

Abstract—The federation between cloud and edge has been

proposed to exploit the advantages of both technologies. However,
the existing studies have only considered cloud-edge computing
systems which merely support vertical offloading from edges to
clouds in one direction. However, there are certain cases, where
the offloading needs to be done from clouds to edges and between
edges. Such a cloud to edge offloading is called reverse offloading.
To this end, this paper proposes a generic Omni-directional
architecture of cloud-edge computing systems intending to provide
vertical and horizontal offloading. To investigate the effectiveness
of the proposed architecture in different operational scenarios, we
formulate the dual cost optimization problem with different
latency (loose, low, ultra-low) constraints. We develop an
offloading algorithm using simulated annealing (SA). The
experimental results show by our proposed OMNI architecture we
can reduce the total cost by 15–25% and 10–20% in non-uniform
and uniform inputs, respectively, compared to other existing
architectures. The average latency in OMNI architecture is
relatively very less compared to other architectures. It also
increases utilization in the edge nodes by 5–30% in comparison to
other existing architectures.

Index Terms—Cloud-edge systems, cost, latency, offloading,
reverse offloading, optimization.

I. INTRODUCTION
Cloud federation is the practice of interconnecting the cloud

computing environments of two or more service providers for
load balancing traffic and accommodating spikes in demand.
Such a federation scenario can be described variously in
different papers. 1) The collection of clouds cooperates to
provide resources requested by users [1]. 2) One cloud to
wholesale or rent computing resources to another cloud
provider [2]. 3) Federation makes cloud a user and resource
provider at the same time [3] where the customer request
submitted to one cloud provider is fulfilled by another.
However, after the edges are re-architecture as datacenters the
cloud-edge federation comes into existence. Where the users’
request to the edges is severed by the clouds and vice versa.

The significance of cloud-edge federation is high because of
the following reasons. 1) The edges are closer to the users by
which it can reduce the latency. 2) The edges have limited
resources to provide the service. To satisfy the demand an edge
can federate with other edges and/or clouds. By this federation,
we can increase the efficiency in resource utilization and
enlargement of capabilities of two federated entities.

Figure 1 shows a federated cloud-edge system consists of two
layers. The top layer is called the cloud layer consists of
different clouds, such as google, amazon, etc. The bottom layer
is called the edge layer having a different service provider like
AT&T, Chunghwa telecom, etc. In these systems, the vertical
federation between clouds and edges is managed by the cloud-
edge federation manager (FM), whereas the edge-edge FM
manages the horizontal federation between edges.

In this paper, we categorize the input jobs/traffics into three
categories, such as ultra-low, low and loose latency jobs. 1) The
jobs with latency less than 0.5ms are coming under ultra-low
latency jobs and are highly time-sensitive jobs that must be
handled by the edges. 2) The jobs with a latency greater than or
equal to 1sec are loose latency jobs and required high storage
space should be handled by the clouds. 3) The jobs whose
latency is greater than 0.5ms and less than 1 sec are called low
latency jobs and can be handled by either the edges or clouds.

When an edge receives any highly time-sensitive jobs and
cannot handle such jobs it horizontally offloads to other edges.
Similarly, when it receives loose latency jobs that consume very
high storage space, it vertically offloads to a cloud node.
However, when a cloud node receives any highly time-sensitive
jobs, to overcome the latency and data transfer cost, it offloads
to an edge node. Such downward offloading from cloud to edge
is called reverse offloading [4].

Let us consider one example to explain some key terms of
this paper. Consider two clouds say T1 and T2, two edges say
B1 and B2 where clouds are in tier-2 and edges are in tier-1.
Federation Manager: FM is the agent that is responsible for the
federation agreement between two-party. Horizontal

Binayak Kar1, Ying-Dar Lin2, Yuan-Cheng Lai3
1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

2Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
3Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

Email: bkar@mail.ntust.edu.tw, ydlin@cs.nctu.edu.tw, laiyc@cs.ntust.edu.tw

OMNI: Omni-directional Dual Cost Optimization of
Two-Tier Federated Cloud-Edge Systems

Figure 1. Federated Cloud-Edge Systems.

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

Federation: Resource sharing agreement between two nodes in
the same tier. For example, E1 and E2. Vertical Federation:
Resource sharing agreement between two nodes in a different
tier. For example, E1 and T1. Horizontal Offloading: When a
request is for E1 is severed by E2 or when E1 offloaded its
request to E2. Vertical Offloading: When a request is for E1 is
severed by T1 or when E1 offloaded its request to T1. Reverse
Offloading: When a vertical offloading is from an upper-tier
node to a lower-tier node. For example, when a request is for
T1 is severed by E1 or when T1 offloaded its request to E1.
Triangular Offloading: When a user of one service provider
(say E1) is served by another service provider (say T1) and the
user’s inputs are offloaded from the user to T1 via E1, i.e. users
give input E1 and E1 offload the tasks to T1. Non-triangular
Offloading: When a user of one service provider (say E1) is
served by another service provider (say T1) and based on the
federation agreement the FM will offload the user’s inputs
directly to T1 without offloading via E1.

