
 

  
Abstract—The federation between cloud and edge has been 

proposed to exploit the advantages of both technologies. However, 
the existing studies have only considered cloud-edge computing 
systems which merely support vertical offloading from edges to 
clouds in one direction. However, there are certain cases, where 
the offloading needs to be done from clouds to edges and between 
edges. Such a cloud to edge offloading is called reverse offloading. 
To this end, this paper proposes a generic Omni-directional 
architecture of cloud-edge computing systems intending to provide 
vertical and horizontal offloading. To investigate the effectiveness 
of the proposed architecture in different operational scenarios, we 
formulate the dual cost optimization problem with different 
latency (loose, low, ultra-low) constraints.  We develop an 
offloading algorithm using simulated annealing (SA). The 
experimental results show by our proposed OMNI architecture we 
can reduce the total cost by 15–25% and 10–20% in non-uniform 
and uniform inputs, respectively, compared to other existing 
architectures. The average latency in OMNI architecture is 
relatively very less compared to other architectures. It also 
increases utilization in the edge nodes by 5–30% in comparison to 
other existing architectures. 

Index Terms—Cloud-edge systems, cost, latency, offloading, 
reverse offloading, optimization. 

I. INTRODUCTION 
Cloud federation is the practice of interconnecting the cloud 

computing environments of two or more service providers for 
load balancing traffic and accommodating spikes in demand. 
Such a federation scenario can be described variously in 
different papers. 1) The collection of clouds cooperates to 
provide resources requested by users [1]. 2) One cloud to 
wholesale or rent computing resources to another cloud 
provider [2]. 3) Federation makes cloud a user and resource 
provider at the same time [3] where the customer request 
submitted to one cloud provider is fulfilled by another. 
However, after the edges are re-architecture as datacenters the 
cloud-edge federation comes into existence. Where the users’ 
request to the edges is severed by the clouds and vice versa. 

The significance of cloud-edge federation is high because of 
the following reasons. 1) The edges are closer to the users by 
which it can reduce the latency. 2) The edges have limited 
resources to provide the service. To satisfy the demand an edge 
can federate with other edges and/or clouds. By this federation, 
we can increase the efficiency in resource utilization and 
enlargement of capabilities of two federated entities. 

 
 

Figure 1 shows a federated cloud-edge system consists of two 
layers. The top layer is called the cloud layer consists of 
different clouds, such as google, amazon, etc. The bottom layer 
is called the edge layer having a different service provider like 
AT&T, Chunghwa telecom, etc. In these systems, the vertical 
federation between clouds and edges is managed by the cloud-
edge federation manager (FM), whereas the edge-edge FM 
manages the horizontal federation between edges. 

In this paper, we categorize the input jobs/traffics into three 
categories, such as ultra-low, low and loose latency jobs. 1) The 
jobs with latency less than 0.5ms are coming under ultra-low 
latency jobs and are highly time-sensitive jobs that must be 
handled by the edges. 2) The jobs with a latency greater than or 
equal to 1sec are loose latency jobs and required high storage 
space should be handled by the clouds. 3) The jobs whose 
latency is greater than 0.5ms and less than 1 sec are called low 
latency jobs and can be handled by either the edges or clouds. 

When an edge receives any highly time-sensitive jobs and 
cannot handle such jobs it horizontally offloads to other edges. 
Similarly, when it receives loose latency jobs that consume very 
high storage space, it vertically offloads to a cloud node. 
However, when a cloud node receives any highly time-sensitive 
jobs, to overcome the latency and data transfer cost, it offloads 
to an edge node. Such downward offloading from cloud to edge 
is called reverse offloading [4]. 

Let us consider one example to explain some key terms of 
this paper. Consider two clouds say T1 and T2, two edges say 
B1 and B2 where clouds are in tier-2 and edges are in tier-1. 
Federation Manager: FM is the agent that is responsible for the 
federation agreement between two-party. Horizontal 
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Federation: Resource sharing agreement between two nodes in 
the same tier. For example, E1 and E2. Vertical Federation: 
Resource sharing agreement between two nodes in a different 
tier. For example, E1 and T1. Horizontal Offloading: When a 
request is for E1 is severed by E2 or when E1 offloaded its 
request to E2. Vertical Offloading: When a request is for E1 is 
severed by T1 or when E1 offloaded its request to T1. Reverse 
Offloading: When a vertical offloading is from an upper-tier 
node to a lower-tier node. For example, when a request is for 
T1 is severed by E1 or when T1 offloaded its request to E1. 
Triangular Offloading: When a user of one service provider 
(say E1) is served by another service provider (say T1) and the 
user’s inputs are offloaded from the user to T1 via E1, i.e. users 
give input E1 and E1 offload the tasks to T1. Non-triangular 
Offloading: When a user of one service provider (say E1) is 
served by another service provider (say T1) and based on the 
federation agreement the FM will offload the user’s inputs 
directly to T1 without offloading via E1. 

