this paper, we are concerned with physical SDN switches as
opposed to virtual switches such as those instantiated in virtual
machines. Within such a context, SDN switches are generally cat-
egorized into software switches and hardware switches. A software
switch maintains the flow table in SDRAM (synchronous dynamic ran-
dom access memory) where the incoming packet is matched against
the flow table entries (FTE) using a CPU (central processing unit). If
there is no matching FTE, packet is forwarded to the controller which
feedback forwarding information to the switch and update the soft-
ware flow table. The packet processing logic in a software switch is
implemented in software (Goransson and Black, 2014) usually with
the help of optimised software libraries. Open vSwitch (OVS) (Open
vSwitch), Pantou/OpenWRT (Pantou), ofsoftswitch13 (ofsoftswitch13),
Indigo (Indigo: Open Source Openf) running on commodity hardware
(e.g. desktops with several network interface cards) are few examples
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of SDN software switches.

Similarly, in a SDN hardware switch, packet processing function is
embedded in specialized hardware. This specialized hardware includes
layer two forwarding tables implemented using content-addressable
memories (CAMs), layer three forwarding tables using ternary content-
addressable memories (TCAMs) (Goransson and Black, 2014) and appli-
cation specific integrate circuits (ASICs). In a hardware switch, the FTEs
is stored in CAMs and TCAMs of specialized hardware and packets
are processed by the ASICs. Hardware switches are also equipped with
SDRAM and CPU allowing a hardware switch to maintain flow tables in
both TCAM and SDRAM (Rygielski et al.).

For hardware switches, line speed packet matching is possible
because of the CAM and TCAM. However, most switches have lim-
ited TCAM capacity to store FTE due to the cost, size and energy
consumed by TCAM (Rawat and Reddy, 2017). On the other hand,
SDRAM is cheaper, consumes less power for storing FTE besides offering
more flexibility to implement complex actions through software. Hence,
much more SDRAM (compared to TCAM) is available in a switch.
Switches such as the Mellanox SN2000 series, NoviFlow NoviSwitch
class of switches, HP ProCurve J9451A, Fulcrum Monaco Reference,
Quanta LB4G, and Juniper Juno MX-Series are classified as hardware
switches (Nunes et al., 2014; Huang et al., 2013).

Both software and hardware switches have strengths and weak-
nesses, and the choice of switch directly affects the performance of the
network. To identify the potential bottlenecks that could hinder the
performance of the SDN, the trade offs between choosing a hardware
vs. software need to be studied and investigated to improve the perfor-
mance of SDN. While other approaches like Network Calculus has been
also used to model SDN (Azodolmolky et al., 2013; Koohanestani et al.,
2017; Huang et al., 2017), we use queueing theory to model both hard-
ware and software switches in this paper for finer grain analysis. Most
analytical models (queueing and network calculus) for SDN character-
ize the software switch architecture (i.e. a switch equipped with CPU
only), with none of the queuing models to the best of our survey have
modelled the hardware switch architecture (i.e. switch with CPU and
specialized hardware).

In this paper we have two objectives, (i) develop an analytical model
for SDN hardware switch, and (ii) characterize the performance of
SDN software and hardware switches. Analytical modelling of the SDN
hardware switch provides important insights for benchmarking switch
performance and parametric sensitivity analysis to help network engi-
neers identify critical factors that may influence network performance.
Finally, by comparing software and hardware switch, we develop guide-
lines to guide deployment choices such as under what operating con-
ditions, software data plane outperforms hardware data plane and vice
versa.

The rest of the paper is organized as follows. We explain the models
for software and hardware SDN switch in Section 2. In Section 3, we
discuss the related works on SDN performance analysis using queue-
ing theory. In Section 4, we describe the queueing models for software
and hardware SDN switches using a Quasi-Birth Death (QBD) process.
In Section 5, we describe queueing model for software SDN switch in
detail. In Section 6, we describe our proposed queueing model for hard-
ware SDN switch. The results of our proposed queueing model for SDN
hardware switch and comparison with SDN software switch is discussed
in Section 7. Finally, we conclude the paper with discussion and future
work in Section 8.

2. Packet flow in software and hardware SDN switches

A generic block diagram of a software switch where the external
packet arrives at the switch and the switch is connected to a controller
is shown in Fig. 1. There are three important phases an SDN model
with software switch must capture. Phase (1), the first packet of a flow
arrives at the switch and there is no matching FTE for the packet in
SDRAM. Phase (2), the packet without a matching flow entry is for-
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Fig. 1. Generic model for SDN with Software Switch.

warded to the controller or a packet with the matching FTE is serviced
by the switch and forwarded to the destination. All packet processing
and forwarding in the switch is executed on CPU and SDRAM. Finally,
Phase (3), the controller feeds the forwarding information back to the
switch and updates the flow table in the switch.

Fig. 2 shows the block diagram of a hardware switch where the
switch maintains flow tables in both hardware and software. The hard-
ware and software flow tables are synchronized through a middleware
layer on the switch (Kuzniar et al., 2015; Pan et al., 2013) to avoid
duplicate entries and to ensure consistent forwarding behavior.

There are four important phases an SDN model with hardware
switch must capture. Phase (1), the first packet of a flow arrives at
the specialized hardware in switch that maintain hardware flow table
entries and there is no matching FTE for the packet. Phase (2), a
packet with the matching FTE in the TCAM is serviced by the ASIC
and forwarded to the destination, otherwise a packet without a match-
ing FTE in TCAM is matched against the FTE in SDRAM and processed
by the CPU for forwarding to the destination. In phase (3), a packet
without any matching entry in TCAM or SDRAM is forwarded to the
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Fig. 2. Generic model for SDN with Hardware Switch.
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controller. In phase (4), the controller feeds the forwarding informa-
tion back to the switch, updates the flow tables in both TCAM and
SDRAM. Finally, the packet is serviced by the CPU and forwarded to the
destination.