To the best of our knowledge, our work is the first to design
the edge-cloud federation where offloading can be done in
multiple directions i.e. horizontal offloading, vertical
offloading from edge to cloud and vertical reverse offloading
from cloud to edge based on loose, low, and ultra-low types of
latencies. Our detailed contributions are as follows. (1) We
design a generic two-tier architecture that enables the clouds
and edges can federate with each other and offload jobs to
satisfy the user’s demand. (2) We propose an analytical model
to minimize the cost both from the cloud and edge layer
perspective with given latency constraints. (3) We use the
modified simulated annealing algorithm to find the globally
optimal solution of the proposed problem and compare the
performance of our proposed architecture with three other
existing architectures.

Related Works: Mashayekhy et al. proposed a model based
on game theory to reshape the business structure among cloud
providers [5]. In this paper, they proposed a cloud federation
mechanism to maximize the profit of the cloud providers by
reducing the utilization of the resources. Hassan et al., in [6]
present a capacity-sharing mechanism using game theory in a
federated cloud environment which can lead to a global energy
sustainability policy for the federation and encourages them to
cooperate. The main goal of the paper is minimizing the overall
energy cost by capacity sharing technique to promote the long-
term individual profit of the cloud providers. The integration of
vertical and horizontal cloud federation is discussed in [7]. In
this integration, private clouds are known as secondary clouds
are federated with each other horizontally and these
horizontally federated clouds federated with the public clouds
known as primary clouds vertically. Chekired et al., in [8]
introduce a new scheduling model for the industrial Internet of
things (IIoT) data processing and proposed a two-tier cloud-fog
architecture for IIoT applications by deploying multiple servers
at the fog layer. In [9], a two-tier federated Edge and Vehicular-
Fog architecture was presented with the objective to minimize
the total cost while meeting latency constraints. Tong et al., [10]
proposed a hierarchical edge cloud architecture for the efficient
utilization of resources by leveraging cloud computing and
migrating mobile workloads for remote execution at the cloud.
In [11] Cao et al. proposed an integrated resource provisioning

model between edge infrastructure providers to realize the
resource cooperation and service provisioning between them.

The rest of the paper is organized as follows. In Section II we
will discuss our proposed architecture and optimization
problem. We will present our solution in Section III, results in
Section IV and finally, the conclusion in Section V.

II. MODELING AND PROBLEM FORMULATION
In this section, we will discuss our proposed two-tier cloud-

edge generic architecture and proposed our cost optimization
problem with latency as a constraint. The variables used to
discuss our model and formulate the optimization problem
presented in Table I.

TABLE I: LIST OF COMMONLY USED VARIABLES AND NOTATIONS
Notation Description ��, � � � � �� 	
� � � � � �

��: �-th node in tier-2 	
: �-th node in tier-1
Traffic
��,

 Traffic input to node �� , Traffic input to node 	
 �
��, ����
 � �
�� V������� �������������� �	

to �� , Vertical offloading
from �� to 	
, Horizontal offloading from 	
 to 	�

Capacity !"�, !"���, !"��
 Computing capacity of ��, Capacity used by �� for self
computation, Capacity of �� used by 	

!#
� !#
�
, !#
��$, !#
��%
Computing capacity of 	
, Capacity used by 	
 for self
computation, Capacity of 	
 used by ��, Capacity of 	

used by 	� !��
$, !
��% Communication capacity between �� and 	
,
Communication capacity between 	
 and 	�

!&�
' , !&��(Communication capacity between)*+, and 	
,
Communication capacity between)*+, and ��

Cost -"� - Total cost of tier-1 and tier-2 ."(� .' Unit computing cost of ��, Unit computing cost of 	
 /0 Unit Communication cost.

," � ,$, ,%
Unit computing price of �� for 	
, Unit computing
price of 	
 for ��, Unit computing price of 	
 for 	�

Latency 1�(, 1
' Computing latency at �� a���	
 1��
(2', 1
��'2(, 1
��'2' Communication latency from �� to 	
 , from 	
 to �� ,
from 	
 to 	� 1
&2', 1�&2(Offloading latency from users to 	
, from users to ��

3&4� 345� 346 Maximum latency for ultra-low, low and loose latency
traffic

Distance and Speed 7��
$ � 7
��% Distance between �� a���	
, and distance between 	

a�� 	� 7��
&82'� 7���&82(�7��
&2'� 7��
&2(
Shortest distance from ��’s user to 	
, from ��’s user to ��, from 	�’s user to 	
, and from 	�’s user to �
 . Speed of light

