Received: 31 March 2018

Revised: 19 April 2019

Accepted: 23 May 2019

DOI: 10.1002/dac.4065

RESEARCH ARTICLE

WILEY

Proactive multipath routing with a predictive mechanism
in software-defined networks

Ying-Dar Lin' | Te-Lung Liu?

! Department of Computer Science,
National Chiao Tung University, Hsinchu,
Taiwan

%National Center for High Performance
Computing, Tainan, Taiwan

| Shun-Hsien Wang' | Yuan-Cheng Lai’

Summary

With the growth of network traffic volume, link congestion cannot be avoided
efficiently with conventional routing protocols. By utilizing the single shortest-
path routing algorithm from link state advertisement information, standard

3Department of Information
Management, National Taiwan University
of Science and Technology, Taipei,
Taiwan

routing protocols lack of global awareness and are difficult to be modified in
a traditional network environment. Recently, software-defined network
(SDN) provided innovative architecture for researchers to program their own
network protocols. With SDN, we can divert heavy traffic to multiple paths

Correspondence

Te-Lung Liu, National Center for High
Performance Computing, Tainan, Taiwan.
Email: tlliu@narlabs.org.tw

in order to resolve link congestion. Furthermore, certain network traffics come
in periodic fashion such as peak hours at working days so that we can leverage
forecasting for resource management to improve its performance. In this paper,
we propose a proactive multipath routing with a predictive mechanism
(PMRP) to achieve high-performance congestion resolution. PMRP has two
main concepts: (a) a proactive mechanism where PMRP deploys M/M/1 queue
and traffic statistics to simulate weighted delay for possible combinations of
multipaths placement of all subnet pairs, and leverage genetic algorithm for
accelerating selection of optimized solution, and (b) a predictive mechanism
whereby PMRP uses exponential smoothing for demand traffic volumes and
variance predictions. Experimental results show a 49% reduction in average
delay as compared with single shortest routing, and a 16% reduction in average
delay compared with utilization & topology-aware multipath routing
(UTAMP). With the predictive mechanism, PMRP can decrease an additional
20% average delay. Furthermore, PMRP reduces 93% of flow table usage on
average as compared with UTAMP.

KEYWORDS

congestion resolution, flow table usage, multipath routing, SDN

1 | INTRODUCTION

As an increasing variety of network applications are now available, the volume of traffic grows rapidly, and link con-
gestions cannot be efficiently avoided with conventional interior gateway routing protocols. In the traditional network
environment, routers operate in a distributed fashion, and each of them has only a partial view of network status. Con-
sequently, problems such as unbalance of resource allocation and performance degradation arise. Standard routing
protocols adopt single shortest-path algorithm for routing selection, and hence the network traffic may block the trunk

Int J Commun Syst. 2019;32:e4065.
https://doi.org/10.1002/dac.4065

wileyonlinelibrary.com/journal/dac © 2019 John Wiley & Sons, Ltd. 1 of 16

https://orcid.org/0000-0002-3142-0302
https://doi.org/10.1002/dac.4065
https://doi.org/10.1002/dac.4065
http://wileyonlinelibrary.com/journal/dac

2 of 16 Wl LEY LIN ET AL.

links. Furthermore, periodically updating the link weights provided by link state advertisement is insensitive for
network congestions. In addition to congestion resolution, there are no forecasting functions for resource management.
The network pattern also has locality phenomenon such as daily rush hours so that we can leverage it for bandwidth
allocation in routing mechanism. However, it is difficult to modify standard routing protocols in conventional distrib-
uted network architecture, and it is impossible to replace every individual commodity router to provide better conges-
tion control algorithms.

Recent work on software-defined network (SDN) architecture' separates the control plane from data plane and
provides programmable Application Programming Interface (API) for provisioning and management. With a central-
ized controller, a global view of network topology with status can be obtained, and researchers could implement net-
work protocols easily in the SDN environment. However, flow tables in SDN switches are limited resources, and care
has to be taken with use of flow entries. If we design a routing management mechanism according to host pairs, the
number of flow entries will increase dramatically and will rapidly exceed the limits of the hardware. One would con-
sequently like to manage the flows based on subnet pairs for better flow table utilization. For example, for two
subnet domains with 200 hosts in each domain, there will be up to 80 000 interdomain flow entries if the routing
is managed by host pairs and only two flow entries by subnet pairs. Recently, several studies on SDN routing mech-
anisms for congestion resolution have used multipath routing to achieve load balancing for better network utiliza-
tion. Nevertheless, out-of-order forwarding and flow table usage remain important issues to be resolved. There are
also works that adopt predictive mechanism for future traffic loads or network performance for congestion avoid-
ance. These may similarly suffer from the same scalability issues.

In this paper, we propose proactive multipath routing with a predictive mechanism (PMRP) in the SDN environment
for congestion resolution. PMRP measures demand traffic volume of subnets from each egress switch and allocates
multipaths for each subnet pair to attain high precision congestion resolution. Because this procedure will lead to
exponential complexity, we use the genetic algorithm (GA) to optimize path computation. To deal with the issue of flow
table management, PMRP pre-allocates flow entries to decrease RTT delay between control and data planes, where
subnet-based routing can greatly decrease flow entry usage. As a predictive mechanism, we deploy exponential smooth-
ing to predict demand traffic volume of each subnet pair, so that pre-allocate mechanism can predict feedback of con-
gestion beforehand.

The remainder of this paper is organized as follows. First, we introduce the related backgrounds in Section 2. The
problem statement is outlined in Section 3, and in Section 4 we propose PMRP with system architecture. We record
the simulation results in Section 5, and our conclusions and future work are presented in Section 6.

2 | BACKGROUND

In this section, we survey and compare related proposals on congestion resolution using multipath routing and traffic
prediction mechanisms, and describe how we utilize the OpenFlow protocol for the proposed PMRP mechanism.

