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Abstract—Mobile edge computing and fog computing are 
promising techniques providing computation service closer to 
users to achieve lower latency. In this work, we study the optimal 
offloading strategy in the three-tier federated computation 
offloading system. We first present queueing models and closed-
form solutions for computing the service delay distribution and the 
probability of the delay of a task exceeding a given threshold. We 
then propose an optimal offloading probability algorithm based on 
the sub-gradient method. Our numerical results show that our 
simulation results match very well with that of our closed-form 
solutions, and our sub-gradient-based search algorithm can find 
the optimal offloading probabilities. Specifically, for the given 
system parameters, our algorithm yields the optimal QoS violating 
probability of 0.188 with offloading probabilities of 0.675 and 0.37 
from Fog to edge and from edge to cloud, respectively. 

I. INTRODUCTION 
As mobile devices and mobile services increase significantly, 

5G networks have been proposed to raise the transmission rate, 
increase the number of connections, and reduce transmission 
latency. 5G networks provide three application scenarios, 
enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low 
Latency Communications (URLLC), and massive Machine 
Type Communications (mMTC). URLLC is a scenario that 
requests demand an ultra-low latency, such as autonomous 
vehicles and telemedicine. 

Traditional Mobile Cloud Computing (MCC), which is two-
tiered and consists of a cloud server and User Equipment (UEs), 
cannot provide ultra-low latency because the distance between 
the cloud server and UEs is usually over 100 kilometers. Instead 
of a cloud server, the edge servers of mobile networks provide 
the services and computing capacity by Mobile Edge Computing 
(MEC) techniques [1]. The main features of MEC are to push 
mobile computing, network control, and storage to the network 
edges. With MEC, the congestion in the core network can be 
alleviated, and the transmission delay can be reduced, 
significantly decreasing the total latency on obtaining services. 
Thus, a three-tier architecture with a federated cloud server, edge 
servers, and UEs appears. 

In a multi-tier architecture, offloading to where, i.e., cloud 
server, edge server, or UE itself, to execute a request is an 
important issue. There were many previous studies focusing on 
the offloading decision problem in a two-tier architecture [2-9] 

or in a three-tier architecture [10-13]. These studies adopted 
offloading to reduce the latency or relieve the UE’s energy 
consumption. 

However, all previous papers which focused on latency 
reduction only considered the latency of each request or the 
average latency of all requests. However, for each request, it 
cares about whether its Quality of Services (QoS) requirement 
can be satisfied or not; namely, its latency can be less than a 
given threshold that the service needs. Thus, even the offloading 
algorithms or mechanisms of these studies actually reduce the 
latency; they still cannot reduce the probability of QoS violation, 
i.e., the latency exceeding a given threshold. 

This paper considered the probabilistic offloading strategy in 
a three-tier federated architecture with the cloud server, edge 
servers, and UEs. When a computation request is generated at a 
UE, the probabilistic offloading strategy offloads the 
computation task to the edge server with probability 𝑝!"  or 
performs the task at the UE with probability (1-𝑝!"). Similarly, 
when a computation request arrives at the edge server, the 
offloading strategy offloads the task to the cloud server with 
probability 𝑝"#. The QoS requirement of computation tasks is 
its service delay, include communication delay and computation 
delay, which needs to be less than a given threshold. Our 
problem is to determine the optimal value of 𝑝!" and 𝑝"# such 
that the probability of violating the delay constraint of a task can 
be minimized. Queueing models and optimal algorithm for 
searching 𝑝!" and 𝑝"# are proposed to solve the problem. The 
main contributions of this study are:  

(1) Closed-form solutions for calculating the probability of 
QoS violation are derived based on queueing models. We 
believe that this is the first work that formulates the federated 
three-tier computation offloading system using queueing models 
and derives a closed-form solution for the probability of 
violating the delay constraint. 

(2) A novel sub-gradient search algorithm is proposed to find 
the optimal offloading probability. 

The remainder of this paper is organized as follows: Section 
II describes the system architecture and system model. Closed-
form solutions for calculating the probability of QoS violation 
are derived based on queueing models. The research problem is 
then defined; Section III presents the proposed Sub-Gradient 
Search (SGS) algorithm for finding the optimal solution. 



Numerical results are then presented in Section IV. Finally, the 
conclusions and future works are summarized in Section V. 