A. Generic Two-tier Architecture and Traffic Distribution
In this section, we will discuss our proposed generic cloud-

edge federated architecture. As shown in Figure 2, the top tier
(tier-2) consists of cloud nodes and the bottom tier (tier-1)
consists of edge nodes. The subscribers and IoT devises can
send their requests to the cloud or edge nodes to avail the
services. In this architecture, the edge nodes and cloud nodes
are connected vertically and all edge nodes are connected
horizontally. Which implies there can be a vertical offloading

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

from edges to clouds, reverse offloading from cloud to edges,
and horizontal offloading from one edge node to other edge
nodes. There must be a question arises, why no cloud to cloud
horizontal offloading is not considered in this paper? The main
reason is the clouds have no capacity limitation, no coverage
limitation. Hence, based on the objective of this paper, it looks
impractical to have a cloud to cloud federation.

1) Tier-1 Traffic Distribution
Assuming the probability of total input traffic to an edge

node 	
 is 1, which includes ultra-low, low and loose latency
traffics, i.e., 9:;

< = 9>;

< = 9?;

< @ �, where 9:;

<, 9>;

<and 9?;�

< are the probability of ultra-low, low and
loose latency traffic input to cloud node 	
 . The probability of
offloaded ultra-low latency traffic from edge 	
 to all edge
nodes in the tier-1 can estimate the 9:;

< as, 9:;

< @A9:BCD;

< = 9:BED;

< = F= 9:BGD;

<H, where � is the
number of edge nodes in the tier-1, and 9?;

< can be estimated
as 9?;

< @ A9?BCD;

< = 9?BED;

< = F= 9?BID;

<H, where �
is the number of cloud nodes in the tier-2. Since the low latency
traffics of 	
 can be offloaded both horizontally to edge nodes
and vertically to cloud nodes, then 9>;

< can be calculated as 9>$;

<+ 9>%;

<, where 9>$;

< is the probability of vertically
offloaded traffic and 9>%;

< is the probability of horizontally
offloaded traffic. 9>$;

< and 9>%;

< can be estimated as, 9>$;

< @ A9>BCD$;

< = 9>BED$;

< = F= 9>BGD$;

<H and 9>%;

< @A9>BCD% ;

< = 9>BED% ;

< =F= 9>BID% ;

<H. Then the vertically
offloaded total traffic from edge 	
 to cloud node �� will be, �
�� @ 9?B�D;

< J

 = 9>B�D$;

< J

. Total horizontally
offloaded traffic from edge 	
 to edge 	� will be, �
�� @9:B�D;

< J

 = 9>B�D% ;

< J

. In �
��, if � @ K then there will
be no horizontal offloading.

2) Tier-2 Traffic Distribution:
Assuming the probability of total input traffic to a cloud node �� is 1, which include ultra-low, low and loose latency traffics,

i.e., L:;
��< = L>;
��< = L?;
��< @ �, where L?;�
��<� L:;
��< and L>;
��< are the probability of loose latency, ultra-low and low
latency traffics input to cloud node �� , respectively. As these
ultra-low latency traffics are highly time-sensitive, hence they

will reverse offloaded to the edges in tier-1. L:B
D;
��< represents
probability of offloaded ultra-low latency traffic from cloud ��
to edge 	
 . Then total probability of reverse offloaded ultra-low
latency traffic from cloud node �� to tier-1 will be, L:;
��< @AL:BCD;
��< = L:BED;
��< = F= L:BGD;
��<H. L>B
D;
��< represents
probability of offloaded low latency traffic from cloud �� to
edge 	
 and L>BMD;
��< is the probability of same traffic type for �� for self-computation. Then the probability of total low
latency traffic input to a cloud node �� will be, L>;
��< @L>BMDB
��D = AL>BCD;
��< = �L>BED;
��< = F= L>BGD�;
��<H. Then the
reverse offloaded traffic from the cloud �� to the edge 	
 can be
estimated as, ����
 @ L:B
D;
��< J
�� = L>B
D;
��< J
��.
B. Latency Estimation

In our model, we assume both the cloud nodes and edge
nodes are consisting of multiple servers having equal capacity.
However, the number of servers in cloud nodes is relatively
high compared to edge nodes so as the total computational
capacity. To calculate the computation latency of the nodes, we
can apply the NONOK queueing model where K is the number
of servers in the node. As the capacities of the servers are equal,
to simplify, our estimation, and apply the NONO� model
instead multi-server to calculate the latency. Here, in this single
server model, the capacity of the single server is the sum of the
total capacities of the servers in that node. The communication
latency is calculated by the NONO� queueing model.
1) Computational Latency Estimation

