
Offloading Optimization with Delay Distribution in
the 3-tier Federated Cloud, Edge, and Fog Systems

Ren-Hung Hwang1, Yuan-Cheng Lai2 and Ying-Dar Lin3
1Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan
2Department of Information Management, National Taiwan University of Science and Technology, Taiwan

3Department of Computer Science, National Chiao Tung University, Taiwan

rhhwang@cs.ccu.edu.tw, laiyc@cs.ntust.edu.tw, ydlin@cs.nctu.edu.tw

Abstract—Mobile edge computing and fog computing are
promising techniques providing computation service closer to
users to achieve lower latency. In this work, we study the optimal
offloading strategy in the three-tier federated computation
offloading system. We first present queueing models and closed-
form solutions for computing the service delay distribution and the
probability of the delay of a task exceeding a given threshold. We
then propose an optimal offloading probability algorithm based on
the sub-gradient method. Our numerical results show that our
simulation results match very well with that of our closed-form
solutions, and our sub-gradient-based search algorithm can find
the optimal offloading probabilities. Specifically, for the given
system parameters, our algorithm yields the optimal QoS violating
probability of 0.188 with offloading probabilities of 0.675 and 0.37
from Fog to edge and from edge to cloud, respectively.

I. INTRODUCTION
As mobile devices and mobile services increase significantly,

5G networks have been proposed to raise the transmission rate,
increase the number of connections, and reduce transmission
latency. 5G networks provide three application scenarios,
enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC). URLLC is a scenario that
requests demand an ultra-low latency, such as autonomous
vehicles and telemedicine.

Traditional Mobile Cloud Computing (MCC), which is two-
tiered and consists of a cloud server and User Equipment (UEs),
cannot provide ultra-low latency because the distance between
the cloud server and UEs is usually over 100 kilometers. Instead
of a cloud server, the edge servers of mobile networks provide
the services and computing capacity by Mobile Edge Computing
(MEC) techniques [1]. The main features of MEC are to push
mobile computing, network control, and storage to the network
edges. With MEC, the congestion in the core network can be
alleviated, and the transmission delay can be reduced,
significantly decreasing the total latency on obtaining services.
Thus, a three-tier architecture with a federated cloud server, edge
servers, and UEs appears.

In a multi-tier architecture, offloading to where, i.e., cloud
server, edge server, or UE itself, to execute a request is an
important issue. There were many previous studies focusing on
the offloading decision problem in a two-tier architecture [2-9]

or in a three-tier architecture [10-13]. These studies adopted
offloading to reduce the latency or relieve the UE’s energy
consumption.

However, all previous papers which focused on latency
reduction only considered the latency of each request or the
average latency of all requests. However, for each request, it
cares about whether its Quality of Services (QoS) requirement
can be satisfied or not; namely, its latency can be less than a
given threshold that the service needs. Thus, even the offloading
algorithms or mechanisms of these studies actually reduce the
latency; they still cannot reduce the probability of QoS violation,
i.e., the latency exceeding a given threshold.

This paper considered the probabilistic offloading strategy in
a three-tier federated architecture with the cloud server, edge
servers, and UEs. When a computation request is generated at a
UE, the probabilistic offloading strategy offloads the
computation task to the edge server with probability 𝑝!" or
performs the task at the UE with probability (1-𝑝!"). Similarly,
when a computation request arrives at the edge server, the
offloading strategy offloads the task to the cloud server with
probability 𝑝"#. The QoS requirement of computation tasks is
its service delay, include communication delay and computation
delay, which needs to be less than a given threshold. Our
problem is to determine the optimal value of 𝑝!" and 𝑝"# such
that the probability of violating the delay constraint of a task can
be minimized. Queueing models and optimal algorithm for
searching 𝑝!" and 𝑝"# are proposed to solve the problem. The
main contributions of this study are:

(1) Closed-form solutions for calculating the probability of
QoS violation are derived based on queueing models. We
believe that this is the first work that formulates the federated
three-tier computation offloading system using queueing models
and derives a closed-form solution for the probability of
violating the delay constraint.

(2) A novel sub-gradient search algorithm is proposed to find
the optimal offloading probability.

The remainder of this paper is organized as follows: Section
II describes the system architecture and system model. Closed-
form solutions for calculating the probability of QoS violation
are derived based on queueing models. The research problem is
then defined; Section III presents the proposed Sub-Gradient
Search (SGS) algorithm for finding the optimal solution.

Numerical results are then presented in Section IV. Finally, the
conclusions and future works are summarized in Section V.

