
Benchmarking Handheld Graphical User Interface: Smoothness Quality
of Experience

Ying-Dar Lina, Edward T.-H. Chub,∗, Chien-Ling Wena, Yuan-Cheng Laic, I-Ching Chenb

aDepartment of Computer Science, National Chiao Tung University, Taiwan
bDepartment of Computer Science and Information Engineering, National Yunlin University of Science and Technology,

Taiwan
cDepartment of Information Management, National Taiwan University of Science and Technology, Taiwan

Abstract

With the rapid growth of smartphones in the market, the smoothness of smartphones, how quickly and

well smartphones react to a user’s input, becomes a crucial factor consumers consider when making

buying decisions. However, there is no benchmark for comparing the smoothness of one phone against

another. In this paper, a handheld smoothness evaluation over regression (HSER) model was developed

to make a fair evaluation. A video was first made and the several key indexes were extracted to represent

behavior-based smoothness quality of services (BQoS). We built up a relationship between BQoS and

behavior-based smoothness quality of experience (BQoE), and converted BQoE to handheld smoothness

quality of experience. Our experiment results show that maximal frame interval and number of frame

intervals are the two most critical indexes that indicate smoothness. The proposed HSER model is able

to fairly evaluate the smoothness of smartphones because the error rate of the HSER model is less than

9% for a single behavior.

Keywords: QoS, QoE, Mean Opinion, GUI, Android

1. Introduction

Nowadays, mobile applications become more and more pervasive in our daily life as the number

of smartphones in use accelerates. Among the variety of mobile applications, the most essential ones

include web browsers, instant messaging, multimedia entertainment, intelligent and adaptive agents and

mobile games. The user interfaces of these mobile applications differ from that of traditional desktop

applications. All these mobile applications are triggered by multi-touch gestures, such as tap, double tap,

and scroll, rather than keyboard or mouse. The smoothness of touch screen response has become one of

the crucial factors considered by consumers in making their buying decisions. In this work, smoothness

of smartphones is how quickly and well smartphones react to a user’s input. Smartphone manufactures

and mobile app designers are also interested in how their products perform with respect human-computer

interaction compared to others. It has therefore become opportune to develop a way to benchmark the

quality of smartphones, particular in respect of smartphone-user interaction.

A simple and intuitive method to assess user experience in mobile GUI (Graphical User Interface) is

∗Corresponding author
Email address: edwardchu@yuntech.edu.tw (Edward T.-H. Chu)

Preprint submitted to Elsevier March 25, 2018

to refer to hardware specifications, such as CPU speed, GPU speed and memory size. However, hard-

ware specifications cannot fully represent the smoothness of human-device interaction because software

implementation can also affect system performance. A smoothness benchmark should contain a set of

user interface (UI) operations and appropriate performance indices to fairly evaluate the smoothness of

smart-phones. Another method of accessing user experience is to conduct a survey using questionnaires.

It will, however, be costly to conduct such a survey for each and every new smartphone. Our research

goal in this work is to design a set of UI operations and representative indexes to measure the smoothness

of smartphones.

1.1. Indexes of Smoothness

Frame rate is the most commonly used index to measure the smoothness of a video. The higher the

frame rate becomes, the better the quality of played-back video becomes. However, Tian et al. [1, 2]

found that two videos with the same average frame rate can provide very different user experiences,

because one may abruptly drop a large number of frames while another may maintain an uniform frame

rate. Some researchers adopted packet loss rate and network delay to evaluate the smoothness of an

online game or of network streaming [3, 4, 5, 6]. Although these indexes can reflect user experience of

human-interactive applications, they were not able to cover all aspects of smoothness of smartphones,

especially when the smartphones under test were carried out in the same network environment. Hyeon-Ju

et al. [7] also found that the off-the-shelf hardware benchmark applications, such as AnTuTu-Benchmark

and SmartBench, are not able to evaluate the interaction between smartphones and users, because both

hardware specifications and software can affect system performance. Traditional hardware performance

metrics can thus not fully evaluate the smoothness of smartphones. As a result, it has become necessary

to develop a new method to measure the smoothness of smartphones.

1.2. Handheld Smoothness Evaluation over Regression

In this work, behavior-based smoothness quality of experience (BQoE) was used to quantify the

smoothness of an application. For example, making a phone call is a particular pattern of behavior,

which includes a sequence of operations, such as browsing a list of contacts and tapping phone numbers.

In order to measure BQoE, we first measured behavior-based smoothness quality of service (BQoS),

which is service performance used to determine user satisfaction. In order to determine BQoS, a video

was recorded and several key indexes were extracted. These key indexes included the mean of frame

intervals (MFI), variance of frame intervals (VFI), maximal frame interval (MaxFI), frame no response

(FNR) and times of maximal frame interval (TMaxFI). Since the indexes may not always be measurable,

especially when the changes between frames are fast. A tool, named Ex-DOS (extraction of device

operation sequence), was developed to obtain the necessary information. The previous data extraction

process was repeated to obtain the same indexes from different videos that represented different user

scenarios, such as calling a contact, downloading a web page or an application. Based on the BQoS

obtained, we then designed a questionnaire to determine the relationship between BQoS and BQoE.

Finally, the BQoE was converted to handheld smoothness QoE (HQoE) by considering how frequently

each behavior is performed in daily life.

2

In order to evaluate the effectiveness of the proposed method, several experiments were conducted on

three different smartphones, HTC hero, Huawei U8860 and Nexus S. The applicability of our handheld

smoothness evaluation over regression (HSER) model has been investigated in different user scenarios.

Some user scenarios are time-critical, such as making a phone call, while others are not, such as browsing

a web page. The correctness of the HSER model was validated by comparing it to our questionnaire

results. The rest of this work is organized as follows. Section 2 motivates this work and reviews related

work for comparison. Section 3 defines the variables we used in this work and describes our problem

statement. Section 4 derives the mapping from BQoS to BQoE and illustrates its implementation.

Section 5 presents an evaluation. Finally, Section 6 concludes this work and indicates future directions.

2. Background and related work

2.1. Challenges of benchmarking smoothness

As far as we know, there is no standard way to benchmark the user experience of a smartphone’s

smoothness. Response time and frame rate per second (FPS) are two commonly used indexes to evaluate

the interaction of human with smartphones. According to Jakob Nielsen’s [8] and Miller’s et al. [9]

investigation, 0.1 second is the minimum delay that human can sense. When the delay increases to 1

second, it makes the application feel sluggish. Further, if the delay is longer than 10 seconds, users will

switch to other tasks. Similar results can be found in [10], in which 0.2 second was found to be the

minimum threshold for human to perceive a delay of an application.

For playing a video, a minimum of 20 FPS is recommended. Any speed below 20 FPS will result in

a noticeable delay and the user will become aware of choppiness and discrete images. However, these

indexes can only reflect the smoothness of one action; they are not able to evaluate the smoothness of

the whole system. Furthermore, same operations with the same response time may lead to different

user experiences because the changing frames displayed on a smartphone may be different, because some

videos perform smoothly at an early stage while others may perform smoothly at a later stage.

2.2. Methods of recording changing frames

In order to automatically analyze the smoothness of a smartphone, it is necessary to record the

interaction between a person and a smartphone. In previous work, we developed an automated GUI

testing tool to test application user interfaces and to verify their functionalities [11]. Such interaction

can be captured by either an internal recorder or an external camera. An internal recorder is a software

agent, such as Screencast Video Recorderr, that runs on the smartphone and captures frames from the

video buffer of the smartphone. Although internal recorders are easy to install and setup, they may

lack the scalability for every smartphone and generate extra overheads for the system. For example,

Screencast requires many memory copies [12] to capture frames from the video buffer of a smartphone.

