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ABSTRACT
Intrusion Detection Systems (IDS) play an important role for detect-
ing network intrusions. Because the intrusions have many variants
and zero days, traditional signature- and anomaly-based IDS often
fail to detect it. Machine learning (ML), on the other hand, has better
capabilities for detecting variants. In this paper, we adopt ML-based
IDS which consists of three in-sequence tasks: pre-processing, bi-
nary detection, and multi-class detection. We proposed ten different
task assignments, which map these three tasks into a three-tier net-
work for distributed IDS. We evaluated these with queueing theory
to determine which tasks assignments are more appropriate for par-
ticular service providers. With simulated annealing, we allocated
the total capacity appropriately to each tier. Our results suggest
that the service provider can decide on the task assignments that
best suit their needs. Only edge or a combination of edge and cloud
could be utilized due to their shorter delay and greater operational
simplicity. Utilizing only the fog or a combination of fog and edge
remains the most private, which allows tenants to not have to share
their raw private data with other parties and save more bandwidth.
A combination of fog and cloud is easier to manage while still ad-
dressing privacy concerns, but the delay was 40% slower than the
fog and edge combination. Our results also indicate that more than
85% of the total capacity is allocated and spread across nodes in the
lowest tier for pre-processing to reduce delays.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; •Com-
puter systems organization → Distributed architectures.
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1 INTRODUCTION
Nowadays, intrusion detection systems (IDS) are commonly used
to protect network devices. In general, IDS can be classified as
signature-based or anomaly-based. Signature-based IDSs often fail
to detect an unknown attacks while anomaly-based IDS have high
false positive (FP) rates. To address those problems, researchers
have begun to use machine learning in IDS that has ability to detect
more attack variants and novel attacks [7].

The use of IDS in a network is essential so as to ensure secu-
rity. However, retaining an IT crew to manage and monitor these
systems 24/7 is time consuming and costly. As a result, many en-
terprises are outsourcing IDS management to service providers in
order to reduce staff, obtain better service, andminimize operational
costs. From the perspective of service providers, the architecture
and algorithm of IDS are the factors to consider. Previously, IDS was
typically based on centralized cloud computing solutions. However,
such an architecture is hard to scale due to significant latency and
cost of transferring traffic to centralized IDS.

A multi-tier architecture with bottom-tier, middle-tier, and top-
tier is a potential solution to a scalable IDS. Computation can be dis-
tributed over tiers and brought closer to users. As a result, multi-tier
architecture may solve the problems of high latency and bandwidth.
The integration of each tier might also result in better performance,
coverage, and scalability [13]. The combination of Fog with Multi-
access Edge Computing (MEC), or Fog with Edge and Cloud, are
illustrative of multi-tier architecture. For easier description and
simplicity, this model will use the terms Fog, Edge, and Cloud
throughout the article, and follows the tier hierarchy from [6].

Furthermore, machine learning based IDS consists of several
tasks, from pre-processing the raw data to detecting an attack. Pre-
processing is an important task for improving the quality of the
data.

https://doi.org/10.1145/3492323.3495613
https://doi.org/10.1145/3492323.3495613


Table 1: Possible assignments of preprocessing, binary and
multi-class detection tasks over tiers

# of
tiers Architecture Fog Edge Cloud ID Abbr.

1 Fog p, b, m 1 pbm/-/-
Edge p, b, m 2 -/pbm/-
Cloud p, b, m 3 -/-/pbm

2 Fog-Edge p, b m 4 pb/m/-
Fog-Cloud p, b m 5 pb/-/m
Edge-Cloud p, b m 6 -/pb/m
Fog-Edge p b, m 7 p/bm/-
Fog-Cloud p b, m 8 p/-/bm
Edge-Cloud p b, m 9 -/p/bm

3 Fog-Edge-
Cloud p b m 10 p/b/m

There are also two forms of attack detection in machine learning-
based IDS: binary and multi-class. Many earlier studies only ad-
dressed a single-stage binary or multi-class model. Such a single-
stage binary suffers from overfitting and a strongly biasedmodel [5].
Also, such existing multi-class detection is not accurate enough [2].
Combining these attack detection approaches can help to reduce
model instabilities [5].