3. Related work

Most of the previous works have modeled a software switch where
the output buffers of the switch block in Fig. 1 is modeled either as
a: (i) single shared queue or (ii) a two-priority queue (fast path vs.
slow path). In the shared queue model, packets passing through the
fast path and slow path share a single queue with first in first out
(FIFO) service discipline while in the two-priority queue fast path and
slow path packets are queued separately and each queue is served in
a FIFO manner without preemption. In the two-priority queue model,
packets in the slow path are always served with higher priority over
fast path packets but the server does not preempt service of fast path
packets once it has commenced, this is referred to as service without
preemption.

The analytical model in (Jarschel et al., 2011) models the switch
as a shared M/M/1 queue and the controller block modelled by an
M/M/1/K queueing system respectively. In this model, the switch
queue is a software switch and a fraction of incoming external traffic to
the switch is forwarded to the controller. This assumption of indepen-
dence (between switch and controller) together with the infinite buffer
assumption preserves the Markovian property of the individual queues.
Both assumptions help reduce the complexity in the resulting queueing
network and yields a model that is amenable to product-form analysis.
Product-form analysis decomposes the stationary probability distribu-
tion of the queueing network into the product of marginal probabil-
ity distribution of each queue (Burke’s theorem (Burke, 1956; Busic et
al., 2012)), thus greatly simplifying analysis. While the shared queue
model simplifies analyses, it does not reflect the realities of the differ-
ent packet processing time scales of the hardware switch vs. the soft-
ware switch in that it has no provisions for an accommodating the dif-
ferentiation between the processing speeds of hardware and software
switches.

The model presented in (Mahmood et al., 2014) considers switch
and controller collectively as Jackson’s network mimicking the model
in (Jarschel et al., 2011). The model in (Mahmood et al., 2014) differs
from (Jarschel et al., 2011) in that it does not assume that the controller
and switch are independent. The traffic forwarded by the controller to
the switch mixes with the external packet arrivals to the switch and this
mixing better reflects the operational realities of an SDN switch. How-
ever, a single server in the model in (Mahmood et al., 2014) does not
reflect the hardware processing speeds and internal queueing structure
of hardware switches. To model a hardware switch through the model
in (Mahmood et al., 2014) will necessitate a multi-server queue in place
of a single server.

The model presented in (Yen and Su, 2014) have modelled SDN-
based cloud computing as a two-stage tandem network. In this work,
they have assumed switch as M/M/1 model with simple approximate
analysis and does not distinguish the control and data traffic. The
model presented in (Shang and Wolter, 1608) has assumed that the
switch service time has a two-phase hyperexponential distribution and
therefore modelled as an M/H,/1 queue which was studied earlier
in (Xiong et al., 2016). In the work of (Shang and Wolter, 1608),
there are two different service distribution for packets arriving at the
switch, one that does not have matching information and needs to
be forwarded and other which has matching information. While both
analyses do not distinguish between hardware and software switches,
the model in (Shang and Wolter, 1608) does pave the way for mod-
elling hardware switches via the two phases of the hyperexponential
distribution.

The Log-Normal Mix Model (LNMM) has been proposed for Open-
Flow switch in (Javed et al., 2017) to determine the path latency.
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In this model, they have assumed switch as M/G/1 model with log-
normal mixture model as the service distribution. They have further
demonstrated M/M/1 as poor fit for OpenFlow switch through experi-
ments performed on Mininet, MikroTik Routerboard 750GL and GENI
but did not consider it from the perspective of hardware and soft-
ware switch. The lack of separation between the control plane and
data plane packets in the model by (Javed et al., 2017) makes it a
poorer fit (compared to other published works) for modelling SDN
switches.

The model presented in (Miao et al., 2015) uses preemptive prior-
ity queues in switch with infinite capacity. This work also compares
priority queueing buffer and shared buffer with simpler analysis con-
cluding priority queueing as better buffer sharing mechanism. This
work was extended into (Miao et al., 2016) which assumes arrival
as Markov Modulated Poisson Process under bursty multimedia traf-
fic scenario, and have assumed infinite capacity of high priority queue
and finite capacity for low priority queue. Both the work in (Javed et
al., 2017) and (Miao et al., 2015) have features suitable for modelling
hardware switches because it can accommodate the different processing
speeds in hardware and software. The processing speeds for hardware
and software were characterized by different distributions of service
times.

To reflect a realistic OpenFlow switch more accurately, priority
queues with finite capacity are used instead (Goto et al., 2016). The
priority queue in this model is non-preemptive whereby the lower pri-
ority queue is serviced when there are no packets in the higher priority
queue. The reality of limited buffer sizes is then specifically addressed
by a C-M/M/1/K/> queueing model that has been proposed for com-
puting the minimum buffer size requirement of an OpenFlow switch
(Mondal et al., 2018). The model presented in (Sood et al., 2016) is
among the first to model SDN hardware switch using queueing theory
but does not consider a hardware data plane. In this work, switch is
assumed as M/Geo/1 model where inter-arrival is exponentially dis-
tributed and the service time is geometrically distributed but have not
accounted the switch-controller interaction. In this work, the perfor-
mance of the switch is defined as the time required by the switch
to process the packets without any interaction with controller. How-
ever, the analysis in this work does not map the workings of hardware
switch such as the flow matching and dedicated packet processing to
the queueing model.

In (Singh et al., 2017), we showed that a priority queue used in
(Goto et al., 2016) is closer to the realities of SDN compared to a shared
buffer model in that it predicts the average time to install FTE and
packet loss more closely to simulation. In this paper, we build upon
that finding and devise a new model for analyzing both software and
hardware switches.

Based on our survey of related research presented in this section,
we summarize our findings in Table 1. In Table 1, the first col-
umn denotes the type of queue used (either a single shared buffer
or a priority queue), the second column denotes the queueing model
in Kendall’s notation while the third and fourth column denote the
type of analysis (exact vs. approximation) and the switch type (hard-
ware vs. software). It is clear that apart from (Sood et al., 2016)
we have not found other works that model SDN hardware switch.
In the following sections, we describe the process of modelling SDN
switches with queueing theory and show that a queueing model for
SDN software and hardware switches is suitably captured by a QBD
process.