In addition, the FPS rate of the smartphones with 4.0 and 4.1 Android can be more than 60. However,

the number of FPS an internal recorder can capture is usually less than 60. As a result, some frames will

not be recorded and the captured video may not fully represent the original behavior of a smartphone.

By contrast, the FPS of a video captured by an external camera can be more than 60, depending on the

3

specifications of the camera. However, the quality of the captured video is sensitive to the environment,

such as light intensity. More image pre-processing is also required before the captured video can be used

to analyze the smoothness of a smartphone. In order to achieve a high frame rate and accurately extract

the changing frames, an external recorder was utilized. Our method can also be applied to different

smartphones.

2.3. Indexes of smoothness

Several indexes have been proposed to evaluate the performance of a network. For network quality,

Rohani Bakar et al. [3] adopted jitter and latency to evaluate the Quality of Service (QoS). Their

experiment results were validated by comparing them with the standard quality management scale defined

by ITU-T. Chang et al. [4] quantified the requirements of network quality, such as network delay, packet

loss rate and delay jitter, for different kinds of games. Based on network delay, delay jitter, client

packet loss rate, and server packet loss rate, Chen et al. [5] developed a model to predict when players

would leave a game. Chen et al. [6] also established the relationship between call duration and network

quality, such as network delay, packet loss rate and delay jitter, to quantify the user satisfaction of

VoIP applications. All the above-mentioned network-based indexes are not able to fully evaluate the

smoothness of smartphones, because those indexes are closely related to the quality of a network. It is

hard to quantify the relationship between users’ interaction, such as the clicking, long pressing, and the

network-based indexes.

In order to evaluate system-wide performance, several benchmarks have been developed to evaluate

the performance of each hardware component of a smartphone, such as AnTuTu-Benchmark, which

includes “Memory Performance”, “CPU Integer Performance”, “CPU Floating point Performance”, “2D

3D Graphics Performance”, “SD card reading/writing speed”, and “Database IO Performance”. Hyeon-

Ju et al. [7] noted that hardware performance may not be able to fully represent software performance.

Using two different strategies to implement the same software function on a platform will result in differing

performances. They consequently adopted an Android utility, named Dalvik Debug Monitor Server

(DDMS), to measure execution time. Although their method could evaluate the software performance,

it required the source codes of the application under test. Our method, by contrast, does not need

source codes and can perform black-box testing. A. Rahmati et al. [13] conducted three user studies

in order to understand human-battery interaction and discover the problems in existing designs that

prevent users from effectively dealing with limited battery lifetime. A. Fleury et al. [14] suggested

that familiarity, convenience and annoyance are strong predictors of the preference level of methods

for transferring video content from a mobile to a fixed device. However, these indexes cannot be used

to evaluate the smoothness of a smartphone directly. In order to evaluate the performance of GUI

and human-computer interaction, most existing proposals adopted synthetic workloads, such as floating

point calculation, random string sorting, memory read/write and image rendering to assess the relative

performance [15]. However, these synthetic workloads cannot fully represent the amount of work needed

to be done when a user interacts with a smartphone, such as the communication among touch screen

drivers, operating system and applications. Therefore, the results of existing synthetic-workload-based

4

benchmarks are not able to objectively assess the smoothness of human-browser interaction.

Some researchers have adopted frames per second (FPS) to evaluate smoothness of smartphones

[16, 17], and claimed that smartphones with higher FPS are smoother than those with lower FPS.

However, for a mobile APP, the response time of user input includes the execution time of the application,

the latency caused by OS kernel, interrupt handler and concurrently running tasks. FPS only represents

the ability of a smartphone to process separate images per second. Furthermore, if FPS exceeds 40,

it makes no difference to human beings. As a result, high FPS is not necessary for representing short

response time of human-browser interaction. Tian et al. [1, 2] demonstrated that the average frame rate

cannot fully reflect the smoothness of a video because the burst drop frame rate, which is the rate of

suddenly dropping frames, can significantly affect user satisfaction. As a result, they extracted motion

vectors (MVs) from a video to evaluate its smoothness. However, the motion vector is not suitable for

the case of static frames with the external camera. For example, if dark frames on smartphones are

static, the MVs of these frames should be zero. However, because of the configuration measurement

environment, such as light intensity, using an external camera may result in inaccurate MVs. Xiao Feng

[18] discovered that maximum frame time, frame time variance, frame rate, and frame drop rate may

influence the smoothness of user interactions. He tested the same touch event of fling on two different

smartphones and found that, in user experience, the smartphone with lower hardware specification

performed better than that with higher hardware specification. The reason was that the frame time

variance and the maximal frame time of low-end smartphones are quite a lot lower than that of high-end

smart phones. Users feel sluggish when frames do not display smoothly. However, the fling operation

for benchmarking can’t represent every aspect of smartphone smoothness. On the contrary, in this work

we extended the four indexes and translated the frame time to frame intervals for consistency. Since the

frame drop rate of one operation sequence is unknown, the number of frame interval will be reduced if

the frame drop rate increases. Therefore, the four indexes we used are the mean of frame intervals (MFI),

variance of frame intervals (VFI), maximal frame interval (MaxFI) and number of frame intervals (NFI).

Furthermore, the touch screen of smartphone is not sensitive and users will end the tasks if the delay is

longer than 10 seconds. For these reasons, we also used other two indexes, frame no response (FNR) and

times of maximal frame interval (TMaxFI), to evaluate the smoothness of operations. Table 1 shows the

comparison of related work on indexes of smoothness.

PaperWorks [Reference #] Indexes Drawbacks

Video Smoothness [1]
Average frame rates

Same frame rates may result in different

user experienceMotion Activity [2]

VPOW-4G [3] Network delay These indexes mainly focused on evalu-

ating network performanceGames QoE-Pair [4] Packet loss

Games QoE - Leave [5] Delay jitter

Skypes QoE [6]

Our work Mean of frame interval (MFI) N/A

Variance of frame interval (VFI)

Max frame interval (MaxFI)

Frame no response (FNR)

Times of max frame interval (TMaxFI)

Table 1: The comparison of related work on indexes of smoothness

5

Paper Works [Reference #] Classification Objectivity

VPOW-4G [3]

Games QoE - Leave [5]

Skypes QoE [6]

Objective methods Low

Games QoE-Pair [4]

Medias QoE [16]

Our work

Subjective methods

Medium

High

Table 2: The comparison of related work on QoE models

2.4. QoE models

There are two methods of building a QoE (Quality of Experience) model: subjective and objective

methods. A subjective method requires a user’s opinion to assess the QoE, while an objective method

adopts QoS parameters to assess the QoE. Most objective-based methods were evaluated by user’s or

application’s behaviors. For example, Chen et al. [5, 6] collected packet traces to analyze the relationship

between user behaviors and user experience, such as how long it takes for a user to end a phone call or

leave a game. However, low satisfaction is not the only reason that users leave a game or end a phone. As

a result, their argument may not be applied to every scenario. Rohani Bakar et al. [3] evaluated Skype

using an existing standard, Standard Quality Management (SQM) defined by ITU-T P.862. Although

the SQM is good for a perfect network, it may not be applicable to a network environment with packet

losses and propagation delays. More QoS parameters are required to evaluate Skype-like applications.