Starting with pre-processing, we use three tasks to perform ML-
based IDS with binary and multi-class detection. Binary detection
classifies traffic as benign or malicious and focuses on preventing
overfitting and reducing the bias towards normal traffic. Malicious
traffic only will then be transferred so as to classify the attack
class in multi-class detection system. This combination has been
shown to improve accuracy [5] and save bandwidth by not trans-
ferring all traffic. To analyze and classify the traffic, we employed
a flow-based approach. This is an aggregation of transmitted net-
work packets which share some properties. Flows are employed in
mostly machine learning-based IDS and improve real-time traffic
classification performance [10]. Here, we break down these three
tasks and map them to the architecture, resulting in ten different
task assignments, as shown in Table 1. The values 𝑝, 𝑏,𝑚 represent
the pre-processing, binary, and multi-class, respectively. We also
used IDs and abbreviations to make it easier to recognize the ten
task assignments.

A variety of research papers have dealt with distributed IDS
from signature-based to machine learning-based. Mehmood et al.
[9] considered a distributed IDS using a signature-based system
in the cloud environment and applying it into a host-based IDS
system.

Most studies focused on improving IDS accuracy and testing a
model in a distributed architecture. For example, Diro and Chil-
amkurti [4] investigated applying LSTM model in a distributed
environment, while Samy et al. [12] assessed six deep learning
models before implementing them in a distributed architecture, and
comparing their performance to a centralized design. Rahman et al.
[11] and Zhao et al. [15] evaluated federated learning performance
for distributed IDS and achieved some improvement in accuracy
and training time performance.

Almiani et al. [1], Antonio et al. [2], Samy et al. [12] focused a
one-tier architecture in fog, while other studies (Mehmood et al. [9],

Rahman et al. [11], Zhao et al. [15]) focused on two-tier architecture.
In a one-tier architecture, deploying on fog nodes reduces response
time by bringing the processing node closer to the user. Fog has
acceptable latency but typically insufficient processing power to
deal with large computing processes. Furthermore, most research
applied a second tier just as a coordinator or aggregation node.

Our goal, however, differs from this earlier research, and is to
develop a multi-tier distributed IDS. We simulated and analyzed
ten task assignments using queueing theory. Most previous studies
focused just one architecture. To determine the minimum delay
among the ten task assignment options, we optimized capacity
allocation for each tier. We also measured the computational load of
machine learning-based IDS and used it in the simulation exercise.
This real-measurements helps in bringing the model to behave
closer to real-life.

The system determined the capacity allocation for each architec-
ture, based on arrival traffic rates and overall capacity. To broaden
our knowledge, we also investigated (1) one- vs. two- vs. three-tier
architecture; (2) joint vs. separated task assignment; (3) fog vs. edge
vs. cloud capacity allocation.

The remainder of this paper is organized as follows. Section II
defines the system architectures and problem formulation. The
solution algorithm, is described in Section III. Section IV presents
the simulation and results, and Section V concludes the work.

2 SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

This section describes multi-tier architectures, gives problem state-
ments, problem descriptions, and a delay model, with the variables
and notations used are given in Table 2.

2.1 System architecture
The system architecture is shown in Figure 1 where the multi-tier
architecture is composed of a cloud, 𝑁 number of edge servers 𝐸,
and 𝐾 number of fog servers 𝐹 beneath the edge. We then map the
IDS tasks as 𝑖 into architectures.