II. PROBLEM FORMULATION
A. System Architecture

The system architecture of the three-tier federated Cloud,
Edge, and Fog computation offloading system is shown in Fig.
1, where UEs are considered as Fog servers. We consider a
computation task is generated at a UE, and can be served by the
UE itself, or offloads to the nearby edge server, or to the cloud
server. We assume the cloud server is associated with N edge
servers and each edge server is associated with M UEs. Tasks
arrive at a UE according to a Poisson process. When a task
arrives at a UE, with probability 𝑝!", it will be offloaded to the
edge server. Similarly, when a task arrives at an edge server,
with probability 𝑝"# it will be offloaded to the cloud server. This
kind of offloading strategy is called probabilistic offloading
which offload computation tasks to higher tier computing server
based on a given probability.

When a task is offloaded to a higher-tier computing server,
it is sent through a communication link (uplink). Depends on the
size of the task and the bandwidth of the communication link,
the task may encounter some communication delay. Similarly,
after the computing server finishes the computation, the result of
the task will be sent back through a downlink with some
communication delay. Specifically, suppose the task is
computed at the edge server. In that case, it will encounter an
uplink communication delay from the UE to the edge server and
a downlink communication delay in the opposite direction.
Suppose the task is served at the cloud server. In that case, it will
experience two uplink communication delays and two downlink
communication delays, between the UE and the edge server and
between the edge server and the cloud server, respectively.

Fig. 1. The architecture of the three-tier federated Cloud, Edge, and Fog

computation offloading system

B. System Model
We analyze the delay of a computation task via queueing

models. Specifically, we model each server and communication
link as an M/M/1 queue and apply Jackson network theory to
analyze a tandem of queues. Table I shows the notations used in
our analysis. Fig. 2 shows the queueing network of the three-tier
federated Cloud, Edge, and Fog computation system.

TABLE I
Table of Notations

Notation Meaning
𝜇!

(𝜇" , 𝜇#,	𝜇$,
𝜇$# , 𝜇#" ,

Service capacity (rate) of the server or
communication link X where X is either C
(cloud), E (edge), U (UE), UE (uplink from UE to

𝜇"# , 𝜇#$) E), EC (uplink from edge to cloud), CE
(downlink from cloud to edge), EU (downlink
from edge to UE).

𝜆!
(𝜆" , 𝜆#,	𝜆$,
𝜆$# , 𝜆#" ,
𝜆"# , 𝜆#$)

Arrival rate of the server or communication link
X where X is either C (cloud), E (edge), U (UE),
UE (uplink from UE to E), EC (uplink from edge
to cloud), CE (downlink from cloud to edge), EU
(downlink from edge to UE).

𝜆 External task arrival rate to each UE.
𝑝$# Probability that a computation task will be

offloaded from UE to the edge server.
𝑝#" Probability that a computation task will be

offloaded from the edge server to the cloud server.
𝜐! The difference between service rate and arrival

rate of X, i.e., 𝜐! = 𝜇! − 𝜆!, where X is either
C, E, U, UE, EC, CE, or EU. The queuing delay
of a M/M/1 server X is exponentially distributed
with parameter 𝜐!.

θ Delay constraint of a computation task
𝑃!$(𝜃)
𝑃!#(𝜃)
𝑃!"(𝜃)

The probability of the delay of a task served by
UE, edge server, or cloud server exceeds the
delay constraint θ respectively.

𝑃!(𝜃) The overall probability of the delay of a task
exceeds the delay constraint θ.

Fig. 2. Queueing network of the federated three-tier computation system.

In the following, we derive the probability that the delay
experienced by a computation task is less than the delay
constraint θ in three cases: namely, the task is either served by
the UE, the edge server, or the cloud server.

Case 1: the task is served by UE
By assuming the arrival of computation tasks to a UE follows

a Poisson process with rate 𝜆$ = (1 − 𝑝$#) × 𝜆, and the service
time follows an exponential distribution with rate 𝜇$, the delay
of this M/M/1 queue at the UE follows an exponential
distribution with rate 𝜐$ = 𝜇$ − 𝜆$. Thus, the probability of the
delay of a task exceeds the delay constraint θ is given by

𝑃!$(𝜃) = 𝑃(𝑋𝑈 ≥ 𝜃) = 𝑒−%&!'(!)𝜃. (1)
For ease of explanation, in this paper, we will assume a

homogeneous scenario where all UEs have the same arrival and
service rate. Similar assumptions apply to edge servers and each
type of communication link. However, our results can be easily
extended to a heterogeneous case.

