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Abstract

Networking applications with high memory access overhead gradually exploit network processors that feature multiple hardware
multithreaded processor cores along with a versatile memory hierarchy. Given rich hardware resources, however, the performance
depends on whether those resources are properly allocated. In this work, we develop an NIPS (Network Intrusion Prevention System)
edge gateway over the Intel IXP2400 by characterizing/mapping the processing stages onto hardware components. The impact and strat-
egy of resource allocation are also investigated through internal and external benchmarks. Important conclusions include: (1) the system
throughput is influenced mostly by the total number of threads, namely I · J, where I and J represent the numbers of processors and
threads per processor, respectively, as long as the processors are not fully utilized, (2) given an application, algorithm and hardware spec-
ification, an appropriate (I, J) for packet inspection can be derived and (3) the effectiveness of multiple memory banks for tackling the
SRAM bottleneck is affected considerably by the algorithms adopted.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Networking applications offering security and content-
aware processing demand powerful hardware platforms to
achieve a high performance. General-purpose processors
are often adopted for memory-access-intensive applications
such as network intrusion detection systems (NIDS)
(Roesh, 2006), which accumulate data and analyze traffic
to identify possible security breaches. However, such pro-
cessors have a high cost and poor throughput owing to that
the processor utilization is low, because of the heavy mem-
ory access overhead. Conversely, the application-specific
integrated circuits (ASICs) (John and Smith, 1997) can sat-
isfy the performance requirement with a circuitry designed
for strict guarantees on memory access latency using pipe-
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lined architecture and embedded memory. Nevertheless,
the lack of re-programmability reduces the appeal of ASICs.

Network processors (Lekkas, 2003; Lin et al., 2003) are
emerging as an alternative means of resolving the above
problems for their multithreaded multiprocessor architec-
ture and the flexibility. Multiple processors allow simulta-
neous data-plane processing of multiple packets on a
cluster of processors. Moreover, the hardware threads with
a miniaturized context switch overhead can conceal the
memory access latency (Shah and Keutzer, 2002) and there-
fore increase the throughput. The re-programmability
makes functional adaptations much easier in a network pro-
cessor than in an ASIC, which must need to be re-designed.

Despite rich hardware resources of network processors
such as processors, threads and memories, the allocation
of components that further influence their utilizations
needs to be carefully planned. For memory-access inten-
sive-applications, Bos and Huang (Bos and Huang, 2004)
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have implemented an NIPS on an Intel IXP1200. The pro-
totype comprises only the receiver and packet processing
using the Aho–Corasick (Aho and Corasick, 1975)
algorithm, but does not support multiple flows or inspec-
tions of pattern stretching for more than two packets.
Clark (2004) designed a network intrusion detection pre-
vention system (NIPS) that incorporates an IXP1200 for
header processing and an field programmable gate array
(FPGA) as the signature-matching engine. The bottleneck
is the bus connecting them. Kang et al. (2006) further
exploited the high-end IXP2800 and TCAMs to achieve a
multi-gigabit NIPS for a core network. Nevertheless, these
studies do not thoroughly consider the resource allocation
strategies and, therefore, could lead to low component
utilization.

This work implements an NIPS edge gateway, which is
more frequently adopted than the core device, over an Intel
IXP2400 (Intel, 2004) processor, which has a similar archi-
tecture to most network processors. The system detects,
rather than prevents, the attacks by sniffing flows through
an IP/port sockets, and writes the results into a log file. The
system includes two signature-matching algorithms, Aho–
Corasick and Wu–Manber (Wu and Manber, 1994), due
to their popularity in many security-related implementa-
tions, such as Snort. Several software components, called
the processing stages (Adiletta, 2002) are characterized, in
which a tentative processor/thread allocation is applied.
After implementation, both external and internal bench-
marks are then performed to address the issues considered
below:

• Effect of improper ME/Thread allocations on system per-

formance: Two factors affect the performance of an
application, i.e., the computing power and the memory
access latency. The first is determined by the number
of processors in use, given by I, while the impact of
the second can be alleviated by adjusting the total num-
ber of threads in use, given by I · J (Lakshmanamurthy,
2002), where J denotes the number of threads per pro-
cessor. Since the total number of processors is fixed in
the hardware platform, the effect of an allocation
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(I, J), especially an improper one, on the system perfor-
mance is of priority concern.