2.1 | Works on congestion resolution using multipath routing

In order to avoid network congestion, some studies separate traffic flows into multiple simultaneous paths for lowering
the load on trunk links. As shown in Table 1, we classify these works according to their flow separation concepts. The

TABLE 1 SDN multipath routing proposals

Path Computation Out- Flow

Flow Separation of- Provisioning Table
Concept Name Event Trigger Proactive Allocation Order Time Usage
QoS argument Multipath SDN? Flow No More High

B4’ Flow No Less Medium
Traffic rate DUCE* Congestion Yes Less Low
Available resource Grooming® Flow Yes More High

UTAMP/M2SDN® Flow Yes More High

PMRP Routine No Less Low

LIN ET AL. Wl LEY 3 of 16

flow could be rerouted into multipaths depending on QoS arguments, traffic rate, or available resources. In these pro-
posals, path computations are event-triggered either by flow or by congestion. Flow-triggered means that when a new
flow request arrives, the SDN controller will detect the packet-in event and calculate and allocate path(s) for this
connection by issuing flow entries to SDN switches. Consequently, as the request rate increases, the number of flow
entries also increases dramatically. Moreover, it takes more end-to-end latency with response time from packet-in to
flow modification message. For congestion-triggered solutions, paths are recomputed when network congestions occur
so that the excessive traffics will be diverted into other paths. Because the flows will be rerouted into multiple paths,
these proposals may be suffered from packet out-of-order problem. When packets of the same traffic flow are transmit-
ted into diverse paths, these packets may not be received in the original order at the destination site due to different
latencies of the transmission paths. If the destination site does not contain enough receive buffer, such packet out-of-
order problem will cause transmission failures.

Multipath SDN? and B4 network® separate network flows according to their QoS arguments. A tunnel is created for
each host pair with its QoS argument. The packets within the same flow are therefore not routed into different paths to
avoid out-of-order problems, and the usage of flow table cannot be controlled by limiting the number of tunnels. More-
over, Pan and Zheng?® focuses on path selection with regard to QoS arguments and current network status; Jain et al’
attempts to fully utilize the links among a couple of data centers. Hence, Pan and Zheng” will take more provisioning
time with higher flow table usage.

DUCE" utilizes the OpenFlow meter table for congestion resolution caused by burst flows. When the transmission
rate of the flow reaches a threshold, switches will divert the flow to other paths that appear to be congestion-free.
Because the procedure is only involved in the data plane, the provisioning speed is very quick. However, the rerouted
path is predefined by the control plane, which limits the flexibility of this solution.

Finally, the dynamic traffic grooming algorithm® and utilization & topology-aware multipath routing (UTAMP)®
deploy multipath forwarding based on available network resources. They monitor network resource periodically and
allocate paths according to the latest network status when a new packet triggers packet-in event. Both are flow-
triggered, and the packets may be received out of order. Consequently, the receiving buffer may overflow which results
in performance degradation. Moreover, both consume more flow entries and take more provisioning time because of the
end-to-end latency noted above.

There are still related works that improve routing mechanism with different aspect. The CMBLB and CBLB in
Hamed et al’ focus on computing resource load balancing. They distribute the clients’ requests among the servers that
provide the same service with CPU and memory usage. Such resource management makes great improvement as
compared with traditional round-robin and random-based approaches. Wang et al® focuses on routing consistency to
prevent unexpected behavior like black holes and looping. Moreover, the authors state the coexistence of traditional net-
work and SDN, which provides an alternative of network transformation.

Our proposed PMRP, by contrast, proactively computes multipaths for each subnet pair and periodically updates the
routing paths according to available bandwidth. This approach not only decreases flow table usage but also reduces
provisioning time. Furthermore, the flow for each host pair will remain in the same path so that there is no out-of-order
problem.

2.2 | Works on predictive mechanisms

With the trend of using intercloud applications for big data, traffic flows between data centers are periodically gener-
ated. In order to adapt to such traffic environmental changes, current works leverage predictive mechanism for their
network management functions, as shown in Table 2. TSDN® applies the tensor model for routing path
recommendations based on different application types. Depending on current network status and the QoS parameters
of the application type, TSDN allocates a corresponding path to improve QoS routing. According to Benson et al,*?
for interdata center communication, 80% of the flows are smaller than 10 KB in size, and most of the bytes are in
the top 10% of the flows that we called elephant flows. Elephant Flow Detection'® and CheetahFlow'' both predict
the elephant flows and reroute them to other paths to prevent congestion. In addition, CheetahFlow also utilizes the
support vector machine (SVM) to construct frequent communication pairs and pre-establish their flow entries into
switches to decrease provisioning latency. All of the above proposals have scalability issues. TSDN and CheetahFlow
manage flows according to host pairs so that flow table usage grows rapidly with an increasing traffic demand. Elephant
Flow Detection uses OpenFlow for traffic status monitoring, which will cause additional overheads to the control plane.

4 of 16 Wl LEY LIN ET AL.

TABLE 2 Predictive mechanisms in SDN

Detection
Name Predict Target Technique Mechanism Scalability
TSDN® Application traffic volume Tensor model OpenFlow Low
Elephant Flow Detection'® Detect elephant flow Decision tree External monitor Low
CheetahFlow! Detect elephant flow/frequent communication pairs SVM OpenFlow Low
QoS Estimation'? Packet loss Neural network OpenFlow High
PMRP The traffic volume of subnet pairs Exponential smoothing OpenFlow High

QoS Estimation'? evaluates network performance as new flow enters and feeds back to the network state to improve the
learning for lowering the packet loss rate. Our proposed PMRP aims to predict the traffic volume of subnet pairs by a
simple exponential smoothing technique and runs faster without scalability problems.

2.3 | SDN and OpenFlow

SDN is an innovative network architecture that separates the control plane from the data plane for more flexibility. The
control plane resides in a regular server called controller so that it is easy to deploy new network protocols or manage-
ment functions with software coding. A Southbound interface is required for the communication between controller
and SDN switches. OpenFlow'* is the general southbound interface standard maintained by Open Networking
Foundation (ONF). In OpenFlow, a flow table replaces the traditional routing and forwarding tables that manage net-
work traffic. In addition to basic flow table operation, there are several types of messages for the controller to negotiate
with SDN switches. For this proposed PMRP, we apply the multipart message and group table to archive dynamic
multipath allocation routing mechanism in the data plane. The multipart message is used to acquire the status of an
entire switch, including flow entries, traffic rates, and statistics of its interface. Hence, we can obtain the volume of
egress traffic for each subnet pair. For the multipath forwarding function, we use the select function of the group table.
First, we define several buckets in the group table. If a packet matches the field specified in the group table, the switch
will choose one bucket to forward base on the weight of each bucket. However, the selection algorithm is not specified
in OpenFlow and depends on switch implementations. In general, there are two types: packet-based and flow-based.
Both distribute traffic to multiple paths based on bucket weights, but flows with the same host pairs will always be
forwarded to the same bucket in the flow-based algorithm because of hashed MAC addresses. In our simulation, we
deploy Open vSwitch'® which implements flow-based forwarding obviating an out-of-order packet problem.

