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Abstract—Performance issues of OpenFlow switches are attract-
ing a lot of attention owing to the potential large-scale deploy-
ment of software-defined devices. This paper presents the OFBench
which is an automatic test suite for evaluating the performance of
OpenFlow switches. The design, as part of the Automation Control
Test System (ACTS) development, is based on a controller-agent
architecture which allows the development of test cases that are
written in a high-level script language. In addition to the end-to-
end measurement methodology, novel methods are proposed to
further profile the internal performance metrics, which are diffi-
cult to get due to the black-box nature of the device under test. The
prototype of this suite currently comprises five test cases to evalu-
ate five performance metrics, which are action time, pipeline time,
buffer size, pipeline efficiency, and timeout accuracy. OpenFlow
switches are evaluated and three issues are observed associated
with switches during the testing. First, some switches may not be
well implemented in the design of apply-action instructions. Sec-
ond, some switches suffer from random crashes with a high volume
of bursty packet-in traffic. Finally, the timer of idle-timeout is often
not reset properly with matching flow entry.

Index Terms—Computer networks, openflow protocol, per-
formance evaluation, software-defined networks, system perfor-
mance, testing.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) is an emerging
network architecture. The major difference between SDN

and the traditional network is the decoupling of the control and
data plane operation. Therefore, in SDN, the data plane needs
to communicate with the control plane through a specific com-
munication protocol. OpenFlow is a communication protocol
standard [1] that is used by the controller to manipulate data
plane operations. As a packet arrives at the OpenFlow switch,
selected tuples in the packet header fields are examined accord-
ing to the rules in the flow table. In the absence of matching, the
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packet is treated as a new flow and the table-miss operation is
triggered. Depending on the configuration, either the packet is
simply dropped or an OpenFlow message is sent to the controller
that is waiting for further action. The controller may insert a new
flow entry in the flow table with the matched packet. The flow
entry is a set of data structure that is composed of such informa-
tion as packet headers, counters, and instructions [2]. Therefore,
these interactions with the controller make the operation of the
OpenFlow data plane (OFD) very different from the traditional
data plane (TD) [3].

However, to the best of the authors’ knowledge, no perfor-
mance test standard exists for the OpenFlow switch. Available
performance test suites concentrate on the part of the TD [4].
Some open-source tools such as OFTest [5] and Ryu certification
[6] are available for performing the OpenFlow switch confor-
mance test. These tools only determine the interoperability [7]
for OpenFlow switches under test. Spirent proposed a white pa-
per on OpenFlow performance testing [8]. However, the white
paper only addresses selected test cases and offers some gen-
eral guidelines for the performance evaluation of OpenFlow
switches.

A. Motivations

Generally, an overall process of the OpenFlow transaction, ab-
breviated as D2C2D, can be further categorized into two parts:
the data-plane-trigger-control-plane (D2C) and the control-
plane-trigger-data-plane (C2D). Many studies [4], [9]–[12]
have addressed these topics. However, most of them focus on
TD testing without addressing all of the test metrics of OFD,
D2C, and C2D. Since the processes of D2C and C2D are the
core of the OpenFlow protocol, the suite for testing OpenFlow
switch must address items, as discussed in Section III, that are
related to the evaluation of the performance of the D2C2D pro-
cess along with the OFD.

In addition to the switch performance evaluation, an accurate
switch model [13] can be better augmented with the outcomes
for simulation in order to understand the performance and scal-
ability of a large software defined networks. Huang et al. [14]
proposed high-fidelity OpenFlow switch models for accurate
SDN emulation based on their latency measurement method-
ologies. Shang and Wolter [15] proposed an queuing model for
the packet processing time of OpenFlow switch and controller.
Sato et al. [16] proposed an abstract model of SDN architectures
such that a globally optimized performance can be achieved.
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For all of the proposed switch models, they all depend on the
accurate modeling of performance parameters such as control
latency, forwarding speed, and blocking probability [17] which
are all associated with the interactions of control plane and data
plane processing. However, measuring the internal performance
parameters in the test cases is challenging, because the device-
under-test (DUT) is effectively a black box. For example, the
exact duration of each action time is difficult to measure be-
cause the processes comprise many steps. The accuracy of idle
timeout for each flow entry is also difficult to measure because
the timer is reset as the packets arrive and are matched.

Based on the white paper [8], this paper further extends test
cases that address the most critical aspects of OFD, D2C, and
C2D testing. As the ongoing efforts of the Automation Control
Test System (ACTS) [18] development, this paper presents the
selected test cases involving items, illustrated in Fig. 2, that
are related to flow action, pipeline, packet-in, packet-out, and
flow-mod operations.

The main contributions of this work are summarized below.
1) An automatic test suite is developed and implemented

based on the controller-agent architecture. The suite can
control remote agents to generate and analyze networking
traffic. The agents yield results that are provided to the
controller based on the proposed test cases.