Based on NONO� model, the computational latency of cloud
node �� will be, 1�(@ CP8QRSTUQRV W�Q�XYXZ[\V WX�QYXZ[], where
�� ^ V ����
G
_C =V �
��G
_C ` !"�. Similarly, for an edge node the computation
latency will be, 1
' @ CPaXRATXRV WX�Q\V W�Q�XbQZ[RV cX�dYdZ[\V cd�XYdZ[bQZ[H,
where

 ^ V �
�� = V ����
I�_C ^ V �
��G�_C = V ���
G�_CI�_C ` !#
.
2) Triangular Communication Latency Estimation:

From the users to cloud/edge initial communication latency
can be estimated as follows. The communication latency from

user to 	
 can be estimated as, 1
&2' @ CPe�Xf RTX = gX�Xe2fh , where,

 � !&�
' . The communication latency from user to �� can be

estimated as, 1�&2(@ CPe�Qi RTUQ = gQ�Qe82ih , where,
�� � !&��(.

Triangular communication is the case, where users give their
input to the node jM. Node jM determines, whether, the input is
appropriate based on its available capacity, capability and other
constraints. If yes, then the input is handled by the node itself.
Otherwise, node jM will determine another node jC, who has a
federation agreement with jM and can handle the input. Then jM will offload the traffic to jC. This communication from user
to jM and then jCis called triangular communication. This
federation takes place in the control plane level. The
communication latencies are estimated as follows. In reverse
offloading, the communication latency from node �� to 	
 is 1��
(2' @ CPQ�Xk RW�Q�X = lQ�Xkh , where ����
 ` !��
$. In vertical offloading, the

communication latency from node 	
 to �� is 1��
'2(@ CPQXkRWQ�X =lQ�Xkh , where ���
 ` !��
$, In horizontal offloading, the

Figure 2. OMNI: A generic two-tier federated architecture.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

communication latency from node 	
 to 	� is estimated as, 1
��'2' @ CPX�dm RcX�d
= lX�dkh , where �
�� ` !
��% .

C. Problem Formulation with Triangular Offloading
The federation decision between two nodes is taken in the

control plane. Whether to offload the traffic to another node is
purely depend on the available resource capacity and capability
of the nodes. In this section, for such triangular offloading, we
present the optimization problem from the control plane
perspective.

1) Objective of the Tier-1:

noo
p
ooq

rC @ V

 J 7&�' J /0G
_CrE @ V !#
�
 J .'G
_Crs @ V V �
�� J 7
��% J /0G�_CG
_Crt @ V V !#��
% J ,%G
_CG�_Cru @ V V �
�� J 7��
$ J /0I�_CG
_Crv @ V V !"��
 J ,"G
_CI�_C

 (1)

In equation (1), let rC� rE� rs� rt� ru, and rv are the variables
presenting different costs of tier-1 nodes. Where rC shows the
communication cost from the users to the edges. The total self-
computing cost of the edges is presented by rE. The total
communication cost between edges is shown by rs. The rt
shows the total computing price of edges while computation is
done by other edge nodes. The total communication cost from
edge nodes to the cloud nodes is presented by ru. The rv
presents the total computing price of edges while computation
is done by cloud nodes. Then the objective function for the edge
nodes is to minimize B-D�� where,

 - @ rC = rE = rs = rt = ru = rv� (2)
subject to

 w 1
&2' = 1
' ` 3&4�� 1
&2' = 1
��'2' = 1�' ` 3&4� � (3a)
(3b)

 x 1
&2' = 1
' ` 345�1
&2' = 1
��'2' = 1�' ` 345�1
&2' = 1
��'2(= 1�(` 345�
(4a)
(4b)
(4c)

 1
&2' = 1
��'2(= 1�(` 346, (5)
 y ` !#
�
 ` !#
 , (6)
 !#
�
 = V !#
��%G
_C = V !#
�$I�_C �

. (7)

The equations (3) - (5) presents the latency constraints for the
inputs given to all edge node from users, where equations in (3)
are for ultra-low latency, equations in (4) are for low latency,
and equation (5) is for loose latency traffics. The inequality in
Equation (3a) shows the user to 	
 communication latency plus
the computing latency of 	
 must be less than the ultra-low
latency limit. Equation (3b) is the case where the user submitted
the job to 	
 and 	
 offloaded the job to 	�. The inequality in
Equation (3b) shows the sum of the user to 	
 communication
latency, 	
 to 	� communication latency and the computing
latency of 	� must be less than the ultra-low latency limit. The
inequality in Equation (4a) shows the user to 	
 communication
latency plus the computing latency of 	
 must be less than the
low latency limit. Equation (4b) is the case where user
submitted the job to 	
 and 	
 offloaded the job to 	�. The
inequality in Equation (4b) shows the sum of the user to 	

communication latency, 	
 to 	� communication latency and
the computing latency of 	� must be less than the low latency
limit. Equation (4c) is the case where the user submitted the job
to 	
 and 	
 offloaded the job to �� . The inequality in Equation
(4c) shows the sum of the user to 	
 communication latency, 	

to �� communication latency and the computing latency of ��
must be less than the low latency limit. Equation (5) is the case
where the user submitted the job to 	
 and 	
 offloaded the job
to �� . The inequality in Equation 5 shows the sum of the user to 	
 communication latency, 	
 to �� communication latency and
the computing latency of �� must be less than the loose latency
limit. The constraint in equation (6) presents no edge node can
compute all its received requests by itself or offload them
entirely to others. The sum of self-computation and horizontal
offloading capacity plus vertical offloading capacity must be
less than the total input to the edge nodes is presented in
equation (7).