Based on the above, we propose the PMRP that anticipates the upcoming traffic load and proactively provisions mul-
tipath routing for better network performance with high scalability, based on SDN technology. The details of this system
and its implementation are covered in the following sections.

3 | PROBLEM STATEMENT

In this section, we list the notations used in this paper and formulate the problem statement of our PMRP. A simple
example is presented that eliminates link congestions by multipath routing.

3.1 | Notation descriptions

Table 3 lists the notations used in PMRP. TR = [tr;j], « , is the matrix of traffic volume from i-th to j-th subnet. The
number of paths from subnet i to subnet j is npath;;, path; ;; denotes the k-th path from subnet i to subnet j, and w;,

x is the weight of path; ;. For average path delays, LINK = {link,,} is the set of network links, DM€ = {d%k} is the

set of link delays, D" = {df‘;} denotes the set of average delay of subnet pair i and j, and Df = {d‘.7

l’j,k} is the set of

delay of specific path k between two subnets i and j. Finally, ct,, and mb,, denote the current traffic volume and max-
imum bandwidth of link,, respectively.

LIN ET AL. Wl LEY 5 of 16

TABLE 3 Notation descriptions

Category Term Description
Index a,b,i, j Index of subnets.
k 1 Index of paths.
X,y Index of switches.
t Index of time
Entity n Number of subnets.
m Number of links.
Variable G = {S,LINK} The network topology.
S={s, | x>1} The set of switches.
LINK = {link,,, | x,y > 1} The set of links, where link,, is the link between switch x and y
TR = [trij | ij 2 1]+ n The set of traffic volume at current time, where tr;; is the traffic volume from subnet i to
subnet j
TRy = [trij; | ijit > 1]« The set of traffic volume at time ¢, where tr;;, is the traffic volume from subnet i to subnet
Jj at time t
path; ;. = {link,, | x,y > 1} The link set of k-th path from subnet i to subnet j.
W= {wyx | ijk > 1} The set of path weight, where w; is the weight of path, j .
NPATH = {npath;jl i,j > 1} The set of path number, where npath;; is the number of paths from subnet i to subnet j.

DEPPATH _ {depft;t:ll i j k1> 1} The set of path dependency, where depﬁ ‘jlt,? , is the path dependency from path; ; to path, j .

DEPLOCAL _ { depﬁ“f‘,ﬁ'l i j, k> 1} The set of local dependency, where depﬁf’]f‘,’f is the local dependency of path; j .
DEPGLOBAL — { depflj‘.’_iaﬂ i j k> 1} The set of global dependency, where depﬁl]‘izal is the global dependency of path; .

nLD The number of selected local dependency paths

nGD The number of selected global dependency paths

DSP — { dff”j li, j> 1} The set of average delay of subnet pair, where di‘} is the average delay of from subnet i to
subnet j.

DP — {dﬁj,kl i k> 1} The set of path delay, where d}'; is the delay of path, ;.

DLINK _ { dii.r;k I, y > 1} The set of link delay, where di’gk is the delay of link,.,.

BOOL = {bool;jjxy | i,j,kx,y > 1} The set of boolean value that if specific path passes specific link, where bool; j s ., = true
means path; j passes link,,.

Clyy Current traffic volume of link,,.

mby.,, Maximum bandwidth of link,,,.

pro_mu Probability of mutation in genetic algorithm

budget The number of iterations that genetic algorithm runs.

trf;?;ﬁ” The prediction of traffic volume from subnet i to subnet j at time ¢.
trlower7pt'avg€;‘fm2 The prediction of average traffic volume from subnet i to subnet j at time .
trlower7pt” varﬁ;ftdm The prediction of variance traffic volume from subnet i to subnet j at time ¢.
a The smoothing factor of exponential smoothing

3.2 | Problem statement

In our proposed PMRP, we proactively provision multiple paths for each subnet pair to minimize the total sum of the
products of average transmission delays and traffic volumes of each subnet pair. Hence, the objective function is given
as

Objective: Min(Z?:l Yiadi x trw). (1)

For subnet pair from i to j, we pre-provision npath; ; paths, and the average delay of subnet pair i, j, which is the sum of
the multiplications of path weight and path delay, can be expressed as

. h. .
Delay of subnet pair:d;’; = i, k@ s (2)

6 of 16 Wl LEY LIN ET AL.

The path delay is total delay of links that this path passes through and is given as

Path delay:df = Y7L, 200 dlCbool, j.y. 3)
We conduct M/M/1 model considering the maximum bandwidth and current traffic volume on this link for calculating
the delay of links as

1/(mbyy — Min(ctyy, mbyy)), if ctyy < mby,

Link delay:dy" = { @)

1 ,ifctxy:mbeV'

Finally, the current traffic volume of each link is the total traffic volume of paths that pass this link and can be derived
as

. . h,
Current traffic volume of link, :ct,) = (Z;‘Zl Z}‘Zl ZZZ alt Ttr; jwy j ;cbooly j xy> (5)

3.3 | Example

Figure 1A depicts a scenario topology. There are four subnets Subnet,, Subnetg, Subnetc, and Subnety with traffic
matrix TR shown in Figure 1B. We assume that the maximum bandwidth of each link mb,,, is 100. Without multipath
routing, the traffic of each subnet pair traverses the topology using shortest path algorithm. We set the current traffic
volume ct,.,, by applying Equation (5) as illustrated in Figure 1C. For example, considering the traffic flow from Subnetp
to Subnet,, it will follow the shortest path {links, link,1}. At links,, there are traffic flows from subnet pairs (Subnetp,
Subnet,) and (Subnetp, Subnetg), both with traffic volume of 50 and cts, of 100. On link, ;, there are traffic flows from
subnet pairs (Subnetp, Subnet,) and (Subnetg, Subnet,) with traffic volumes of 50 and 60, respectively. Although we can
calculate ct,; as 50 + 60 = 110, it is higher than the maximum bandwidth 100, and hence we set ct,; to 100. Because

both traffic volume of links, and link, are then congested, the delay of links dlsif;k and dlziﬁk are both 1 according to)