• Derivation of an appropriate I and J: An appropriate
(I, J) combination should be calculated, given a certain
application and hardware spec such as clock rate and
memory service rate, and regardless of the limit on the
number of MEs and number of threads per ME in the
platform.

• Effectiveness of employing multiple memory banks: Multi-
ple memory banks reduce the average memory access
latency by alleviating the queuing effect. Nonetheless,
the effectiveness of doing so is not clarified.

This article is organized as follows. Section 2 describes the
hardware architectures of IXP2400. Section 3 briefly
describes the two matching algorithms, and elaborates
the design and implementation of the proposed system.
Section 4 presents the results and observations from exter-
nal and internal benchmarks. Conclusions are drawn in
Section 5.

2. Hardware architecture of IXP2400

As shown in Fig. 1, the IXP2400 comprises several com-
ponents, categorized as follows.

2.1. Multithreaded multiprocessor architecture

The IXP2400 features nine programmable processors,
which are one Intel XScale core and eight microengines
(MEs), operating at 600 MHz. The Intel XScale core is
responsible for housekeeping functions such as table initial-
ization and exception handling for control-plane packets,
which contain control messages such as ‘‘ICMP unreach-
able’’. Data-plane processing, which performs the actual
manipulation such as checksum calculation, encryption/
decryption and forwarding, and which accounts for the
largest part in packet processing, is implemented on
MEs. Every ME has eight hardware threads, each with
its own register set and program counter to support fast
context switching when memory accesses occur.
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2.2. Hierarchical memory structure

To ease the memory access overhead, IXP2400 exploits
four memories, DRAM, SRAM, scratchpad, and local
memory in an ME, given tradeoffs between size and
latency. IXP2400 has one channel of Double Data Rate
(DDR) memory running at 150 MHz. The channel can
support up to 2 GB of DRAM, yielding enough capacity
for storing packets received by MEs directly from receive
buffer (RBUF) at the Media Fabric Switch (MSF). Two
channels of Quad Data Rate (QDR) SRAM running at
200 MHz are also provided, and each channel can hold
up to 16 MB of data. The SRAM primary accommodates
packet descriptors for locating packets in DRAM, queue
descriptors and other frequently employed data structures,
such as routing tables and matching signatures. The on-
chip 16 KB scratchpad memory, i.e., a memory array with
the decoding and the column circuitry logic, consumes less
power than ordinary cache memories, operates in the form
of rings and provides a similar capability to SRAM. Mean-
while, the 2560-word local memory functions as the data
cache.

2.3. Detailed packet flow in IXP2400

Fig. 1 illustrates the processing flow of an ordinary
packet. The MSF of an IXP2400 partitions an arriving
packet into several smaller chunks called mpackets, which
can be configured to 64, 128, and 256 bytes in size for easy
manipulation and, then, places them into the RBUF. The
threads of the MEs dedicated for receiving subsequently
perform the reassembly of mpackets, and move the result-
ing packets directly from the RBUF into DRAM, in which
the MEs and XScale core carry out further operations. The
exceptions and housekeeping are handled by the XScale
core through the interrupt and message queue mechanisms
during processing at the MEs. Finally, the transmission
process is simply the reverse of the reception process,
namely the packet is segmented into several mpackets by
the threads dedicated for packet transmission and, then,
placed into the transmit buffer (TBUF).