2) Objective of the Tier-2:

nop
oq zC @ V
�� J 7&�(J /0I�_CzE @ V !"��� J ."(I�_Czs @ V V ����
 J 7��
$ J /0G
_CI�_Czt @ V V !
�� J ,$I�_CG
_C

 (8)

In equation (8), let zC� zE� zs, and zt are the variables
presenting different costs of tier-2 cloud nodes. Where zC
shows the communication cost from the users to the clouds. The
total self-computing cost of the clouds is presented by zE. The
total communication cost from clouds to the edges is presented
by zs. The zt presents the total computing price of clouds while
computation is done by edge nodes. Then the objective function
for the edge nodes is to minimize B-"D�� where,

 -" @ zC = zE = zs = zt, (9)
subject to

 1�&2(= 1��
(2' = 1
' ` 3&4, (10)
 { 1�&2(= 1�(` 345�1�&2(= 1��
(2' = 1
' ` 345� (11a)

(11b)
 1�&2(= 1�(` 346 , (12)
 {y ` !"��� ` !"�L?;
��< ` � � (13)

 !"��� = V !"��
G
_C �
��. (14)

The equations (10) – (12) presents the latency constraints for
the inputs given to all cloud nodes from the users, where
equation (10) is for ultra-low latency, equations in (11) are for
low latency, and equation (12) is for loose latency traffics.
Equation (10) is the case where the user submitted the job to ��
and �� offloaded the job to 	
 . The inequality in Equation (10)
shows the sum of the user to �� communication latency, �� to 	

communication latency and the computing latency of 	
 must
be less than the ultra-low latency limit. The inequality in
Equation (11a) shows the user to �� communication latency plus
the computing latency of �� must be less than the low latency
limit. Equation (11b) is the case where the user submitted the
job to �� and �� offloaded the job to 	
 . The inequality in
Equation (11b) shows the sum of the user to �� communication
cost, �� to 	
 communication latency and the computing latency
of 	
 must be less than the low latency limit. The inequality in

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

Equation (12) shows the sum of the user to �� communication
latency and the computing latency of �� must be less than the
loose latency limit. The constraint in equation (13) presents no
cloud node can compute all its request by itself or offload them
entirely to others provided all the traffics to the cloud node are
not loose latency traffics. The sum of self-computation and
vertical offloading capacity must be less than the total input to
the clouds is discussed in equation (14).

D. Problem Formulation without Triangular Offloading
As discussed in Section I, in practice the offloading decision

between two party in the federated systems is taken by the FM
in the data plane based on the federation agreement between the
two party. In this subsection, for such non-triangular offloading,
we modify our previously proposed optimization problem from
control plane perspective to data plane perspective.

1) Non-Triangular Latency Estimation:
When offloading decision takes place in data plane the

communication from the user to service provider become non-
triangular. The new offloading latency can be estimated as
follows. The vertical offloading latency from the user to cloud
node �� , where the job input is for 	
 , is estimated as, 1
��&2'(@CPe�Qi RTX = gX�Qe2ih , where,

 � !&��(. The horizontal offloading latency

from the user to edge 	�, where the job input is for 	
 , is

calculated as, 1
��&2'' @ CPe�df RTX = gX�de2fh , where,

 � !&��' . The

reverse offloading latency from user to edge 	
 , where job input

is for �� will be, 1�
&2(' @ CPe�Xf RW�Q�X = gQ�Xe82fh , where, ����
 � !&�
' .

2) Modified objective of the tier-1:

{r| @ V V �
�� J 7
��&2' J /0G�_CG
_Cr} @ V V �
�� J 7
��&2' J /0I�_CG
_C (15)

In Equation (15), r| is the case where the input traffic from
the user is for edge 	
 , however, due to the decision of edge-
edge FM the traffic is offloaded directly to the edge node 	�.
The r| represents the total horizontal offloading cost between
the edges. And in rt (from equation (1)), when � @ K in the
horizontal offloading capacity !#��
% and the unit computing price ,
�
% @ .
, then there will be no extra self-computing cost. The r}
is the case where the input traffic from the user is for edge 	
 ,
however, due to the decision of cloud-edge FM the traffic is
offloaded directly to the cloud �� . Then the modified objective
function for the edge nodes will be to minimize B-CD�� where,