As can be seen in table 1, the lowest tier for pre-processing could
be the fog, edge, or cloud. When traffic flows from user equipment
(UE) arrive at the lowest-tier node with a length of 1/`L1 , it is im-
mediately processed in the pre-processing stage. This stage is used
to extract features and clean the data before performing machine
learning detection, and reduces the flow length into 1/`L2 . The data
is then sent through binary detection to detect benign and mali-
cious traffic. Only malicious traffic with a probability of 𝑝𝐴 and
flow length 1/`L3 will then be passed to the multi-class detection
system for the attack types to be classified.

Each of the task assignments utilized the same amount of total
capacity 𝐶 . Then, depending on the task assignment chosen, 𝐶 will
be allocated to 𝐶𝐶 , 𝐶𝐸 , and 𝐶𝐹 with bandwidth capacities of 𝐶𝑈𝐹 ,
𝐶𝐹𝐸 , and𝐶𝐸𝐶 . The traffic then passes through the fog at a rate of _.

2.2 Problem statement
Our objective is to minimize total delay and determine the best of
the ten possible task assignments. To achieve this, capacity has to
be appropriately allocated. The problem statement is then defined
as:



Figure 1: Parameter employed in the architecture model

Table 2: Model Notations

Notation Meaning
𝑁 The number of edge nodes
𝐾 The number of fog nodes per edge node

𝑖 = {𝑖 ∈ 1, 2, 3} IDS tasks in attack detection process
(1: pre-processing, 2: Binary, 3: Multi-class)

1/`W
𝑖

Flow workload of 𝑖-th task
1/`L

𝑖
Flow length of 𝑖-th task

𝐶𝐶 Capacity of cloud node
𝐶𝐸 Capacity of edge nodes
𝐶𝐹 Capacity of fog nodes
𝐶𝑈𝐹 Link bandwidth from UE to fog
𝐶𝐹𝐸 Link bandwidth from fog to edge
𝐶𝐸𝐶 Link bandwidth from edge to cloud
_ Arrival traffic rate from UE
𝑍𝑈𝐹 Distance between UE and fog
𝑍𝐹𝐸 Distance between fog and edge
𝑍𝐸𝐶 Distance between edge and cloud
𝑋 Speed of light
𝐷 Total delay
𝑝𝐴 Probability of malicious flows

Given: a topology composed of 𝑁 edge servers, 𝐾 fog servers
under an edge server, a flow arrival rate in each UE of (_), flow
length of (1/`L

𝑖
), flow workload of (1/`W

𝑖
), the probability of mali-

cious flows of (𝑝𝐴), a link bandwidth (𝐶𝑈𝐹 , 𝐶𝐹𝐸 , and 𝐶𝐸𝐶 ), and a
distance between tiers (𝑍𝑈𝐹 , 𝑍𝐹𝐸 , and 𝑍𝐸𝐶 ).

We need to determine the capacity allocations [𝐶𝐹 , 𝐶𝐸 , 𝐶𝐶 ]
which depend on architecture used as outputs, with the objective
of minimizing the total delay 𝐷 and subject to the constraints
𝐶𝐹 +𝐶𝐸 +𝐶𝐶 = 𝐶 .

2.3 Delay model
In this model, the total capacity for each of the task assignments is
equal, and each tier’s node will then have the same capacity. The
delay will be calculated using an M/M/1 queueing model. The delay
components, such as flow workload and length used, arrival rate,
and capacity, vary among task assignments 𝑗 in the 𝑟 -th resource,

as listed in Table 3𝑉 [ 𝑗, 𝑟 ], Table 4 𝐻 [ 𝑗, 𝑟 ], and Table 5 𝑌 [𝑟 ], respec-
tively. For example, in task assignment 1, traffic is transmitted from
UE to a fog link with flow length 1/`𝐿1 in 𝑉 [1, 1], and arrival rate _
in 𝐻 [1, 1], and with 𝐶𝑈𝐹 capacity in 𝑌 [1]. The task is handled at
the fog node with 𝑉 [1, 4] flow workload, 𝐻 [1, 4] arrival rate, and
𝑌 [4] computing capacity.