Case 2: the task is served by the edge server

The delay consists of three parts: the delay of the uplink
communication from UE to the edge server, the delay at the edge
server, and the delay of the downlink communication from the
edge server to the UE. Since an edge server is associated with M
UEs, the arrival rate of these three queues are the same, given by

𝜆!" = 𝜆" = 𝜆"! = 𝑀 × (1 − 𝑝𝐸𝐶) × 𝑝𝑈𝐸 × 𝜆. (2)
Since the output process of an M/M/1 queue is a Poisson

process, the queues at the edge server and two communication
links between UE and the edge server are all M/M/1 queues.
Thus, the delay of a task served by an edge server can be derived
by using Laplace transform. Let XE be the random variable of
the delay. Let the three queues are indexed by i, i=1, 2, or 3. For
example, queue 1 is the uplink from UE to the edge server, then
𝜐' = 𝜇!" − 𝜆!".
Case 2-1: 𝜐(≠ 𝜐) 	𝑖𝑓	𝑖 ≠ 𝑗

The Laplace transform of XE is given by
𝑆∗(𝑠) = ∏ +!

,-+!
.
(/' 	= ∏ 𝜐(.

(/' ×∏ '
,-+!

.
(/' , (3)

In general, if XE is the summation of K exponential random
variables with parameter 𝜐(, 𝑖 = 1,… ,𝑁 , then the Laplace
transform of XE is given by

𝑆∗(𝑠) = ∏ +!
,-+!

0
(/' 	= ∏ 𝜐(0

(/' ×∏ '
,-+!

0
(/' . (4)

We show how to decompose equation (4) recursively and
derive a general closed form for the inverse function (the delay
distribution) of the Laplace transform. Let us start with K=2:

𝑆∗(𝑠) = ∏ '
,-+!

=1
(/'

'
+"2+#

× '
,-+#

− '
+"2+#

× '
,-+"

 (5)
For K=3, 𝑆∗(𝑠) is given by

𝑆∗(𝑠) = ∏ 𝜐(.
(/' × = '

+$2+#
×∏ '

,-+!
1
(/' − '

+$2+#
×∏ '

,-+!
.
(/1 >

= ∏ 𝜐(.
(/' × = '

+$2+#
× '

+"2+#
× '

,-+#
− '

+$2+"
× '

+"2+#
×

'
,-+"

+ '
+$2+"

× '
+$2+#

× '
,-+$

>. (6)
And for any K, we can decompose 𝑆∗(𝑠) based on the result

of K-1 by

𝑆∗(𝑠) = ∏ 𝜐(0
(/' × A

'
+%2+#

×∏ '
,-+!

02'
(/'

− '
+%2+#

×∏ '
,-+!

0
(/1

B. (7)

For K=3, the delay distribution is obtained by inverting the
Laplace transform, which is given by

𝑓3(𝑥) = ∏ 𝜐(.
(/' × = '

+$2+#
× '

+"2+#
× 𝑒2+#4 − D '

+$2+"
×

'
+"2+#

E × 𝑒2+"4 + '
+$2+#

× '
+$2+"

× 𝑒2+$4>. (8)
Finally, the probability of the delay of a task exceeds the

delay constraint θ is given by
𝑃!#(𝜃) = 𝑃(𝑋𝐸 ≥ 𝜃) = ∏ 𝜐𝑖3

𝑖=1 × 1 1
𝜐3−𝜐1

× 1
𝜐2−𝜐1

× 1
𝜐1
× 𝑒−𝜐1𝜃 −

2 1
𝜐3−𝜐2

× 1
𝜐2−𝜐1

3× 1
𝜐2
× 𝑒−𝜐2𝜃 + 1

𝜐3−𝜐1
× 1
𝜐3−𝜐2

× 1
𝜐3
× 𝑒−𝜐3𝜃4. (9)

Case 2-2: 𝜐(= 𝜐) 	∀i, j
The delay distribution becomes an Erlang distribution with

parameter r=3. The probability of the delay of a task exceeds the
delay constraint θ is given by

𝑃!#(𝜃) = 𝑃(𝑋𝐸 ≥ 𝜃) = ∑ (𝜐1𝜃)
𝑖

𝑖! 𝑒−𝜐1𝜃2
𝑖=0 . (10)

Case 2-3: 𝜐(= 𝜐) ≠ 𝜐@	(two 𝜐3′𝑠 are the same while one is
different)

Without loss of generality, let 𝜐' = 𝜐1 ≠ 𝜐.. Since two 𝜐(’s
are the same, the distribution of 𝑋" becomes the sum of an

Erlang and an exponential distribution. Thus, the Laplace
transform of 𝑋" is given by

𝑆∗(𝑠) = ∏ 𝜐(.
(/' × '