 -C @ rt = rv = r| = r}, (16)
subject to
 1
��&2'' = 1�' ` 3&4, (17)
 {1
��&2'' = 1�' ` 345�1
��&2'(= 1�(` 345� (18a)

(18b)
 1
��&2'(= 1�(` 346, (19)
 (3a), (4a), (6), and (7).
Equation (17) and (18a) are the cases where jobs from user

for edge node 	
 are directly offloaded to 	� based on edge-
edge FM’s decision. The inequality in Equation (17) presents
the sum of the user to 	� communication latency, and the

computing latency of 	� must be less than the ultra-low latency
limit, and for equation (18a) the same inequality must be less
than the low latency limit. Equation (18b) and (19) are the cases
where jobs from the user for edge 	
 are directly offloaded to
cloud �� based on cloud-edge FM’s decision. The inequality in
Equation (18b) presents the sum of the user to ��
communication latency, and the computing latency of �� must
be less than the low latency limit, and for equation (19) the same
inequality must be less than the loose latency limit.

3) Modified objective of the tier-2:

w zu @ V V ����
 J 7��
&82' J /0G
_CI�_Czv @ V B
�� ^ V ����
G
_C D J 7���&82(J /0I�_C (20)

In Equation (20), zu is the case where the input traffic from
the user is for cloud node �� , however, based on the decision of
cloud-edge federation manager the traffic is offloaded directly
to the edge node 	
 . The zu represents the total reverse
offloading cost from cloud to edge nodes. The communication
cost from user to cloud nodes where the input traffic is for the
cloud nodes is zv. Then the new objective function of the cloud
nodes will be minimize B-"CD�� where -"C @ zE = zt = zu = zv, (21)

subject to 1��
&2(' = 1
' ` 3&4, (22)1��
&2(' = 1
' ` 345, (23)
(11a), (12), (13), and (14).

The Equation (22) and (23) are the cases where jobs from
user for cloud �� are reverse offloaded to edge 	
 based on
cloud-edge FM’s decision. The inequality in Equation (22)
presents the sum of the user to 	
 communication latency, and
the computing latency of 	
 must be less than the low latency
limit, and for equation (23) the same inequality must be less
than the loose latency limit.

III. SOLUTIONS
In the solution, we describe the Simulated Annealing (SA)

algorithm [12], which performs a probabilistic technique to find
a globally optimal solution. Specifically, it is a metaheuristic to
approximate global optimization in a large search space for an
optimization problem and is used when the search space is
discrete.

A. Two-tier Simulated Annealing
The two-tier simulated annealing process is a modified

version of SA is described in Algorithm 1. In each iteration, we
generate a new state rI~5 from the previous state r�4g and
compute the cost for both the tiers using /�*�CBD, i.e. in
Equation (16) and /�*�EBD, i.e. in Equation (21). The
differences between the old and new costs of tier-1 and tier-2
denoted as �C and �E, respectively, are computed. rI~5 will be
immediately accepted if �C� y and �E� y. If �C� y and �E�y, then we have a probability ��� �^ ��� � to accept rI~5 , where � is the simulated temperature and decreases in each step of the
iteration by a cooling parameter � By� ` � ` ��D. However, if �C� y and �E� y, we can accept rI~5 with probability ��� �^ ��� �. rI~5 will acceptable with probability

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

��� �^ B��\��D� � if �C� y and �E� y. The length of the
iterations in SA is determined by the initial temperature �G�:�
the terminating temperature �G�I and the cooling parameter �.
At the beginning � equals to �G�: . � then decreases in each
iteration, when �� @ ��G�I the SA iterations terminate.
Consequently, the SA process has no bounded time complexity.
Instead, its time complexity is determined by the cooling
parameter �.

Algorithm 1: Two-tier Simulated Annealing Algorithm
1: Randomly generate initial solutions r�4g
2: � � ��I�
3: While � � ��~� do
4: Generate new solutions rI~5
5: �C@ /�*�CBrI~5D ^ /�*�CBr�4gD�
 �E@ /�*�EBrI~5D ^ /�*�EBr�4gD
6: if B�C� yD���B�E� yD�then
 accept r�4g � rI~5
7: else if B�C� yD���B�E� yD then

 accept r�4g � rI~5 with probability �R���
8: else if B�C� yD���B�E� yD then

 accept r�4g � rI~5 with probability �R���
9: else if B�C� yD���B�E� yD then

 accept r�4g � rI~5 with probability �R;�����<�
 end
10: � ��� � �
11: end

In this algorithm, for the initial solution, we apply
randomness with some restrictions. As discussed in our
proposed architecture our input jobs are three different types
and ultra-low latency jobs are handled by only edges, loose
latency jobs are handled by only clouds and low latency jobs
can be handled by both edges and clouds. For a cloud node,
when the inputs are loose latency jobs it will have kept by the
cloud, whereas if the job is ultra-low latency job it will offload
to any edge randomly. For low latency jobs, the cloud will have
kept 70 percent by itself and offload rest to the edges randomly.
For an edge node, if the input is a loose latency job, then it will
offload to the clouds randomly. If the inputs are low latency
jobs than 50 percent of jobs are kept the edge and the other 50
percent will be offloaded to other edges and clouds. If the inputs
are ultra-low latency jobs than 70 percent will be kept by the
edge and the other 30 percent will be randomly offloaded to
other edges.