[A5 c]o
A 0 0 60
B | 60 0 40
C 20 0 80
D | 50 | 50 0
(A) Scenario Topology (B) traffic volume matrix TR
SerSt 1 2 3 4 5 e st 1 2 3 4 5
1 60 | O 0 0 1 60 [O 0 0
2 (100 0 0 |100 2 | 85 0 0 (100
3(120| 0 80 ([O 3]20| 0 80| O
4 0 0 0 80 4 |25 0 0 80
5 0 |100| O 0 5 0|75 0 |25
(C) Current traffic volume with single shortest path (D) Current traffic volume if reroute from D to A

FIGURE 1 Example of subnet pair delay calculation

LIN ET AL. Wl LEY 7 of 16

Equation (4). As this is the only path from Subnety to Subnet,, we can derive the delay of this subnet pair as

al

— 4P
Subnetp,Subnety ~ dSubnetD,SubnetA 1

=d +dyY =1+1=2

We see that the subnet pair from Subnetp, to Subnet, suffers from considerable delay as a result of link congestion. If we
reroute half of the flow to another path {links 4, link,,}, current traffic volume ct,, is updated in Figure 1D. Now there
are two paths from Subnetp to Subneta: the first path is {links,, link,,},and the 2nd is {links 4, link,,}, both equally
weighted, and hence Wsypner, Subnet,,1 = Wsubnetp Subnet,2 = 0.5. From Equation (4), we calculate the delay of the links
according to M/M/1 model and then compute the delay of the two paths according to Equation (3) as

d =dy¥ +dyy = 1/(100 — 75) + 1/(100 — 85) = 0.1067,

Subnet,,Subnet; 1

dP

Subnet,,Subnet, 2

= d +djf =1/(100 — 25) 4 1/(100 — 25) = 0.0267.
Finally, we can obtain the average delay of the subnet pair from Subnety to Subnet, by Equation (2) as

= 0.5%d

Subnety,Subnet ,

dS

Subnety,Subnet;

| +0.5%d" = 0.0667.

Subnety,Subnet; 2
Hence, we can avoid the possible network congestions by proactively multipath provisioning. TR and M/M/1 model are
used for delay estimation. With the estimated delay, we can find the optimal combination of multipath and weight by
the objective function.

4 | PROACTIVE MULTIPATH ROUTING WITH A PREDICTIVE
MECHANISM (PMRP)

In this section, we give the details of the proposed multipath routing system by applying PMRP. Proactive multipath
routing is designed to decide paths and weights in order to split the traffic flows into these paths so as to reach global
optimization. To deal the variations in traffic volume, we developed a method to anticipate future traffic loads. Finally,
we present the PMRP system architecture that contains both proactive and predictive operations.

4.1 | Proactive multipath routing

In proactive multipath routing operation, we wish to determine the paths to be allocated and the weights to be split
traffic among these paths. First, we calculate all available path sets for each subnet pair with the Breadth-First Search
(BFS) algorithm, which searches from the root node and explore all nodes at the present depth before moving on to the
next depth. However, we cannot use all of them to split the traffic, because computing complexity is extreme high. As a
result, our path selection depends on the dependencies of each path. Paths with lower dependency overlap less with
other paths and are therefore selected for multipath routing.

For k-th path from subnet i to subnet j denoted as path; j , we compute the path dependency from path; ;. to another

path path; ;; as depp‘j",i‘ ;» which is the number of overlapping links between path; ;, and path;, ;; divided by the number of
links of path; ;. The path dependency dep; k ; can be calculated as

et { (25 100k jxyb00k 1y) / Zay g 1b0Oks iy IE K # 1 ©

ijk,d — :
o ifk =1

Then, we derive the local dependency of path; i, which is the number of links that the path shares with the other paths
in the same subnet pair, and then divided by npath;;, as

deplecs = (2" depl,) /npath, ;.)

8 of 16 Wl LEY LIN ET AL.

We then select at most the nLD paths with the lowest local dependency for each subnet pair. Moreover, for global

lobal
awareness, we define global dependency depf," as

lobal npath,,
depfﬁka = Z?:lE;nzlbOOli,j,hxy* (22:122:121:1 abeOla.,b,ny)v ®)

which counts the overlapping links with paths from other subnet pairs. Finally, from the nLD paths selected above, we
pick at most the nGD paths with the lowest global dependency.

The number of selected local dependency paths nLD represents the number of paths with the lowest degree of over-
lapping. As nLD increases, we could discover sparser paths based on network topology. However, these paths may have
higher hop counts which we would like to avoid, and therefore the performance with larger nLD may not always be
better. The number of selected global dependency paths nGD is a key factor that affects computation time. With larger
nGD, we could determine rerouted paths more accurately but it will also exhaust more iterations. Hence, there is a
trade-off between routing performance and computation time based on network scale and traffic volume.

For example, we have two subnets Subnet, and Subnetg with topology shown in Figure 2. The gateway switches for
Subnet, and Subnety are S; and Sg, respectively. There are three paths from subnet pair from Subnet, to Subnety

pathSubnetA,SubnetB,l = {LinkLZ; Lil’lkz,g, Link3,8}7
Pathg o, subnety2 = {Linky 2, Linky 4, Linky s, Linksg },

pathSubnetA,Subne[B,S = {Linkl,67 Ll.l’lk677, Ll.l’lk7"8}.

Considering the path pathg, e, subner,1» W€ calculate its path dependency compared with pathg,,e, subnet,» (With one
overlapped link) and pathg, e, subner, 3 (Without overlapped link) from Equation (6) as

ath
depgubnetA.SubnetB.l,Z - 1/37

depP! —=0/3=0.

ubnet 4 ,Subnetg,1,3

We can obtain the local dependency of path subnety1 DY Equation (7) as

Subnet,,
1 1 npathSubne .Subnet path
depS?ﬁ?ﬂﬂA«,SubnetB,l = (1=1 s depSubnetA‘SubnetB,l,l) /npath Subnety, Subnetg ~ (0 + 1/3 + 0)/3 = 1/9.