(,-+#)"×(,-+$)
== 2'

(+$2+#)"
× '

,-+#
+

'
(+$2+#)"

× '
,-+$

+ '
+$2+#

× '
(,-+#)"

. (11)
And the probability of the delay of a task exceeds the delay

constraint θ is given by

𝑃!#(𝜃) = 𝑃(𝑋𝐸 ≥ 𝜃) = ∏ 𝜐𝑖3
𝑖=1 ×

6

1
(𝜐3−𝜐1)

2 ×
1
𝜐3
× 𝑒−𝜐3- − 1

(𝜐3−𝜐1)
2 ×

1
𝜐1
× 𝑒−𝜐1-

+ 1
𝜐3−𝜐1

× 1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝑥𝑒−𝜐1-)

7. (12)

Case 3: the task is served by the cloud server
The delay consists of five parts: the delay of the uplink

communication from UE to the edge server, the delay of the
uplink communication from the edge server to the cloud server,
the delay at the cloud server, the delay of the downlink
communication from the cloud server to the edge server, and the
delay of the downlink communication from the edge server to
the UE. Since the cloud server is associated with N edge servers,
the arrival rates to the cloud server, the uplink from the edge
server to the cloud server, and the downlink from the cloud
server to the edge server are the same and given by

𝜆"# = 𝜆# = 𝜆#" = 𝑁 ×𝑀 × 𝑝"# × 𝑝!" × 𝜆, (13)
while recall that 𝜆!" , 𝜆"! are given in equation (2).

We have a tandem of five M/M/1 queues, and the delay of
each queue is, again, an exponential distribution. Let us denote
the parameter of the delay distribution by 𝜐(, 𝑖 = 1,… ,5. For
example, 𝜐' = 𝜇!" − 𝜆!" and 𝜐1 = 𝜇"# − 𝜆"#. And similar to
case 2, depends on whether there are some 𝜐(′𝑠 have the value,
we have 7 sub-cases, denoted by (1,1,1,1,1), (5), (4,1), (3,1,1),
(3,2), (2,1,1,1), (2,2,1), where each number denotes how many
𝜐(′𝑠 are the same. For example, (3,2) denotes the case where
three 𝜐(′𝑠 have the same value while the other two 𝜐(′𝑠 have
the same value. Let us start from the case where each 𝜐(is
different.
Case 3-1: 𝜐(≠ 𝜐) 	𝑖𝑓	𝑖 ≠ 𝑗, denoted by (1,1,1,1,1)

Based on equation (7), the Laplace transform of XC is given
by

𝑆∗(𝑠) = ∏ 𝜐(B
(/' × A

'
+*2+#

× '
(,-+#)×(,-+")×(,-+$)×(,-++)

− '
+*2+#

× '
(,-+")×(,-+$)×(,-++)×(,-+*)

B

= ∏ 𝜐(B
(/' ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

'
+*2+#

× '
++2+#

× '
+$2+#

× '
+"2+#

× '
,-+#

− '
+*2+"

× '
++2+"

× '
+$2+"

× '
+"2+#

× '
,-+"

+ '
+*2+$

× '
++2+$

× '
+$2+"

× '
+$2+#

× '
,-+$

− '
+*2++

× '
++2+$

× '
++2+"

× '
++2+#

× '
,-++

+ '
+*2++

× '
+*2+$

× '
+*2+"

× '
+*2+#

× '
,-+*⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . (12)

The delay distribution can be derived as in equation (8) and
the probability of the delay of a task exceeds the delay constraint
θ is given by

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

															

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝜐5−𝜐1

× 1
𝜐4−𝜐1

× 1
𝜐3−𝜐1

× 1
𝜐2−𝜐1

× 1
𝜐1
× 𝑒−𝜐1𝜃

− 1
𝜐5−𝜐2

× 1
𝜐4−𝜐2

× 1
𝜐3−𝜐2

× 1
𝜐2−𝜐1

× 1
𝜐2
× 𝑒−𝜐2𝜃

+ 1
𝜐5−𝜐3

× 1
𝜐4−𝜐3

× 1
𝜐3−𝜐2

× 1
𝜐3−𝜐1

× 1
𝜐3
× 𝑒−𝜐3𝜃

− 1
𝜐5−𝜐4

× 1
𝜐4−𝜐3

× 1
𝜐4−𝜐2

× 1
𝜐4−𝜐1

× 1
𝜐4
× 𝑒−𝜐4𝜃

+ 1
𝜐5−𝜐4

× 1
𝜐5−𝜐3

× 1
𝜐5−𝜐2

× 1
𝜐5−𝜐1

× 1
𝜐5
× 𝑒−𝜐5𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (13)