II. PROBLEM FORMULATION 
A. System Architecture 

The system architecture of the three-tier federated Cloud, 
Edge, and Fog computation offloading system is shown in Fig. 
1, where UEs are considered as Fog servers. We consider a 
computation task is generated at a UE, and can be served by the 
UE itself, or offloads to the nearby edge server, or to the cloud 
server. We assume the cloud server is associated with N edge 
servers and each edge server is associated with M UEs. Tasks 
arrive at a UE according to a Poisson process. When a task 
arrives at a UE, with probability 𝑝!", it will be offloaded to the 
edge server. Similarly, when a task arrives at an edge server, 
with probability 𝑝"# it will be offloaded to the cloud server. This 
kind of offloading strategy is called probabilistic offloading 
which offload computation tasks to higher tier computing server 
based on a given probability. 

When a task is offloaded to a higher-tier computing server, 
it is sent through a communication link (uplink). Depends on the 
size of the task and the bandwidth of the communication link, 
the task may encounter some communication delay. Similarly, 
after the computing server finishes the computation, the result of 
the task will be sent back through a downlink with some 
communication delay. Specifically, suppose the task is 
computed at the edge server. In that case, it will encounter an 
uplink communication delay from the UE to the edge server and 
a downlink communication delay in the opposite direction. 
Suppose the task is served at the cloud server. In that case, it will 
experience two uplink communication delays and two downlink 
communication delays, between the UE and the edge server and 
between the edge server and the cloud server, respectively. 

 
Fig. 1. The architecture of the three-tier federated Cloud, Edge, and Fog 

computation offloading system 

B. System Model 
We analyze the delay of a computation task via queueing 

models. Specifically, we model each server and communication 
link as an M/M/1 queue and apply Jackson network theory to 
analyze a tandem of queues. Table I shows the notations used in 
our analysis. Fig. 2 shows the queueing network of the three-tier 
federated Cloud, Edge, and Fog computation system. 

TABLE I  
Table of Notations 

Notation Meaning 
𝜇! 

(𝜇" , 𝜇#,	𝜇$, 
𝜇$# , 𝜇#" , 

Service capacity (rate) of the server or 
communication link X where X is either C 
(cloud), E (edge), U (UE), UE (uplink from UE to 

𝜇"# , 𝜇#$) E), EC (uplink from edge to cloud), CE 
(downlink from cloud to edge), EU (downlink 
from edge to UE). 

𝜆! 
(𝜆" , 𝜆#,	𝜆$, 
𝜆$# , 𝜆#" , 
𝜆"# , 𝜆#$) 

Arrival rate of the server or communication link 
X where X is either C (cloud), E (edge), U (UE), 
UE (uplink from UE to E), EC (uplink from edge 
to cloud), CE (downlink from cloud to edge), EU 
(downlink from edge to UE). 

𝜆 External task arrival rate to each UE. 
𝑝$# Probability that a computation task will be 

offloaded from UE to the edge server. 
𝑝#" Probability that a computation task will be 

offloaded from the edge server to the cloud server. 
𝜐! The difference between service rate and arrival 

rate of X, i.e.,  𝜐! = 𝜇! − 𝜆!, where X is either 
C, E, U, UE, EC, CE, or EU. The queuing delay 
of a M/M/1 server X is exponentially distributed 
with parameter 𝜐!. 

θ Delay constraint of a computation task 
𝑃!$(𝜃) 
𝑃!#(𝜃) 
𝑃!"(𝜃) 

The probability of the delay of a task served by 
UE, edge server, or cloud server exceeds the 
delay constraint θ respectively. 

𝑃!(𝜃) The overall probability of the delay of a task 
exceeds the delay constraint θ. 

 
Fig. 2. Queueing network of the federated three-tier computation system. 

In the following, we derive the probability that the delay 
experienced by a computation task is less than the delay 
constraint θ in three cases: namely, the task is either served by 
the UE, the edge server, or the cloud server. 

Case 1: the task is served by UE 
By assuming the arrival of computation tasks to a UE follows 

a Poisson process with rate 𝜆$ = (1 − 𝑝$#) × 𝜆, and the service 
time follows an exponential distribution with rate 𝜇$, the delay 
of this M/M/1 queue at the UE follows an exponential 
distribution with rate 𝜐$ = 𝜇$ − 𝜆$. Thus, the probability of the 
delay of a task exceeds the delay constraint θ is given by 

𝑃!$(𝜃) = 𝑃(𝑋𝑈 ≥ 𝜃) = 𝑒−%&!'(!)𝜃.                                    (1) 
For ease of explanation, in this paper, we will assume a 

homogeneous scenario where all UEs have the same arrival and 
service rate. Similar assumptions apply to edge servers and each 
type of communication link. However, our results can be easily 
extended to a heterogeneous case. 