Depending on the task assignment utilized, the computation
and communication delays occur at each of the fog, edge, and
cloud based on the tasks that are assigned. The total delay for each
task assignment 𝑗 may then be determined by adding up all delay
components, which can be expressed as:

𝐷 𝑗 =

6∑
𝑟=1

𝑏 ( 𝑗, 𝑟 ) +
9∑
𝑟=7

𝑚( 𝑗, 𝑟 ) (1)

where

𝑏 ( 𝑗, 𝑟 ) =


1

𝑌 [𝑟 ]
𝑉 [ 𝑗,𝑟 ] − 𝐻 [ 𝑗, 𝑟 ]

, if 𝑉 [ 𝑗, 𝑟 ] ≠ 𝜙,

0, if 𝑉 [ 𝑗, 𝑟 ] = 𝜙.
(2)

𝑚( 𝑗, 𝑟 ) =
{

𝑉 [ 𝑗,𝑟 ]
𝑋

, if 𝑉 [ 𝑗, 𝑟 ] ≠ 𝜙,
0, if 𝑉 [ 𝑗, 𝑟 ] = 𝜙.

(3)

3 SOLUTION APPROACH: CAPACITY
ALLOCATION OPTIMIZATION

The problem set out above is solved by implementing the Capacity
Allocation Optimization Algorithm. First, we provide initial capac-
ity for each tier and calculate the average delay using M/M/1. The
algorithm then determines the best capacity allocation for all task
assignments, and allocates the capacity to each tier based on the
overall capacity𝐶 and, adjusts the capacity until the system exhibits
a minimum delay.

The algorithm 1 describes a simulated annealing techniquewhich
finds an approximate globally optimum solution for the least delay
using a probabilistic technique based on random movements of
the new capacity allocation. We generate a new capacity allocation
for 𝐶𝐹 , 𝐶𝐸 , and 𝐶𝐶 in each iteration by applying randomization
with specified constraints to minimum and maximum values. When
generating a new solution for 𝐶𝐹 , the minimum number is 𝐶𝐹

𝑚𝑖𝑛
to

prevent running out of capacity, which might result in a negative
delay. 𝐶𝐹

𝑚𝑖𝑛
is calculated as (𝐶𝐹

𝑚𝑖𝑛
= 𝐻 [ 𝑗, 4] × 𝑉 [ 𝑗, 4]). Then, the

maximum number is 𝐶𝐹𝑚𝑎𝑥 and can be calculated as (𝐶𝐹𝑚𝑎𝑥 = 𝐶 −
(𝐶𝐸
𝑚𝑖𝑛

+ 𝐶𝐶
𝑚𝑖𝑛

)), which provides sufficient space capacity for 𝐶𝐸

and 𝐶𝐶 . Further, when producing a random number for 𝐶𝐸 , the
minimum values of 𝐶𝐸

𝑚𝑖𝑛
can be calculated as (𝐶𝐸

𝑚𝑖𝑛
= 𝐻 [ 𝑗, 7] ×

𝑉 [ 𝑗, 7]), and the maximum values of 𝐶𝐸𝑚𝑎𝑥 can be calculated as
(𝐶𝐸𝑚𝑎𝑥 = 𝐶 − (𝐶𝐹 +𝐶𝐶

𝑚𝑖𝑛
)). The residual number is therefore the

value of 𝐶𝐶 .