Chang et al. [4, 19] used a subjective method that adopted paired comparison to access a game’s or

multimedia’s user satisfaction. They first asked users to compare two similar samples, such as two

videos or two pictures, and select the one with better quality. Based on the users selection, they then

adopted the Bradley-Terry-Luce model to determinate the probability of the users choice. The higher the

probability the sample has, the greater the satisfaction the user experienced. However, the comparison

is not fair because a users selection may be influenced by similar samples. For example, in the case of

showing continuous similar samples, users consider the second sample as non-smooth compared to the

first sample. However, in the case of showing non-continuous similar samples, users consider the second

sample as individually smooth. In this work, we used yes or no question for a sample to avoid possible

influences of similar samples and to evaluate the smoothness of different smartphones fairly. Table 2

shows the comparisons of related work on QoE models.

Although QoS and QoE models have been used to evaluate the performance of specific targets, finding

proper metrics to construct QoS and QoE models is challenging and application-dependent. To our best

knowledge, most of the existing QoS and QoE models were used to evaluate the overall performance of

computer network or cloud services. For example, Wei Son et al. adopted PSNR (Peak Signal-to-Noise

Ratio), SSIM (Structural Similarity Index), and VQM (Video Quality Metric) to evaluate the quality of

mobile videos [20]. Asiya Khan et al. used content type, sender bitrate, block error rate and mean burst

length to predict video quality over Universal Mobile Telecommunication Systems (UMTS) networks [21].

Similarly, Abdul Hameed et al. [22] used the average number of bits per pixel in intra frames, average

number of bits per pixel in inter frames and so on to evaluate video quality. All these metrics, however,

6

Notations Definitions

B The number of behaviors.

G The number of the degree of smoothness.

H The number of human operation of time sequences.

D The number of device operation of time sequences.

ai An application on smartphone.

bi A behavior of ai.

vki A video of bi.

HOSi A human operation sequences of bi.

DOSi A device operations sequences of bi.

HOTS =
{
HOTSk

i , 1 ≤ i ≤ B, 1 ≤ k ≤ G
}

A set of human operation of time sequences.
HOTSk

i =
{
HOTSk

i,h, 1 ≤ h ≤ H
}

DOTS =
{
DOTSk

i , 1 ≤ i ≤ B, 1 ≤ k ≤ G
}

A set of device operation of time sequences.
DOTSk

i =
{
DOTSk

i,d, 1 ≤ d ≤ D
}

FIki =
{
FIki,q , 1 ≤ q ≤ FI

}
A set of frame intervals between HOTS and

DOTSFIki =
{
FIki,q , 1 ≤ q ≤ FI

}
BQoSk

i = {BQoSi,j , 1 ≤ i ≤ B, 1 ≤ j ≤ PI } A set of performance indexes for behavior-

based smoothness QoSs.BQoSi,j =
{
BQoSk

i,j , 1 ≤ k ≤ G
}

BQoEk
i =

{
BQoEk

i,r, 1 ≤ i ≤ B
}

A set of opinion score for behavior-based smoothness

QoEs.

HQoEi, 1 ≤ i ≤ B The handheld smoothness QoE.

Table 3: Definition of notations

cannot be used to quantify the smoothness of smartphones. In our BQoS and BQoE model, MaxFI and

NFI were adopted to indicate smoothness.

3. Problem statements

3.1. The acquisition of BQoS

Let B denote the number of behaviors used for smoothness evaluation. The behavior bi is defined as a

sequence of operations for an application (APP) ai (i=1, 2, ... , B). For example, making a phone call is a

behavior, which includes a sequence of operations, such as browsing the list of contacts and tapping phone

numbers. In order to represent the sequence of human operations in bi, the human operation sequence

(HOSi) was used. The device operation sequence (DOSi) is the responses to HOSi. For example,

the device operation sequence of making a phone call is a sequence of changing frames. Each HOSi

is associated with a human operation time sequence (HOTSi), which stores the time instants of each

human operation. Similarly, each DOSi is associated with a device operation time sequence (DOTSi),

which stores the time instants of each device operation. In order to benchmark the smoothness of a

smartphone for each bi, all frame intervals named FIi were first extracted from HOTSi and DOTSi.

Then, the translation function Tj was used to determine each BQoSi,j , which is the j-th BQoS of bi;

that is, BQoSi,j = Tj (FIi). Next, the relationship between BQoSi and BQoEi was obtained by the

7

translation function Ri ; that is, BQoEi = Ri (BQoSi). Let BQoE denote the set of all BQoEi. Finally,

BQoE is converted to HQoE by Eq.(10). Table 3 lists the definitions of the notations used in this work.

For example, let b1 represent the behavior of making a phone call, which includes three operations.

They are opening the APP, scrolling the contact list and dialing a number. Then, HOS1 opens the APP,

scrolling down the contact list, dialing a number, and HOS1 is 0s, 0.5s, 1.2s, which records the starting

time of each operation. Furthermore, in order to respond to HOS1, DOS1 pops up an app, displaying

the contact list, pops up a dialog of the communication state. Each response in DOS1 is mapped to

several video frames. The timing of these video frames is recorded in DOS1. Assuming that DOS1 is

0.1s, 0.2s, 0.3s, 0.6s, 0.7s, 0.8s, 1.3s, 1.4s, the screen starts to change at 0.1s after the user opens the

APP. The timing 0.2s and 0.3s represent the process of displaying the APP. The process of opening the

APP is finally complete in 0.3s. After the user has scrolled down the contact list, the smartphone has

made a series of corresponding responses to the request at 0.6s, 0.7s and 0.8s. The process of scrolling

down the contact list was completed at 0.8. At the same time the smartphone starts to display the

communication state at 1.3s which is complete at 1.4s. In section 4.2, the method of calculating FI1

will be introduced.

3.2. Problem description

Let Tj denote the translation function of FIi, which is a set of frame intervals of human operation

bi. The output of the translation function Tj is BQoSi,j , which is the j-th BQoS of bi. In other

words, BQoSi,j = Tj (FIi). The Ri is the translation function of BQoSi. We used Ri to build up the

relationship between BQoSi and BQoEi. Hence, BQoEi = Ri (BQoSi). The W function is used to

convert BQoE into HQoE; that is, HQoE = W (BQoE). HOTS denotes the set of all HOTSi and DOTS

the set of all DOTSi. Given HOTS and DOTS, we aim to design functions Tj , Ri and W so that the

HQoE can be determined.

4. Handheld smoothness evaluation over regression

To accurately measure every BQoSi and to build up a relationship between a BQoSi and its associ-

ated BQoEi are two key steps to determine Handheld Smoothness QoE (HQoE). This section first gives

an overview of HSER, and then describes the methods used to determine each BQoSi. Finally, how to

build up a relationship between a BQoSi and its associated BQoEi is explained.

4.1. Overview of HSER

Figure 1 shows the overview of our approach. In order to benchmark the smoothness of a smartphone,

B commonly-used behaviors were used for evaluation. For each behavior bi, its associated HOTSi and

DOTSi are was first recorded under G different CPU utilization. Let HOTSk
i

denote the human oper-

ation time sequence of behavior bi under the k-th CPU utilization. In other words, HOTSi is the set of

{HOTS1
i , HOTS

2
i , HOTS

3
i , ...,HOTS

G
i }. Similarly, DOTSk

i
is the device operation time sequence of be-

havior bi under the k-th CPU utilization andDOTSi is the set of {DOTS1
i , DOTS

2
i , DOTS

3
i , ..., DOTS

G
i }.