Case 2: the task is served by the edge server 



The delay consists of three parts: the delay of the uplink 
communication from UE to the edge server, the delay at the edge 
server, and the delay of the downlink communication from the 
edge server to the UE. Since an edge server is associated with M 
UEs, the arrival rate of these three queues are the same, given by 

𝜆!" = 𝜆" = 𝜆"! = 𝑀 × (1 − 𝑝𝐸𝐶) × 𝑝𝑈𝐸 × 𝜆.                  (2) 
Since the output process of an M/M/1 queue is a Poisson 

process, the queues at the edge server and two communication 
links between UE and the edge server are all M/M/1 queues. 
Thus, the delay of a task served by an edge server can be derived 
by using Laplace transform. Let XE be the random variable of 
the delay. Let the three queues are indexed by i, i=1, 2, or 3. For 
example, queue 1 is the uplink from UE to the edge server, then 
𝜐' = 𝜇!" − 𝜆!".  
Case 2-1: 𝜐( ≠ 𝜐) 	𝑖𝑓	𝑖 ≠ 𝑗 

The Laplace transform of XE is given by 
𝑆∗(𝑠) = ∏ +!

,-+!
.
(/' 	= ∏ 𝜐(.

(/' ×∏ '
,-+!

.
(/' ,                                (3) 

In general, if XE is the summation of K exponential random 
variables with parameter 𝜐( , 𝑖 = 1,… ,𝑁 , then the Laplace 
transform of XE is given by 

𝑆∗(𝑠) = ∏ +!
,-+!

0
(/' 	= ∏ 𝜐(0

(/' ×∏ '
,-+!

0
(/' .                                (4) 

We show how to decompose equation (4) recursively and 
derive a general closed form for the inverse function (the delay 
distribution) of the Laplace transform. Let us start with K=2: 

𝑆∗(𝑠) = ∏ '
,-+!

=1
(/'

'
+"2+#

× '
,-+#

− '
+"2+#

× '
,-+"

            (5) 
For K=3, 𝑆∗(𝑠) is given by 

𝑆∗(𝑠) = ∏ 𝜐(.
(/' × = '

+$2+#
×∏ '

,-+!
1
(/' − '

+$2+#
×∏ '

,-+!
.
(/1 >  

= ∏ 𝜐(.
(/' × = '

+$2+#
× '

+"2+#
× '

,-+#
− '

+$2+"
× '

+"2+#
×

'
,-+"

+ '
+$2+"

× '
+$2+#

× '
,-+$

>.  (6) 
And for any K, we can decompose 𝑆∗(𝑠)  based on the result 

of K-1 by 

𝑆∗(𝑠) = ∏ 𝜐(0
(/' × A

'
+%2+#

×∏ '
,-+!

02'
(/'

− '
+%2+#

×∏ '
,-+!

0
(/1

B.                        (7) 

For K=3, the delay distribution is obtained by inverting the 
Laplace transform, which is given by 

𝑓3(𝑥) = ∏ 𝜐(.
(/' × = '

+$2+#
× '

+"2+#
× 𝑒2+#4 − D '

+$2+"
×

'
+"2+#

E × 𝑒2+"4 + '
+$2+#

× '
+$2+"

× 𝑒2+$4>.  (8) 
Finally, the probability of the delay of a task exceeds the 

delay constraint θ is given by 
𝑃!#(𝜃) = 𝑃(𝑋𝐸 ≥ 𝜃) = ∏ 𝜐𝑖3

𝑖=1 × 1 1
𝜐3−𝜐1

× 1
𝜐2−𝜐1

× 1
𝜐1
× 𝑒−𝜐1𝜃 −

2 1
𝜐3−𝜐2

× 1
𝜐2−𝜐1

3× 1
𝜐2
× 𝑒−𝜐2𝜃 + 1

𝜐3−𝜐1
× 1
𝜐3−𝜐2

× 1
𝜐3
× 𝑒−𝜐3𝜃4. (9) 

Case 2-2: 𝜐( = 𝜐) 	∀i, j  
The delay distribution becomes an Erlang distribution with 

parameter r=3. The probability of the delay of a task exceeds the 
delay constraint θ is given by 