For the rest cases, the derivation is similar, so we only
present the closed-form of the probability of the delay of a task
exceeds the delay constraint θ.
Case 3-2: (𝜐' = 𝜐1 = 𝜐. = 𝜐E = 𝜐B) denoted by (5)

For this case, the delay distribution follows an Erlang
distribution with parameter r=5. The probability of the delay of
a task exceeds the delay constraint θ is similar to equation (10)
with the summation index i ranges from 0 to 4.
Case 3-3: (𝜐' = 𝜐1 = 𝜐. = 𝜐E ≠ 𝜐B) denoted by (4,1)

The probability 𝑃3#(𝜃) is given by
𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5

𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−1
(𝜐5−𝜐1)

4 ×
1
𝜐1
× 𝑒−𝜐1-

+ 1
(𝜐5−𝜐1)

3 ×
1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

− 1
(𝜐5−𝜐1)

2 ×
1
𝜐13
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +

(𝜐1-)
2

2 𝑒−𝜐1-)

+ 1
𝜐5−𝜐1

× 1
𝜐14
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +

(𝜐1-)
2

2 𝑒−𝜐1-

+ (𝜐1-)
3

6 𝑒−𝜐1-) + 1
(𝜐5−𝜐1)

4 ×
1
𝜐5
× 𝑒−𝜐5-) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . (14)

Case 3-4: (𝜐' = 𝜐1 = 𝜐. ≠ 𝜐E ≠ 𝜐B) denoted by (3,1,1)
The probability 𝑃!"(𝜃) is given by

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (𝜐4−𝜐1)2+%𝜐5−𝜐1)

2+(𝜐4−𝜐1)(𝜐5−𝜐1)

(𝜐4−𝜐1)3%𝜐5−𝜐1)
3 × 1

𝜐1
× 𝑒−𝜐1-

+ 2𝜐1−𝜐4−𝜐5
(𝜐4−𝜐1)2%𝜐5−𝜐1)

2 ×
1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 1
(𝜐4−𝜐1)%𝜐5−𝜐1)

× 1
𝜐13

× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +
(𝜐1-)

2

2 𝑒−𝜐1-)

− 1
(𝜐4−𝜐1)3%𝜐5−𝜐4)

× 1
𝜐4
× 𝑒−𝜐4-

+ 1

%𝜐5−𝜐1)
3(𝜐5−𝜐4)

× 1
𝜐5
× 𝑒−𝜐5-

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (15)

Case 3-5: (𝜐' = 𝜐1 = 𝜐. ≠ 𝜐E = 𝜐B) denoted by (3,2)
The probability 𝑃3#(𝜃) is given by

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3
(𝜐4−𝜐1)4

× 1
𝜐1
× 𝑒−𝜐1-

− 2
(𝜐4−𝜐1)

3 ×
1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 1
(𝜐4−𝜐1)2

× 1
𝜐13
× >𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +

(𝜐1-)
2

2 𝑒−𝜐1-?

− 3
(𝜐4−𝜐1)

4 ×
1
𝜐4
× 𝑒−𝜐4-

− 1
(𝜐4−𝜐1)

3 ×
1
𝜐42
× (𝑒−𝜐4- + 𝜐4𝜃𝑒−𝜐4-) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (16)

Case 3-6: (𝜐' = 𝜐1 ≠ 𝜐. ≠ 𝜐E ≠ 𝜐B) denoted by (2,1,1,1)
The probability 𝑃3#(𝜃) is given by

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎝

⎜⎜
⎛

−1
(𝜐5−𝜐3)(𝜐4−𝜐3)(𝜐3−𝜐1)

2

+ 1
%𝜐5−𝜐4)(𝜐4−𝜐3)(𝜐4−𝜐1)

2

− 1
(𝜐5−𝜐3)(𝜐5−𝜐4)(𝜐5−𝜐1)

2⎠

⎟⎟
⎞
× 1
𝜐1
× 𝑒−𝜐1-

+

⎝

⎜⎜
⎛

1
(𝜐5−𝜐3)(𝜐4−𝜐3)(𝜐3−𝜐1)

− 1
%𝜐5−𝜐4)(𝜐4−𝜐3)(𝜐4−𝜐1)

+ 1
(𝜐5−𝜐3)(𝜐5−𝜐4)(𝜐5−𝜐1)⎠

⎟⎟
⎞
× 1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 1
(𝜐5−𝜐3)(𝜐4−𝜐3)(𝜐3−𝜐1)