To the best of our knowledge, our work is the first to design 
the edge-cloud federation where offloading can be done in 
multiple directions i.e. horizontal offloading, vertical 
offloading from edge to cloud and vertical reverse offloading 
from cloud to edge based on loose, low, and ultra-low types of 
latencies. Our detailed contributions are as follows. (1) We 
design a generic two-tier architecture that enables the clouds 
and edges can federate with each other and offload jobs to 
satisfy the user’s demand. (2) We propose an analytical model 
to minimize the cost both from the cloud and edge layer 
perspective with given latency constraints. (3) We use the 
modified simulated annealing algorithm to find the globally 
optimal solution of the proposed problem and compare the 
performance of our proposed architecture with three other 
existing architectures. 

Related Works: Mashayekhy et al. proposed a model based 
on game theory to reshape the business structure among cloud 
providers [5]. In this paper, they proposed a cloud federation 
mechanism to maximize the profit of the cloud providers by 
reducing the utilization of the resources. Hassan et al., in [6] 
present a capacity-sharing mechanism using game theory in a 
federated cloud environment which can lead to a global energy 
sustainability policy for the federation and encourages them to 
cooperate. The main goal of the paper is minimizing the overall 
energy cost by capacity sharing technique to promote the long-
term individual profit of the cloud providers. The integration of 
vertical and horizontal cloud federation is discussed in [7]. In 
this integration, private clouds are known as secondary clouds 
are federated with each other horizontally and these 
horizontally federated clouds federated with the public clouds 
known as primary clouds vertically. Chekired et al., in [8] 
introduce a new scheduling model for the industrial Internet of 
things (IIoT) data processing and proposed a two-tier cloud-fog 
architecture for IIoT applications by deploying multiple servers 
at the fog layer. In [9], a two-tier federated Edge and Vehicular-
Fog architecture was presented with the objective to minimize 
the total cost while meeting latency constraints. Tong et al., [10] 
proposed a hierarchical edge cloud architecture for the efficient 
utilization of resources by leveraging cloud computing and 
migrating mobile workloads for remote execution at the cloud. 
In [11] Cao et al. proposed an integrated resource provisioning 

model between edge infrastructure providers to realize the 
resource cooperation and service provisioning between them. 

The rest of the paper is organized as follows. In Section II we 
will discuss our proposed architecture and optimization 
problem. We will present our solution in Section III, results in 
Section IV and finally, the conclusion in Section V.   

II. MODELING AND PROBLEM FORMULATION 
In this section, we will discuss our proposed two-tier cloud-

edge generic architecture and proposed our cost optimization 
problem with latency as a constraint. The variables used to 
discuss our model and formulate the optimization problem 
presented in Table I. 

TABLE I: LIST OF COMMONLY USED VARIABLES AND NOTATIONS 
Notation Description ��, � � � � ��  	
� � � � � �  

��: �-th node in tier-2 	
: �-th node in tier-1 
Traffic 
��, 

 Traffic input to node �� , Traffic input to node 	
 �
��, ����
 � �
�� V������� �������������� �	
  

to ��  , Vertical offloading 
from �� to 	
, Horizontal offloading from 	
 to 	� 

Capacity !"�, !"���, !"��
 Computing capacity of ��, Capacity used by �� for self 
computation, Capacity of �� used by 	
 

!#
� !#
�
, !#
��$ , !#
��%  
Computing capacity of 	
, Capacity used by 	
 for self 
computation, Capacity of 	
 used by ��, Capacity of 	
 
used by 	� !��
$ , !
��%   Communication capacity between �� and 	
, 
Communication capacity between 	
 and 	� 

!&�
' , !&��(  Communication capacity between )*+, and 	
, 
Communication capacity between )*+, and �� 

Cost -"� -  Total cost of tier-1 and tier-2 ."(� .'  Unit computing cost of ��, Unit computing cost of 	
 /0  Unit Communication cost. 