𝑃!#(𝜃) = 𝑃(𝑋𝐸 ≥ 𝜃) = ∑ (𝜐1𝜃)
𝑖

𝑖! 𝑒−𝜐1𝜃2
𝑖=0 .                         (10) 

Case 2-3: 𝜐( = 𝜐) ≠ 𝜐@	(two 𝜐3′𝑠 are the same while one is 
different)  

Without loss of generality, let 𝜐' = 𝜐1 ≠ 𝜐..  Since two 𝜐(’s 
are the same, the distribution of 𝑋"  becomes the sum of an 

Erlang and an exponential distribution. Thus, the Laplace 
transform of 𝑋" is given by 

𝑆∗(𝑠) = ∏ 𝜐(.
(/' × '

(,-+#)"×(,-+$)
== 2'

(+$2+#)"
× '

,-+#
+

'
(+$2+#)"

× '
,-+$

+ '
+$2+#

× '
(,-+#)"

.                                            (11) 
And the probability of the delay of a task exceeds the delay 

constraint θ is given by 

𝑃!#(𝜃) = 𝑃(𝑋𝐸 ≥ 𝜃) = ∏ 𝜐𝑖3
𝑖=1 ×

6

1
(𝜐3−𝜐1)

2 ×
1
𝜐3
× 𝑒−𝜐3- − 1

(𝜐3−𝜐1)
2 ×

1
𝜐1
× 𝑒−𝜐1- 

+ 1
𝜐3−𝜐1

× 1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝑥𝑒−𝜐1-) 

7.                    (12) 

Case 3: the task is served by the cloud server 
The delay consists of five parts: the delay of the uplink 

communication from UE to the edge server, the delay of the 
uplink communication from the edge server to the cloud server, 
the delay at the cloud server, the delay of the downlink 
communication from the cloud server to the edge server, and the 
delay of the downlink communication from the edge server to 
the UE. Since the cloud server is associated with N edge servers, 
the arrival rates to the cloud server, the uplink from the edge 
server to the cloud server, and the downlink from the cloud 
server to the edge server are the same and given by 

𝜆"# = 𝜆# = 𝜆#" = 𝑁 ×𝑀 × 𝑝"# × 𝑝!" × 𝜆,                (13) 
while recall that 𝜆!" , 𝜆"! are given in equation (2). 

We have a tandem of five M/M/1 queues, and the delay of 
each queue is, again, an exponential distribution. Let us denote 
the parameter of the delay distribution by 𝜐( , 𝑖 = 1,… ,5.  For 
example, 𝜐' = 𝜇!" − 𝜆!" and 𝜐1 = 𝜇"# − 𝜆"#. And similar to 
case 2, depends on whether there are some 𝜐(′𝑠 have the value, 
we have 7 sub-cases, denoted by  (1,1,1,1,1), (5), (4,1), (3,1,1), 
(3,2), (2,1,1,1), (2,2,1), where each number denotes how many  
𝜐(′𝑠 are the same. For example, (3,2) denotes the case where 
three  𝜐(′𝑠 have the same value while the other two  𝜐(′𝑠 have 
the same value. Let us start from the case where each  𝜐(  is 
different.  
Case 3-1: 𝜐( ≠ 𝜐) 	𝑖𝑓	𝑖 ≠ 𝑗, denoted by (1,1,1,1,1) 

Based on equation (7), the Laplace transform of XC is given 
by 

𝑆∗(𝑠) = ∏ 𝜐(B
(/' × A

'
+*2+#

× '
(,-+#)×(,-+")×(,-+$)×(,-++)

− '
+*2+#

× '
(,-+")×(,-+$)×(,-++)×(,-+*)

B  

= ∏ 𝜐(B
(/' ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

'
+*2+#

× '
++2+#

× '
+$2+#

× '
+"2+#

× '
,-+#

− '
+*2+"

× '
++2+"

× '
+$2+"

× '
+"2+#

× '
,-+"

+ '
+*2+$

× '
++2+$

× '
+$2+"

× '
+$2+#

× '
,-+$

− '
+*2++

× '
++2+$

× '
++2+"

× '
++2+#

× '
,-++

+ '
+*2++

× '
+*2+$

× '
+*2+"

× '
+*2+#

× '
,-+*⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .  (12)  

The delay distribution can be derived as in equation (8) and 
the probability of the delay of a task exceeds the delay constraint 
θ is given by 



𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

															