Similarly, local dependencies of other paths can be computed, and we then select the lowest ones for calculating global
dependencies.

After selecting at most the nGD paths with the lowest global dependencies, we assign a weight to each path and try
every possible combination of these weights for better performance, with the constraint

(Wij1 + Wij2 + ... + Wijnep) = NGD. ©)

However, testing every combination by brute force for determining the minimum average delay is impossible. Because
the number of weight combinations is to the power of the number of subnet pairs, we know that the number of weight

FIGURE 2 Example of path dependency and local dependency calculation

LIN ET AL. Wl LEY 9 of 16

combinations grows exponentially. As a result, we leverage the GA to accelerate the computation for the solution. The
GA'® is an optimization method that finds good global solutions at high speed. The algorithm has four main compo-
nents in each stage we call iteration: Gene, Chromosome, Fitness function, and Population. The flowchart of this algo-
rithm is illustrated in Figure 3, which shows its four main functions: Evaluation, Selection, Crossover, and Mutation.
The “mindset” of such GA is survival of the fittest. The possible solutions compete with each other and only the better
ones survive. At first, we generate a number of chromosomes, and each chromosome is composed of random genes. The
evaluation operation will apply fitness function for these chromosomes. After that, the selection function will copy and
replace some chromosomes by probability according to its fitness, so the chromosomes with better fitness are more
likely to survive. Both crossover function and mutation function update chromosomes by changing their portion of
genes with different approaches. The crossover function randomly selects two chromosomes by probability and
exchanges their random part of genes. The mutation function directly changes the genes of chromosome with random
genes by probability. Because GA does not guarantee to find the optimal solution, it needs to run several iterations for
training the solution to reach as optimal as possible. However, more iteration count results in more computation time.
Hence, a threshold called budget is defined as the upper bound of number of iterations. In PMRP, we map the path
weight of a subnet pair to one gene, and the path weight set of a subnet pair to one chromosome. For example, if
the path weight set of a subnet pair is {4,3,2,1,0,0,0,0,0,0}, it means that 40% traffic is on the first path, 30% traffic on
the second path, 20% traffic on the third path, 10% traffic on the fourth path, and no traffic on the fifth to 10th paths.
We map each of the weights to a gene and the total set to a chromosome. The population is the number of chromosomes
in each iteration, and the fitness function is mapped to our objective function in Equation (1) as the criteria of survival.
The evaluation function calculates fitness function for the whole population of chromosomes, and then we perform the
following operations of selection, crossover, and mutation with probabilities. Probability of selection is the ratio of
chromosomes that would be replaced with better chromosome at each iteration. Probability of crossover is the ratio
of chromosomes that will be involved in crossover operation. Probability of mutation is the probability of each gene
being replaced at random with another gene. The GA runs repeatedly till the number of iterations reaches budget,
and we can obtain the optimal solution from the final iteration.

4.2 | Predictive mechanism

When GA computes the objective function in Equation (1), link delay defined in Equation (4) should be determined. For
calculating Equation (4), we need to update the current traffic volume which can be obtained by OpenFlow protocol.
However, after we solve the objective function and submit the flow entries to SDN switches, the traffic volume would
be altered according to user's activities. In order to adapt to the variance of real traffic volume, we deploy a predictive
mechanism based on exponential smoothing'” used in TCP retransmission timeout (RTO) to forecast the traffic volume
of each subnet pair. According to the concept of RTO, we predict the value of traffic volume with double exponential
smoothing and variance of traffic volume with single exponential, respectively. Therefore, at time ¢, we can predict

Initialization

| Selection |<-| Evaluation
v
| Crossover |—>| Mutation |

FIGURE 3 Flowchart of genetic algorithm

10 of 16 Wl LEY LIN ET AL.

the traffic volume from subnet i to subnet j for time ¢ + 1 as

redict redict2 redict1
trﬁj_t+1 =travg + tr_varf_j,z . (10)

travg? ;.f'tdm is the predicted average traffic volume from subnet i to subnet j at time ¢ and is conducted by model of dou-

ble exponential smoothing as

dict2
travgl i =

2—a predictl _ redict2’
Wit 1

1
1w mtr_avgﬁ P (11)

: diet2
To obtain tr_avgl”;

i s we first determine average traffic volume from recent five detected results (from time t-4 to t) as

4 .
_olriji—z/5 ,ift>5
travg ;, = { Zi:;’ a5 . . (12)
Zzzotriﬁj,t_z/t s ift<s
trav L;ff”” can be then calculated by single exponential smoothing from tr_avg; ;, as
redictl tr—Gng;?tCl—iClll + O‘(”-ani‘ gt~ tr-anIij.;'?tC[—iT) Jift>1
lravg;; = = ' ' ' . (13)
v tr.avg; i, Jift=1
Similarly, tr_av l;etd 2 can be computed by double exponential smoothing from tr_av, i,;efm as
odicts tr_avg? ;eflicfz + oc(tr_avgﬁ ;“_’fﬁm —tr.av i;‘ffi_icfz), ift>1
travg ;" =)) , ’ (14)
o roavg; i, Jift=1
tr_ Varﬁ ;ffhm is the variance of predicted traffic volume from subnet i to subnet j at time ¢ and can be conducted by single

exponential smoothing as

dict1 dict1 .
predirt _ { tr. Varﬁ ;eticl + oc(tr_ var; j; — tr_ Var‘; ftfl) Jift>1
0

it : (15)
Jift=1

tr_va

We give an example of traffic prediction in Table 4. The observed real traffic volume at t = 1, 2, and 3 are 2, 6, and 7,

predict2’

ictl
el and tr_avgt 71 areequal to tr_avg;;, = 2, and

respectively, and we assume o = 0.4. At time ¢t = 1, both tr_va il

TABLE 4 Example for predictive mechanism

Time t t=1 t=2 t=3 t=14
Observed traffic volume 2 6 7

r=avgij. 2 4 5

trlower7pt avg, ;f;im 2 2.8 3.68

trlower7pt-av, i‘;‘ff”“z/ 2 2.32 2.864

trlower7pt avg? ;‘flmz 5.04

tr = vary, 0 4 4.667

trlower7pt™ var} ;f;ﬁm 0 1.6 2.8267

f rpr_edict 7.8667

Lt

LIN ET AL. WI LEY 11 of 16

rpredictl

tr_var;