2) The test suite can run on the commodity PCs without
specialized hardware support.

3) This work proposes five methods in three categories to
address issues of performance measurement including ac-
tion time, pipeline time, buffer size, pipeline efficiency,
and timeout accuracy.

4) The first category, called mirror-in-processing, is based on
the apply-action instruction in OpenFlow to mirror pack-
ets in the process. The system can measure the processing
time of each stage in the DUT based on the mirrored
packets.

5) The second one, named calculated traffic, is based on
the burst-until-loss and back-to-back traffic to estimate
the buffer size and pipeline efficiency in the OpenFlow
switch.

6) The third one, called masked entry, is based on the priority,
match fields, and actions of flow entry to control the timer
where two flow entries can be synchronized for proper
measurement.

The rest of this paper is organized as follows. Section II
presents the background and related work of software defined
networks and OpenFlow protocol with emphasis on perfor-
mance related issues and testing. Section III provides a state-
ment of the problem of interest. Section IV introduces the
proposed methods for mirror-in-processing, calculated traffic,
and masked entry. Section V discusses the implementation in de-
tail and presents relevant experimental results. Section VI draws
conclusions and makes suggestions regarding future work.

II. BACKGROUND AND RELATED WORK

OpenFlow, a communications protocol for SDN architecture,
consists of communications messages and mechanisms that

Fig. 1. Typical packet processing pipeline over multiple tables in an OpenFlow
switch [2].

Fig. 2. OpenFlow performance testing for a given device under test. This work
proposes methods to address the issues of performance measurement including
action time, pipeline time, buffer size, pipeline efficiency, and timeout accuracy.

TABLE I
OPENFLOW INSTRUCTION WITH EXECUTING PRIORITY

Instruction Description Executing Priority

Meter Apply the specified metering to packet. 6
Apply-Actions Apply actions immediately to packets. 5
Clear-Actions Clear action set. 4
Write-Actions Write actions to action set. 3
Write-Metadata Write the masked metadata value. 2
Goto-Table Execute the table pipeline. 1

enable packet processing for OpenFlow switches and con-
trollers. The packet processing mechanism is based on the flow
policy, which is a combination of match fields and instruction
sets. The flow policy is implemented as a flow entry and stored
in the flow table.

The whole process for packet processing is illustrated in
Fig. 1. As a packet arrives, the switch tries to match the flow
entries in the table of multiple stages. Once the packet has been
matched with the entry in the table, the action set is updated and
possibly directed to other tables in a pipelined fashion. Finally,
at the end of the pipeline process, the action set is executed.
The flow entry, which is the most important part of the process,
comprises priority, counters, match fields, timeouts, cookies,
and instructions. The priority influences the order of executing
of flow entries. The entries of timeouts contain timers of hard-
timeout and idle-timeout values for removing a flow entry when
it has expired. The match fields are a set of records consisting
of packet headers from layer one to layer four. The instruction
set contains operations to be executed on the incoming packet,
which is matched with the match fields. Table I presents the
available instructions and order of executions.

A. Control and Data Plane Interactions

Typically, the items in a performance test are chiefly associ-
ated with the part of TD that involves latency, loss, buffer size,
throughput, and jitter. However, the most important factor in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: OFBENCH: PERFORMANCE TEST SUITE ON OPENFLOW SWITCHES 3

testing the performance of an OpenFlow switch is the interac-
tions between the control plane and the data plane. The parame-
ters associated with the testing of OpenFlow performance can be
summarized in categories of C2D, D2C, and OFD. In C2D, many
messages are sent from the controller to the switches. Therefore,
the performance parameters that are related to this category are
associated with the flow-mod, configuration, and state query of
the switch. The switches send messages concerning some events
back to the controller in D2C. These messages include packet-
in, flow-removed, status report, and errors. Therefore, some
informational contents in these messages should be treated as
important parameters in OpenFlow performance measurement.

Additionally, in most of cases, the D2C2D processes are com-
monly executed upon the arrival of new flows. The D2C2D
processes utilize the messages of packet-in, packet-out, and
flow-mod. The processing rate of packet-in messages is an im-
portant indicator showing the effectiveness of OpenFlow switch
handling the new type of flows. If the rate is low, then the Open-
Flow switch is not able to process a large number of new flows
in a short period. The packet-out message that is generated by
the controller, is used to execute actions for the packet-in mes-
sage in the D2C2D process for the first packet of a new flow.
The processing rate of packet-out message sent by the controller
reflects the ability of an OpenFlow switch.

Finally, the period for which the flow entry remains active is
set by the flow-mod message that is sent to the switch. Therefore,
processing rates associated with these three messages are the
major parameters of OpenFlow performance measurement for
the C2D and D2C parts. In the OFD part, performance parame-
ters can be categorized into two classes—those related to packet
processing and those related to the OpenFlow mechanism. The
former category consists of table lookup, table pipeline, and
time of action set execution. The latter category is composed of
the timeout of flow entry and the size of the flow table.