2 ×
1
𝜐3
× 𝑒−𝜐3-

− 1
%𝜐5−𝜐4)(𝜐4−𝜐3)(𝜐4−𝜐1)2

× 1
𝜐4
× 𝑒−𝜐4-

+ 1
(𝜐5−𝜐3)(𝜐5−𝜐4)(𝜐5−𝜐1)

2 ×
1
𝜐5
× 𝑒−𝜐5- ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(17)

Case 3-7: (𝜐' = 𝜐1 ≠ 𝜐. = 𝜐E ≠ 𝜐B) denoted by (2,2,1)
The probability 𝑃3#(𝜃) is given by

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3𝜐1−𝜐3−2𝜐5
(𝜐3−𝜐1)

3(𝜐5−𝜐1)
2 ×

1
𝜐1
× 𝑒−𝜐1-

+ 1
(𝜐3−𝜐1)

2(𝜐5−𝜐1)
× 1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 𝜐1−3𝜐3+2𝜐5
(𝜐3−𝜐1)

3(𝜐5−𝜐3)
2 ×

1
𝜐3
× 𝑒−𝜐3-

+ 1
(𝜐3−𝜐1)

2(𝜐5−𝜐3)
× 1
𝜐32
× (𝑒−𝜐3- + 𝜐3𝜃𝑒−𝜐3-)

+ 1
(𝜐5−𝜐1)

2(𝜐5−𝜐3)
2 ×

1
𝜐5
× 𝑒−𝜐5- ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (18)

Summary:
Given the probability of the delay of a task exceeds the

delay constraint θ in three cases, the overall probability of
violating the delay constraint is given by
𝑃3(𝜃) = 𝑃(𝑋 ≥ 𝜃) = (1 − 𝑝!") × 𝑃𝑋𝑈(𝜃)

+(1 − 𝑝"#) × 𝑝!" × 𝑃3"(𝜃) + 𝑝!" × 𝑝"# × 𝑃3#(𝜃) (19)

C. Problem Statement
Given the following system parameters, how to configure

𝑝!" and 𝑝"#such that 𝑃3(𝜃) could be minimized? The system
parameters include number of UEs per edge server (M), number
of edge servers per cloud server (N), external task arrival rate
(𝜆), the service rate of each server and communication link
(𝜇# , 𝜇" , 𝜇! , 𝜇!" , 𝜇"# , 𝜇#" , 𝜇"!), and the delay constraint θ.

III. SUB-GRADIENT SEARCH (SGS) ALGORITHM
In this section, we proposed a search algorithm for finding

the optimal 𝑝!" and 𝑝"# which minimizes 𝑃3(𝜃) based on the
sub-gradient method. Fig. 3 shows a typical relation among
𝑝!" , 𝑝"# and 𝑃3(𝜃) . which clearly shows the convexity of
𝑃3(𝜃). A formal proof is omitted in this paper due to the space
limitation. But it is trivial to show that 𝑃3(𝜃) us a convex
function since the exponential function is convex, and 𝑃3(𝜃) is
either sum of some positive exponential functions or sum of
both positive and negative exponential functions, but with more
positive and larger exponential functions. This gives us the
motivation to develop a sub-gradient search algorithm, referred
to as SGS, as shown in Fig. 4. It adopts nonsummable
diminishing step size. A sub-gradient method is an iterative
method for solving a convex minimization problem.

The SGS algorithm, for a given 𝑝!", first searches for the
optimal 𝑝"#. After the 𝑝"# is set, it then searches for the optimal
𝑝!". It then repeats until both 𝑝!" and 𝑝"# converge to a fixed
point. The main idea of the search algorithm is to set the search
direction according to the direction that leads to lower 𝑃3(𝜃)
which follows the sub-gradient method for solving convex
optimization.

Fig. 3. 𝑃!(𝜃) as a function of 𝑝"# and 𝑝#$.

Sub-Gradient Search Algorithm
Input: M, N, 𝜆, 𝜇$, 𝜇# , 𝜇", 𝜇"# , 𝜇#$, 𝜇$# , 𝜇#", θ
Output: optimal 𝑝"# , 𝑝#$
Begin
 𝑝"# = 0.5;	𝑝#$ = 0.5; //initialize 𝑝"# , 𝑝#$
 Repeat {
 𝑜𝑙𝑑_𝑝"# = 𝑝"#; 𝑜𝑙𝑑_𝑝#$ = 𝑝#$;

step=0.25; k=1; //iteration number
𝑛𝑒𝑤_𝑝#$ = 𝑝#$ + 𝑠𝑡𝑒𝑝;
Repeat { //search for optimal 𝑝#$