4 SIMULATION AND RESULTS
4.1 Measurements for Realistic Parameters

Values
To run the simulation, certain parameters from a real system must
be collected. The workloads used in this study come from a real
IDS system. We built a machine learning-based intrusion detection



Table 3: Task Size in 𝑟 -th resource for the 𝑗-th task assignment, 𝑉 [ 𝑗, 𝑟 ]

𝑉 [ 𝑗, 𝑟 ]
Communication Computation (workload) Distance

𝑟 = 7 𝑟 = 8 𝑟 = 9
𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6
𝐷𝑈𝐹 𝐷𝐹𝐸 𝐷𝐸𝐶 𝐷𝐹 𝐷𝐸 𝐷𝐶

𝑉 [1, 𝑟 ] 1/`𝐿1 𝜙 𝜙 1/`𝑤1 + 1/`𝑤2 + (1/`𝑤3 .𝑝
𝐴) 𝜙 𝜙 𝑍𝑈𝐹 𝜙 𝜙

𝑉 [2, 𝑟 ] 1/`𝐿1 1/`𝐿1 𝜙 𝜙 1/`𝑤1 + 1/`𝑤2 + (1/`𝑤3 .𝑝
𝐴) 𝜙 𝑍𝑈𝐹 𝑍𝐹𝐸 𝜙

𝑉 [3, 𝑟 ] 1/`𝐿1 1/`𝐿1 1/`𝐿1 𝜙 𝜙 1/`𝑤1 + 1/`𝑤2 + (1/`𝑤3 · 𝑝𝐴) 𝑍𝑈𝐹 𝑍𝐹𝐸 𝑍𝐸𝐶

𝑉 [4, 𝑟 ] 1/`𝐿1 1/`𝐿3 𝜙 1/`𝑤1 + 1/`𝑤2 1/`𝑤3 · 𝑝𝐴 𝜙 𝑍𝑈𝐹 𝑍𝐹𝐸 𝜙

𝑉 [5, 𝑟 ] 1/`𝐿1 1/`𝐿3 1/`𝐿3 1/`𝑤1 + 1/`𝑤2 𝜙 1/`𝑤3 · 𝑝𝐴 𝑍𝑈𝐹 𝑍𝐹𝐸 𝑍𝐸𝐶

𝑉 [6, 𝑟 ] 1/`𝐿1 1/`𝐿1 1/`𝐿3 𝜙 1/`𝑤1 + 1/`𝑤2 1/`𝑤3 · 𝑝𝐴 𝑍𝑈𝐹 𝑍𝐹𝐸 𝑍𝐸𝐶

𝑉 [7, 𝑟 ] 1/`𝐿1 1/`𝐿2 𝜙 1/`𝑤1 1/`𝑤2 + (1/`𝑤3 .𝑝
𝐴) 𝜙 𝑍𝑈𝐹 𝑍𝐹𝐸 𝜙

𝑉 [8, 𝑟 ] 1/`𝐿1 1/`𝐿2 1/`𝐿2 1/`𝑤1 𝜙 1/`𝑤2 + (1/`𝑤3 · 𝑝𝐴) 𝑍𝑈𝐹 𝑍𝐹𝐸 𝑍𝐸𝐶

𝑉 [9, 𝑟 ] 1/`𝐿1 1/`𝐿1 1/`𝐿2 𝜙 1/`𝑤1 1/`𝑤2 + (1/`𝑤3 · 𝑝𝐴) 𝑍𝑈𝐹 𝑍𝐹𝐸 𝑍𝐸𝐶

𝑉 [10, 𝑟 ] 1/`𝐿1 1/`𝐿2 1/`𝐿3 1/`𝑤1 1/`𝑤2 1/`𝑤3 · 𝑝𝐴 𝑍𝑈𝐹 𝑍𝐹𝐸 𝑍𝐸𝐶

Table 4: Arrival rate in the 𝑟 -th resource, 𝐻 [ 𝑗, 𝑟 ]

𝐻 [ 𝑗, 𝑟 ] Communication Computation
𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6