B. Related Work

Some testing solutions with a focus on TD have been devel-
oped. Bianco et al. [10] and Emmerich et al. [11] proposed the
method for measuring forwarding throughput and the packet
latency of switches in underloaded and overloaded situations.
Gelberger [12] proposed the cost measurement on throughput,
latency, and jitter for switching and routing with OpenFlow.
Jarschel et al. [17] presented a model based on forwarding speed
and blocking probability to estimate packet sojourn time.

Recently, Spirent presented guidelines for testing OpenFlow
switch performance [8] focusing on general testing concepts,
and providing suggestions for each test cases. Rotsos et al. in
OFLOPS [9] proposed two major test cases for measuring the
latency of flow-mod and the execution time of an action set.
Although the latency can be evaluated from OpenFlow barrier
messages, the measurements are not accurate when a devia-
tion may occur for two major reasons. The first is that barrier
messages require extra time to be processed between the con-
troller and the switch. The second is that the process of barrier
messages in the OpenFlow switch may not be implemented cor-
rectly. The methods that were proposed by OFLOPS [9] solve

these problems by using traffic to measure the setup time of mul-
tiflow entries. More recently, Rotsos et al. in OFLOPS proposed
OFLOPS-Turbo [23] to evaluate the next-generation OpenFlow
switch up to 10 Gb/s. However, the system does not address
any method for detailed switch testing. Mafioletti et al. [20]
proposed a tool capable of measuring accurate network device
latency on a general purpose x86 hardware. With the design
based on the Linux container technology, the system can sup-
port 100% time-stamping up to packet rate of 800 kp/s. He et al.
[21] presented the measurement results of control plane latency
on several commercial OpenFlow switches. Surprisingly, some
high latency results are observed due to dependencies of rule
complexity, rule priority, table priority, and limited bus band-
width between ASIC and CPU. [22].

Since the latency of flow-mod may vary with the testing con-
ditions, Handfield et al. [19] identified the factors that have the
greatest impact on timing measurement, including the priority,
the size of the flow table, and the operation of the flow-mod.
Bianco et al. [10] and Tanyingyong et al. [24] estimated the
effects of lookup time on the hash and linear flow table. Bianco
et al. [10] and Tanyingyong et al.[24] showed that the hash
flow table outperforms the linear flow table. With respect to the
measurement of processing time, Bianco et al. [10] conducted
experiments on hash and linear flows with various table sizes.
The results are constant and independent of the table size for
both types of table. The developed high-fidelity switch mod-
els [14] have proposed a model to emulate hardware switches,
including the flow-mod rate. However, no detail methods has
been provided. Lazaris et al. proposed Tango [25], a frame-
work that is capable of revealing the SDN switch properties.
Tango can generate a sequence of OpenFlow flow-mod com-
mands and traffic patterns. By observing the outcomes of the
switch under test, the capability, availability, and feature of the
switch can be obtained. Instead of relying on the switch to
provide the feature report via the OpenFlow protocol, the pro-
posed active probing can provide more accurate results. By
knowing the accurate features such as the TCAM size, caching
policy, delay and rule processing priority, the application pro-
grammer can better optimize the SDN application achieving
higher performance.

At the SDN controller side, R. Sherwood and K. Yap pre-
sented the Cbench [26] which became thede facto SDN con-
troller benchmark standard. Tootoonchian et al. [27] designed
a series of flow-based benchmark tools in Cbench, which is ca-
pable of emulating any number of OpenFlow switches to mea-
sure different performance aspects of the OpenFlow controller.
Jarschel et al. [28] proposed another flexible and granular Open-
Flow controller performance analysis system. Sieber et al. [29]
presented the hvbench to address the issues of SDN hypervi-
sor benchmarking. Based on the Linux container technology,
each instance of hvbench node consists of multiple NOS and
dataplane nodes. Therefore, the framework can provide the per-
formance characteristics of the hypervisor under difference load
scenarios. As shown in Table II, the relevant literature does not
cover all of the performance parameters that are required to
evaluate the OpenFlow switch under test. Therefore, this paper,
proposes methods for measuring all of the major performance
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TABLE II
RELATED WORKS

Type Parameter Spirent [8] OFLOPS [9] Bianco [10] Handfield [19] Mafioletti [20] He [21], [22] Proposed

D2C Packet-in Rate Concept n/a n/a n/a n/a Timestamp Buffer Size
C2D Packet-out Rate Concept n/a n/a n/a n/a Timestamp Buffer Size

Latency of Flow-mod n/a Traffic Validation n/a Impact Factors n/a Insertion Modification Deletion n/a
OFD Table Lookup Concept n/a Constant n/a n/a n/a n/a

Table Pipeline Concept n/a n/a n/a n/a n/a Busy Ratio
Execution Time of Action Set n/a End-to-End n/a n/a n/a n/a Action Time
The Timeout of Flow Entry Concept n/a n/a n/a n/a n/a Accuracy

TABLE III
TABLE OF NOTATIONS

Category Notation Description

Entity c The controller.
dut The switch under test.
N The number of tables for the switch under test.