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝜐5−𝜐1

× 1
𝜐4−𝜐1

× 1
𝜐3−𝜐1

× 1
𝜐2−𝜐1

× 1
𝜐1
× 𝑒−𝜐1𝜃

− 1
𝜐5−𝜐2

× 1
𝜐4−𝜐2

× 1
𝜐3−𝜐2

× 1
𝜐2−𝜐1

× 1
𝜐2
× 𝑒−𝜐2𝜃

+ 1
𝜐5−𝜐3

× 1
𝜐4−𝜐3

× 1
𝜐3−𝜐2

× 1
𝜐3−𝜐1

× 1
𝜐3
× 𝑒−𝜐3𝜃

− 1
𝜐5−𝜐4

× 1
𝜐4−𝜐3

× 1
𝜐4−𝜐2

× 1
𝜐4−𝜐1

× 1
𝜐4
× 𝑒−𝜐4𝜃

+ 1
𝜐5−𝜐4

× 1
𝜐5−𝜐3

× 1
𝜐5−𝜐2

× 1
𝜐5−𝜐1

× 1
𝜐5
× 𝑒−𝜐5𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.    (13) 

For the rest cases, the derivation is similar, so we only 
present the closed-form of the probability of the delay of a task 
exceeds the delay constraint θ. 
Case 3-2: (𝜐' = 𝜐1 = 𝜐. = 𝜐E = 𝜐B) denoted by (5) 

For this case, the delay distribution follows an Erlang 
distribution with parameter r=5. The probability of the delay of 
a task exceeds the delay constraint θ is similar to equation (10) 
with the summation index i ranges from 0 to 4. 
Case 3-3: (𝜐' = 𝜐1 = 𝜐. = 𝜐E ≠ 𝜐B) denoted by (4,1) 

The probability 𝑃3#(𝜃) is given by 
𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5

𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−1
(𝜐5−𝜐1)

4 ×
1
𝜐1
× 𝑒−𝜐1-

+ 1
(𝜐5−𝜐1)

3 ×
1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

− 1
(𝜐5−𝜐1)

2 ×
1
𝜐13
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +

(𝜐1-)
2

2 𝑒−𝜐1-)

+ 1
𝜐5−𝜐1

× 1
𝜐14
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +

(𝜐1-)
2

2 𝑒−𝜐1-

+ (𝜐1-)
3

6 𝑒−𝜐1-) + 1
(𝜐5−𝜐1)

4 ×
1
𝜐5
× 𝑒−𝜐5-) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .  (14) 

Case 3-4: (𝜐' = 𝜐1 = 𝜐. ≠ 𝜐E ≠ 𝜐B) denoted by (3,1,1) 
The probability 𝑃!"(𝜃) is given by 

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (𝜐4−𝜐1)2+%𝜐5−𝜐1)

2+(𝜐4−𝜐1)(𝜐5−𝜐1)

(𝜐4−𝜐1)3%𝜐5−𝜐1)
3 × 1

𝜐1
× 𝑒−𝜐1-

+ 2𝜐1−𝜐4−𝜐5
(𝜐4−𝜐1)2%𝜐5−𝜐1)

2 ×
1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 1
(𝜐4−𝜐1)%𝜐5−𝜐1)

× 1
𝜐13

× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +
(𝜐1-)

2

2 𝑒−𝜐1-)

− 1
(𝜐4−𝜐1)3%𝜐5−𝜐4)

× 1
𝜐4
× 𝑒−𝜐4-

+ 1

%𝜐5−𝜐1)
3(𝜐5−𝜐4)

× 1
𝜐5
× 𝑒−𝜐5-

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.             (15) 

Case 3-5: (𝜐' = 𝜐1 = 𝜐. ≠ 𝜐E = 𝜐B) denoted by (3,2) 
The probability 𝑃3#(𝜃) is given by 

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3
(𝜐4−𝜐1)4

× 1
𝜐1
× 𝑒−𝜐1-

− 2
(𝜐4−𝜐1)

3 ×
1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 1
(𝜐4−𝜐1)2

× 1
𝜐13
× >𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1- +

(𝜐1-)
2

2 𝑒−𝜐1-?