is 0 because there is no traffic variance initially. At time ¢t = 2, we have an average traffic volume tr_avg;

redict1 redict2’

j2 = (2+6)/2 = 4 and derive fr_ay L2 and tr_avg; i2 according to Equations (13) and (14). The traffic variance

rpredictl

between 2 and 6 tr_var;;, is 4, and fr_var; 2

is 1.6, derived from Equation (15). At time ¢ = 3, the average traffic

redict1 redict2’

of 2, 6, and 7 tr_avg;;3 is 5, and we again derive tr.avg; ;5 and fravg; ;3 ~ according to Equations (13) and (14).

rpredictl

The traffic variance between 2, 6, and 7 tr_var;;; is 4.667, and we calculate fr_var; i2

as 2.8267 according to

Equation (15). In order to forecast the traffic volume at t = 4, we compute tr_avg} ngm= 5.04 from Equation (11) and

obtain tr} ;ffia = tr.av, iﬁ;‘f‘;m + tr_var} ;‘f‘;m: 5.04 + 2.8267 = 7.8667. Hence, the predicted traffic volume for ¢ = 4 from

the past detected results 2, 6, and 7 is 7.8667.

4.3 | System architecture and implementation

The system architecture of the proposed PMRP is illustrated in Figure 4. We implemented PMRP mechanisms on Ryu'®
controller version 4.10. At first, Ryu controller collects the network topology from SDN switches and assesses all avail-
able paths of each subnet pair with Breadth-First Search (BFS) algorithm. Then, the proactive multipath routing proce-
dure described in Section 4.1 selects 10 candidate paths with lowest global dependency for each subnet pair. Ryu
controller then collects bandwidth statistic of all egress switches by TR collector and forecasts the traffic volume apply-
ing the predictive mechanism covered in Section 4.2. After that, we use the GA to search for an optimal solution from
candidate paths with possible weight sets and predicted traffic volumes. Finally, Ryu controller issues the flow entries of
the solution from GA to the underlying SDN switches. TR collector will collect the statistics every sampling cycle, and
PMRP procedure is carried out repeatedly.

5 | NUMERICAL EVALUATION

In this section, we briefly describe our experiment environment and the analyses of the experimental results.

5.1 | Environment setup

In the simulation, we deployed two servers with Intel core i7-4790 CPU 4.00 GHz and 64 GB DRAM and installed a
VMWare Workstation. The first server acted as an OpenFlow controller, running Ryu'® and the proposed PMRP algo-
rithm. In PMRP, we set nLD = 30 and nGD = 10. The parameters of GA are listed in Table 5. We set Probability of
Selstion = 20%, Probability of Crossover = 80%, Probability of Mutation = 2%, and Budget = 3600. The second server

Ryu Controller

C[BFS]—P[Path selection
o

[

[

TR coll]-P[Pr"' hani

Genetic algorithm

Control Flow entry issuer
Plane
“Data | T TTTTTTTTTTTTOIYT
Plane
Topology (Mininet)
FIGURE 4 System architecture of PMRP
TABLE 5 Parameters of GA in simulation
Probability of Selection Probability of Crossover Probability of Mutation Budget

20% 80% 2% 3600

12 of 16 Wl LEY LIN ET AL.

FIGURE 5 Experiment topology

simulated the network with the topology illustrated in Figure 5, which shows the use of Mininet'® to simulate 14 core
SDN switches (1-14) and 14 subnets (A-N). Each subnet is equipped with Tcpreplay as the traffic generator. For the
replayed traffic, we utilized CAIDA UCSD Anonymized Internet Traces 2016.°° which is a dataset that contains
anonymized traces captured at CAIDA's monitor sites in PCAP format. To form the traffic matrix pattern among these
subnets in our simulation, we selected 20 connections from the CAIDA dataset for each subnet pair, and hence there are
total 14 X 13 X 20 = 3640 flows per simulation run. When we replay the PCAP file, we control the replay speed with a
parameter called traffic matrix scale to reflect various network loading situations. The traffic replay speed is the origin
traffic speed stored in PCAP file multiplied by traffic matrix scale. Finally, we performed five runs for each simulation
and calculated the average of these results.

5.2 | Experimental results

In this section, we provide the results of our observations of the performance on average delay, effectiveness of predic-
tion, and flow table usage. For average delay results, we compared PMRP with single shortest path and UTAMP pro-
posed in Peng et al.’> As discussed in Section 2.1, UTAMP deploys multipath flows based on available network
resources, which is similar to PMRP. UTAMP is a flow-triggered algorithm. It employs a sampling cycle time and
updates network status at each cycle. The path decision will be made according to the latest network status when a
new packet arrives. Because UTAMP performs host-based routing, it consumes more flow entries. In contrast, PMRP
has a predictive mechanism and proactively reroutes packets at each sampling cycle. PMRP routes the traffic according
to subnet pairs and hence saves flow table spaces. In the following results, we wanted to compare several performances
between these algorithms.

5.2.1 | Performance on average delay

The average delay between PMRP, UTAMP, and the single shortest path is illustrated in Figure 6. The X-axis is the scale
of traffic matrix produced online.*® We can see that average delay increased as the traffic increased, and our PMRP
outperformed both UTAMP and the single shortest path. At traffic matrix scale 1.25, there was 49% reduction in average
delay as compared with single shortest routing and a 16% reduction in average delay compared with UTAMP. Because

0.12

0.11 —+— Single shortest path
0.1

0.09 / / EMRE

0.08 7 ~#4=UTAMP

Average Delay (sec)
o
&

0 025 05 0.75 1 125 15
Traffic Matrix Scale

FIGURE 6 Average delay comparisons

LIN ET AL. WI LEY 13 of 16

UTAMP provisions flows based on host pairs, flow tables will become exhausted with higher traffic demand, and hence
it becomes impossible to allocate extra multipaths. PMRP, by contrast, does not occupy much flow space and can pro-
vision multipaths for congestion alleviation under high traffic volumes. Table 6 lists the average number of paths cre-
ated for a single pair from subnet A (switch 1) to subnet N (switch 14). According to Table 6, when the traffic matrix
scale = 0.25, UTAMP can allocate on average six paths for a single host pair, but only three when traffic matrix
scale = 1.5. PMRP can allocate on average four paths for a single subnet pair when the traffic matrix scale = 0.25
and allocate five paths when the traffic matrix scale = 1.5 Therefore, PMRP produces better flow table management
for multipath provisioning with high traffic volumes.