H = {hn |n ≥ 2} The set of hosts.
CAP = {capc , capn |n ≥ 2} The set of link capacities. The capc /capn is link capacity between c/hn and dut.

C2D CD = P OR The parameter for C2D. P OR means the throughput of packet-out operation in dut.
D2C DC = P IR The parameter for D2C. P IR means the throughput of packet-in operation in dut.
OFD Taction−set The time of action set execution in dut.

Ttab le−pip eline The latency between two tables in the pipeline of dut
buf The size of buffer in the switch under test.

Acctimeout The accuracy of timeout in the switch under test.
P The efficiency of table pipeline in the switch under test.

Dop enflow = {Taction−set ,
Ttab le−pip eline , buf, Acctim eout ,P }

The set of parameters for the OpenFlow dataplane, OFD.

Process T B = {tablei |0 ≥ i < N} The set of flow tables in the switch under test.
F = {flowi ,j |0 ≥ i < N, j > 0} The set of flow entries. F lowi,j mean the flow entry in tablei .

TFC = {pktz |z > 0} The traffic which is sent from src to dst. src ∈ H, dst ∈ H .
Ttab le lo okup The time of looking up the flow table in dut.
Tapply action The time of executing Apply-Action in dut.

Tid le−tim eout , Thard−tim eout The timeout value for idle/hard timeout flow entry.
Tid le−exp ired , Thard−exp ired The arrival time of flow-removed message for idle/hard timeout flow entry at c.

Tid le−duration , Thard−duration The duration of flow-removed message for idle/hard timeout flow entry.

parameters, except for the latency of flow-mod and the size of
the flow table.

III. PROBLEM STATEMENT

Fig. 2 presents the major performance parameters measured
of the device under test, denoted as dut including action time,
pipeline time, buffer size, pipeline efficiency, and timeout accu-
racy. The pipeline process contains the time and performance
of table pipeline (Ttable−pipeline , P ), and the time of action set
execution Taction−set in the dut. Table III shows the notations
used in this proposed suite. Given the switch under test dut, the
number of tables in the dut is denoted as N . The OpenFlow
controller, the hosts, and the link capacities are denoted as c, H ,
and CAP . The set of flow entries F determines the operation
of the entire pipeline. Each flow entry, denoted by flowi,j , has
two timers of hard-timeout and idle-timeout. The accuracy of
the timeout, denoted as Acctimeout, evaluate whether each timer
expired correctly or not. With the combinations of F and traffic,
denoted as TFC, the dut is able to generate the packet-in mes-
sages to the OpenFlow controller c and process the packet-out
messages sent from the controller. The rate of packet-in and
packet-out for a given dut is determined by the parameters of

PIR and POR. The buffer size of dut is denoted as buf . If
there is room left in the buffer, dut stores the TFC in the buffer
and raises the packet-in operation with an identity as a new flow
arrives. The controller c then generates the packet-out message
with the corresponding identity to the dut to forward the new
flow.

The performance parameters consist of three categories,
which are the C2D parameters CD, the D2C parameters DC,
and the OFD parameters Dopenflow . The parameters of flow
entries F in dut and traffic TFC generated by H are mutual
related.

The testing environment is created based on the given entities
shown in Table III. The flow entries and traffic are determined
based on the values of F and TFC to evaluate the performance
parameters of CD, DC, and Dopenflow . The objective of this
paper is to assure the accuracy of each measurement result of
CD, DC, and Dopenflow .

IV. METHODOLOGY

Table IV presents the measured performance parameters in
the proposed five test cases. These cases fall into three cat-
egories, which are mirror-in-processing, masked entry, and
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TABLE IV
LIST OF FIVE TEST CASES PROPOSED

Category Test Case Method Output

Mirror-in-
Processing

Action Set time Mirror-first-then-
action

Taction−set

Pipeline Time Mirror-first-then-
pipeline

Ttab le−pip eline

Calculated
Traffic

Buffer Size Burst-until-loss buf, P IR, P OR

Pipeline
Efficiency

Back-to-back-traffic P

Masked Entry Timeout Accuracy Idle-timeout-derived-
by-hard-timeout

Acctimeout

calculated traffic. The measurement of packet-in and packet-
out rates are also accompanied by the buffer size test case. Two
test cases are presented to obtain the time to evaluate the pipeline
processing performance. In addition to the end-to-end latency
measurement proposed by OFLOPS [9], the proposed test case
for measuring the execution time of the action set is provided.
Finally, this paper proposes a method to verify the accuracy of
an idle and hard timeout for the flow entry.