− 3
(𝜐4−𝜐1)

4 ×
1
𝜐4
× 𝑒−𝜐4-

− 1
(𝜐4−𝜐1)

3 ×
1
𝜐42
× (𝑒−𝜐4- + 𝜐4𝜃𝑒−𝜐4-) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (16) 

Case 3-6: (𝜐' = 𝜐1 ≠ 𝜐. ≠ 𝜐E ≠ 𝜐B) denoted by (2,1,1,1) 
The probability 𝑃3#(𝜃) is given by 

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎝

⎜⎜
⎛

−1
(𝜐5−𝜐3)(𝜐4−𝜐3)(𝜐3−𝜐1)

2

+ 1
%𝜐5−𝜐4)(𝜐4−𝜐3)(𝜐4−𝜐1)

2

− 1
(𝜐5−𝜐3)(𝜐5−𝜐4)(𝜐5−𝜐1)

2⎠

⎟⎟
⎞
× 1
𝜐1
× 𝑒−𝜐1-

+

⎝

⎜⎜
⎛

1
(𝜐5−𝜐3)(𝜐4−𝜐3)(𝜐3−𝜐1)

− 1
%𝜐5−𝜐4)(𝜐4−𝜐3)(𝜐4−𝜐1)

+ 1
(𝜐5−𝜐3)(𝜐5−𝜐4)(𝜐5−𝜐1)⎠

⎟⎟
⎞
× 1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 1
(𝜐5−𝜐3)(𝜐4−𝜐3)(𝜐3−𝜐1)

2 ×
1
𝜐3
× 𝑒−𝜐3-

− 1
%𝜐5−𝜐4)(𝜐4−𝜐3)(𝜐4−𝜐1)2

× 1
𝜐4
× 𝑒−𝜐4-

+ 1
(𝜐5−𝜐3)(𝜐5−𝜐4)(𝜐5−𝜐1)

2 ×
1
𝜐5
× 𝑒−𝜐5- ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(17) 

Case 3-7: (𝜐' = 𝜐1 ≠ 𝜐. = 𝜐E ≠ 𝜐B) denoted by (2,2,1) 
The probability 𝑃3#(𝜃) is given by 

𝑃!"(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3𝜐1−𝜐3−2𝜐5
(𝜐3−𝜐1)

3(𝜐5−𝜐1)
2 ×

1
𝜐1
× 𝑒−𝜐1-

+ 1
(𝜐3−𝜐1)

2(𝜐5−𝜐1)
× 1
𝜐12
× (𝑒−𝜐1- + 𝜐1𝜃𝑒−𝜐1-)

+ 𝜐1−3𝜐3+2𝜐5
(𝜐3−𝜐1)

3(𝜐5−𝜐3)
2 ×

1
𝜐3
× 𝑒−𝜐3-

+ 1
(𝜐3−𝜐1)

2(𝜐5−𝜐3)
× 1
𝜐32
× (𝑒−𝜐3- + 𝜐3𝜃𝑒−𝜐3-)

+ 1
(𝜐5−𝜐1)

2(𝜐5−𝜐3)
2 ×

1
𝜐5
× 𝑒−𝜐5- ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.                 (18) 

Summary: 
Given the probability of the delay of a task exceeds the 

delay constraint θ  in three cases, the overall probability of 
violating the delay constraint is given by 
𝑃3(𝜃) = 𝑃(𝑋 ≥ 𝜃) = (1 − 𝑝!") × 𝑃𝑋𝑈(𝜃) 

+(1 − 𝑝"#) × 𝑝!" × 𝑃3"(𝜃) + 𝑝!" × 𝑝"# × 𝑃3#(𝜃)   (19) 

C. Problem Statement 
Given the following system parameters, how to configure 

𝑝!" and 𝑝"#such that 𝑃3(𝜃) could be minimized? The system 
parameters include number of UEs per edge server (M), number 
of edge servers per cloud server (N), external task arrival rate 
(𝜆), the service rate of each server and communication link 
(𝜇# , 𝜇" , 𝜇! , 𝜇!" , 𝜇"# , 𝜇#" , 𝜇"!), and the delay constraint θ. 

III. SUB-GRADIENT SEARCH (SGS) ALGORITHM 
In this section, we proposed a search algorithm for finding 

the optimal  𝑝!" and 𝑝"# which minimizes 𝑃3(𝜃) based on the 
sub-gradient method. Fig. 3 shows a typical relation among 
𝑝!" , 𝑝"#  and 𝑃3(𝜃) . which clearly shows the convexity of 
𝑃3(𝜃). A formal proof is omitted in this paper due to the space 
limitation. But it is trivial to show that 𝑃3(𝜃)  us a convex 
function since the exponential function is convex, and 𝑃3(𝜃) is 
either sum of some positive exponential functions or sum of 
both positive and negative exponential functions, but with more 
positive and larger exponential functions.  This gives us the 
motivation to develop a sub-gradient search algorithm, referred 
to as SGS, as shown in Fig. 4. It adopts nonsummable 
diminishing step size. A sub-gradient method is an iterative 
method for solving a convex minimization problem. 