𝐻 [1, 𝑟 ] _ 𝜙 𝜙 _ 𝜙 𝜙

𝐻 [2, 𝑟 ] _ _𝐾 𝜙 𝜙 _𝐾 𝜙

𝐻 [3, 𝑟 ] _ _𝐾 _𝐾𝑁 𝜙 𝜙 _𝐾𝑁

𝐻 [4, 𝑟 ] _ _𝐾 (𝑝𝐴) _ _𝐾 𝜙

𝐻 [5, 𝑟 ] _ _𝐾 (𝑝𝐴) _𝐾𝑁 (𝑝𝐴) _ 𝜙 _𝐾𝑁

𝐻 [6, 𝑟 ] _ _𝐾 _𝐾𝑁 (𝑝𝐴) 𝜙 _𝐾 _𝐾𝑁

𝐻 [7, 𝑟 ] _ _𝐾 𝜙 _ _𝐾 𝜙

𝐻 [8, 𝑟 ] _ _𝐾 _𝐾𝑁 _ 𝜙 _𝐾𝑁

𝐻 [9, 𝑟 ] _ _𝐾 _𝐾𝑁 𝜙 _𝐾 _𝐾𝑁

𝐻 [10, 𝑟 ] _ _𝐾 _𝐾𝑁 (𝑝𝐴) _ _𝐾 _𝐾𝑁

Table 5: Capacity in the 𝑟 -th resource, 𝑌 [𝑟 ]

𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6
𝐶𝑈𝐹 𝐶𝐹𝐸 𝐶𝐸𝐶 𝐶𝐹 𝐶𝐸 𝐶𝐶

Algorithm 1: SA for Capacity Allocation
initialize𝐶𝐹 ,𝐶𝐸 ,𝐶𝐶 , 𝑡𝑖𝑛𝑖 = 1000, 𝛼 = 0.085;
𝑡 = 𝑡𝑖𝑛𝑖 ;
calculate 𝐷 ;
while 𝑡 > 𝑡𝑡𝑟𝑚 do

generate new solutions for𝐶𝐹 ,𝐶𝐸 ,𝐶𝐶 by;
𝐶𝐹 ′

= 𝑟𝑎𝑛𝑑 (𝐶𝐹
𝑚𝑖𝑛

,𝐶𝐹
𝑚𝑎𝑥 ) ;

𝐶𝐸′
= 𝑟𝑎𝑛𝑑 (𝐶𝐸

𝑚𝑖𝑛
,𝐶𝐸

𝑚𝑎𝑥 ) ;
𝐶𝐶′

= 𝐶 −𝐶𝐹 ′ −𝐶𝐸′ ;
calculate 𝐷′;
Δ𝐷 = 𝐷′ −𝐷 ;
if 𝐷′ ≤ 𝐷 then

accept new𝐶𝐹 = 𝐶𝐹 ′ ,𝐶𝐸 = 𝐶𝐸′ ,𝐶𝐶 = 𝐶𝐶′ , 𝐷 = 𝐷′;
else

accept new𝐶𝐹 = 𝐶𝐹 ′ ,𝐶𝐸 = 𝐶𝐸′ ,𝐶𝐶 = 𝐶𝐶′ , 𝐷 = 𝐷′, with
probability 1

𝑒𝑥𝑝 (Δ𝐷/𝑡 ) ;
end
decrease the temperature: 𝑡 = 𝛼 × 𝑡 ;

end

pipeline that consists of the three tasks. Once the flow is sent, we
kept track of how many instructions were needed. We used PERF
on Linux to monitor instruction numbers, and the tests were run
using an Intel Core i5-3470 3.2GHz CPU.

For binary detection, we had to identify malicious quickly while
maintaining performance. A decision tree is suitable for this crite-
rion because it is fast and accurate [3]. For multi-class detection,
we used deep learning since it is more capable of distinguishing
an intrusion and also effective for detecting unforeseen intrusions
[14].