A. Mirror-in-Process

In OpenFlow performance testing, it is difficult to measure
the internal processing latency directly. However, by leveraging
the mirror operation with Apply-Actions instruction embedded,
the packets can be duplicated before some OpenFlow operations
are performed for measurement and comparison.

1) Mirror-First-Then-Action: In this test case, the execution
time of an action set in an OpenFlow switch is measured. The
OpenFlow protocol include many kinds of actions, which com-
prise forwarding, packet modification, and the tagging opera-
tion. Packet modification may increase the operation time in
some switches. Therefore, the processing latency of an action is
used as a major performance benchmark.

In a normal case, the time of action, denoted as Taction−set ,
can be calculated from measured end-to-end latency. Since many
variables influence the testing result, we propose mirroring to
obtain the start time of an action set to improve measurement
accuracy. As displayed in Fig. 3, pktz denotes the mirrored
packet. The value of α is the arrival time of pktz and β is the
arrival time of pktz ‘. The execution time for the action set is
derived as

Taction−set = β − α. (1)

2) Mirror-First-Then-Pipeline: In this case, the time of table
pipeline in OpenFlow switch is measured. The mirroring method
can be applied to this test case as well, because the instructions of
table pipeline are performed after Apply-Actions. As presented
in Fig. 4, the pipeline stage is assumed to comprise of two
tables—table0 and table1 . The flow entries in these two tables
are mostly the same, except the flow entry in table0 has GoTo
instruction. The time T1 includes the time for table lookup and
Apply-Actions operations in table0 . The time T2 includes the
time Ttable−pipeline , the time for table lookup, and the time

Fig. 3. Process of the proposed mirror-first-then-action method for action
time measurement. The execution time for the action set can be estimated by
Taction−set = β − α.

for Apply-Actions operations in table1 . Since flow entries in
table0 and table1 have the same match fields and actions, the
processing latency of table lookup and Apply-Action, denoted
as Ttable lookup and Tapply action respectively, are the same in
table0 and table1 . From the round-trip time (RTT), the time of
the table pipeline can be derived as

Ttable−pipeline = T2 − T1 + RTT/2 (2)

where the T1 is

T1 = Ttable lookup + Tapply action + RTT (3)

and the T2 is

T2 = Ttable−pipelien + Ttable lookup

+Tapply action + RTT/2. (4)

The RTT can be derived by RTT = (pktz /capn ) ∗ 2.

B. Calculated Traffic

1) Burst-Until-Loss: In this test case, the buffer size, the
throughput of packet-in and the throughput of packet-out are
measured. The measurement of these three parameters is per-
formed in one case because the packet-in and packet-out mes-
sages may depend on the size of the buffer in the dut .

As shown in Fig. 5, the dut has the flow entry that matches
the TFC and sends the packet-in message to the controller
c. Controller c stores all packet-in messages and generates the
expected packet-out messages after the traffic that is generated
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Fig. 4. Process of proposed mirror-first-then-pipeline method for the latency
measurement between two tables.

from host H is done. It is assumed that there is no packet loss
occurred at c and all packet-in messages consume the entire
buffer space in the dut. Under the condition m < n, packet loss
occurs at the dut. Therefore, the buffer size, denoted as buf can
be expressed as

buf = m ∗ pkt size. (5)

The throughput of packet-in (PIR) and the throughput of
packet-out (POR) can be expressed by the formulas as

PIR = the number of Packet-in/T1 (6)

and

POR = m/T2 . (7)

2) Back-to-Back-Traffic: In this test case, the efficiency, also
known as the busy ratio of the pipeline in dut is measured.
As displayed in Fig. 6, the latency of TFC includes the total
processing time for n + 1 tables. In each table, packets are
matched with the flow entry and sent to the next table in a
pipeline fashion. The busy ratio of the pkt processing time
in each table can be derived from the packet processing time
and idle times. The processing time of pkt and the idle time
are denoted as Tpkt and Tbubble , respectively. The busy ratio
is defined by the formula P = Tpkt/(Tbubble + Tpkt) × 100%,
where Tpkt is the processing time of each packet in each table.

Fig. 5. Process of proposed burst-until-loss method for buffer size estimation.

Owing to the difficulty of measuring the Tpkt in black-box
testing, uniform processing time of pkt in all tables are assumed
for the performance evaluation. Therefore, Tpkt can be estimated
as

Tpkt ≈ Tinit/(n + 1) (8)

where Tinit represents the processing time of the first packet.
The time Tbubble + Tpkt is the total time of processing pkt

and the idle time for a single table. In this measurement, the total
number of packets m + 1 and the total duration T are known.
Therefore, assuming m packets are sent after the first packet,
the mean time Tbubble + Tpkt can be derived as

Tbubble + Tpkt ≈ (T − Tinit)/n. (9)

Tinit and T are the processing time for the first packet, and the
total processing time for m + 1 packets, respectively. The time
of sending pktz is denote as αz and the arrival time of pktz is
denoted as βz . Tinit and the T are given by the Tinit = β1 − α1
and T = βm+1 − α1 , respectively.