The SGS algorithm, for a given  𝑝!", first searches for the 
optimal 𝑝"#. After the 𝑝"# is set, it then searches for the optimal 
𝑝!". It then repeats until both 𝑝!" and 𝑝"# converge to a fixed 
point. The main idea of the search algorithm is to set the search 
direction according to the direction that leads to lower 𝑃3(𝜃) 
which follows the sub-gradient method for solving convex 
optimization. 

 
Fig. 3. 𝑃!(𝜃) as a function of 𝑝"# and 𝑝#$. 

Sub-Gradient Search Algorithm 
Input: M, N, 𝜆, 𝜇$ , 𝜇# , 𝜇", 𝜇"# , 𝜇#$ , 𝜇$# , 𝜇#", θ  
Output: optimal 𝑝"# , 𝑝#$ 
Begin 
 𝑝"# = 0.5;	𝑝#$ = 0.5; //initialize 𝑝"# , 𝑝#$ 
 Repeat { 
  𝑜𝑙𝑑_𝑝"# = 𝑝"#; 𝑜𝑙𝑑_𝑝#$ = 𝑝#$; 

step=0.25; k=1; //iteration number 
𝑛𝑒𝑤_𝑝#$ = 𝑝#$ + 𝑠𝑡𝑒𝑝;  
Repeat { //search for optimal 𝑝#$ 

   𝑜𝑙𝑑_𝑃!(𝜃) = calculate 𝑃!(𝜃) using equation (19) and 
𝑝"# , 𝑝#$; 
𝑛𝑒𝑤_𝑃!(𝜃) = calculate 𝑃!(𝜃) using equation (19) and 
𝑝"# , 𝑛𝑒𝑤_𝑝#$; 

   If (|	𝑛𝑒𝑤_𝑃!(𝜃) − 𝑜𝑙𝑑_𝑃!(𝜃)|<0.000001) 
  break;  // exit repeat loop 
else if 𝑜𝑙𝑑_𝑃!(𝜃) < 𝑛𝑒𝑤_𝑃!(𝜃) {  

//change 𝑛𝑒𝑤_𝑝#$ to get closer to 𝑝#$ 
 if (𝑝#$ < 𝑛𝑒𝑤_𝑝#$) { 
   𝑛𝑒𝑤_𝑝#$ = 𝑝#$ − 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ < 0 𝑛𝑒𝑤_𝑝#$ = 0; 
 } else { 
   𝑛𝑒𝑤_𝑝#$ = 𝑝#$ + 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ > 1	𝑛𝑒𝑤_𝑝#$ = 1; 
 } 
} else { //set 𝑝#$ to new_𝑝#$, try a new search from new 𝑝#$ 
  𝑝#$_&'( = 𝑝#$; 𝑝#$ = 𝑛𝑒𝑤_𝑝#$;   
  if (𝑛𝑒𝑤_𝑝#$ < 𝑝#$_&'() { 
    𝑛𝑒𝑤_𝑝#$ = 𝑝#$ − 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ < 0 𝑛𝑒𝑤_𝑝#$ = 0; 
  } else { 
    𝑛𝑒𝑤_𝑝#$ = 𝑝#$ + 𝑠𝑡𝑒𝑝;if 𝑛𝑒𝑤_𝑝#$ > 1	𝑛𝑒𝑤_𝑝#$ = 1; 
  } 
} 
k++;  step = 0.25/√𝑘; // Nonsummable diminishing step size 

  } until (step<0.0001); //until step is less than threshold 
step=0.25; k=1; 
𝑛𝑒𝑤_𝑝"# = 𝑝"# + 𝑠𝑡𝑒𝑝;  
Repeat { //search for optimal 𝑝"# 

   Update 𝑛𝑒𝑤_𝑝"#  and 𝑝"#  as the update procedure for 
𝑛𝑒𝑤_𝑝#$ and 𝑝#$ in the above repeat loop; 

  } until (step<0.0001); 
 } until ((|𝑜𝑙𝑑_𝑝"# − 𝑝"# |<0.0001) &&(|	𝑜𝑙𝑑)!" − 𝑝#$ |<0.0001)); 
End 

Fig. 4. Pseudocode for the SGS algorithm. 