We constructed Decision Trees with default hyperparameters
and Deep Neural Networks from [14] with only malicious traffic
trained using CICIDS-2017 as the dataset. Pre-processing involved
extracting features from raw traffic using CICFlowMeter, cleaning
the data, and parsing it correctly. The data were also rescaled using
Scikit-MinMaxScaler. After 10 tests, we found that pre-processing
took 1,129,740 instructions, binary detection 113,989, and multi-
class detection 1,053,851 instructions. We also observed that after
pre-processing, flow length decreased from 100% to 5.3%.

4.2 Parameters settings
Table 6 lists the parameters used in the simulations, comprising a
cloud node, 400 edge nodes, and 8000 fog nodes. Each edge node
covered 20 fog nodes and link bandwidth was considered as a 5G
network. The distance between each tier was taken from [13] and
the flow length for pre-processing was taken from [8].

4.3 Results
4.3.1 One- vs. two- vs. three-tier architecture. Figure 2 shows the
comparative results of the ten task assignments with the total delay
for processing a flow. The result shows that utilizing only the edge
as in task assignment 2 had the shortest delay in processing the
traffic. This task assignment is ideal in terms of computing capacity
and distance between the UE and the computing node. When we
moved the computing node closer to the UE by utilizing only the fog
as in task assignment 1, the coverage area was too small andwe then
had to scatter more resources to cover the area. Scattering too many
resources in queueing systems produced poor performance which
increases computation time by 15. On the other hand, using just
cloud node maximizes computing capacity, speeds up computing



Table 6: Parameter settings

Notations Value Unit
𝑁 400 Nodes
𝐾 20 Nodes
_ 100 Flows/second
𝑝𝐴 0.2
1/`𝑊1 1,129,740 Instructions per flow
1/`𝑊2 113,989 Instructions per flow
1/`𝑊3 1,053,851 Instructions per flow
1/`𝐿1 124.99 Kilobit
1/`𝐿2 , 1/`𝐿3 6.62 Kilobit
𝐶 2.4 × 106 MIPS
𝑍𝑈𝐹 1 Kilometer
𝑍𝐹𝐸 10 Kilometers
𝑍𝐸𝐶 1000 Kilometers
𝐶𝑈𝐹 1 Gbps
𝐶𝐹𝐸 ,𝐶𝐸𝐶 100 Gbps

time, and simplifies management. However, because a large amount
of raw traffic from all UEs must be delivered to the farthest node, it
results in a transmission bottleneck.

To reduce the delay in the utilizing cloud, it should be combined
with other tiers and form a two- or three-tier system. Utilizing
cloud with edge, might reduce total delay by more than 14 times.
Pre-processing data in the lower-tier would reduce a large trans-
mission delay. As a result, we save a lot of bandwidth and enhance
processing capability.

Utilizing cloud with fog as in task assignments 5 and 8 could also
be a solution. Although these task assignments had three times the
total latency compared to cloud with edge, they provided greater
privacy. Sending raw traffic to a higher tier implies aggregating
traffic with other tenants.

Furthermore, utilizing fog with edge as in task assignments 4
and 7 also could handle privacy issues with 16% reduction in delay.
This combination also saves bandwidth because traffic only needs
to travel a short distance. However, maintaining a high number of
nodes will be a strain for providers. Finally, forming a three-tier
architecture by combining all tiers appears less suitable because
it results in greater latency and because too many federations are
difficult to manage and control.

Service providers can choose the task assignments that best
suit their needs. Utilizing only edge or edge with cloud may be
the fastest and simplest to use. Concerns about privacy may be
addressed by utilizing fog with edge. However, the delay was two
times slower than utilizing edge with cloud and maintenance was
challenging because 8000 fog and 400 edge nodes were involved.
Therefore, utilizing fog with cloud simplifies maintenance while
maintaining privacy, but is 16% slower than fog with edge.