C. Masked Entry

Based on the specification of OpenFlow, the flow table can
have multiple entries with the same match fields but with dif-
ferent priorities.
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Fig. 6. Process of proposed back-to-back-traffic method for pipeline efficiency
measurement. For each packet in a table, the busy processing time and idle time
are represented by the rectangle and dash line, respectively.

1) Idle-Timeout-Derived-by-Hard-Timeout: In this case, the
accuracy of timeout for a given flow entry is measured. The
measured timeout includes hard-timeout and idle-timeout. The
accuracy of the measurement of hard-timeout can be evaluated
simply from the packet that is injected into the DUT. However,
the deviation of the accuracy of idle-timeout measurement may
existed owing to the interarrival time of the traffic when the flow
entry is matched.

To evaluate the accuracy of idle-timeout, use of the masked
entry is proposed to avoid reseting of the timer at the wrong
time by the arriving packet. As shown in Fig. 7, two flow en-
tries are added to the dut. The first is the idle-timeout flow
entry and the second is the hard-timeout flow entry, which
is the masked entry with the higher priority. Both flow en-
tries are matched with the TFC, and the time of idle-timeout
(Tidle−timeout) equals the time of hard-timeout (Thard−timeout).
When the idle-timeout flow entry is added to the dut, the timer
of idle-timeout remains at zero as the packets are forwarded
based on the matched entry. After the idle-timeout flow entry
is set, the hard-timeout flow entry is added to the dut. At this
time, the hard-timeout flow entry takes over the idle-timeout
flow entry because it has higher priority. The timers for both of
the flow entries begin counting from zero as they are synchro-
nized. Figs. 7 and 8 illustrate two situations. In Fig. 7, the hard-
timeout flow entry expires before the idle-timeout flow entry, so
the timer for idle-timeout is skewed. To evaluate this skewness,
Thard−timeout is increased and the hard-timeout flow entry is
set again.

The aboveprocess is repeated until the idle-timeout flow entry
has expired early as illustrated in Fig. 8. The accuracy of idle-
timeout can be expressed as

Accidle−timeout = (Tidle−duration − Tidle−forward

−Tidle−timeout)/Tidle−timeout×100%. (10)

Fig. 7. Idle-timeout derived from hard-timeout: The hard-timeout flow entry
expired before the one of idle-timeout indicating skewness of the idle-timeout
timer.

Fig. 8. Idle-timeout derived from hard-timeout: The skewed idle-timeout
(T2∼T4) can be observed at the controller (T1–T5). This value can be derived
by subtracting the Tid le−duration and Tid le−forward assuming a neglectable
processing and propagation delay.

The terms Tidle−duration and Tidle−forward represent the alive
and active times for idle-timeout flow, respectively. The arrival
time of pktn is denoted as αn . The value of Tidle−forward can be
derived by using the formula of

Tidle−forward = αn − α1 . (11)
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Fig. 9. Block diagram of OFBench architecture.

V. SYSTEM IMPLEMENTATION

The proposed OFBench is an automatic testing suite which
is integrated with a Ryu controller1 and an Ostinato traffic
generator.2 The architecture of OFBench, displayed in Fig. 9,
is a controller-agent architecture. Controlled by the controller,
agents can generate traffic, capture packets, and parse pack-
ets. The test cases of OFBench are written in scripts for basic
OpenFlow operations and the analysis of test results.

A. Test Setup

Five test cases are developed using test scripts in the OFBench
suite. The available configurations of the test cases consist of
frame size, transmission rate, and some specific values. The
available frame sizes are 64, 128, 256, 512, and 1024 bytes, and
the available transmission rates range from 64 kb/s to 1Gb/s. In
our experiment, UDP traffic is used in all test cases. Experiments
are conducted with three physical desktop computers. The Open
vSwitch is setup based on the Ubuntu 14.04 OS on a commodity
Intel PC with two NICs without extra hardware accelerator. The
host (h) and controller (c) are constructed based on the Intel
Core-i7 processors running at 3.3 GHz with Ubuntu 14.04 of
kernel 4.2.0-27.

B. Experimental Results

In this section, five performance metrics—action time,
pipeline time, buffer size, pipeline efficiency, and timeout
accuracy—are evaluated using the five proposed test cases. The
environment that is presented in Fig. 9 is used to test the four
DUTs listed in Table V. The statistical results are collected with
five rounds of testing.

1) Action Time: The relationship between action time and
the combination of actions is sought. The tested actions com-
prise sets of packet header modifications from layer two to four.
Fig. 10 presents the results concerning action time with different
number of actions of switches under test. The modifications of
packets are based on the combinations of Ethernet (eth), IP, and
UDP protocols. In each testing scenario, traffic of minimum-

1[Online]. Available: Ryu, version 4.0, https://osrg.github.io/ryu/
2[Online]. Available: Ostinato, version 0.7.1, http://ostinato.org/

sized frame is generated at the rate of 1000 packets per second
(pps) for a total of up to 150 000 packets.