," � ,$  , ,% 
Unit computing price of �� for 	
, Unit computing 
price of 	
 for ��, Unit computing price of 	
 for 	� 

Latency 1�(, 1
' Computing latency at �� a���	
 1��
(2', 1
��'2(, 1
��'2' Communication latency from �� to 	
 , from 	
 to �� , 
from 	
 to 	� 1
&2', 1�&2( Offloading latency from users to 	
, from users to �� 

3&4� 345� 346  Maximum latency for ultra-low, low and loose latency 
traffic 

Distance and Speed 7��
$ � 7
��%   Distance between �� a���	
, and distance between 	
 
a�� 	� 7��
&82'� 7���&82(�7��
&2'� 7��
&2( 
Shortest distance from ��’s user to 	
, from ��’s user to ��, from 	�’s user to 	
, and from 	�’s user to �
 .  Speed of light 

A. Generic Two-tier Architecture and Traffic Distribution 
In this section, we will discuss our proposed generic cloud-

edge federated architecture. As shown in Figure 2, the top tier 
(tier-2) consists of cloud nodes and the bottom tier (tier-1) 
consists of edge nodes. The subscribers and IoT devises can 
send their requests to the cloud or edge nodes to avail the 
services. In this architecture, the edge nodes and cloud nodes 
are connected vertically and all edge nodes are connected 
horizontally. Which implies there can be a vertical offloading 
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from edges to clouds, reverse offloading from cloud to edges, 
and horizontal offloading from one edge node to other edge 
nodes. There must be a question arises, why no cloud to cloud 
horizontal offloading is not considered in this paper? The main 
reason is the clouds have no capacity limitation, no coverage 
limitation. Hence, based on the objective of this paper, it looks 
impractical to have a cloud to cloud federation. 

1) Tier-1 Traffic Distribution 
Assuming the probability of total input traffic to an edge 

node 	
  is 1, which includes ultra-low, low and loose latency 
traffics, i.e., 9:;

< = 9>;

< = 9?;

< @ �, where 9:;

<, 9>;

<and  9?;�

< are the probability of ultra-low, low and 
loose latency traffic input to cloud node 	
 . The probability of 
offloaded ultra-low latency traffic from edge 	
  to all edge 
nodes in the tier-1 can estimate the 9:;

< as, 9:;

< @A9:BCD;

< = 9:BED;

< = F= 9:BGD;

<H, where � is the 
number of edge nodes in the tier-1, and 9?;

< can be estimated 
as 9?;

< @ A9?BCD;

< = 9?BED;

< = F= 9?BID;

<H, where � 
is the number of cloud nodes in the tier-2. Since the low latency 
traffics of 	
  can be offloaded both horizontally to edge nodes 
and vertically to cloud nodes, then 9>;

< can be calculated as 9>$;

<+ 9>%;

<, where 9>$;

< is the probability of vertically 
offloaded traffic and 9>%;

< is the probability of horizontally 
offloaded traffic. 9>$;

< and 9>%;

< can be estimated as, 9>$;

< @ A9>BCD$ ;

< = 9>BED$ ;

< = F= 9>BGD$ ;

<H and 9>%;

< @A9>BCD% ;

< = 9>BED% ;

< =F= 9>BID% ;

<H. Then the vertically 
offloaded total traffic from edge 	
  to cloud node ��  will be, �
�� @ 9?B�D;

< J 

 = 9>B�D$ ;

< J 

. Total horizontally 
offloaded traffic from edge 	
  to edge 	� will be, �
�� @9:B�D;

< J 

 = 9>B�D% ;

< J 

. In �
��, if � @ K then there will 
be no horizontal offloading. 

2) Tier-2 Traffic Distribution: 
Assuming the probability of total input traffic to a cloud node ��  is 1, which include ultra-low, low and loose latency traffics, 

i.e., L:;
��< = L>;
��< = L?;
��< @ �, where L?;�
��<� L:;
��< and L>;
��< are the probability of loose latency, ultra-low and low 
latency traffics input to cloud node �� , respectively.  As these 
ultra-low latency traffics are highly time-sensitive, hence they 

will reverse offloaded to the edges in tier-1. L:B
D;
��< represents 
probability of offloaded ultra-low latency traffic from cloud ��  
to edge 	
 . Then total probability of reverse offloaded ultra-low 
latency traffic from cloud node ��  to tier-1 will be, L:;
��< @AL:BCD;
��< = L:BED;
��< = F= L:BGD;
��<H. L>B
D;
��< represents 
probability of offloaded low latency traffic from cloud ��  to 
edge 	
  and L>BMD;
��< is the probability of same traffic type for ��  for self-computation. Then the probability of total low 
latency traffic input to a cloud node ��  will be, L>;
��< @L>BMDB
��D = AL>BCD;
��< = �L>BED;
��< = F= L>BGD�;
��<H. Then the 
reverse offloaded traffic from the cloud ��  to the edge 	
  can be 
estimated as, ����
 @ L:B
D;
��< J 
�� = L>B
D;
��< J 
��. 
B. Latency Estimation 