For each CPU utilization, all frame intervals were extracted. They were named FIk
i

, from DOTSk
i

and

8

Figure 1: Flowchart of HSER

HOTSk
i
. The translation function Tj was then used to determine each BQoSk

i,j
, which is the j-th BQoS

of bi, under the k-th CPU utilization. In other words, BQoSk
i,j

= Tj (FIk
i

). In this work, six BQoS

indexes were considered. They are the mean of frame intervals (MFI), variance of frame intervals (VFI),

maximal frame interval (MaxFI), frame no response (FNR), times of maximal frame interval (TMaxFI)

and the number of frame intervals (NFI). A questionnaire was designed to find the relationship Ri

between BQoSi and BQoEi. Finally, BQoE was converted to HQoE by W function (i.e., Eq.(10)).

4.2. The acquisition of BQoS

There are two steps to obtain BQoSk
i,j

. The first step is to extract all FIk
i

, from DOTSk
i
and HOTSk

i

and the second step is to calculate BQoSk
i,j

by a translation function Tj .

Step1: Extract of all FI

Eight commonly-used behaviors {b1, b2, ... , b8} were adopted for evaluation. They were browsing web

pages, viewing gallery, texting messages, listening to music, making a phone call, viewing a map, playing

a game and switching between different desktops. For each behavior bi, a keylogger tool was used to

record user behavior so that HOTSk
i

could be obtained under the condition of the k-th CPU utilization.

In the replay stage, the user behavior was replayed and an external camera was used to capture the

device responses. The captured video was then processed by our tool, Ex-DOS (see section 4.4) in order

to obtain DOTSk
i

under the conditions of the k-th CPU utilization. Based on HOTSk
i

and DOTSk
i
,

FIk
i

was extracted by the algorithm shown in Figure 2. Let OTSk
i

denote the time sequence which is

obtained by sorting HOTSk
i

and DOTSk
i
(line 3), OTSk

i,t
represent the t-th time instant in OTSk

i
and

FIk
i,q

notate the q-th frame in FIk
i

. There are three different cases in setting the value of each FIk
i,q

.

The first case is no response; that is, there is no time instant of DOTSk
i

between the current and the

following time instant of HOTSk
i
. In this case, FIk

i,q
is set to -1 (line 5 to 8). The second case is that

FIk
i,q

does not include the waiting time from the last operation finished to the next operation started

(line 9 to 11). The third case is that FIk
i,q

represents the response time of the operation in FIk
i

and the

changing frame (line 12 to 15). For example, as shown in Figure 3(a) and Figure 3(b), let HOTSk
i

be 0,

0.02, 0.04 and DOTSk
i

be 0.03, 0.035, 0.055, 0.065, 0.07. The corresponding operations are triggered at

9

Figure 2: The algorithm of computing frame intervals

time instant 0, 0.02 and 0.04 respectively. After sorting HOTSk
i

and DOTSk
i
, we obtain OTSk

i
{0, 0.02,

0.03, 0.035, 0.04, 0.055, 0.065, 0.07}. In Figure 3(c), the number with the underline is the time instant

of HOTSk
i
. Since 0 and 0.02 are in HOTSk

i
, it implies that there is no response to the first operation of

FIk
i

. As a result, FIk
i,1

is set to -1. In the second round, FIk
i,2

is set to the response time of the second

operation of FIk
i

; that is FIk
i,2

= 0.01. The process stops at 0.055. Hence, FIk
i,3

is 0.005 (=0.035-0.03).

Similarly, the response time of the third operation of FIk
i

is FIk
i,4

, which is calculated by 0.055-0.04.

Finally, FIk
i,4

is 0.01(=0.065-0.055) and FIk
i,6

is 0.005 (=0.07-0.065).

Step2: Calculate all BQoS

As mentioned above, we considered six BQoS indexes. They are the mean of frame intervals (MFI),

variance of frame intervals (VFI), maximal frame interval (MaxFI), frame no response (FNR), times of

maximal frame interval (TMaxFI) and the number of frames (NFI). We now describe how we calculated

each BQoSk
i,j

based on FIk
i

, in which j=1, 2, ... , 6. The first BQoS index is average frame interval

BQoSk
i,1

which is obtained by

BQoSk
i,1 = T1

(
FIki

)
= Avg

(
FIki

)
=

∑ |FIki |
q=1 Excp

(
FIki,q

)∣∣FIki ∣∣ (1)

where i is the index of behavior bi, k is the index of CPU utilization and |FIk
i
| is the number of frames

in FIk
i

. If the response time is longer than 10 sec., the function Excp(FIi,q) is 10, and Excp(FIi,q) is

defined as

Excp(FIi,q) =

 FIi,q , if 0 ≤ FIi,q < 10

10 , if FIi,q ≥ 10 or FIi,q = −1.
(2)

The unit of FIi,q is a second. In order to examine how far a set of frame interval is spread out, the

second BQoS index BQoSk
i,2

is variance, which is determined by

BQoSk
i,2 = T2

(
FIki

)
= AvgV ar

(
FIki

)
=

∑|FIki |
q=1

(
Excp

(
FIki,q

)
−Avg

(
FIki

))2∣∣FIki ∣∣ . (3)

The third BQoS index is the maximal frame interval BQoSk
i,3

, which is obtained by

BQoSk
i,3 = T3

(
FIki

)
= Max

(
FIki

)
. (4)

10

(a) HOTS (b) DOTS

(c) OTS and FI

Figure 3: An example of deriving FI

Since no response can significantly affect the smoothness of a smartphone, we introduce the fourth index

BQoSk
i,4

, named no response, which is defined as

BQoSk
i,4 = T4(FIki) =

|FIki |∑
q=1

FNR(FIki,q), (5)

where FNR calculates the number of frame intervals that represent no response. Similarly, the fifth

index, maximal frame interval BQoSk
i,5

, which is defined as

BQoSk
i,5 = T5(FIki) =

|FIki |∑
q=1

TMaxFI(FIki,q), (6)

where TMaxFI calculates the number of frame intervals that are greater than 10.

Figure 4 shows two video clips with same file loading operation on two different smartphones. There

are five frames in the left-hand side case (Case 1) and three frames in the right-hand side case (Case 2).

Case 1 is smoother than Case 2 because more frames are displayed during the file loading process. As a

result, we introduce the sixth index the number of frame intervals BQoSk
i,6

, which is defined as

BQoSk
i,6 = T6

(
FIki

)
=
∣∣FIki ∣∣ . (7)

4.3. The Questionnaire for BQoE

As mentioned in sections 4.1 and 4.2, BQoS represents the service performance of a smartphone while

BQoE represents the smoothness of a smartphone. Given BQoS, we aim to find the relationship between

BQoS and BQoE. Because BQoE is directly related to user experience, a questionnaire is considered

to be a proper tool to determine a users perception of the quality of different BQoS. A questionnaire

was then used to find the relationship between BQoS and BQoE, in other words, the relationship Ri

between BQoSk
i,j

and its associated BQoEk
i
. In order to generate different response time for a gesture,

various workloads were executed in the background, such as busy-loop. As shows in Figure 5, for each

behavior, such as browsing web pages, viewing gallery or texting messages, we prepared G video clips,

each of which was recorded under a specific CPU utilization. As a result, total G×B video clips were

obtained. Let vk
i

denote the k-th video clip of behavior bi. The set of video clips v1
1
, v1

2
, ... , and v1

B

11

Figure 4: The factor of NFI

Figure 5: Idea of questionnaire

represents the response of the applications under the lightest CPU utilization. On the other hand, the

set of video clips vG
1

, vG
2

, ... , and vG
B

represents the response of the applications under the heaviest CPU

utilization. In our implementation, a background busy loop was adopted to generate different degrees

of CPU utilization, which is used by ai. In order to ensure the reliability of the questionnaire, more

than fifty videos with different BQoS were designed to cover all possible conditions. Each volunteer

was required to label the smoothness level of each video. To further ensure the reliability of the results

obtained from the volunteers, three criteria were adopted to remove improper data before we applied

the regression model to build the relationship between BQoS and BQoE. First, participants who did

not complete the questionnaire were excluded. Second, participants who gave the same scores to all

questions were excluded, and participants whose grades followed a regular pattern such as 1-2-3-1-2-3

were also dropped.