 𝑜𝑙𝑑_𝑃!(𝜃) = calculate 𝑃!(𝜃) using equation (19) and
𝑝"# , 𝑝#$;
𝑛𝑒𝑤_𝑃!(𝜃) = calculate 𝑃!(𝜃) using equation (19) and
𝑝"# , 𝑛𝑒𝑤_𝑝#$;

 If (|	𝑛𝑒𝑤_𝑃!(𝜃) − 𝑜𝑙𝑑_𝑃!(𝜃)|<0.000001)
 break; // exit repeat loop
else if 𝑜𝑙𝑑_𝑃!(𝜃) < 𝑛𝑒𝑤_𝑃!(𝜃) {

//change 𝑛𝑒𝑤_𝑝#$ to get closer to 𝑝#$
 if (𝑝#$ < 𝑛𝑒𝑤_𝑝#$) {
 𝑛𝑒𝑤_𝑝#$ = 𝑝#$ − 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ < 0 𝑛𝑒𝑤_𝑝#$ = 0;
 } else {
 𝑛𝑒𝑤_𝑝#$ = 𝑝#$ + 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ > 1	𝑛𝑒𝑤_𝑝#$ = 1;
 }
} else { //set 𝑝#$ to new_𝑝#$, try a new search from new 𝑝#$
 𝑝#$_&'(= 𝑝#$; 𝑝#$ = 𝑛𝑒𝑤_𝑝#$;
 if (𝑛𝑒𝑤_𝑝#$ < 𝑝#$_&'() {
 𝑛𝑒𝑤_𝑝#$ = 𝑝#$ − 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ < 0 𝑛𝑒𝑤_𝑝#$ = 0;
 } else {
 𝑛𝑒𝑤_𝑝#$ = 𝑝#$ + 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ > 1	𝑛𝑒𝑤_𝑝#$ = 1;
 }
}
k++; step = 0.25/√𝑘; // Nonsummable diminishing step size

 } until (step<0.0001); //until step is less than threshold
step=0.25; k=1;
𝑛𝑒𝑤_𝑝"# = 𝑝"# + 𝑠𝑡𝑒𝑝;
Repeat { //search for optimal 𝑝"#

 Update 𝑛𝑒𝑤_𝑝"# and 𝑝"# as the update procedure for
𝑛𝑒𝑤_𝑝#$ and 𝑝#$ in the above repeat loop;

 } until (step<0.0001);
 } until ((|𝑜𝑙𝑑_𝑝"# − 𝑝"# |<0.0001) &&(|	𝑜𝑙𝑑)!" − 𝑝#$ |<0.0001));
End

Fig. 4. Pseudocode for the SGS algorithm.

IV. NUMERICAL RESULTS
A. System Parameters

The setting of system parameters is shown in Table II, which
is used to validate our analytical results as well as the optimality
of the SGS algorithm. The time unit shall be set according to the
real-world scenario. Notably, without offloading to higher tier
servers, the arrival rate exceeds the service capacity of UEs.
Offloading all traffic to the edge or cloud server also exceeds
their service capacity.

TABLE II
System parameters (rates are per time unit) (M=N=5,θ = 1.2)
λ=2 𝜇"=25 𝜇#=8 𝜇$=1.5

𝜇$#=12 𝜇#"=22 𝜇"# =21 𝜇#$=11

We first validate our analytical results by comparing them

with the simulation results, as shown in Fig. 5 where 𝑝"# is set
to 0.4 and 𝑝!" ranges from 0.1 to 0.9. Each simulation is run for
30 runs with a simulation time of 10000 time units, and the 95%
confidence interval is less than 0.5% of the mean value.

Fig. 5. Comparison of simulation results with analytical results.

Fig. 6 shows the analytical result of QoS violating
probability at each tier with the same setting in Fig. 5. As 𝑝!"
increases, more tasks are offloaded to the higher tier server. As
a consequence, the QoS violating probability at edge and cloud
server increases as 𝑝"# increases while that of UE decreases. At
the lowest QoS violating probability case, the QoS violating
probabilities at UE, edge, and cloud are 0.340, 0.121, 0.146,
respectively. In addition, our simulation results showed that the
average end-to-end delays for tasks serving by UE, edge, and
cloud are 1.11, 0.71, 0.81, respectively, all less than θ (1.2). This
shows the importance of delay distribution analysis as even with
more than 19% of tasks cannot meet their deadline, their mean
delays are still less than the delay constraint.