In our model, we assume both the cloud nodes and edge 
nodes are consisting of multiple servers having equal capacity. 
However, the number of servers in cloud nodes is relatively 
high compared to edge nodes so as the total computational 
capacity. To calculate the computation latency of the nodes, we 
can apply the NONOK queueing model where K is the number 
of servers in the node. As the capacities of the servers are equal, 
to simplify, our estimation, and apply the NONO� model 
instead multi-server to calculate the latency. Here, in this single 
server model, the capacity of the single server is the sum of the 
total capacities of the servers in that node. The communication 
latency is calculated by the NONO� queueing model.  
1) Computational Latency Estimation 

Based on NONO� model, the computational latency of cloud 
node ��  will be, 1�( @ CP8QRSTUQRV W�Q�XYXZ[ \V WX�QYXZ[ ], where 
�� ^ V ����
G
_C =V �
��G
_C ` !"�. Similarly, for an edge node the computation 
latency will be, 1
' @ CPaXRATXRV WX�Q\V W�Q�XbQZ[ RV cX�dYdZ[ \V cd�XYdZ[bQZ[ H, 
where 

 ^ V �
�� = V ����
I�_C ^ V �
��G�_C = V ���
G�_CI�_C ` !#
. 
2) Triangular Communication Latency Estimation: 

From the users to cloud/edge initial communication latency 
can be estimated as follows. The communication latency from 

user to 	
  can be estimated as, 1
&2' @ CPe�Xf RTX = gX�Xe2fh ,  where, 

 � !&�
' . The communication latency from user to ��  can be 

estimated as, 1�&2( @ CPe�Qi RTUQ = gQ�Qe82ih , where, 
�� � !&��( .  

Triangular communication is the case, where users give their 
input to the node jM. Node jM determines, whether, the input is 
appropriate based on its available capacity, capability and other 
constraints. If yes, then the input is handled by the node itself. 
Otherwise, node jM will determine another node jC, who has a 
federation agreement with jM and can handle the input. Then jM will offload the traffic to jC. This communication from user 
to jM and then jCis called triangular communication. This 
federation takes place in the control plane level. The 
communication latencies are estimated as follows. In reverse 
offloading, the communication latency from node ��  to 	
  is 1��
(2' @ CPQ�Xk RW�Q�X = lQ�Xkh , where ����
 ` !��
$ . In vertical offloading, the 

communication latency from node 	
  to ��  is 1��
'2( @ CPQXkRWQ�X =lQ�Xkh ,  where  ���
 ` !��
$ , In horizontal offloading, the 

Figure 2. OMNI: A generic two-tier federated architecture.
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communication latency from node 	
  to 	� is estimated as, 1
��'2' @ CPX�dm RcX�d 
= lX�dkh , where   �
�� ` !
��% . 

C. Problem Formulation with Triangular Offloading 
The federation decision between two nodes is taken in the 

control plane. Whether to offload the traffic to another node is 
purely depend on the available resource capacity and capability 
of the nodes. In this section, for such triangular offloading, we 
present the optimization problem from the control plane 
perspective. 

1) Objective of the Tier-1: 

noo
p
ooq

rC @ V 

 J 7&�' J /0G
_CrE @ V !#
�
 J .'G
_Crs @ V V �
�� J 7
��% J /0G�_CG
_Crt @ V V !#��
% J ,%G
_CG�_Cru @ V V �
�� J 7��
$ J /0I�_CG
_Crv @ V V !"��
 J ,"G
_CI�_C

  (1) 

In equation (1), let rC� rE� rs� rt� ru, and rv are the variables 
presenting different costs of tier-1 nodes. Where rC shows the 
communication cost from the users to the edges. The total self-
computing cost of the edges is presented by rE. The total 
communication cost between edges is shown by rs. The rt 
shows the total computing price of edges while computation is 
done by other edge nodes. The total communication cost from 
edge nodes to the cloud nodes is presented by ru. The rv 
presents the total computing price of edges while computation 
is done by cloud nodes. Then the objective function for the edge 
nodes is to minimize B-D�� where, 

 - @ rC = rE = rs = rt = ru = rv� (2) 
subject to   

 w 1
&2' = 1
' ` 3&4�� 1
&2' = 1
��'2' = 1�' ` 3&4� �  (3a) 
(3b) 

 x 1
&2' = 1
' ` 345�1
&2' = 1
��'2' = 1�' ` 345�1
&2' = 1
��'2( = 1�( ` 345� 
(4a) 
(4b) 
(4c) 

 1
&2' = 1
��'2( = 1�( ` 346, (5)
 y ` !#
�
 ` !#
 , (6)
 !#
�
 = V !#
��%G
_C = V !#
�$I�_C � 

. (7)