Let M denote the number of volunteers and lr represent the r-th volunteer, in which r =1, 2, ... , M .

In the first round, volunteers were asked to evaluate the smoothness of v1
1
, v1

2
, ... , and v1

B
by answering

smooth or not smooth. If lr marks v1
1

as smooth, then BQoE1
1,r

=1. Otherwise, BQoE1
1,r

is set to 0.

Similarly, in the second round, volunteers were asked to evaluate the smoothness of v2
1
, v2

2
, ... , and v2

B
.

The same process was repeated until all G×B video clips had been evaluated by all volunteers. As a

result, the corresponding scores BQoEk
i

were calculated by

BQoEk
i =

∑M
r=1BQoE

k
i,r

M
. (8)

Given all BQoSk
i,j

and BQoEi, the statistic regression was used to find the relationship R between

BQoSk
i,j

(j=1, 2, ... , 6) and BQoEk
i
; that is

BQoEk
i = Ri

(
BQoSk

i,1, BQoS
k
i,2, BQoS

k
i,3, BQoS

k
i,4, BQoS

k
i,5, BQoS

k
i,6

)
. (9)

12

Finally, HQoEk is determined by a weighted function W , which is defined as

HQoEk = W
(
BQoEk

i

)
=

∑B
i=1 wi ×BQoEk

i∑B
i=1 wi

, (10)

where wi is the weight of behavior bi.

4.4. Implementation of the Ex-DOS Tool

The purpose of tool Ex-DOS is to process a video clip vk
i

in order to obtain its associated DOTSk
i
.

Figure 6 shows the flow of the BQoSk
i,j

acquisition and Ex-DOS tool. For each behavior bi, a keylogger

tool was used to record user behavior FIk
i

so that we can obtain HOTSk
i

under the condition of the

kth CPU utilization (step 1 & 2). In the replay stage, we replayed the user behavior FIk
i

and adopted

an external camera with 60 fps to capture the device response DOSk
i

(step 3). The captured video vk
i

was first converted into frames by Free Video to JPG Converter Tool (DVD Video Soft [DVS], 2014)

and then processed by our tool, Ex-DOS, in order to obtain DOTSk
i

(step 4). Based on HOTSk
i

and

DOTSk
i

(step 2 & 5), FIk
i

was extracted(step 6). Finally, based on all FIk
i

, each BQoSk
i,j

was calculated

(step 7).

The right-hand side of Figure 6 shows the details of step 4 that takes DOSk
i

as input and extracts

DOTSk
i
. For each frame, a region of interest (ROI) (steps a & b) was set. We then took the current

frame and the last frame for comparison (step c). Both frames were converted from color to gray frames

in order to detect differences. Then, the two frames were compared pixel by pixel. If the differences

of gray levels between two pixels were larger than a predefined threshold, we marked them as different

pixels (step d). In order to further increase the speed of comparison, bi-level threshold recognition was

used [23] (step e). Since an external camera was used to record the video, the quality of the video could

have been be affected by the environment, such as light intensity. Some black pixels may be represented

as gray pixels. Therefore, a medium filter was used to reduce the noises of each frame (step f). Finally,

if the number of different pixels was smaller than a predefined threshold, we record the frame ID, which

is the index of frames in vk
i
, and derive the time sequence DOTSk

i
. The same process was repeated until

all frames had been processed (step g & h).

Figure 6 illustrates the three major steps of our Ex-DOS tool (numbered by 1, 2, and 3). The ROI

of each frame was first set. We then processed these frames and obtain the different pixels. Finally, each

DOTSk
i

was obtained. In the record stage shown as Figure 6 (step 1), the keylogger tool produced a script

to record FIk
i

. For each human operation in FIk
i

, the script recorded a batch of time and commands.

Figure 7 shows an example of the test script. The tool automatically extracted every triggering time

of human operation by detecting a specific pattern at the end of each operation (line 72, line 76 and

line 80-85 of Figure 8). In the replay stage, shown as Figure 6 (step 3), computer time was used to

synchronize two different time sequences for the purpose of deriving DOTSk
i
. One was obtained from

smartphone and another was obtained from the camera. Let TSk
i

be the start time of the smartphone in

bi and TCk
i

the start time of the camera in bi. As Figure 9 shows, a stopwatch was used to synchronize

the time. Since the precision of a stopwatch is less than the time of the smartphone, the TCk
i

can be

obtained by the frame rate of vk
i

in order to reduce the error. For example, TSk
i

is the 21:33:10.11 (shown

13

Figure 6: The flow of acquisition of BQoS and the Ex-DOS tool

Figure 7: An example of test script

as Figure 9). We obtained the time of the frame 21:33:10 in vk
i

and recorded the frame ID. Because the

average time of vk
i

with 60 fps was about 0.016 second, we derived the TCk
i

is 21:33:10.112 (21:33:10+

0.11/0.016). Based on the results, we then obtained TSk
i

and TCk
i

.

5. Evaluation

Section 5.1 sets out the experiment environment. Section 5.2 illustrates the relationship between

human and device operations, and Section 5.3 investigates the correlation between BQoSs and BQoE.

Section 5.4 analyzes our HSER model, and Section 5.5 evaluates the correctness of the HSER model in

three different smartphones.

5.1. Testbed

5.1.1. Common user behaviors

We selected eight common behaviors based on H. Verkasalo’s research [24], listed in Table 4. They are:

making a phone call, texting messages, browsing web pages, playing a game, viewing a map and switching

14

Figure 8: The acquisition of HOTS

Figure 9: The synchronization of time

15

Figure 10: The experiment environment

between different desktops (i.e., “Other” in Table 4) except the multimedia type, which includes two

commonly used behaviors, listing to music and viewing gallery.

5.1.2. The Experiment environment

For each behavior bi, a keylogger tool was used to record FIk
i

of bi so that we could obtain HOTSk
i

under the condition of the k-th CPU utilization. In order to create different unsmooth scenarios, a

background busy loop was used to control available CPU utilization for ai. They are 1%, 2%, 3%, 4%,

5%, 10% and 100%; that is, G=7. The reason we chose this setting is that the CPU utilization of most

operations in a smartphone require less than 10%. If available CPU utilization is greater than 10%, the

application always performs smoothly in the smartphones we tested. In our experiment, CPU utilization

was measured by using Linux command top, which is included in the Android Debug Bridge (ADB)

toolkit [10]. An external Canon 550D camera was used to capture video of the smartphone under test.

The videos were then used for further analysis. In our experiment, six widely-used Apps were used to

represent real-world usage scenarios. They were Voice recorder, Messenger, Multimedia player, Browser,

a 2-D animation game and Map.

In the replay stage, shown as Figure 10, we replayed the user behavior FIk
i

with a computer and

Canon 550D camera to capture the device response DOSk
i
, stored in vk

i
, on device under test (DUT),

a Huawei U8860. In order to eliminate the effect of environment such as light intensity, all experiments

were conducted in a dark box.