4. Queueing models for software and hardware SDN switches

We develop two queueing models to study the effect of types of data
plane on switch performance that is software or hardware data plane.
These models called Model SPE (as used in (Goto et al., 2016)) and
Model HPE are based on different data plane types in the switch. In
Models SPE and HPE, “S” refers to the software switch, “H” refers to
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Table 1
Summary of queueing models for SDN switches.
Model Queue Switch model Analysis Switch Type
Shared Buffer Priority Queue Exact Approximate Software Hardware
Jarschel (Jarschel et al., 2011) v M/M/1 v v
Mahmood (Mahmood et al., 2014) v M/M/1 v e
Yen (Yen and Su, 2014) v M/M/1 v v
Miao (Miao et al., 2015) v v M/M/1 v v
Shang (Shang and Wolter, 1608) / M/H,/1 / \/
Sood (Sood et al., 2016) v M/Geo/1 v v
Miao (Miao et al., 2016) v MMAP v v
Goto (Goto et al., 2016) v GI/M/1/K v v
Javed (Javed et al., 2017) v M/G/1 v v
Singh (Singh et al., 2017) v v GI/M/1/K v v
Our Analysis v GI/M/1/K v v v
the hardware switch,“E” refers to the encapsulation method in switch
where data packets are encapsulated with control information and for- By A O
warded to the controller, and “P” refers to the priority queue in data Ay A A
lane. Q= ’
P 0 A, A A

Recall from earlier discussion in Section I that the software switch
runs forwarding software (e.g. OpenVswitch, Lagopus or DPDK) on CPU
rather than hardware microcoded forwarding engines, thus a single
server model is appropriate. For brevity, we denote Model SPE as SPE
and Model HPE as HPE.

Throughout this paper, we assume that the controller has an infinite
capacity queue with M/M/1 distribution, the CPU (central processing
unit) and the switch hardware both has a finite capacity with GI/M/1/K
and M/M/1/K distributions, respectively. The external arrival at the
switch is assumed to be Poisson and is denoted by 4, the service rate
of the switch in SPE is denoted by u,, the service rate of the CPU in
HPE is denoted by ug,, the service rate of the switch hardware in HPE
is denoted by ug,, and the service rate of the controller is denoted by
#.. If an incoming data packet to the switch hardware has no matching
FTE (i.e. table miss), the packet is processed by CPU and forwarded to
the controller, and this occurs with probability referred as table miss
probability represented as f.

The average packet transfer delay is the primary performance met-
ric used for comparing Model SPE and Model HPE which is commonly
denoted by mean sojourn time of packet in queueing theory. Also, when
using Little’s theorem (i.e. mean sojourn time of packet is ratio of aver-
age packet length and arrival rate), the arrival rate to the controller is
the throughput for the finite buffer (denoted by T) in the switch due to
the packet losses.

4.1. QBD process for modelling SDN switches

The modelling approach in this paper is based on QBD processes,
hence we devote this subsection to describing the notation and con-
cepts behind QBD processes. A QBD process is continuous time Markov
process which has an infinite number of levels with finite number of
phases. A queueing network is represented by QBD process by map-
ping the number of packets in the network to levels and phases in the
queueing model, i.e.

Queueing Network = {Level, Phase}.

For the SDN switch, the level variable tracks the number of packets
in the controller and the phase variable tracks the number packets in
the switch. The exact distribution probabilities of QBD process is deter-
mined using matrix geometric solution. These distribution probabilities
can be used to determine various performance metrics of the queueing
network like average delay, throughput.

Using standard QBD notation (Neuts, 1994), the transition rate
matrix of QBD process is given by infinitesimal generator matrix Q with
a repetitive block structure

27

where, Ay,A;,Ay,and By are standard notation for sub-matrices that
represent the phase distribution. The sub-matrices B; and A; represent
phase distribution when level variable remains unchanged. For SDN
network, the sub-matrix B; represents the boundary state of the net-
work when the level variable is “0” (i.e. controller has no packets in
queue), while A; represents the network with the controller having at
least one packet in its queue. Similarly, A, represents the phase distri-
bution when level variable increases by 1 (i.e. number of packets in the
controller increases by 1), and A, represent phase distribution when
level variable decreases by 1 (i.e. number of packets in the controller
decreases by 1).

The exact distribution probabilities or the stationary state distribu-
tion (x) for QBD process is obtained by solving the equation, zQ = 0
and we = 0, where e is the column vector with all elements as one. The
QBD process is positive recurrent and irreducible if it satisfies the condi-
tion of, 74 (Ay — A,) < 0, where 7, is the stationary state distribution
of Ay + A} + A,.

In the matrix geometric approach, only one queue or node is allowed
to have an infinite capacity in order to avoid sub-matrices to be finite
(Takagi, 1990). Because we are characterizing switch performance, we
use the phase variable to track the switch and the level variable to track
the SDN controller.

5. Model SPE: SDN software switch with priority queueing

Fig. 3 shows the model that uses priority queues for the soft-
ware switch with finite capacity. The priority queues provides isolation
between the packets arriving from the controller and external packets
arriving at the switch. In this model, non-preemptive priority queues
are used in which lower priority queue are serviced when there are no
packets in the higher priority queue. The two priority classes proposed
in (Goto et al., 2016) are called Class CS (controller to switch), and Class
ES (external arrival to switch) to indicate the different packet process-
ing paths. The control packets feedback by the controller is classified
as Class CS packets and has higher priority over ES packets. Whereas,
any packets other than control packets arriving at the switch has lower
priority and is classified as Class ES packets.