The equations (3) - (5) presents the latency constraints for the 
inputs given to all edge node from users, where equations in (3) 
are for ultra-low latency, equations in (4) are for low latency, 
and equation (5) is for loose latency traffics. The inequality in 
Equation (3a) shows the user to 	
  communication latency plus 
the computing latency of 	
  must be less than the ultra-low 
latency limit. Equation (3b) is the case where the user submitted 
the job to 	
  and 	
  offloaded the job to 	�. The inequality in 
Equation (3b) shows the sum of the user to 	
  communication 
latency, 	
  to 	� communication latency and the computing 
latency of 	� must be less than the ultra-low latency limit. The 
inequality in Equation (4a) shows the user to 	
  communication 
latency plus the computing latency of 	
  must be less than the 
low latency limit. Equation (4b) is the case where user 
submitted the job to 	
  and 	
  offloaded the job to 	�. The 
inequality in Equation (4b) shows the sum of the user to 	
  

communication latency, 	
  to 	� communication latency and 
the computing latency of 	� must be less than the low latency 
limit. Equation (4c) is the case where the user submitted the job 
to 	
  and 	
  offloaded the job to �� . The inequality in Equation 
(4c) shows the sum of the user to 	
  communication latency, 	
  
to ��  communication latency and the computing latency of ��  
must be less than the low latency limit. Equation (5) is the case 
where the user submitted the job to 	
  and 	
  offloaded the job 
to �� . The inequality in Equation 5 shows the sum of the user to 	
  communication latency, 	
  to ��  communication latency and 
the computing latency of ��  must be less than the loose latency 
limit. The constraint in equation (6) presents no edge node can 
compute all its received requests by itself or offload them 
entirely to others. The sum of self-computation and horizontal 
offloading capacity plus vertical offloading capacity must be 
less than the total input to the edge nodes is presented in 
equation (7). 

2) Objective of the Tier-2: 

nop
oq zC @ V 
�� J 7&�( J /0I�_CzE @ V !"��� J ."(I�_Czs @ V V ����
 J 7��
$ J /0G
_CI�_Czt @ V V !
�� J ,$I�_CG
_C

  (8) 

In equation (8), let zC� zE� zs, and zt are the variables 
presenting different costs of tier-2 cloud nodes. Where zC 
shows the communication cost from the users to the clouds. The 
total self-computing cost of the clouds is presented by zE. The 
total communication cost from clouds to the edges is presented 
by zs. The zt presents the total computing price of clouds while 
computation is done by edge nodes. Then the objective function 
for the edge nodes is to minimize B-"D�� where, 

 -" @ zC = zE = zs = zt,                                        (9) 
subject to   

 1�&2( = 1��
(2' = 1
' ` 3&4,  (10)
 { 1�&2( = 1�( ` 345�1�&2( = 1��
(2' = 1
' ` 345�  (11a) 

(11b)
 1�&2( = 1�( ` 346 , (12)
 {y ` !"��� ` !"�L?;
��< ` � �   (13) 

 !"��� = V !"��
G
_C � 
��.  (14)

The equations (10) – (12) presents the latency constraints for 
the inputs given to all cloud nodes from the users, where 
equation (10) is for ultra-low latency, equations in (11) are for 
low latency, and equation (12) is for loose latency traffics. 
Equation (10) is the case where the user submitted the job to ��  
and ��  offloaded the job to 	
 . The inequality in Equation (10) 
shows the sum of the user to ��  communication latency, ��  to 	
  
communication latency and the computing latency of 	
  must 
be less than the ultra-low latency limit. The inequality in 
Equation (11a) shows the user to ��  communication latency plus 
the computing latency of ��  must be less than the low latency 
limit. Equation (11b) is the case where the user submitted the 
job to ��  and ��  offloaded the job to 	
 . The inequality in 
Equation (11b) shows the sum of the user to ��  communication 
cost, ��  to 	
  communication latency and the computing latency 
of 	
  must be less than the low latency limit. The inequality in 
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Equation (12) shows the sum of the user to ��  communication 
latency and the computing latency of ��  must be less than the 
loose latency limit. The constraint in equation (13) presents no 
cloud node can compute all its request by itself or offload them 
entirely to others provided all the traffics to the cloud node are 
not loose latency traffics. The sum of self-computation and 
vertical offloading capacity must be less than the total input to 
the clouds is discussed in equation (14). 

D. Problem Formulation without Triangular Offloading  
As discussed in Section I, in practice the offloading decision 

between two party in the federated systems is taken by the FM 
in the data plane based on the federation agreement between the 
two party. In this subsection, for such non-triangular offloading, 
we modify our previously proposed optimization problem from 
control plane perspective to data plane perspective. 