3. Design and implementation

3.1. Adopted algorithms

Packet inspection, i.e., the detection phase, is a criti-
cal stage that affects the performance of an NIPS. This
study employs two conventionally adopted algorithms,
Aho–Corasick (A–C) and Wu–Manber (W–M), owing to
their popularity in many applications such as Snort, and
are easily implemented. The A–C exploits a pre-computed
finite automation stored as the goto table, and accepts all
the strings in the pattern set. Each character is then sequen-
tially fed to the automation, which tracks partially matched
patterns through state transition. The W–M reads a block
of characters, rather than one character at a time, and
looks up the pre-calculated hash and shift tables to calcu-
late the shift distance. The signatures transformed into an
automation or shift table are stored in SRAM for fast
retrieval. To support statefull inspection, the final state is
recorded immediately after a packet is processed for later
scrutiny of the succeeding packet in the same flow. Simi-
larly, the shift distance for W–M, is kept so that patterns
across multiple packets can be inspected.

3.2. Mapping processing stages to the hardware platform

Fig. 2a shows the processing stages, namely the receiver,
flow classifier, thread dispatcher, packet inspector and
transmitter, of an NIPS, as well as the task and resource
allocation for IXP2400. Upon receiving a packet from an
input port, the payload is moved from RBUF to DRAM.
Additionally, the corresponding packet descriptor is stored
in SRAM. Moreover, a duplicate descriptor is passed onto
the next stage via the receiving scratch ring.

The flow classifier subsequently retrieves a packet
descriptor for flow classification. The descriptor operates
as follows. First, the IP and port pairs in the packet are
used to compute a hash key for indexing in the hash table
in SRAM to verify whether the flow to which the packet
belongs exists. Since this task requires a high computa-
tional power, a hash unit is adopted to offload the over-
head. If a hash hit occurs, then the hash entry pointing
to a flow context in SRAM is referred to enqueue the
packet descriptor for inspection. Otherwise, an entry for
the new flow is created in the hash table. The dispatcher
thread then chooses a flow queue and, then, dispatches a
free inspector thread to handle the first packet in the queue.
A message is delivered to the XScale through the XScale
scratch ring to signal an alert when a packet payload is
matched against a pattern. Otherwise, the transmitter
thread examines the transmitting scratch ring to determine
whether an inspected packet is waiting to be sent. If yes,
then the thread fetches the packet descriptor in SRAM,
and transmits the entire packet in DRAM to TBUF for
output.

The proposed implementation tentatively allocates MEs
and threads based on the processing stages and the bench-
mark results of Snort, which argue that at least 31% of the
total processing time is consumed by the inspection phase
(Fisk and Varghese, 2001). Therefore, each processing
stage is allocated one ME except the packet inspector,
which is given four MEs. Hence, 32 threads are available
for later adjustment. For thread allocation in the receiver,
eight threads are evenly divided into four groups corre-
sponding to four gigabit ports. Every port is served by
two ordered threads (Johnson and Kunze, 2003), a mecha-
nism requiring threads to execute the functions of a pro-
cessing stage in order to keep the packet ordering. A
thread is signaled only after its predecessor finishes those
functions. In the transmitter, eight ordered threads are
assigned to one four-gigabit port. This study employs eight
ordered threads in both the classifier and dispatcher stages



Fig. 2. The (a) processing stages and (b) interaction between the thread dispatcher and packet inspector. Notably all eight threads are active in an ME,
though only one of them is actually processing packets.
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for the following two reasons: (1) classifying packets could
take significantly different amounts of time due to hash col-
lisions, and could therefore lead to out-of-order packets,
and (2) serving flow queues with multiple dispatcher
threads requires mutual exclusion on the counter, which
records the index of the queue being served.