Class ES represents the class for external data packet arrival to the
switch. If the external data packet has no matching entry in the switch,
the packet is sent to the controller, and this occurs with probability f.
Class CS represents the class for packets fed back to the switch from
the controller and must be forwarded out to the destination. Packets in
the ES already have a forwarding rule installed in the switch and are
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Fig. 3. Model SPE - a single server processing packets in the switch.

assigned to a lower priority with respect to Class CS packets. Both Class
CS and Class ES queues shares service rate y;.

The SPE is modelled as a continuous time Markov chain
{(n.(t),n.s(t), nes(t)),t > 0} on the state space {(x,y,z);x € Z,,y €
Zle 2 € ZfK2 }, where n,(t), n.(t) and n,(t) are the number of packets
in controller, class CS, and class ES, respectively at time t. At time ¢,
we say that the processes {(n.(t), n.(t),n.(t))} take on random values
{x,y,z} which yields the following:
(Me(D,nes(0), s (O} = {x,, 7). o)
The queue capacity for switch is equal to K. It is assumed that Class CS
and Class ES has the queue capacity of K; and K, respectively with the
total queue capacity of switch as K.

The  permissible transitions for the Markov chain
{(n.(t), n(t), nys(t))} are shown in Table 2 and these help us derive the
sub-matrices (that are Ay,A;,B; and A,) of transition rate generator
matrix determine (Q) for Model SPE. These sub-matrices are input to
the matrix geometric solution to compute the stationary distribution
probability (z) which is used to determine the performance metrics for
SPE.

In the following four subsections, we specify the expressions for
the elements of the sub-matrices Ay, A;,B; and A, using standard QBD
notation (Neuts, 1994).

5.1. Elements of matrix A,

The sub-matrix A, represents the phase distribution of Class CS and
Class ES when the number of packets in controller (i.e. n.(t) or x in Eq.
(1)) increases by 1.

Journal of Network and Computer Applications 122 (2018) 24-36

where,

) Z,=Z—1,

An
@2') otherwise.

_ ) HsPs
0,

5.2. Elements of matrix A;

The sub-matrix A; represents the phase distribution of Class CS and
Class ES when the number of packets in controller remain unchanged
and there are some packets in the controller (i.e. n.(t) or x in Eq. (1) is
a positive integer that remains unchanged).

AII(Y)’ .y/ =Y,

Ajyyn =141Y, ¥ =y-1,
0, otherwise,

where
M, 2 =z+1,
ps(1 = B), y=04 =31,
—A1 — Hes y=0,z2=2 =0,

)

Andy ==k —p—n, ¥y=00<(@E=2)<K,,
_/ll_/’lc_/’lsv 0<_YEK1,OS(Z=Z/)<K2,
— i, 0<y<Kjz=2 =K,
0, otherwise,

and

’_
AlZ(y) = fs B =5
@) 0, otherwise.

5.3. Elements of matrix A,

The sub-matrix A, represents the phase distribution of Class CS and
Class ES when the number of packets in controller (i.e. n.(t) or x in Eq.
(1)) decreases by 1.

an A Y =y,
20D 0, otherwise,
where
’_
A =t F=E
(=) 0, otherwise.

5.4. Elements of matrix B;

The sub-matrix B is identical to A; that represents the phase distri-
butions of Class CS and Class ES when the number of packets in con-

Ao = AOl(y), ¥y =y=0, troller (i.e. n (t) or x in Eq. (1) is equal to 0).
o) 0, otherwise, - By = Ay (for u,=0).

Table 2

Permissible transitions for model SPE.
Event From To Rate
One packet departs from Switch to out of system (SPE) (n,,0,n,) (n.,0,n, — 1) u(1 = p)
One packet departs from Class CS to out of system (SPE) (ng,ng > 0,n,) (ng,n. — 1,n,) M
One packet arrives to Class ES (15 Mg, M) (Mg, + 1) A
One packet forwarded from Class ES to Controller (n,,0,n,) (n. + 1,0,n, — 1) Hp
One packet serviced by Controller to Class CS (g, ngg, ngg) (n, — 1,n, + 1,n,) He

28
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5.5. Performance metrics

With these sub-block matrices, we can compute the stationary distri-
bution probabilities (7; ) for i packets in controller, j packets in Class
CS, and k packets in Class ES using the matrix geometric approach. The
performance metrics like throughput of the controller and switch, the
average time to install FTE in the switch, average packet loss in the
switch can be computed using (7; ).

The throughput of controller (T,) for Model SPE is given by the sum
of probabilities that the controller has at least one packet to forward to
Class CS with service rate of y. and this is given by:

@

Similarly, the throughput of Class CS (T,) is given by the sum of proba-
bilities that the Class CS has at least one packet to forward with service
rate of y; and this is given by:

o K; Ko

OIDIPIL

i=0 j=1 k=0

T ©))

Also, the throughput of Class ES (T,,) is given by the sum of probabil-
ities that the Class ES has at least one packet to forward with service
rate of y; and no packet in Class CS in the stationary state, and this is
given by

o Ky
Tos = Hs 2 2 TTiok: (€]
i=0 k=1
The average number of total packets for Model SPE is given as,
© K; Ky
ElLlgpr = Y, D D (i+]+ k). (5)
i=0 j=0 k=0

Applying Little’s formula on Eq. (5), we derive the average time to tra-
verse packet in Model SPE given as,
E[L]spp

tspp = —— >
Tgpg

©

where Tgpp is the total throughput of Model SPE and given as,
TSPE = Tcs + (1 - ﬂ)Tes

The average packet loss probability of Class CS (PL.) and Class
ES (PL,) represents the average number of packets being blocked or
dropped by Class CS and Class ES out of total incoming packets. The
probabilities PL ; and PL,, for Model SPE are expressed as:

PLcs =1- Tcs/Tc’

PL,=1-T,/A. %)
The average packet loss probability for Model SPE is given as,
PLspp =1 —Tspg/ Ay ®)

The validity of the expressions given for SPE are contingent on the
stability condition which can be derived using the traffic equilibrium
equation (see pages 76-90 of (Gelenbe and Mitrani, 2010)). Let Tr,, Tr,
and Tr,, represent the traffic intensities at the controller, Class CS and
Class ES of the switch respectively. The queueing network represented
by Model SPE is stable if (Tr, — u.) < 0. Using the traffic equilibrium
equations we get the following equality:

Tr. = fTre, Tri=Tr,, Tre = 4;.
Solving the traffic equations for Model SPE and using the condition of
(Tr, — p.) < 0, we get the stability condition for Model SPE as,

PA1 — . <0. 9
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Fig. 4. Model HPE — hardware switch modelled with two servers to reflect the
presence of network processing functions.