With respect to Fig. 10, the software switch has the lowest
average action time of 6 μs. The action time measured ranges
from 3 to 23 μs. The standard deviation of the measured action
time is shown in Fig. 11. The standard deviation grows with
the increase of frame rate and number of actions. We further
conducted a test case based on a white-box environment to
verify the test result. The kernel trace tool (ftrace) is used to
record the execution time of the set_ip_addr function for Open
vSwitch. The white-box-based measurement on the action time
is approximately 0.6 μs.

The average action time for hardware switches is at least
100 μs. According to the specifications in Table V, the CPU in
the Open vSwitch has the highest clock rate compared to those
of the hardware switches. The measured action time that is
presented in Fig. 10 is correlated with the CPU clock frequency.
The results for the hardware switch SW4 are unavailable because
the mirror and action do not execute properly.

2) Pipeline Time: In the pipeline time test case, the results
are unavailable for switches SW1 and SW2 because Apply-
Action is not working properly. Those switches can not mirror
packets between tables of the pipeline process. Therefore, only
results for Open vSwitch, SW3, and SW4 with various frame
sizes from 64 to 1024 bytes are available. The measured pipeline
time is in the range of 1.1 to 2 μs positively correlated with frame
size.

3) Buffer Size: In the buffer size test case, the packet-in rate,
packet-out rate, and buffer size of the switch under test are
measured in a single test. The transmission rate is fixed at 1Gb/s
with various frame sizes for the measurement. Fig. 12 presents
the packet-in rates. The results that are collected at the beginning
of the test are discarded, mainly because the software-based
traffic generator takes seconds to stabilize the testing traffic.
According to the results shown in Fig. 12, the rate of packet-in
for Open vSwitch is approximately three times lower than that
of the hardware switch SW2, indicating that the software switch
poorly handles the small frame size in packet-in operation.

With respect to the packet-out rate, both switches of SW1
and SW2 poorly handle small frames with the size of 64 bytes.
However, the measurements results in Open vSwitch are differ-
ent. The packet-out operation works well with the frame size of
64 bytes, and the throughput of packet-out for Open vSwitch is
better than those observed in other switches under test.

Table VI presents the measured results of buffer sizes of
switches under test. Some error messages are generated by the
DUTs during testing. The errors, identified as “buffer unknown”
for packet-out messages result in the failure of the packet for-
warding in the DUT for each corresponding packet-out received.
Sometimes, the number of error messages exceed the number
of packet-out messages that are sent from the controller. This
test results reveal that packet loss has occurred at the DUTs.
Therefore, the buffer size of the DUT is not presented as er-
rors occurred. In Table VI, only buffer sizes that are tested with
a frame size of 64-byte are shown. For other frame sizes, the
buffer sizes of the switches can not be estimated due to the errors
stated above. We suspect that the anomalous behavior of DUTs
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TABLE V
SPECIFICATIONS OF HARDWARE AND SOFTWARE SWITCHES

Switch CPU Core Clock rate Memory Buffer OS version

Pica8 P-3290 MPC8541 1 1 GHz 512 MB 4 MB v2.6.1
Pica8 P-3297 P2020 2 1.33 GHz 2 GB 4 MB v2.6.1
Edge-corE AS4610-30T ARM Cortex A9 2 1 GHz 2 GB N/A v2.6.4
Centec V350 e500v2 1 533 MHz 2 GB N/A v3.1(11), 1.alpha
Open vSwitch Intel Core i3 2 3.1GHz 8 GB N/A Ubuntu 14.04, 3.13.0-24

Fig. 10. Measured average action time for switches under test.

Fig. 11. Standard deviation of action time measured for the Open vSwitch.
The tests are conducted under various traffic loads of 100, 1 k, and 10 k packet/s
with 150 k number of frames.

Fig. 12. Measured packet-in rates for switches under test during the test of
buffer size with generated traffic rate of 1 Gb/s.

TABLE VI
BUFFER SIZE ESTIMATION WITH 64-byte FRAME SIZE UNDER 1-Gb/s TRAFFIC

Open vSwitch SW1 SW2 SW3 SW4

13 504 8 256 16 192 32 768 342 464

Fig. 13. Estimated efficiency of table pipeline with different number of tables
(30– 60) for switches under test. The low percentage of efficiency indicates long
wait time in the pipeline process.

arises due to the buffer overflow issue of CVE-2016-2074 [30]
in Open vSwitch implementation.