Figure 7 shows the impact of probability of mutation pro_mu in the GA under traffic matrix scale = 1. With
pro_mu = 0%-0.5%, the average delay decreases with the growing of pro_mu. Because when pro_mu is too low, it is dif-
ficult for genes to mutate into a better solution so that we cannot find an optimal solution efficiently. However, with
pro_mu = 2%-60%, the average delay increases with the growth of pro_mu. The reason is that for higher pro_mu, the
genes transform too fast, and better genes may not survive to the next iteration. We concluded then that the optimum
value of pro_mu is between 0.5% and 2%.

5.2.2 | Effectiveness of prediction mechanism

Figure 8 depicts the performance of UTAMP and PMRP with and without the prediction mechanism. The X-axis has the
sampling cycle time of TR collector. Apparently, PMRP with and without prediction outperforms UTAMP. UTAMP
strongly relies on precise traffic statistics to make appropriate route decision when a new packet arrives. With lower
sampling cycle time, UTAMP could have more accurate network status, and therefore the performance on average delay
is better. However, PMRP makes path reroutes every sampling cycle while UTAMP only monitors network status.

TABLE 6 Average number of paths created for a single pair from Subnet A to Subnet N

Traffic Matrix Scale 0.25 0.5 0.75 1 1.25 1.5
UTAMP 6 4 4 3 3 3
PMRP 4 4 3 4 5 5
0.095
0.085 % —— g
0.075 \ P
S 0.065 \ P ad
= 0055 \ /
ﬁ 0.045 \\ //
0.035 N /
0.025 N——
0.015 — —
QQ '>°t>\e 0?Js\e 56’\° I S R §\° "99\0 %Qe\o boe\e ¢)Qe\o @e\o
Probability of Mutation

FIGURE 7 Probability of mutation

0.07

m with Prediction
B w/o Prediction
— mUTAMP

Average Delay (sec)

3 5 10 20 30
TR sampling cycle (sec)

FIGURE 8 Performance on effectiveness of prediction

14 of 16 Wl LEY LIN ET AL.

Hence, we assure that PMRP has better performance than UTAMP. We observed that the average delay of PMRP with
prediction is significantly reduced when sampling cycle time = 3-10. With the predictive mechanism, PMRP can fore-
cast the variance of the traffic volume and choose a suitable solution to meet our objective function. It could achieve
reduction of 20% delay on average with sampling cycle time = 10. However, with an increasing sampling cycle time,
the improvement for the prediction mechanism is limited because it is difficult to forecast accurately if the sampling
cycle is lengthened. Although we can improve on the accuracy of prediction by increasing the sampling rate, frequent
collection of network status would increase the control plane overhead, and such a trade-off should be carefully
managed.

5.2.3 | Comparison of traffic splitting schemes

In Section 2.3, we discussed the flow-based and packet-based traffic splitting schemes for multipath traffic forwarding in
OpenFlow. We deploy flow-based algorithm in order to prevent packet out-of-order problem in our experiments. In
order to evaluate the performances between two traffic splitting schemes, Figures 9, 10, and 11 depict the results of
out-of-order, traffic loss, and average delay of PMRP using flow-based and packet-based algorithms. For flow-based
algorithm, there is no out-of-order packet under low traffic volume. As traffic matrix scale is larger than 2, there are
traffic losses which cause out-of-order packets due to the missing components. In contrast, packet-based algorithm suf-
fered from out-of-order problem even under low traffic volume. We also observed that the traffic matrix scale affects the
loss rate of packet-based scheme more heavily than the flow-based scheme. It is because the out-of-order packets will
invoke TCP DPU ACKs and cause packet retransmissions. With higher traffic matrix scale, such situation gets worse
and therefore results in higher packet loss rate. At traffic matrix scale 2.25, we observed that out-of-order of the

2.25
2 /L
175 / —a—Flow-based
15 y
1.25
1
0.75 p
0.5 //
0.25
0 _.4*_&
1.25 1.5 1.75 2 2.25
Traffic Matrix Scale

Out of order (%)

FIGURE 9 Out-of-order comparisons between flow-based and packet-based schemes

1.8 M —A—Flow-based
1.6 —@—Packet-based
14 ’/

1.2

/

0.8 /

/
y /
0.2 4./‘{/‘//‘
0 — T T L T T d
1.25 1.5 1.75 2 2.25
Traffic Matrix Scale

Packet loss (%)
-

FIGURE 10 Packet loss comparisons between flow-based and packet-based schemes

0.22

0.2 /ﬁ —a—Flow-based
0.18
y/4

0.16 ~@—Packet-based
0.14 /
0.12 //
0.1
0.08 /l-—"/
0.06
0.04 [ol

0.02
0

Average delay (sec)

1.25 1.5 1.75 2 2.25
Traffic Matrix Scale

FIGURE 11 Average delay comparisons between flow-based and packet-based schemes

LIN ET AL. WI LEY 15 of 16

TABLE 7 Flow table usage
Total Request Number Average Flow Table Usage for Single Request Average Flow Table Usage Per Switch

UTAMP 4243 11.42 3523
PMRP N/A 233

packet-based scheme is 2.1%, while that of the flow-based scheme is only 0.1% in Figure 9. From Figure 10, we could
also see that the packet loss of the packet-based scheme is 1.84%, while that of the flow-based scheme is only 0.34%.
Therefore, the flow-based scheme has a 95% reduction in out-of-order and an 81% reduction in packet loss compared
with the packet-based scheme. As a trade-off, the flow-based scheme may cause higher packet delay due to unbalanced
paths of traffic splitting. However, we learn that the packet delay performances of both algorithms are almost the same
when traffic matrix scale ranges from 1.25 to 2. At traffic matrix scale 2.25, the packet delay of the packet-based scheme
is 0.1967s, and that of the flow-based scheme is 0.2093 in Figure 11. Hence, the packet delay of the flow-based scheme is
only 6% higher than the packet-based scheme. Hence, the flow-based scheme outperforms the packet-based scheme in
both out-of-order and packet loss with acceptable performance reduction in average delay.