IV. RESULTS

A. Experiment Setup
For the experiment, we have considered a cloud-edge

federated network consist of five clouds and five edges and are
geographically distributed. The capacity of an edge is 2GB
consist of 4 VMs each having capacity 500MB. However, the
clouds have unlimited capacity but each VM is of 500MB. The
distance between the user to edge, user to cloud, edge to edge
and edge to cloud are 1~100, 500~1000, 100~200 and
500~1000 KMs, respectively. The size of the input jobs is
between 1KB to 500MB.

(a) (b)

Figure 3. Percentage of total cost of the edge-cloud systems per number of jobs
where job inputs are uniform and non-uniform.

B. Performance Analysis
In this section, we compared the performance with three

other architectures: 1) zero offloading model (zom), 2) edge-to-
cloud vertical offloading (e2cvo) [10], and 3) edge-to-edge
horizontal offloading (e2eho) [11]. In the experiment, we have
considered both uniform and non-uniform inputs. In the case of
uniform inputs, we gave the equal number of job inputs to each
node irrespective of the size of the jobs. While in the non-
uniform case, the number of inputs to the nodes are random
irrespective of the job size.

1) Total Cost Analysis
Fig. 3 shows with the increase in the number of input jobs the

total cost of all models gradually increases. Fig. 3a shows the
system performance with uniform inputs whereas Fig. 3b shows
for non-uniform inputs. In the non-uniform case, our Omni
architecture saves the total cost by 15-25% compared to all
other architectures because of their horizontal, vertical and
reverse offloading mechanisms and 10-20% in case of uniform
inputs. Due to the reverse offloading, the highly time-sensitive
jobs of the clouds are redirected to the edges which reduce the
communication cost and due to horizontal federation, the edge
extends their computing capacity in the edge layer. The e2cvo
saves more cost compared to zom and e2eho as the edge nodes
offload the loose latency and some low latency jobs to the
clouds which reduces the storage burden on the edge nodes and
makes the computation faster as the cloud has unlimited
computing resources. If we compare the zom and e2eho
performance, with uniform input the both save a nearly equal
amount of costs, however, with non-uniform inputs, the e2eho
saves more cost compared to zom due to its edge to edge
horizontal federation as it extends the computing capacity and
provides the service faster than zom.

2) Tier-1 and Tier-2 Latency Analysis
Fig. 4 shows the average latency for uniform and non-

uniform job inputs of tier-1 and tier-2 nodes respectively. Fig.
4a shows the average latency of non-uniform input is relatively
higher than uniform input both in federated (e2eho, e2cvo,
Omni) and non-federated (zom) architectures. Because, in case
of non-uniform inputs, in non-federated architecture, high input
nodes will take more time to finish the computation due to
limited computing resources whereas federated architectures
take less time by offloading from high input nodes to low input
nodes. Also in both cases, the latency of federated architectures
has less compared to zom, because in federated architecture the
nodes can virtually extend their capacity by the high input
nodes offloading jobs to low input nodes. However, in zom all
the input jobs of each node are handled by themselves. And due

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 4. Average latency of tier-1 and tier-2 nodes both uniform and non-
uniform inputs.

(a) (b)

Figure 5. Utilization of active VMs in edge and cloud layers’ nodes.

to the edge nodes’ capacity limitation, the latency goes up. Fig.
4a shows the latency of Omni is less than e2cvo due to its
reverse offloading architecture. It offloads the highly time-
sensitive jobs to the edges which reduce the communication
time. Also due to Omni’s horizontal federation, it extends its
computation capacity in the edge layer as a result, it able to
handle more jobs in time and reduce the latency compared to
e2cvo. Again Fig. 4a also shows both Omni and e2cvo have
relatively less latency compared to e2eho and zom. This is
because of the vertical offloading in Omni and e2cho, where
loose latency or high storage jobs are offloaded to the cloud
where no unlimited computing capacities are available. The
average latency of all the models is relatively same for both
uniform and non-uniform inputs as shown in Fig. 4b. This is
because the clouds have unlimited computing resources and
storage capacity, as soon as the input jobs are given to the
clouds required resources get allocated to the jobs for
computation.

3) Utilization of Active VMs in Edge and Cloud Layer
The utilization of the VM depends on its active/inactive state.