IV. NUMERICAL RESULTS 
A. System Parameters 

The setting of system parameters is shown in Table II, which 
is used to validate our analytical results as well as the optimality 
of the SGS algorithm. The time unit shall be set according to the 
real-world scenario. Notably, without offloading to higher tier 
servers, the arrival rate exceeds the service capacity of UEs. 
Offloading all traffic to the edge or cloud server also exceeds 
their service capacity. 

TABLE II  
System parameters (rates are per time unit) (M=N=5,θ = 1.2) 
λ=2 𝜇"=25 𝜇#=8 𝜇$=1.5 

𝜇$#=12 𝜇#"=22 𝜇"# =21 𝜇#$=11 
 
We first validate our analytical results by comparing them 

with the simulation results, as shown in Fig. 5 where 𝑝"# is set 
to 0.4 and 𝑝!" ranges from 0.1 to 0.9. Each simulation is run for 
30 runs with a simulation time of 10000 time units, and the 95% 
confidence interval is less than 0.5% of the mean value.  

 
Fig. 5. Comparison of simulation results with analytical results. 

Fig. 6 shows the analytical result of QoS violating 
probability at each tier with the same setting in Fig. 5. As 𝑝!" 
increases, more tasks are offloaded to the higher tier server. As 
a consequence, the QoS violating probability at edge and cloud 
server increases as 𝑝"# increases while that of UE decreases. At 
the lowest QoS violating probability case, the QoS violating 
probabilities at UE, edge, and cloud are 0.340, 0.121, 0.146, 
respectively. In addition, our simulation results showed that the 
average end-to-end delays for tasks serving by UE, edge, and 
cloud are 1.11, 0.71, 0.81, respectively, all less than θ (1.2). This 
shows the importance of delay distribution analysis as even with 
more than 19% of tasks cannot meet their deadline, their mean 
delays are still less than the delay constraint. 

 
Fig. 6. Comparison of QoS violating probability at different tier 



Secondly, we validate the SGS algorithm. System 
parameters are set as in Table II, and we let 𝑝!" and 𝑝"# varies 
from 0.1 to 0.9 with an interval of 0.1. The QoS violating 
probability vs. 𝑝!" and 𝑝"# is plotted in Fig. 3 and the lowest 
QoS violating probability is 0.194, which occurs when 𝑝!" =
0.7 and 𝑝"# = 0.4. Our SGS algorithm yields the optimal QoS 
violating probability of 0.188 when 𝑝!" = 0.675  and 𝑝"# =
0.370. The result validates that the SGS algorithm is able to find 
the optimal 𝑝!" and 𝑝"#. We also run a simulation with 𝑝!" =
0.675  and 𝑝"# = 0.370  and the result of QoS violating 
probability is 0.189, which matches the result of the SGS 
algorithm well. 

Fig. 7 shows how the external arrival rate affects the QoS 
violating probability and the optimal offloading probabilities. 
Intuitively, as the arrival rate increases, so is the QoS violating 
probability. Interestingly, as the arrival rate increases, fewer 
tasks are offloaded to higher tier servers. Finally, Fig. 8 shows 
when the service capacity of the edge server changes, how it 
affects the optimal configuration of 𝑝!" and 𝑝"#, as well as the 
QoS violating probability. As we can see, as the edge server 
capacity increases, more tasks are offloaded to the edge server, 
so the 𝑝!" increases while 𝑝"# decreases. And since the system 
has more capacity, the overall QoS violating probability also 
decreases. 

 
Fig. 7. The effect of external arrival rate on QoS violating probability 

 
Fig. 8. The effect of edge server capacity on 𝑝"#,  𝑝#$ and QoS violating 

probability 

V. CONCLUSIONS 
This paper investigated the delay constraint problem in a 

three-tier computation offloading system with the cloud server, 

edge server, and fog server (mobile device). Closed-form 
solutions have been derived for the delay distribution, and the 
probability of the delay of a task exceeds the delay constraint θ. 
For the probabilistic offloading strategy, we proposed a sub-
gradient-based search (SGS) algorithm to find the optimal 
offloading probabilities while minimizing the delay violating 
probability. Our numerical results showed that our modeling is 
valid, and the SGS algorithm is able to find the optimal 
offloading probabilities. 

Several works need further investigation. First, more 
experiments are needed to explore the effect of several system 
parameters. Second, we are investigating an online queue-
length-based offloading strategy that offloads a task to a higher 
tier computation server when it arrives at a lower-tier server and 
finds the probability that the delay of serving by this lower tier 
server will exceed the delay constraint is larger than some 
threshold. 
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