3.3. Thread dispatcher and packet inspector

Fig. 2b illustrates the detailed interaction between the
thread dispatcher and the packet inspector. As mentioned
in Section 4.2, a flow queue is selected, and the first packet
descriptor in that flow is passed to an inspector thread cho-
sen from the free thread lists of the four MEs. This process
involves some operations. First, two flags, isEmpty and
beingServed, of a flow context are checked in each round.
The first flag indicates whether the corresponding flow is
empty, while the second indicates whether that flow is
being served by a thread. If the flow is not empty
(isEmpty = 0) and not being served (beingServed = 0), then
a packet descriptor is assigned to an inspector thread, and
the beingServed flag is consequently set to 1. This ensures
that a flow is served by only one inspector thread at a time,
thus preventing the state (for A–C) or shift distance (for
W–M) of the flow from being altered by other threads.
The inspector thread then examines a packet payload
against the patterns in SRAM, and updates the state or
shift distance in the flow context accordingly. If no pattern
is matched, the packet is passed to the transmitter thread to
be sent out; otherwise the XScale is notified of a match.
Finally, the packet inspector thread places itself into the
free thread list, waiting for the next signal from the dis-
patcher. The four free thread lists implemented by the four
scratch rings correspond to the four MEs. The inspector
threads are dispatched from the MEs for load balancing.
To prevent the system resource from being exhausted by
excess idle flows, a timeout counter maintained by the
XScale is associated with each flow. The flow queue as well
as the flow context and hash entry is removed once the
counter times up.

Further support for TCP stream reassembly is yet to be
implemented in the receiver stage. Local memory could be
exploited to store the sequence numbers of out-of-order
packets temporarily held in the SDRAM. The ME com-
pares the sequence number of a newly arriving data packet
against the local memory entries to determine whether it
plugs any of the sequence holes. If all holes are filled up,
then those packets are enqueued to the corresponding flow
queue in SRAM.

4. Performance benchmark and bottleneck analysis

This section assesses the performance of the system by
externally and internally benchmarking the system imple-
mented using two string-matching algorithms. The appro-
priate (I, J) for the critical packet inspection stage was
explored to ensure that both MEs and SRAM memory
were well utilized. Additionally, the feasibility of exploiting
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multiple memory banks for load balance is discussed since
the memory access overhead accounts for a considerable
portion of the packet processing.

4.1. Benchmark setup

The clock of the ME in our experiment was 600 MHz.
The input interface of the MSF was divided into four giga-
bit ports, while the output interface was a four-gigabit port.
Four data streams of 64-byte TCP/IP packets with ran-
domly generated payload were injected. All simulations
lasted for 50 000 packets.

With 2475 patterns used in the current Snort, 2000 ran-
dom patterns were applied, with characters generated uni-
formly according to the guidelines discovered in
(Antonatos et al., 2004). The length of shortest pattern
(LSP), which is known to be a major factor on the perfor-
mance of string matching algorithms such as W–M, was set
to 4 characters (Liu et al., 2004).

4.2. Effect of improper ME/thread allocations on system

performance

Improper ME/thread allocations can yield a poor per-
formance. To investigate the effect of such allocations on
the system, the performances of A–C and W–M were com-
pared, in terms of utilization, for different (I, J) combina-
tions. As revealed in Fig. 3, I and J can be configured,
while the total number of threads, I · J, is fixed at 12. Some
observations are made. First, the throughput, i.e., the link
utilization, was influenced mostly by I · J, rather than I,
Fig. 3. Performance of: (a) A–C and (b) W–M for different (I

Fig. 4. Profiling of: (a) total memory access cycles and (b) to
since it remains unchanged for different (I, J) combinations.
This finding suggests that additional threads are needed to
advance the memory utilization and the throughput. Sec-
ond, the average ME utilization degraded with rising I,
because the same traffic load was balanced by extra MEs.
Third, the throughput of W–M was only one-fourth of that
of A–C owing to the relatively high processing overhead of
W–M, as illustrated in Fig. 4.