6. Model HPE: SDN hardware switch with priority queueing

Fig. 4 shows the model that uses priority queues for the CPU of hard-
ware switch with finite capacity. The priority queues provides isolation
between the packets arriving from the controller and packet to be pro-
cessed by CPU when there is no matching FTE in hardware table stored
in the switch TCAM. In this model, non-preemptive priority queues are
used for CPU similar to that in Model SPE for software switch.

Class HP represents the low priority class of CPU for the external
data packet that has no matching entry in the hardware table main-
tained by switch specialized hardware. This packet is sent to the con-
troller by switch specialized hardware with the probability f. Class
CP represents the high priority class for packets fed back to the CPU
from the controller and must be forwarded out to the destination. It is
assumed that CPU synchronizes the table information with specialized
hardware as shown in Fig. 2. Both Class CP and Class HP queues shares
service rate y, while switch hardware queue has the service rate of yig,.

The HPE is modelled as a continuous time Markov chain
{(nc(t),ncp(t),nhp(t),nsh(t)), t > 0} on the state space {(w,x,y,2);w €
7, x €77y € 77,2 € 7353}, where n (1), n,(®), ny,(t) and ng,()
are the number of packets in controller, class CP, class HP and switch
hardware, respectively at time t. At time ¢, the random processes
{1 (8), nep(V), iy (8), N (1)} take on values {w,x,y,z} and we have the
following:

{ne(©), nep (6), 1 (), 5 (0} = {w, x,y, 2} (10)

The queue capacity for CPU of the switch is equal to K. It is assumed
that Class CP and Class HP has the queue capacity of K; and K, respec-
tively with the total queue capacity of CPU as K. Similarly, the queue
capacity for switch hardware is equal to K.

The permissible transitions for the Markov chain {(n., ng,, ny,, ng) }
are shown in Table 3 and these help us derive the sub-matrices (denoted
by Ay,A;,B; and A,) of transition rate generator matrix determine (Q)
for Model HPE which is used to compute the stationary distribution
probability (x) for HPE.

In the following four subsections, we specify the expressions for the
elements of sub-matrices Ay, A;, B; and A, using standard QBD notation
(Neuts, 1994).
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Table 3
Permissible transitions for model HPE.
Event From To Rate
One packet arrives at the switch hardware (s Ny s Ngy) (e, gy, Ny, gy + 1) A
One packet departs from hardware to out of system (s Ny s Ngpy) (¢, Ny, My, gy, — 1) Hap(1 = f)
One packet arrives at Class HP for CPU processing (N, Ny, My, Ngpy) (e, gy, ny, + 1.ng, — 1) B
One packet forwarded from Class HP to controller (1, 0,1y, M) (n,0,ny, — 1,ng) Hsp
One packet serviced by Controller to Class CP (s Ny M Ngpy) (e,ng, + 1,np,,ng,) He
One packet processed by CPU to out of system (Mg Mgy, Ny, M) (g, — 1,ny,,ng,) Hsp

6.1. Elements of matrix A,

The sub-matrix A, represents the phase distribution of Class CP,
Class HP and switch hardware when the number of packets in controller
(i.e. n.(t) or w in Eq. (10)) increases by 1.

AY X =x=0,
AO(X x) = o .
7 0, otherwise.
where,
) ’_
Ay ?, = Agr ¥ =y-1
oy 0, otherwise.
where,
A AysKotl) _ | Hps Z=z-1,
012(2) 0, otherwise.

6.2. Elements of matrix A,

The sub-matrix A; represents the phase distribution of Class CP,
Class HP and switch hardware when the number of packets in controller
remain unchanged and there are some packets in the controller (i.e.
n.(t) or win Eq. (10) is a positive integer that remain unchanged).

ApY, X =x,
Aipexy =419, X =x-1,
0, otherwise.
where,
) ’_
A Y =y+1
) ’ _ —
oxsky+1) _ A Y =¥.x=0,
yyh R B
AV Y =yx#0,
0, otherwise,
and
AL (ASxsK+D) A?;)l, Y=y
120, 1) - .
R4 0, otherwise.
where,
A, 2 =z+1,
(0<y<K,+1)
Ay, o = =p) y=04=z-1,

0, otherwise,

>

~(0<y<Ky+1) (0<y<Ky+1)
Al =A
111 111

A OY<Ka+D) _ uph, 2 =z,
110(,47) = .
& 0, otherwise,
and
A (0<y<Ky+1) _ ) Hsp» 7 =z,
1215 1) = .
» 0, otherwise.

The diagonal elements of A;;; and A,;; are given as,

—A1 — He, y=0,z2=0,
— A = He = Hps 0<y<Ky+1,z=0,
—A1 = He — Hps ¥y=0,0<z<Kj,
) _Al_”c_ﬂsh_ﬂsw 0<y<K;+1 and,
Alllg,z) = 0<2z<K;3
—Hc = Hh y=0z=K3+1,
“Hc — Hsh — Hp» 0<y<K;+1 and,
z=K3+1,
0, otherwise,
and
) —
Ajl —Hpl, ¥ =0,
A0 _)a»
A, =400 y#0,
0, otherwise.

6.3. Elements of matrix A,

The sub-matrix A, represents the phase distribution of Class CP,
Class HP and switch hardware when the number of packets in controller
(i.e. n.(t) or w in Eq. (10)) decreases by 1.