Types of behavior Percentage of using time General operations

Voice 34% View the contact

Message 21% View the contact

Multimedia

(music and gallery)
15%

Music(7.5%):

View the song lists

Change the listing song

Build a playlist

Gallery(7.5%):

View the photos

Browser 14% View the websites

Games 3% Load a game with 2D animation

Map 3% View the map

Other 10% Operate the home screen

Table 4: The general operations for each behavior [20]

In the questionnaire stage, for the purpose of efficiency, 56 videos were posted on a website. Each

video represents a behavior pertaining to specific CPU utilization. As noted above, there are 8 behaviors

and 7 different CPU utilizations. The content of videos is listed in Table 4. For example, the video of

16

Figure 11: The value of α in different behaviors

BQoSs Correlation r of BQoE

VFI Linear

Logarithmic

Exponential

Power

-0.438

-0.796

-0.146

0.426

MFI Linear

Logarithmic

Exponential

Power

-0.390

-0.723

-0.142

-0.721

MaxFI Linear

Logarithmic

Exponential

Power

-0.494

-0.705

-0.101

-0.705

FNR Linear

Logarithmic

Exponential

Power

-0.402

-0.497

-0.192

-0.497

TMaxFI Linear

Logarithmic

Exponential

Power

-0.433

-0.559

-0.144

-0.559

NFI

Linear

Logarithmic

Exponential

Power

0.427

0.546

0.328

0.546

Table 5: The correlation r of between BQoSs and BQoE

voice behavior under 7 different CPU utilization includes the action of viewing the contact and keying the

phone number. To avoid interference from another similar video, we had each volunteer grade one video

at a time. The videos were cached on local disks in order to eliminate the effect of network bandwidth.

We started from the first CPU utilization and asked a volunteer to grade the video. If the result was

smooth, we then moved to the second CPU utilization. The process stopped when the behavior was

graded as non-smooth.

5.2. Relationship between HOS and DOS

Many existing works adopted the response time of an operation to evaluate the smoothness of a

smartphone. However, two operations with the same response time may lead to different user experiences

because the way they change frames may be different. One may perform smoothly at an early stage while

another may perform smoothly at a late stage. In order to investigate the relationship between HOS and

17

VFI MFI MaxFI FNR TMaxFI NFI

VFI 1

MFI 0.953 1

MaxFI 0.837 0.713 1

FNR 0.800 0.819 0.573 1

TMaxFI 0.792 0.757 0.746 0.804 1

NFI -0.701 -0.841 -0.381 -0.606 -0.478 1

Average 0.817 0.817 0.65 0.720 0.715 0.601

Table 6: The correlation r of between BQoSs

DOS, we define αi as

αi =
|DOSi|

|HOSi|+ |DOSi|
, (11)

in which |HOSi| is the number of operations in bi and |DOSi| is the number of frame changes in DOSi.

As Figure 11 shows, αi is greater than 97% in most behaviors. It implies that a behavior bi can induce

a larger number of frame changes and the response time does not reflect every aspect of smoothness of

a smartphone. As a result, it is necessary to investigate the characteristics of frames when we determine

the smoothness of a smartphone.

5.3. Correlation between BQoSs and BQoE

Given all BQoSk
i,j

and BQoEk
i
, our goal is to find the relationship Ri between BQoSk

i,j
(j=1, 2, ... ,

6) and BQoEk
i
; that is

BQoEk
i = R

(
BQoSk

i,1, BQoS
k
i,2, BQoS

k
i,3, BQoS

k
i,4, BQoS

k
i,5, BQoS

k
i,6

)
. (12)

In order to reduce the complexity of Ri, the relationship between each BQoSk
i,j

was estimated. If

one BQoS index could dominate another BQoS index, the dominated BQoS index would be removed. In

other words, our goal was to use as few BQoS indexes as possible to construct the function Ri. In order

to estimate the relationship between each BQoSk
i,j

, we adopted coefficient of correlation r, which was

determined by

r =

∑n
u=1(xu − x̄) (yu − ȳ)√∑n

u=1 (xu − x̄)
2∑n

u=1 (yu − ȳ)
2
, (13)

where xu is a BQoSk
i,α

sample, yu is a BQoSk
i,β

sample (α 6= β) and n is the number of total samples.

Table 5 shows coefficient of correlation between each BQoS and BQoE under different linear, logarithmic,

exponential and power functions. As Table 5 shows, logarithmic function best fitted our data. We next

investigated the logarithmic relationship among BQoSs, to see if it was possible to reduce the number

of BQoS indexes. A correlation greater than 0.7 could produce the presence of collinearity and lead to

a large standard error.

As Table 6 shows, VFI, MFI, FNR and TMaxFI have a strong correlation with other indexes, and

the averages of the correlation of them are higher than 71.5%. In order to avoid a collinearity problem,

the final BQoS indexes used to construct the relationship Ri are MaxFI (BQoSk
i,3

) and NFI (BQoSk
i,6

).

In other words, users feel non-smooth if the waiting time is long and the frames are fragmented.

Maximum frame interval and frame no responses are the two most representative indexes. With our

experience, a Nexus S smartphone needs more time than Huawei U8860 smartphone to process browser

18

Figure 12: The relationship between the VFI and BQoE

(a) The satisfaction of smartphones (b) The confidence interval of smartphones

Figure 13: The satisfaction and confidence interval of smartphones

request under the general CPU utilization. But, the NFI of these two smartphones is almost the same.

As a result, it is desirable to include MaxFI index to further distinguish between these two smartphones.

On the other hand, NFI is particularly useful if the frames are fragmented.

5.4. Analysis of the HSER model

Given all BQoSk
i,3

, BQoSk
i,6

and BQoEi, we aim to find the relationship Ri between them; that is,

log
(
BQoEk

i /
(
1−BQoEk

i

))
= Ri

(
BQoSk

i,3, BQoS
k
i,6

)
. (14)

Multiple linear regressions were used to determine the logarithmic relationships. In order to evaluate

the accuracy of the regressions result, we used the coefficient of R2, which was obtained by

R2 =

∑m
v=1(ŷv − ȳ)2∑m
v=1 (yv − ȳ)

2 , (15)

where ŷv is the predicted value of BQoE, yv is the actual value of BQoE (the questionnaire results), and

m is the total number of samples. The closer R2 is to 1.00 the better. As shown in Table 7, R2 is 0.528 if

all behaviors were considered together. As Figure 12 shows, we further categorized behaviors into timing

sensitive (such as voice and gallery behaviors), and timing non-sensitive behaviors. For example, making

a phone call is a timing sensitive behavior while browsing a web page is not. According to the value of

R2, the regression performed better for timing sensitive behaviors. The correctness of regression for each

individual behavior was also investigated. As shown in Table 7, the average R2 is 0.872. In particular, for

the behavior of viewing a gallery and playing a game, the R2 increased to 0.986 and 0.973, respectively.

It implies that our regression model could be used to evaluate the smoothness of a smartphone.