Fig. 6. Comparison of QoS violating probability at different tier

Secondly, we validate the SGS algorithm. System
parameters are set as in Table II, and we let 𝑝!" and 𝑝"# varies
from 0.1 to 0.9 with an interval of 0.1. The QoS violating
probability vs. 𝑝!" and 𝑝"# is plotted in Fig. 3 and the lowest
QoS violating probability is 0.194, which occurs when 𝑝!" =
0.7 and 𝑝"# = 0.4. Our SGS algorithm yields the optimal QoS
violating probability of 0.188 when 𝑝!" = 0.675 and 𝑝"# =
0.370. The result validates that the SGS algorithm is able to find
the optimal 𝑝!" and 𝑝"#. We also run a simulation with 𝑝!" =
0.675 and 𝑝"# = 0.370 and the result of QoS violating
probability is 0.189, which matches the result of the SGS
algorithm well.

Fig. 7 shows how the external arrival rate affects the QoS
violating probability and the optimal offloading probabilities.
Intuitively, as the arrival rate increases, so is the QoS violating
probability. Interestingly, as the arrival rate increases, fewer
tasks are offloaded to higher tier servers. Finally, Fig. 8 shows
when the service capacity of the edge server changes, how it
affects the optimal configuration of 𝑝!" and 𝑝"#, as well as the
QoS violating probability. As we can see, as the edge server
capacity increases, more tasks are offloaded to the edge server,
so the 𝑝!" increases while 𝑝"# decreases. And since the system
has more capacity, the overall QoS violating probability also
decreases.

Fig. 7. The effect of external arrival rate on QoS violating probability

Fig. 8. The effect of edge server capacity on 𝑝"#, 𝑝#$ and QoS violating

probability

V. CONCLUSIONS
This paper investigated the delay constraint problem in a

three-tier computation offloading system with the cloud server,

edge server, and fog server (mobile device). Closed-form
solutions have been derived for the delay distribution, and the
probability of the delay of a task exceeds the delay constraint θ.
For the probabilistic offloading strategy, we proposed a sub-
gradient-based search (SGS) algorithm to find the optimal
offloading probabilities while minimizing the delay violating
probability. Our numerical results showed that our modeling is
valid, and the SGS algorithm is able to find the optimal
offloading probabilities.

Several works need further investigation. First, more
experiments are needed to explore the effect of several system
parameters. Second, we are investigating an online queue-
length-based offloading strategy that offloads a task to a higher
tier computation server when it arrives at a lower-tier server and
finds the probability that the delay of serving by this lower tier
server will exceed the delay constraint is larger than some
threshold.

REFERENCE
[1] ETSI GS MEC 009 V2.2.1 Available:

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/009/02.02.01_60/gs_
MEC009v020201p.pdf

[2] K. Kumar and Y. Lu, “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?,” Computer, vol. 43, no. 4, pp. 51-
56, 2010.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation
Offloading for Mobile Systems,” Mobile Networks and Applications, vol.
18, no. 1, pp. 129-140, 2013/02/01 2013.

[4] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
Optimal Mobile Cloud Computing under Stochastic Wireless Channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp. 4569-
4581, 2013.

[5] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic Computation Offloading
for Mobile-Edge Computing With Energy Harvesting Devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590-
3605, 2016.

[6] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT), 2016, pp. 1451-
1455.

[7] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Communicating While
Computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45-55,
2014.

[8] C. You, K. Huang, and H. Chae, “Energy Efficient Mobile Cloud
Computing Powered by Wireless Energy Transfer,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1757-1771, 2016.

[9] M. Chen, B. Liang, and M. Dong, “A semidefinite relaxation approach to
mobile cloud offloading with computing access point,” in 2015 IEEE 16th
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2015, pp. 186-190.

[10] Q. Zhu, B. Si, F. Yang, and Y. Ma, “Task offloading decision in fog
computing system,” China Communications, vol. 14, no. 11, pp. 59-68,
2017.

[11] H. Ko, J. Lee, and S. Pack, “Spatial and Temporal Computation
Offloading Decision Algorithm in Edge Cloud-Enabled Heterogeneous
Networks,” IEEE Access, vol. 6, pp. 18920-18932, 2018.

[12] A. V. Guglielmi, M. Levorato, and L. Badia, “A Bayesian Game Theoretic
Approach to Task Offloading in Edge and Cloud Computing,” in 2018
IEEE International Conference on Communications Workshops (ICC
Workshops), 2018, pp. 1-6.

[13] C.-C. Wang, Y.-D. Lin, J.-J. Wu, P.-C. Lin, R.-H. Hwang, “Towards
Optimal Resource Allocation of Virtualized Network Functions for
Hierarchical Datacenters,” IEEE Transactions on Network and Service
Managment, Vol. 15(4), Dec. 2018, pp. 1532-154.