1) Non-Triangular Latency Estimation: 
When offloading decision takes place in data plane the 

communication from the user to service provider become non-
triangular. The new offloading latency can be estimated as 
follows. The vertical offloading latency from the user to cloud 
node �� , where the job input is for 	
 , is estimated as, 1
��&2'( @CPe�Qi RTX = gX�Qe2ih , where, 

 � !&��( . The horizontal offloading latency 

from the user to edge 	�, where the job input is for 	
 , is 

calculated as, 1
��&2'' @ CPe�df RTX = gX�de2fh , where, 

 � !&��' . The 

reverse offloading latency from user to edge 	
 , where job input 

is for ��  will be, 1�
&2(' @ CPe�Xf RW�Q�X = gQ�Xe82fh , where, ����
 � !&�
' . 

2) Modified objective of the tier-1: 

{r| @ V V �
�� J 7
��&2' J /0G�_CG
_Cr} @ V V �
�� J 7
��&2' J /0I�_CG
_C   (15) 

In Equation (15), r| is the case where the input traffic from 
the user is for edge 	
 , however, due to the decision of edge-
edge FM the traffic is offloaded directly to the edge node 	�. 
The r| represents the total horizontal offloading cost between 
the edges. And in rt (from equation (1)), when � @ K in the 
horizontal offloading capacity !#��
%  and the unit computing price ,
�
% @ .
, then there will be no extra self-computing cost. The r} 
is the case where the input traffic from the user is for edge 	
 , 
however, due to the decision of cloud-edge FM the traffic is 
offloaded directly to the cloud �� . Then the modified objective 
function for the edge nodes will be to minimize B-CD�� where, 

 -C @ rt = rv = r| = r},                           (16) 
subject to  
 1
��&2'' = 1�' ` 3&4, (17) 
 {1
��&2'' = 1�' ` 345�1
��&2'( = 1�( ` 345�   (18a) 

(18b) 
 1
��&2'( = 1�( ` 346,   (19) 
 (3a), (4a), (6), and (7). 
Equation (17) and (18a) are the cases where jobs from user 

for edge node 	
  are directly offloaded to 	� based on edge-
edge FM’s decision. The inequality in Equation (17) presents 
the sum of the user to 	� communication latency, and the 

computing latency of 	� must be less than the ultra-low latency 
limit, and for equation (18a) the same inequality must be less 
than the low latency limit. Equation (18b) and (19) are the cases 
where jobs from the user for edge 	
  are directly offloaded to 
cloud ��  based on cloud-edge FM’s decision. The inequality in 
Equation (18b) presents the sum of the user to ��  
communication latency, and the computing latency of ��  must 
be less than the low latency limit, and for equation (19) the same 
inequality must be less than the loose latency limit. 

3) Modified objective of the tier-2: 

w zu @ V V ����
 J 7��
&82' J /0G
_CI�_Czv @ V B
�� ^ V ����
G
_C D J 7���&82( J /0I�_C   (20) 

In Equation (20), zu is the case where the input traffic from 
the user is for cloud node �� , however, based on the decision of 
cloud-edge federation manager the traffic is offloaded directly 
to the edge node 	
 . The zu represents the total reverse 
offloading cost from cloud to edge nodes. The communication 
cost from user to cloud nodes where the input traffic is for the 
cloud nodes is zv. Then the new objective function of the cloud 
nodes will be minimize B-"CD�� where -"C @ zE = zt = zu = zv, (21) 

subject to 1��
&2(' = 1
' ` 3&4, (22)1��
&2(' = 1
' ` 345, (23)
(11a), (12), (13), and (14).  

The Equation (22) and (23) are the cases where jobs from 
user for cloud ��  are reverse offloaded to edge 	
  based on 
cloud-edge FM’s decision. The inequality in Equation (22) 
presents the sum of the user to 	
  communication latency, and 
the computing latency of 	
  must be less than the low latency 
limit, and for equation (23) the same inequality must be less 
than the loose latency limit. 

III. SOLUTIONS  
In the solution, we describe the Simulated Annealing (SA) 

algorithm [12], which performs a probabilistic technique to find 
a globally optimal solution. Specifically, it is a metaheuristic to 
approximate global optimization in a large search space for an 
optimization problem and is used when the search space is 
discrete. 