5.5. Evaluation of HSER model

In order to validate our HSER model for different smartphones, another round of survey was con-

ducted. We prepared several video clips of eight operations, shown in Table 4, under normal CPU

19

Figure 14: The error rates between the models

utilization on three very different smartphones. They are HTC hero (528 MHz CPU, 288 MB RAM,

Android 2.2.1 OS), Huawei u8860 (1.4 GHz CPU, 512 MB RAM, Android 2.3 OS), and Nexus S (1 GHz,

512 MB RAM, Android 4.1.2 OS). In this survey, we had 45 volunteers to grade each video as smooth or

non-smooth and used Eq.(8) and (10) to compute the results of questionnaire, denoted as QR, for each

smartphone. The QRs are shown in Figure 13(a), in which Huawei U8860 is smoother than HTC hero

and Nexus S. The 95% confidence interval of each survey is also shown in Figure 13(b). Considering that

the online questionnaire is influenced by network delay, we collected 10 volunteers to grade each video

with an offline questionnaire. As Figure 13(a) shows, the influence of the offline questionnaire results,

whose ranges are in 95% confidence interval, is less than 10%. Therefore, users have good judgment even

in circumstances where there is network delay. We then used our regression result, shown in Table 7,

to evaluate the smoothness of each smartphone. As Figure 14 shows, the error rate, which is the error

between QR and predicted result (HQoE) from our model for each smartphone, is obtained by

|QR−HQoE|
|QR|

. (16)

Our results show that for single behavior, the error rate of HSER model is less than 9%. The

effectiveness of the average frame rate, which is the reciprocal of mean of frame interval (MFI) was also

evaluated. The error rate of MFI is up to 71.4%. Two videos with the same MFI can provide very

different user experiences, because one may abruptly drop a large number of frames while another may

maintain a uniform frame rate. We argue that the HSER model is a practical solution for benchmarking

the smoothness of Android smartphones.

In order to further evaluate the relationship between the smart phone speed and the effectiveness

of HSER, we repeated the same set of experiments by recruiting 10 new volunteers to test two new

smartphones. The volunteers’ average age was 23. Most of them were students while the others were IT

industry people. The two new smartphones were the LG G Pro2 (2.26GHz CPU, 3GB RAM, Android 4.4

OS) and the Samsung Galaxy Fame (1GHz CPU, 512MB RAM, Android 4.1 OS). As Table 8 shows, the

average error rate of LG G Pro2 was 5.10% and that of Samsung Galaxy Fame was 10.43%. Compared

with other applications, the error rate of games is bigger than others. For example, for LG G Pro2, the

error rate of Game was 11% (=(0.44-0.39)/0.44), because the game flow and user interaction design can

also affect user experience. Users will sense unsmoothness if the game flow is odd or strange even though

the speed of the smartphone is high. By removing a game application, the average error can be further

reduced to 4% to 5%. Furthermore, the error rates of voice, message and music applications are smaller

than others because the user interface and interaction of these applications are relatively simple. The

proposed indexes MaxFI and NFI can represent smoothness well. In addition, Figure 14 and Table 8

20

Type of

models
R2 avg(R2) Regression

All

behaviors
0.528 - log

(
BQoEi

1−BQoEi

)
= −1.892 − 1.24 × log

(
BQoSi,3

)
+ 0.848 × log

(
BQoSi,6

)
Sensitive-

based

behaviors

High 0.713 0.694 log
(

BQoEi
1−BQoEi

)
= −2.758 − 2.01 × log

(
BQoSi,3

)
+ 1.193 × log

(
BQoSi,6

)
Low 0.675 log

(
BQoEi

1−BQoEi

)
= −0.578 − 2.004 × log

(
BQoSi,3

)
+ 0.765 × log

(
BQoSi,6

)
Single

behavior
Voice 0.813 0.872 log

(
BQoEi

1−BQoEi

)
= −0.823 − 2.206 × log

(
BQoSi,3

)
+ 0.548 × log

(
BQoSi,6

)
Message 0.811 log

(
BQoEi

1−BQoEi

)
= −3.831 − 0.969 × log

(
BQoSi,3

)
+ 1.946 × log

(
BQoSi,6

)
Gallery 0.986 log

(
BQoEi

1−BQoEi

)
= −24.978 − 1.189 × log

(
BQoSi,3

)
+ 9.374 × log

(
BQoSi,6

)
Music 0.951 log

(
BQoEi

1−BQoEi

)
= −13.563 − 0.818 × log

(
BQoSi,3

)
+ 5.655 × log

(
BQoSi,6

)
Browser 0.706 log

(
BQoEi

1−BQoEi

)
= −0.578 − 2.004 × log

(
BQoSi,3

)
+ 0.765 × log

(
BQoSi,6

)
Other 0.88 log

(
BQoEi

1−BQoEi

)
= −6.984 − 1.747 × log

(
BQoSi,3

)
+ 3.09 × log

(
BQoSi,6

)
Map 0.856 log

(
BQoEi

1−BQoEi

)
= −0.506 − 1.284 × log

(
BQoSi,3

)
+ 0.466 × log

(
BQoSi,6

)
Games 0.973 log

(
BQoEi

1−BQoEi

)
= −3.984 − 0.996 × log

(
BQoSi,3

)
+ 1.541 × log

(
BQoSi,6

)

Table 7: The R Square of the models

LG G Pro2 Samsung Galaxy Fame

QR HQoE Error Rate QR HQoE Error Rate

Voice 0.56 0.57 3% 0.37 0.37 0%

Message 0.54 0.50 7% 0.40 0.39 4%

Gallery 0.58 0.55 5% 0.23 0.27 15%

Music 0.5 0.51 1% 0.37 0.38 4%

Browser 0.34 0.37 9% 0.47 0.49 5%

Other 0.54 0.53 2% 0.40 0.41 2%

Map 0.36 0.37 4% 0.17 0.18 9%

Games 0.44 0.39 11% 0.07 0.10 44%

Average 0.48 0.48 5.10% 0.31 0.32 10.41%

Table 8: Comparison of two smartphones

21

show that the error rate is independent of the speed of the smartphone. For example, the specifications

of Nexus S and Samsung Galaxy Fame are similar, but the error rate of the Nexus S is lower than that

of the Samsung Galaxy Fame. The average satisfaction of LG G Pro2 is 0.48 with a full score of 1,

and that of Samsung Galaxy Fame 0.31. The confidence interval of LG G Pro2 is 11.8% and that of

Samsung Galaxy Fame 10.1%. In summary, the higher the speed, the more satisfied users are with the

smartphone. The confidence interval is, however, independent of the speed of smartphone.

5.5.1. Limitations of HSER model

In this work, we assigned a lower weight to the behavior of playing games when we built the HSER

model, because the frequency of playing games is lower than the frequency of operating other applications

[24]. Our HSER model may thus not be able to provide a reasonable scenario where a user plays games

very frequently. This issue can be addressed by increasing the weight of game-playing behavior. Another

limitation is that the age of the volunteers was between 18 and 25. Our HSER model may then not be

representative of the perspectives of all generations. Finally, we did not conduct experiments on closed

systems, such as iOS and Windows phones, because our experiments require root privilege to record the

start and stop times of each user operation.

6. Conclusions and Future Work

In this work we developed a handheld smoothness evaluation over regression model to fairly bench-

mark the smoothness of smartphones. The applicability of this model was investigated for different

user scenarios. Our experiment results showed that the correlation of mean of frame intervals, variance

of frame intervals, frame no response and times of maximal frame interval was more than 71.5% in a

logarithmic relationship. To avoid a collinearity problem, maximal frame interval and number of frame

intervals were used as indexes for the model. Maximal frame interval and number of frame intervals

were found also to be good indexes for non-smooth situations resulting from long waiting times and

the fragmented frames. For individual behavior, the average R2 was close to 1. In particular, for the

behavior of viewing a gallery and playing games, R2 increased to 0.986 and 0.973. The error rate of

the proposed model was less than 9%. These findings indicate that our regression model can be used to

fairly evaluate the smoothness of a smartphone. We also determined that the error rate of HTC hero

smartphone (9%) was higher than two other smartphones (5%). The reasons may be variations in the

way users grade the videos as either smooth or non-smooth. The same video for different users will result

the different perception.