A AW, X =x+1,
26ex) 0, otherwise.
where
A, (Osx<K 1) _ A, Y =y,
ZO(y 1) - .
Y 0, otherwise.
where,

!
(0<y<Ky+1) _ Hes z =2z,
201 (5 5/ = .
(z2") 0, otherwise.

6.4. Elements of matrix B;

The sub-matrix B, is identical to A; that represents the phase distri-
butions of Class CP, Class HP and switch hardware when the number of
packets in controller (i.e. n.(t) or w in Eq. (10) is equal to 0).

S Bl = Al(for He :0).

6.5. Performance metrics

With these sub-block matrices and matrix geometric solution, we
can compute the stationary distribution probabilities (z;; ;) for i pack-
ets in controller, j packets in Class CP, k packets in Class HP, and 1
packets in the switch hardware. The performance metrics like through-
put of the controller and switch, the average time to install FTE in the
switch, average packet loss in the switch can be computed using (7; ;).

The throughput of controller (T,) for Model HPE is given by the sum
of probabilities that the controller has at least one packet to forward to
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Class CP with service rate of 4, and this is given by:

o K; Ky Ks

LEITIDIDIPIN A

i=1 j=0 k=0 i=0

an

Similarly, the throughput of Class CP (T, is given by the sum of prob-
abilities that the Class CP has at least one packet to process with service
rate of yg, and this is given by:

o K; Ky Ks

Top=Hp 2, 2 2, X Tijr:

i=0 j=1 k=0 I=0

a2

Similarly, the throughput of Class HP (Tj,) is given by the sum of prob-
abilities that the Class HP has at least one packet to forward to the
controller with service rate of ug, and no packet in Class CP in the
stationary state, and this is given by:

o Ky Ks

Thp = Hyp Z Z Z TTi 0k,

i=0 k=1 1=0

a3

Also, the throughput of the switch hardware (T,) is given by the sum
of probabilities that switch hardware has at least one packet to forward
with service rate of pgy, and this is given by:

© K Ky Ki
T =t D, 0 D) D Tigkil- 14
i=0 j=0 k=0 I=1
The average number of total packets for Model HPE is given as,
w Ki Ky K3
Elllgpr = ), D, D D (i +j+k+Dmjp; (15)

i=0 j=0 k=0 =0

Applying Little’s formula on Eq. (15), we derive the average time to
traverse packet in Model HPE given as,

[L1gpE

(16)
Thpr

tapg =
where Typp is the total throughput of Model HPE and given as,
THPE = Tcp + (]- - ﬁ)Tsh'

The average packet loss probability of Class CP (Pch): Class HP
(Pth) and switch hardware (PLg,) represents the average number of
packets being blocked or dropped by Class CP, Class HP and switch

hardware out of total incoming packets in respective queue. PL,, PLy,
and PLg, for Model HPE are expressed as,

PL,=1-T,/T,,

PLy, =1-Ty, /T

PLy,=1-Ty/A. 17)

The average throughput and packet loss probability for Model HPE are
given as,

Tapg =Ty + (1 = P)Tps (18)

PLypg = 1 — Typg/ A1 19

The validity of the expressions given for HPE are contingent on the
stability condition which can be derived using the traffic equilibrium
equation (Gelenbe and Mitrani, 2010). Let Tr,, Trep, Triy and Trg, denote
the traffic intensities at the controller, Class CP, Class ES of the CPU
and switch hardware respectively. The queueing network represented
by Model HPE is stable if (Tr, — p.) < 0. Using the traffic equilibrium
equations, we get,

Tro=Try, Try=Tr, Try=pTrg, Try =4y

Solving the traffic equations for Model HPE and using the condition of
(Tr, — p.) < 0, we get the stability condition for Model HPE which is
same as that of Model SPE, i.e.,

BA; — p, <O. (20)
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Table 4

Parameter used for Model SPE vs. HPE.
Parameter Value
Table miss probability, 0.1~1
Switch CPU processing rate, ug, (packets/sec) 1000
Switch hardware processing rate, y, (packets/sec) 1000 X g,
Controller to CPU Processing Ratio, m, 0.1~2
Switch Hardware to CPU Processing Ratio, my 1~1000
External Arrival rate, A, (packets/sec) 120 ~ 480
Queue capacity for Class ES or HP, K, 10
Queue capacity for Class CS or CP, K; 50% of K,
Queue capacity for Switch hardware, K5 20% of K,

7. Results

In order to make a fair comparison between SPE and HPE, we use
identical parameters for analysis and simulation of both Model SPE for
Model HPE. The parameters used for the analysis and simulation results
are shown in Table 4. The analytical and simulation results in this paper
are obtained for parameters f, 4; and y, that satisfy the stability con-
ditions for both SPE and HPE (Eq. (9) and Eq. (20)).

The CPU processor (ﬂsp) of Model SPE is assumed as 1000 pack-
ets/sec. For Model HPE, the switch hardware is typically much faster
than CPU processor. We introduce the parameter m; to denote the ratio
between the service rate of the switch hardware to the service rate of
the CPU (both in packets per second). The parameter m is varied from
1 to 1000 to test the impact of processing rate disparity in HPE. The
table miss probability () and the controller to CPU processing ratio
(m,) are assumed to be in the range of 0.1 ~ 1 and 0.1 ~ 2 respectively.

External packets arrive to Class ES of Model SPE, and the queue
capacity of Class ES (K,) is assumed as 10. The packets fed back by
the controller to Class CS is the fraction of packets arriving at Class ES.
Hence, it is assumed that queue capacity of Class CS (K,) is 50% of
Class ES.