4.3.2 Joint vs. separated task assignment. This section evaluates the
effects of task assignment, whether the three tasks are combined in
a single tier or separated into several tiers. Figure 3 shows the com-
putation delays based on task assignment. The computation time
was faster when three tasks were separated. Comparing the joint
configuration in task assignment 1 to the separated configuration
in task assignments 5, 8, and 10, the separated configuration was 11-
27% faster. A higher-tier node has more capacity than a lower-tier

Figure 2: One- vs. two- vs. three-tier architecture

node. Thus, assigning some tasks to a higher-tier would increase
performance. Despite the increased propagation delay caused by
higher-tier distance, the separated configuration showed improved
system utilization, indicating better efficiency in managing traffic.

However, when separating the tasks, we must consider workload
and tier location. As shown in task assignment 4, where we split
multi-class task into edge, separating too few workloads make a
separated configuration less effective than a joint configuration.

Furthermore, a separated configuration that places pre-processing
alone in the lower-tier and a binary with multi-class configuration
in the upper-tier will be easier for maintaining a machine learning
model. For example, to update or retrain it, a provider just needs to
update a new model with fewer nodes than when dividing binary
and multi-class models into different tiers.

On the other hand, allocating pre-processing with binary de-
tection to the same tier and multi-class to an upper-tier increases
privacy since the raw traffic is handled closer to the users and not ag-
gregated. Furthermore, since only a very small amount of attacked
traffic is sent to the farthest node, it may be able to save bandwidth.
For example, in task assignment 6, we only had to send 1.05 gigabits
of traffic per second to the cloud, but in task assignment 9, we had
to send 5.29 gigabits per second.

4.3.3 Fog vs. edge vs. cloud capacity allocation. Figure 4 shows
the capacity distribution for each tier in all task assignments. Task
assignments 1-3 had no distribution because they only had a single-
tier configuration, hence the entire capacity was dedicated to that
tier. However, with task assignments 1 and 2, it was necessary to
spread capacity over 8000 and 400 nodes, respectively. By compar-
ison, task assignment 3 had the fastest processing time since all
capacity was allocated to a single node.

Furthermore, in two and three-tiers, total capacity had to be
allocated among the tiers. The results show that the algorithm
tends to assign the lowest-tier nodes more than 85% of the total
capacity. In task assignments 5 and 6, the algorithm allocated 5%



Figure 3: Joint vs. separated task assignment

more capacity to the lowest-tier when the cloud was the highest-
tier, compared to task assignment 4, which used the edge as the
highest-tier. Because the cloud suffers from long propagation de-
lays, the algorithm assigns higher capacity to the lowest-tier to
reduce delays. Further, as we know from queueing systems, even
though a higher-tier computation node that is more centralized
may result in longer communication delays, it requires less capac-
ity than a distributed node in the lowest-tier. We also observed
that moving binary detection from lowest-tier to higher-tier and
combining it with multi-class, as in task assignment 4 compared to
task assignment 7, only required 4-6% more capacity compared to
a higher-tier. This means that pre-processing task should be given
as much capacity as possible to minimize delay.

Figure 4: Fog vs. edge vs. cloud capacity allocation

5 CONCLUSIONS
We considered ten task assignments for distributed machine learn-
ing based IDS as a service. We used queueing theory to calculate

the total delay and a simulated annealing approach to allocate the
optimum capacity for each tier. The results suggest that a service
providers’ concerns can influence the task assignments adopted.
Each task assignment has its own advantages and disadvantages.
Service providers should consider utilizing those task assignments
that use only edge or edge with cloud for lower latency and easier
management. Utilizing fog with edge may be considered by service
providers concerned about tenant data privacy. Utilizing fog with
cloud could potentially also be considered as they are easier to man-
age than fog with edge. Moreover, the separated task assignment
can be 11-27% faster than combining three tasks and placing them
on the same tier. In separating the tasks, we need to consider the
workload and tier location to make them more efficient. Separating
the tasks into pre-processing alone or pre-processing with binary
classification combined increases privacy and uses less bandwidth.
Lastly, to reduce delays, the results show that 85% of total capacity
is provided to the lowest-tier.
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