Eight different behaviors were investigated in testing the proposed model. In the future, a more

comprehensive evaluation of behavioral modes will be considered. We plan to investigate other indexes

and collect more users experiences in order to enhance the accuracy of our model. Possible indexes include

the speed of fling and scroll operations. We also plan to improve the accuracy of the behavior capture

tool Ex-DOS by detecting non-static objects in a video and to investigate the effects of networking and

non-networking effects on the quality of experience. These experiments can then be extended to other

22

platforms, such as iOS and Windows phones, to provide guidelines for modifying software to increase

smoothness.

Acknowledgments

This work was supported in part by Ministry of Science and Technology (MOST) and Institute of

Information Industry (III) in Taiwan.

References

[1] Tian D, Shen L, Yao Z. Motion activity based wireless video quality perceptual metric. In: Pro-

ceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing

(ISIMP). IEEE; 2001. p. 527–530.

[2] Bertalmio M, Bertozzi AL, Sapiro G. Navier-stokes, fluid dynamics, and image and video inpainting.

In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR). vol. 1. IEEE; 2001. p. I–355–I–362.

[3] Bakar R, Ibrahim M, Ali D. Performance measurement of VoIP over WiMAX 4G network. In: 2012

IEEE 8th International Colloquium on Signal Processing and Its Applications (CSPA). IEEE; 2012.

p. 539–544.

[4] Chang YC, Chen KT, Wu CC, Ho CJ, Lei CL. Online game QoE evaluation using paired compar-

isons. In: 2010 IEEE International Workshop Technical Committee on Communications Quality

and Reliability (CQR). IEEE; 2010. p. 1–6.

[5] Chen KT, Huang P, Lei CL. Effect of network quality on player departure behavior in online games.

IEEE Transactions on Parallel and Distributed Systems. 2009;20(5):593–606.

[6] Chen KT, Huang CY, Huang P, Lei CL. Quantifying Skype user satisfaction. In: Proceedings

of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications. ACM; 2006. p. 399–410.

[7] Yoon HJ. A study on the performance of Android platform. International Journal on Computer

Science and Engineering. 2012;4(4):532.

[8] Nielsen J. Usability engineering. Elsevier; 1994.

[9] Miller RB. Response time in man-computer conversational transactions. In: Proceedings of the

December 9-11, 1968, fall joint computer conference, part I. AFIPS ’68 (Fall, part I). ACM; 1968.

p. 267–277.

[10] Android development;. Available from: http://developer.android.com/training/articles/

perf-anr.html.

23

http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/articles/perf-anr.html

[11] Lin YD, Chu ETH, Yu SC, Lai YC. Improving the accuracy of automated GUI testing for embedded

systems. IEEE Software. 2014;31(1):39–45.

[12] Wei CY, Hsieh JW, Kuo TW, Lee IH, Wu YN, Tsai MC. Resource reservation and enforcement for

framebuffer-based devices. Lecture Notes in Computer Science. 2004;2968:398–408.

[13] Rahmati A, Zhong L. Human-battery interaction on mobile phones. Pervasive and Mobile Com-

puting. 2009;5(5):465–477.

[14] Fleury A, Pedersen JS, Larsen LB. Evaluating user preferences for video transfer methods from a

mobile device to a TV screen. Pervasive and Mobile Computing. 2013;9(2):228–241.

[15] Yoo W, Larson K, Baugh L, Kim S, Campbell RH. ADP: automated diagnosis of perfor-

mance pathologies using hardware events. ACM SIGMETRICS Performance Evaluation Review.

2012;40(1):283–294.

[16] Clemons J, Zhu H, Savarese S, Austin T. MEVBench: A mobile computer vision benchmarking

suite. In: 2011 IEEE International Symposium on Workload Characterization (IISWC). IEEE; 2011.

p. 91–102.

[17] Venkata SK, Ahn I, Jeon D, Gupta A, Louie C, Garcia S, et al. SD-VBS: The San Diego vision

benchmark suite. In: 2009 IEEE International Symposium on Workload Characterization (IISWC).

IEEE; 2009. p. 55–64.

[18] Quantify and Optimize the User Interactions with Android De-

vices;. Available from: http://software.intel.com/en-us/articles/

quantify-and-optimize-the-user-interactions-with-android-devices.

[19] Chen KT, Wu CC, Chang YC, Lei CL. A crowdsourceable QoE evaluation framework for multimedia

content. In: Proceedings of the 17th ACM International Conference on Multimedia. ACM; 2009. p.

491–500.

[20] Song W, Tjondronegoro DW. Acceptability-based QoE models for mobile video. IEEE Transactions

on Multimedia. 2014 April;16(3):738–750.

[21] Khan A, Sun L, Ifeachor E. QoE pediction model and its application in video quality adaptation

over UMTS networks. IEEE Transactions on Multimedia. 2012 April;14(2):431–442.

[22] Hameed A, Dai R, Balas B. A decision-tree-based perceptual video quality prediction model and

its application in FEC for wireless multimedia communications. IEEE Transactions on Multimedia.

2016 April;18(4):764–774.

[23] Pal NR, Pal SK. A review on image segmentation techniques. Pattern recognition. 1993;26(9):1277–

1294.

24

http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices
http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices

[24] Verkasalo H. Analysis of smartphone user behavior. In: 2010 Ninth International Conference on

Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR). IEEE; 2010. p. 258–

263.

Authors’ Biographies

Ying-Dar Lin is a Professor of Computer Science at National Chiao Tung University (NCTU) in Tai-

wan. He received his Ph.D. in Computer Science from UCLA in 1993. Since 2002. His research interests

include network security, wireless communications, and embedded systems. He is an IEEE Fellow and

serves on the editorial boards of several IEEE journals and magazines.

Edward T.-H. Chu is an associate professor in the Department of Electronic and Computer Science

Information Engineering, National Yunlin University of Science and Technology, Taiwan. He received

the Ph.D. degree in computer science in 2010 from the Department of Computer Science at National

Tsing Hua University, Taiwan. His current research interests include embedded systems and real-time

operating systems.

Chien-Ling Wen is a software engineer. Her research interests include embedded systems and hu-

man machine interaction. She received a MS in computer science from National Chiao Tung University,

Hsinchu, Taiwan. Contact her at iolikeoi@gmail.com.

Yuan-Cheng Lai received the Ph.D. degree from the National Chiao Tung University, Hsinchu, Taiwan,

in 1997. In August 2001, he joined the faculty of the Department of Information Management, National

Taiwan University of Science and Technology, Taipei, Taiwan, where he has been a Professor since Febru-

ary 2008. His research interests include performance analysis, protocol design, wireless networks, and

web-based applications.

I-Ching Chen is a master student in the Department of Electronic and Computer Science Information

Engineering, National Yunlin University of Science and Technology, Taiwan. Her research interests

include embedded systems and machine learning.

25

	Introduction
	Indexes of Smoothness
	Handheld Smoothness Evaluation over Regression

	Background and related work
	Challenges of benchmarking smoothness
	Methods of recording changing frames
	Indexes of smoothness
	QoE models

	Problem statements
	The acquisition of BQoS
	Problem description

	Handheld smoothness evaluation over regression
	Overview of HSER
	The acquisition of BQoS
	The Questionnaire for BQoE
	Implementation of the Ex-DOS Tool

	Evaluation
	Testbed
	Common user behaviors
	The Experiment environment

	Relationship between HOS and DOS
	Correlation between BQoSs and BQoE
	Analysis of the HSER model
	Evaluation of HSER model
	Limitations of HSER model

	Conclusions and Future Work