For Model HPE, the value of K; is used for Class HP and K, is used
for Class CP. It is assumed that the queue capacity of switch hardware
(K3) is a fraction of K, i.e. K3 is 20% of K, because the CPU processor is
able to handle larger number of flow requests than hardware processor
(though not speedier). In this paper, the external arrival rate at Class ES
of Model SPE and switch hardware of Model HPE is assumed to be in
the range of (120 ~ 480) packets/sec reflecting typical arrival rates in
campus networks (Zhao and Hua, 2014) and residential area gateways
(Heegaard, 2007).

The simulations are repeated hundred times and the 95% confidence
intervals (CI) are computed on the basis that the errors are normally dis-
tributed. In the following section, we validate the accuracy of analytical
results for both models SPE and HPE, followed by relative total average
packet transfer delay and packet loss probability between models SPE
and HPE, and design guidelines based on the analytical results.

7.1. Accuracy: analytical vs. simulation

In this section, we validate the accuracy of analytical results for
models SPE and HPE by comparing them with simulation results. The
performance metrics used for validating the accuracy of analytical
results are average total time (or delay) for the packets to traverse out
of the system, and total packet loss probability.

The analytical results for the average time packets are held in the
switch for Model SPE (denoted by tgpy as in Eq. (6)) and Model HPE
(denoted by typg as in Eq. (16)) is computed respectively. Similarly, the
analytical results for the packet loss probability in Model SPE (denoted
by PLgpg as in Eq. (8)) and HPE (denoted by PLypy as in Eq. (19)) is
computed respectively.

Fig. 5a—c show the predicted average delay while Fig. 5d—f show
the predicted packet loss of model SPE compared to discrete event sim-
ulations. In each sub-figure the predictions from the analytical model



D. Singh et al.

m, = 0.5

Journal of Network and Computer Applications 122 (2018) 24-36

m,=1

2
g
= ||--o-  Analysis for &, = 480 pkts/sec w |[-©&- Analysis for A =480 pkts/sec
—— Simulation for A; = 480 pkts/sec 3 +|—— Simulation for A, = 480 pkts/sec
--©-  Analysis for A, = 240 pkts/sec < ||--o-  Analysis for A; = 240 pkts/sec
ﬁ —— Simulation for A; = 240 pkts/sec —— Simulation for A, = 240 pkts/sec
< ||--o-  Analysis for A; = 120 pkts/sec --©-  Analysis for A, = 120 pkts/sec
——  Simulation for A; = 120 pkts/sec 2 —+—  Simulation for A, = 120 pkts/sec
3
2
o g m
3 s 2
o} 3 <
< <
° o 2
g 2
3 ]
i< i
3
S
%
g
3
g
3
g
g
s
T U T T T T U T
02 0.4 0.6 1.0 02 0.4 0.6 1.0
Table miss probability () Table miss probability ()
(a) (b)
m,=2 m,=0.5
--©-  Analysis for A, = 480 pkts/sec & {[--o-  Analysis for &, = 480 pkts/sec 2
—— Simulation for A; = 480 pkts/sec —+— Simulation for A = 480 pkts/sec 7(,
2 ||--e-  Analysis for Ay =240 pkts/sec --©-  Analysis for A; = 240 pkts/sec »
< ||—=— Simulation for A, = 240 pkts/sec —— Simulation for A, = 240 pkts/scc
--©-  Analysis for & = 120 pkts/sec --©-  Analysis for A; = 120 pkts/sec
——  Simulation for A; = 120 pkts/sec « ||~ Simulation for A, = 120 pkts/sec
g
-y -
g < z
t 3
E 2
= &
g 2 e 3
ez o 2 <
= 3 o 2
o e =
= o 3
g o S
3 o s
z A~
2
g a
= g
s
a
g
3
g
3
0.‘2 0‘.4 0‘(1 l‘.O 0‘2 0‘4 0‘.6 l‘.O
Table miss probability (B) Table miss probability (B)
(©) (d
m,=1 m,=2
8 +
< ||--&-  Analysis for A, = 480 pkts/sec i --©-  Analysis for A; = 480 pkts/sec
——  Simulation for A; = 480 pkts/sec ;{o —— Simulation for A, = 480 pkts/sec
-0~ Analysis for A; = 240 pkts/sec 3 2 ||--e- Analysis for A, = 240 pkts/sec
5 ||—— Simulation for A, = 240 pkts/sec < || simulation for A, = 240 pkts/sec
< ||--e-  Analysis for A; = 120 pkts/sec --©-  Analysis for A, = 120 pkts/sec
—— Simulation for A; = 120 pkts/sec ——  Simulation for A, = 120 pkts/sec
S
= 3
S Fs
g* i z
i R £
£ 5 T3
a g 7:’ a &7
£- & £
2 o 2
bl +o el
o P2 P
£ g4 A 2 &
3 e
g
R
e
= &
Eh +ﬁ£ 27 B
g g
s s
T T T ' t T T T T v
0.2 1.0 0.2 1.0

04 06 0.4 06
Table miss probability () Table miss probability ([3)

(e) (®

Fig. 5. Accuracy of Model SPE analytical results for average total delay to transfer packets (a—c) and packet loss probability (d-e) for ug, =1000 pkts/sec and
increasing f.

32



D. Singh et al.

Fig. 6. Accuracy of Model HPE analytical results for average total delay to transfer packets (a-c) and packet loss probability (d-e) for ug, =1000 pkts/sec and

increasing f.
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for SPE tracks the simulations well with increasing f. Inspecting across
sub-figures, the model predictions are in good agreement with simula-
tions for increasing m,. The highest error recorded by SPE (compared
to simulation) is 4% (in terms of packet loss probability) and 0.2% (in
terms of average total delay), and this occurs in Fig. 5d.

For model HPE a similar observation is made based on the compar-
isons between the analytical predictions of HPE against discrete event
simulation results in Fig. 6a—f. Larger errors were recorded with higher
values of f and m,, potentially due to interactions between the con-
troller and the switch that are present in the discrete event simulations
but not in the analytical models. Overall, the analytical model for HPE
tracks the trend and values of the simulations correctly. The maximum
difference observed for model HPE compared with simulation is 4.6%
(in terms of packet loss probability) and 0.3% (in terms of average total
delay).