4) Pipeline Efficiency: With respect to the measurement of
efficiency for table pipeline operation, the test case is conducted
to go through 60 tables with transmission rates of 1024 Mb/s. As
shown in Fig. 13, the software switch has poor efficiency on the
operation of traversing multiple tables. For hardware switches,
switch SW3 achieves a busy ratio above 70% and the pipeline
efficiency is inversely proportional to the number of tables. This
indicates the software switch has longer idle time compared to
those of the hardware switches on multitable pipelining. The
result for switch SW4 is not available due to the switch only has
a single table. During the test, error messages were observed
at the Open vSwitch with a large amount of traffic in the test.
The sent and received packets were mismatched when the Open
vSwitch is operated under heavy loading, making the busy ratio
calculation unavailable.

5) Timeout Accuracy: In the evaluation of timeout accuracy,
the idle-timeout was set to 5 s and the hard-timeout was varied
from 3 to 7 s. The traffic is generated at a rate of 10 K pps
with a frame size of 64-byte. Table VII presents the results
thus obtained. The deviation in the idle-timeout of hardware
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TABLE VII
RESULT OF TIMEOUT ACCURACY FOR SWITCHES UNDER TEST

Switch Accid le−tim eout Acchard−tim eout

Open vSwitch 2% 0%
SW1 12.47% 4.7%
SW2 11.39% 3.3%
SW3 4.7% 0%
SW4 17.64% 1.66%

The idle-timeout is set to 5 s and the hard-timeout was varied from 3 to 7 s.

switches is approximately less than 20%. A larger deviation for
the idle-timeout is observed in switch SW4 because the timer
for idle-timeout can not be reset properly when the idle-timeout
flow entry is matched.

C. Processing Overhead

Currently in the prototype development phase, the system
conducts post analysis on pcap files produced during each test.
The size of these pcap files is proportional to the duration of the
testing. Therefore, some performance overheads are imposed in
the process of file storage while generating and receiving the
traffic frames. The variations might occurred at the host side
due to the performance of NICs, drivers, and CPUs. As far as
the controller is concerned, only test cases of “burst-until-loss”
and “timeout accuracy” might be affected due to the insufficient
controller performance.

For the test case of evaluating idle-timeout accuracy, the
mechanism is based on the setting of two flow entries of differ-
ent priority. It takes time for the DUTs to process the incom-
ing packet for matching the new rule while the other ages out
causing the timer not reset properly. Therefore, variation might
occurred at this gray area. Moreover, as the calculation is based
on the value of hard-timeout, the accuracy of hard-timeout oper-
ation in the DUTs might affect the variations of the idle-timeout
measurement.

VI. CONCLUSION AND FUTURE WORK

This paper presents an automatic test suite that is based on
the controller-agent architecture. It can control remote agents to
generate and analyze networking traffic. The suite implementa-
tion is focused on the testing of OpenFlow switch performance
with respect to the following aspects; control-plane-trigger-data-
plane (C2D), data-plane-trigger-control-plane (D2C), and OFD.
Five test cases are considered to evaluate five performance met-
rics, which are action time, pipeline time, buffer size, pipeline
efficiency, and timeout accuracy. These five metrics can be used
to evaluate the performance of a switch under test. According
to the results of testing with minimum-sized frame herein, the
hardware switches can generate packet-in messages at rates from
1000 to 9000 messages per second. The rate is approximately
three times higher than that generated by the software switch.
With respect to timeout accuracy, the hardware switches exhibit
a deviation less than 20% in idle timeout. The larger idle timeout
deviation of hardware switches may cause an error in applica-
tions that are based on the timer of idle-timeout. Measurements

of the pipeline efficiency revealed that, hardware switches had a
better pipeline efficiency. When pipeline was enabled and tested
under a 1Gb/s traffic loading, the hardware switches reached a
pipeline efficiency approximately above 50% with 30 tables.

Generally, the hardware switch is able to better handle new
flow than is the software switch. Some interesting issues and un-
known behaviors were observed during the testing for the Open-
Flow switches. For example, some switches crashed when the
volume of burst packet-in traffic was high and, the Apply-Action
instructions may not be well implemented in some switched. The
timer of idle-timeout is not reset properly when the flow entry
is matched.

In the experiments herein, performance factors that were
affected by the loading of the switches were excluded from
consideration, possibly causing some variance in the obtained
testing results. We plan to consider these factors and discuss
some advanced issues related to our experiments in the near
future. As part of the ACTS development, the tests can be easily
deployed in the virtual environment by redirecting the outcomes
of the traffic generator and the responses from the DUT to a
virtual host fulfilling the performance measurement purpose.
Since the original system design is based on a controller-agent
architecture with high-level script language, test cases can be
modified to generate any given combinations of OpenFlow mes-
sages addressing not only the needs of performance measure-
ment but also the issues of switch diversity. In the near future,
the mechanisms of on-demand and real-time analysis will be
implemented. Pcap filters will be added to avoid the unneces-
sary frames recorded in the pcap file. The calculation of the
queuing time will be included in the pipeline time, making the
measurement of pipeline performance more accurate.
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