A. Two-tier Simulated Annealing 
The two-tier simulated annealing process is a modified 

version of SA is described in Algorithm 1. In each iteration, we 
generate a new state rI~5  from the previous state r�4g and 
compute the cost for both the tiers using /�*�CBD,  i.e. in 
Equation (16) and /�*�EBD, i.e. in Equation (21). The 
differences between the old and new costs of tier-1 and tier-2 
denoted as �C and �E, respectively, are computed. rI~5 will be 
immediately accepted if �C� y and �E� y. If �C� y and �E�y, then we have a probability ��� �^ ��� � to accept rI~5 , where � is the simulated temperature and decreases in each step of the 
iteration by a cooling parameter � By� ` � ` ��D. However, if �C� y and �E� y, we can accept rI~5  with probability ��� �^ ��� �. rI~5  will acceptable with probability 
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��� �^ B��\��D� � if �C� y and �E� y. The length of the 
iterations in SA is determined by the initial temperature �G�:� 
the terminating temperature �G�I and the cooling parameter �. 
At the beginning � equals to �G�: . � then decreases in each 
iteration, when �� @ ��G�I  the SA iterations terminate. 
Consequently, the SA process has no bounded time complexity. 
Instead, its time complexity is determined by the cooling 
parameter �. 

Algorithm 1: Two-tier Simulated Annealing Algorithm 
1: Randomly generate initial solutions r�4g  
2: � � ��I� 
3: While � � ��~� do 
4:     Generate new solutions rI~5  
5:     �C@ /�*�CBrI~5D ^ /�*�CBr�4gD� 
         �E@ /�*�EBrI~5D ^ /�*�EBr�4gD 
6:      if B�C� yD���B�E� yD�then 
          accept r�4g � rI~5  
7:   else if B�C� yD���B�E� yD then 

            accept r�4g � rI~5  with probability �R���  
8:             else if B�C� yD���B�E� yD then 

                    accept r�4g � rI~5  with probability �R���  
9:                  else if B�C� yD���B�E� yD then 

                       accept r�4g � rI~5  with probability �R;�����<�  
                        end 
10: � ��� � � 
11: end 

In this algorithm, for the initial solution, we apply 
randomness with some restrictions. As discussed in our 
proposed architecture our input jobs are three different types 
and ultra-low latency jobs are handled by only edges, loose 
latency jobs are handled by only clouds and low latency jobs 
can be handled by both edges and clouds. For a cloud node, 
when the inputs are loose latency jobs it will have kept by the 
cloud, whereas if the job is ultra-low latency job it will offload 
to any edge randomly. For low latency jobs, the cloud will have 
kept 70 percent by itself and offload rest to the edges randomly. 
For an edge node, if the input is a loose latency job, then it will 
offload to the clouds randomly. If the inputs are low latency 
jobs than 50 percent of jobs are kept the edge and the other 50 
percent will be offloaded to other edges and clouds. If the inputs 
are ultra-low latency jobs than 70 percent will be kept by the 
edge and the other 30 percent will be randomly offloaded to 
other edges. 

IV. RESULTS 

A. Experiment Setup 
For the experiment, we have considered a cloud-edge 

federated network consist of five clouds and five edges and are 
geographically distributed. The capacity of an edge is 2GB 
consist of 4 VMs each having capacity 500MB. However, the 
clouds have unlimited capacity but each VM is of 500MB. The 
distance between the user to edge, user to cloud, edge to edge 
and edge to cloud are 1~100, 500~1000, 100~200 and 
500~1000 KMs, respectively. The size of the input jobs is 
between 1KB to 500MB. 

 
(a)                                                         (b) 

Figure 3. Percentage of total cost of the edge-cloud systems per number of jobs 
where job inputs are uniform and non-uniform. 

B. Performance Analysis 
In this section, we compared the performance with three 

other architectures: 1) zero offloading model (zom), 2) edge-to-
cloud vertical offloading (e2cvo) [10], and 3) edge-to-edge 
horizontal offloading (e2eho) [11]. In the experiment, we have 
considered both uniform and non-uniform inputs. In the case of 
uniform inputs, we gave the equal number of job inputs to each 
node irrespective of the size of the jobs. While in the non-
uniform case, the number of inputs to the nodes are random 
irrespective of the job size. 

1) Total Cost Analysis  
Fig. 3 shows with the increase in the number of input jobs the 

total cost of all models gradually increases. Fig. 3a shows the 
system performance with uniform inputs whereas Fig. 3b shows 
for non-uniform inputs. In the non-uniform case, our Omni 
architecture saves the total cost by 15-25% compared to all 
other architectures because of their horizontal, vertical and 
reverse offloading mechanisms and 10-20% in case of uniform 
inputs. Due to the reverse offloading, the highly time-sensitive 
jobs of the clouds are redirected to the edges which reduce the 
communication cost and due to horizontal federation, the edge 
extends their computing capacity in the edge layer. The e2cvo 
saves more cost compared to zom and e2eho as the edge nodes 
offload the loose latency and some low latency jobs to the 
clouds which reduces the storage burden on the edge nodes and 
makes the computation faster as the cloud has unlimited 
computing resources. If we compare the zom and e2eho 
performance, with uniform input the both save a nearly equal 
amount of costs, however, with non-uniform inputs, the e2eho 
saves more cost compared to zom due to its edge to edge 
horizontal federation as it extends the computing capacity and 
provides the service faster than zom. 