Both Figs. 5 and 6 shows the accuracy of analytical results of Model
SPE and Model HPE respectively. The simulation results were very close
to the analytical results for both total average delay and packet loss
probability to validate the accuracy of the analytical models. The agree-
ment in trend for the analytical results and also prediction errors below
5% indicate that the model is correct and accurately predicts switch
performance compared to simulations.

The sub-sections that follow will only show the relative analytical
comparisons between models SPE and HPE to provide better under-
standing and guidelines to the network engineer on the merits of hard-
ware vs. software switches. Additionally, we show results for A, = 480
from this point forward for clarity and ease of presentation. Results for
A1 = {120, 240,720,960} show similar trends and characteristics and
thus offer no additional insights to what is shown with 4; = 480.

7.2. Relative average total packet transfer delay

In Fig. 7 we compare the average time packets are in the switch
between SPE (denoted by tgpy as in Eq. (6)) and HPE (denoted by typg
as in Eq. (16)). In this comparison, we are investigating the effects of
delay in software and hardware switch.

The relative time difference (denoted by ¢,) to traverse packets in
the switch between SPE and HPE (both with finite capacity) is calcu-
lated as:

t. -
¢ = (tspe = tupE) 3 1009%.
tspp
Fig. 7a and b shows the average relative time for packets to traverse
a switch between SPE and HPE for varying f, m, and m; respectively.

From Fig. 7a, the relative average packet delay decreases 85%-1.8% for
increasing f. However, the trend is reversed in Fig. 7b with increasing

m,=1

—e— Analysis for A, = 480 pkis/sec

.
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Table miss probability (8)
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m,, whereby the relative total delay increases from 0.8% to 56% as m,
increases from 0.5 to 2.0.

As the value f increases, the traffic processed by CPU in Model HPE
significantly increases, therefore increasing the delay predicted by HPE
and diminishing the benefit of having dedicated switch hardware for
forwarding.

Moreover, as m, increases, the relative average delay between HPE
and SPE increases exponentially and then plateaus off. The reason for
this is that higher m, means controller processing power is higher
than CPU processor at the switch which significantly reduces the delay
caused by packets traversing the control path.

7.3. Relative average packet loss probability

In this section, we compare the packet loss probability between SPE
(denoted by PLgpe as in Eq. (8)) and HPE (denoted by PLypy as in Eq.
(19)). In this comparison, we are investigating the effects of packet loss
probability in software and hardware switch.

The relative packet loss probability difference (denoted by ep;) in
the switch between SPE and HPE is calculated as:

(PLgpg — PLypg) « 100%.
PLgpg

€pL =

Fig. 8 shows the average packet loss probability between models SPE
and HPE for increasing values of f, m, and m, respectively. From
Fig. 8a, the relative packet loss probability is up to 100% higher in
Model SPE than Model HPE for lower f, and it decreases to approxi-
mately 2% for f§ = 1.0.

The reason for this is, as the f increases, the amount of traffic pro-
cessed by the CPU in Model HPE significantly increases (i.e. the hard-
ware processing at the switch is not leveraged) rendering its perfor-
mance closer to that of SPE, therefore reducing the gap between models
SPE and HPE for packet loss probability. This difference in performance
decreases drastically for higher g, for which the packet loss probability
is much higher due to increasing amount of traffic to be processed by
the CPU.

The trend for the relative packet loss probabilities in Fig. 8a and
b are quite similar to the relative total delays in Fig. 7a and b. The
relative packet loss probability is up to 83% higher in Model SPE
than Model HPE for increasing m, and remains a steady 100% with
increasing m,. The reason for increasing relative packet loss prob-
ability with increasing m, is: a higher m, means higher controller
processing power than CPU processor which quickly feedback the
packet to CPU, significantly increasing the packet loss probability in
CPU.
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Fig. 9. Effect of varying switch hardware processor in Model HPE for 4, = 480 pkts/sec and g, =1000 pkts/sec for increasing m,.

7.4. Effect of varying ug, in model HPE

In this section, we study the effect of varying the ratio of packet
forwarding rate of the switch hardware to the CPU (m) for Model
HPE. Recall from earlier discussion in Section 7.2, m; is only defined
for HPE. Fig. 9a and b show the average delay for the packet to traverse
and packet loss probability for increasing my, respectively. The results
show that both the average delay and packet loss probability for Model
HPE is steady for m; greater than 100 and appears to be insensitive to
increasing m,. Over provisioning the switch hardware does not confer
any benefits to improving QoS.

7.5. Operational guidelines

Based on the results in Figs. 7 and 8, it is clear that Model HPE
provides lower average total packet delay and lower packet loss proba-
bility compared to Model SPE. As f increases more packets recourse to
the controller and traverse the control path thus narrowing the perfor-
mance difference between HPE and SPE.

Considering these factors, we provide the following points for con-
sideration between Model SPE (software switch) or Model HPE (hard-
ware switch) in SDN:

(i) For delay sensitive applications, hardware switches significantly
reduces the total delay by at least 80% when the number of new
flows entering the switch is below 40%.

(ii) For loss sensitive applications, a hardware switch achieves up
to 100% lower packet loss probabilities compared to a software
switch.
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8. Conclusion

In this study, we compared a software switch (SPE) and hardware
switch model (HPE) in SDN using an analytical approach to provide
insights on the performance of software and hardware switches. From
our investigations, we find that a hardware switch performs better than
a software switch in terms of average delay and packet loss probabil-
ity. This is contingent on a stable network whereby the number of new
flows that arrive at a switch for decisioning is low. Increasing involve-
ment of the controller means that the hardware switch increasingly uses
the CPU for forwarding (as opposed to ASICs and TCAM) hence reduc-
ing the benefits of using a hardware switch. Our future work involves
validation of these models experimentally with the measurement that
can provide realistic detail insights.
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