If it is inactive, we will not consider the VM to estimate the
utilization. If it is in active state, then depending on the size of
the allocated jobs the utilization is estimated. For example, if
there is no job in the VM and still it is active, the utilization is
zero. And if the allocated jobs size is 100MB, then the
utilization of the VM is 20%. Fig. 5 shows the average
utilization of the active VMs in edge and cloud layers,
respectively, both for uniform and non-uniform job inputs. As
discussed before the heavy loaded edge nodes offload their
excessive jobs to either to cloud nodes vertically or edge nodes
horizontally. Similarly, the cloud node reverse offloads the
highly time-sensitive jobs to the edges. By the simulated
annealing algorithm, the Omni architecture tries to
accommodate more jobs within the specified amount of
resources to maximize resource utilization both in edge and
cloud nodes. As a result, the utilization of Omni architecture is
relatively better compared to other architectures both in edge

and cloud layer nodes for uniform and non-uniform job inputs.
The result in Fig. 5a also shows due to the federation, utilization
of the resources in federated architectures are better than zom.
In zom, the utilization for uniform input is relatively better
compared to non-uniform input due to the load balance among
the nodes. Fig. 5b shows the utilization of cloud nodes. Here the
utilization of zom and e2eho is similar as they cannot offload to
other nodes. And the e2cvo gets some excessive jobs from the
edges which helps to reduce the internal fragmentation in the
VMs and increases the utilization.

V. CONCLUSIONS
In this paper, we have proposed an Omni-directional two-tier

federated cloud-edge architecture where 1) an edge can
horizontally federate with other edges, 2) cloud and edge can
vertically federate with each other. In the vertical federation not
only edge can offload the request to the cloud nodes due to
limited capacity but also the cloud can reverse offload its highly
time-sensitive request to edges for faster service. We proposed
a dual cost optimization problem to minimize the cost of both
cloud and edge layer with given latency constraint, and apply a
modified SA algorithm to find the global optimum results. The
results show, our proposed Omni architecture reduces the total
cost by 15–25% in non-uniform inputs and 10–20% in uniform
inputs, compared to other existing architectures. It also
increases utilization in the edge nodes and the average latency
in our architecture is relatively less compared to other existing
architectures.

ACKNOWLEDGEMENTS
This work was supported in part by H2020 EU-TW 5G-Coral

project, and also in part by Ministry of Science and Technology
of Taiwan.

REFERENCES
[1] B. Rochwerger, et al., “Reservoir-when one cloud is not enough,”

Computer, vol. 44, no. 3, pp. 44–51, Mar. 2011
[2] L. Vaquero, et al., “A break in the clouds: Towards a cloud definition,”

ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2008.
[3] Tusa, Francesco, et al., "How CLEVER-based clouds conceive horizontal

and vertical federations," Symposium on Computers and Communications
(ISCC), IEEE, pp. 167–172, 2011.

[4] M. Villari, et al., "Osmotic computing: A new paradigm for edge/cloud
integration." Cloud Computing, IEEE, vol. 3, no. 6, pp. 76–83, 2016.

[5] Lena Mashayekhy, et al., “Cloud federations in the sky: Formation game
and mechanism,” IEEE Transactions on Cloud Computing, vol. 3, no. 1,
pp. 14–27, 2015.

[6] M. M. Hassan, et al., “Energy-aware resource and revenue management
in federated cloud: a game-theoretic approach,” IEEE Systems
Journal, vol. 11, no. 2, pp. 951–961, 2017.

[7] H. Chen, et al., “Workload factoring and resource sharing via joint
vertical and horizontal cloud federation networks,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 3, pp. 557–570, 2017.

[8] D. A. Chekired, et al., “Industrial IoT data scheduling based on
hierarchical fog computing: a key for enabling smart factory,” IEEE
Trans. on Industrial Informatics, vol. 14, no. 10, pp. 4590–4602, 2018.

[9] Y. D. Lin, et al., “Cost Minimization with Offloading to Vehicles in Two-
tier Federated Edge and Vehicular-Fog Systems,” IEEE 90th Vehicular
Technology Conference (VTC2019-Fall), pp. 1–6, Honolulu, Hawaii,
Sep., 2019.

[10] L. Tong, et al., “A hierarchical edge cloud architecture for mobile
computing,” International Conference on Computer Communications,
IEEE, pp. 1–9, 2016.

[11] Xiaofeng Cao, et al. “Edge Federation: Towards an Integrated Service
Provisioning Model,” arXiv preprint arXiv: 1902.09055, 2019.

[12] D. S. Johnson, et al. “Optimization by simulated annealing: An
experimental evaluation; part I, graph partitioning,” Operations
research, vol. 37, no. 6, pp. 865–892, 1989.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 12,2021 at 12:57:45 UTC from IEEE Xplore. Restrictions apply.