2) Tier-1 and Tier-2 Latency Analysis 
Fig. 4 shows the average latency for uniform and non-

uniform job inputs of tier-1 and tier-2 nodes respectively. Fig. 
4a shows the average latency of non-uniform input is relatively 
higher than uniform input both in federated (e2eho, e2cvo, 
Omni) and non-federated (zom) architectures. Because, in case 
of non-uniform inputs, in non-federated architecture, high input 
nodes will take more time to finish the computation due to 
limited computing resources whereas federated architectures 
take less time by offloading from high input nodes to low input 
nodes. Also in both cases, the latency of federated architectures 
has less compared to zom, because in federated architecture the 
nodes can virtually extend their capacity by the high input 
nodes offloading jobs to low input nodes. However, in zom all 
the input jobs of each node are handled by themselves. And due  
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(a)                                                            (b) 

Figure 4. Average latency of tier-1 and tier-2 nodes both uniform and non-
uniform inputs. 

 
(a)                                                        (b) 

Figure 5. Utilization of active VMs in edge and cloud layers’ nodes. 

to the edge nodes’ capacity limitation, the latency goes up. Fig. 
4a shows the latency of Omni is less than e2cvo due to its 
reverse offloading architecture. It offloads the highly time-
sensitive jobs to the edges which reduce the communication 
time. Also due to Omni’s horizontal federation, it extends its 
computation capacity in the edge layer as a result, it able to 
handle more jobs in time and reduce the latency compared to 
e2cvo. Again Fig. 4a also shows both Omni and e2cvo have 
relatively less latency compared to e2eho and zom. This is 
because of the vertical offloading in Omni and e2cho, where 
loose latency or high storage jobs are offloaded to the cloud 
where no unlimited computing capacities are available. The 
average latency of all the models is relatively same for both 
uniform and non-uniform inputs as shown in Fig. 4b. This is 
because the clouds have unlimited computing resources and 
storage capacity, as soon as the input jobs are given to the 
clouds required resources get allocated to the jobs for 
computation. 

3) Utilization of Active VMs in Edge and Cloud Layer 
The utilization of the VM depends on its active/inactive state. 

If it is inactive, we will not consider the VM to estimate the 
utilization. If it is in active state, then depending on the size of 
the allocated jobs the utilization is estimated. For example, if 
there is no job in the VM and still it is active, the utilization is 
zero. And if the allocated jobs size is 100MB, then the 
utilization of the VM is 20%. Fig. 5 shows the average 
utilization of the active VMs in edge and cloud layers, 
respectively, both for uniform and non-uniform job inputs. As 
discussed before the heavy loaded edge nodes offload their 
excessive jobs to either to cloud nodes vertically or edge nodes 
horizontally. Similarly, the cloud node reverse offloads the 
highly time-sensitive jobs to the edges. By the simulated 
annealing algorithm, the Omni architecture tries to 
accommodate more jobs within the specified amount of 
resources to maximize resource utilization both in edge and 
cloud nodes. As a result, the utilization of Omni architecture is 
relatively better compared to other architectures both in edge 

and cloud layer nodes for uniform and non-uniform job inputs. 
The result in Fig. 5a also shows due to the federation, utilization 
of the resources in federated architectures are better than zom. 
In zom, the utilization for uniform input is relatively better 
compared to non-uniform input due to the load balance among 
the nodes. Fig. 5b shows the utilization of cloud nodes. Here the 
utilization of zom and e2eho is similar as they cannot offload to 
other nodes. And the e2cvo gets some excessive jobs from the 
edges which helps to reduce the internal fragmentation in the 
VMs and increases the utilization.   

V. CONCLUSIONS 
In this paper, we have proposed an Omni-directional two-tier 

federated cloud-edge architecture where 1) an edge can 
horizontally federate with other edges, 2) cloud and edge can 
vertically federate with each other. In the vertical federation not 
only edge can offload the request to the cloud nodes due to 
limited capacity but also the cloud can reverse offload its highly 
time-sensitive request to edges for faster service. We proposed 
a dual cost optimization problem to minimize the cost of both 
cloud and edge layer with given latency constraint, and apply a 
modified SA algorithm to find the global optimum results. The 
results show, our proposed Omni architecture reduces the total 
cost by 15–25% in non-uniform inputs and 10–20% in uniform 
inputs, compared to other existing architectures. It also 
increases utilization in the edge nodes and the average latency 
in our architecture is relatively less compared to other existing 
architectures.  
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