5.2.4 | Flow table usage

Table 7 gives the comparisons between UTAMP and PMRP on average flow table usage. With the traffic data online,*
we have a total of 4243 requests. For UTAMP, multipaths are calculated and provisioned for each host-to-host connec-
tion request. Our results show an average of 11.42 flow entries generated for each request and that an average of 3523
flow entries were installed at each SDN switch. PMRP, by contrast, proactively and periodically computes the multi-
paths among the subnet pairs with predicted traffic volumes, and the number of flow entries is thus not affected by a
single connection request. The average flow entries at each SDN switch taken by PRMP are 233, which outperforms
UTAMP by 93%.

6 | CONCLUSIONS

In this paper, we propose the application of PMRP to resolve congestion resulting from multipath provisioning. With
SDN technology, PMRP can monitor and manage the network within a centralized controller and utilize the global view
of information for multipath decisions and traffic predictions. PMRP proactively calculates the multipaths for each
subnet pair using the GA. In contrast with similar, related work that manages multipath flows for each host pair, PMRP
can significantly save the usage of the flow table. For each end-to-end connection, PMRP hashes their MAC addresses
and ensures that the flow of each host pair will always traverse the same path so that there will be no out-of-order
packet problems. In addition, PMRP adopts a predictive mechanism with exponential smoothing to forecast the demand
traffic volume of each subnet pair to avoid congestion beforehand. The simulation results show that PMRP reduces aver-
age delay by 49% compared with single shortest routing, and by 16% as compared with UTAMP. On the other hand, the
probability of mutation in the GA should be set between 0.5% and 2% for optimum performance. The prediction mech-
anism of PMRP outperforms PMRP without the prediction mechanism by 20% on average delay. We also observed that
the flow table of PMRP saves 93% more than UTAMP. Hence, PMRP could manage flow table resources better than
UTAMP for allocating more multipaths in order to avoid traffic congestions.

ORCID
Te-Lung Liu ® hitps://orcid.org/0000-0002-3142-0302

REFERENCES
1. ONF SDN Architecture Issue 1.1, [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/techni-
cal-reports/TR-521_SDN_Architecture_issue_1.1.pdf.

2. Pan Q, and Zheng X. Multi-path SDN route selection subject to multi-constraints, IEEE Third International Conference on Cyberspace
Technology (CCT 2015), Beijing, October 2015.

https://orcid.org/0000-0002-3142-0302
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf

16 of 16 Wl LEY LIN ET AL.

3.

10.

11

12.

13.

14.

15.
16.
17.
18.
19.
20.

Jain S, Kumar A, Mandal S, et al. B4: experience with a globally-deployed software defined WAN. ACM SIGCOMM Comput Commun Rev,
vo. October 2013;43, issue(4):3-14.

. Liu W, Zhou W, Wang Y, Duan Y, and Gao Z, Flexible multi-path routing for global optimization in software-defined datacenters, 2016

IEEE Symposium on Computers and Communication (ISCC), Italy, June 2016.

. Peng Y, Deng Q, Guo L, Ning Z, and Zhang L, Design of dynamic traffic grooming algorithm in software-defined wireless mesh networks,

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), New York, August 2015.

. Wang W, He W, and Su J, M2SDN: achieving multipath and multihoming in data centers with software defined networking, 2015 IEEE

23rd International Symposium on Quality of Service (IWQoS), Portland, June 2015.

. Hamed MI, El Halawany BM, Fouda MM, and Eldien AST, A novel approach for resource utilization and management in SDN, 2017 13th

International Computer Engineering Conference (ICENCO), Egypt, February 2017.

. Wang W, Enhancing control consistency of software-defined networking, Doctoral dissertation, McGill University, August 2017.
. Kuang L, Yang LT, Wang X, Wang P, Zhao Y. A tensor-based big data model for QoS improvement in software defined networks. IEEE

Netw. January 2016;30(1):30-35.

Xiao P, Qu W, Qi H,, Xu Y., Li Z., An efficient elephant flow detection with cost-sensitive in SDN, Ist International Conference on Indus-
trial Networks and Intelligent Systems (INISCom), Japan, March 2015.

.Su Z, Wang T, Xia Y, and Hamdi M, CheetahFlow: towards low latency software-defined network, 2014 IEEE International Conference

on Communications (ICC), Sydney, 2014.

Cello M, Marchese M, Mongelli M. On the QoS estimation in an OpenFlow network: the packet loss case. IEEE Commun Lett. March
2016;20(3):554-557.

Benson T, Akella A, and Maltz DA, Network traffic characteristics of data centers in the wild, Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, Australia, November 2010.

"OpenFlow Switch Specification version 1.0.0," [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-
resourcspecifications/openflow/openflow-spec-v1.0.0.pdf

"Open vSwitch," [Online]. Available: https://www.openvswitch.org/

Haupt RL, Haupt SE. Practical Genetic Algorithms. 2nd ed. Wiley-Interscience; 2004.

Kalekar PS. Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi Sch Inf Technol. 2004;4329008.

Ryu, [Online]. Available: https://osrg.github.io/ryu/.

Mininet, [Online]. Available: http://www.mininet.org

The CAIDA UCSD Anonymized Internet Traces 2016, [Online]. Available: http://www.caida.org/data/passive/passive_2016_dataset.xml

How to cite this article: Lin Y-D, Liu T-L, Wang S-H, Lai Y-C. Proactive multipath routing with a predictive
mechanism in software-defined networks. Int J Commun Syst. 2019;32:e4065. https://doi.org/10.1002/dac.4065

https://www.opennetworking.org/images/stories/downloads/sdn-resourcspecifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resourcspecifications/openflow/openflow-spec-v1.0.0.pdf
https://www.openvswitch.org/
https://osrg.github.io/ryu/
http://www.mininet.org
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://doi.org/10.1002/dac.4065