Fig. 4 profiles the total computational cycles, denoted
by P, and the memory access cycles, represented by M,
required by A–C and W–M to handle a 64-byte packet.
The figure indicates that the sum of P and M in W–M is
approximately 4 times of that in A–C. This explains the rel-
atively low throughput of W–M. Moreover, the memory
access overhead dominates the processing time of a packet,
namely 94% ( 34920

2309þ34920
ffi 94% when # of patterns = 500) for

A–C and 98% ( 137340
6763þ137340

ffi 98% likewise) for W–M. Fortu-
nately, this imbalance is handled through multithreading,
which narrows the difference in utilization of MEs and
memory.
4.3. Estimating an appropriate (I, J) pair through bottleneck
analysis

Fig. 5 depicts the performance of the two implementa-
tions by increasing the number of MEs and thus the total
number of threads. Some observations can be made. First,
the system can scale up to 670 Mbps when implemented
using the A–C and 133 Mbps using the W–M. The
throughput of A–C is better due to the low computational
and memory access overhead. Second, the ME utilizations
, J) combinations. Total number of threads is fixed at 12.

tal computational cycles for processing a 64-byte packet.



Fig. 5. The performance of A–C and W–M with different numbers of MEs (eight threads per ME).

Table 1
Performance of (a) A–C and (b) W–M with one and two memory banks,
respectively. (I, J) = (6, 8)

One memory bank Two memory banks

(a)
ME util. (%) 61.1 63.2
MEM util. (%) 95.6 95.2, 1.8
Throughput (Mbps) 670.6 674.4

(b)
ME util. (%) 44.0 63.2
MEM util. (%) 93.5 70.0, 57.2
Throughput (Mbps) 133.2 191.4
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of both implementations are far from fully utilized with 1–4
MEs, implying that the number of threads per ME is too
small to utilize the MEs effectively. Third, the throughputs
in both implementations will increase in direct proportion
to I · J. Nevertheless, the throughput rises slightly as I

increases to 6 for A–C and to 5 for W–M, because the
memory is almost fully utilized, and is therefore the bottle-
neck. Fourth, the average ME utilization degrades as I

increments and the memory utilization approaches 90%,
since the load that stops increasing due to the memory bot-
tleneck is diluted by the rising I.

A combination of (I, J) that enables both MEs and
memory to be effectively utilized can be further estimated
through the bottleneck analysis. Fig. 5 demonstrates that
increasing I, and therefore increasing the total number of
threads slightly improves the performance when memory
utilization is above 90%. For instance, the improvement
of memory utilization from incorporating the sixth proces-
sor is merely 95.6 � 91.8 � 3.8% and 93.5 � 91.9 � 1.6%
for A–C and W–M, respectively. Hence, the appropriate
upperbound, k, 5 · 8 = 40 threads should be in both algo-
rithms if the memory is to be utilized effectively. Nonethe-
less, the ME utilization is low when I = 5, meaning that the
computing power is unnecessarily high and should be fur-
ther reduced. This problem is fixed by employing four
MEs, rather than five, so that the average utilization of
MEs becomes 69:9%�5

4
ffi 87:4% (since 69:9%�5

3
ffi 116:5% >

100%), and J is thus estimated as 40
4
¼ 10. Similarly, a com-

bination of (3, 13) can be derived for W–M. The derivation
can thus be generalized as follows:

APPR-I_J(n = 1,J 0)//n: number of processors used, J 0:
threads per processor in the platform

while(true)
if m_util(n,J 0)! ffi 100%

n++;
elsif m_util(n,J 0) ffi 100% and p_util(n,J 0) ffi 100%

return(n,J 0);
else //m_util(n,J 0) ffi 100% and p_util(n,J 0)! ffi 100%;

k = n · J 0;
return i0; k
i0

� �
, where i 0 < n and p utilðn;J 0Þ�n

i0 is smaller
and closest to100%.

Empirically, x_util(n,J 0) ffi 100% means that x_util

(n,J 0) > 90%.
4.4. Effectiveness of multiple memory banks

One solution to the memory bottleneck is to add more
memory banks. To evaluate the benefit of this approach,
the signatures were stored in two SRAM banks. Table 1a
indicates that very limited improvement can be gained for
A–C due to the difficulty of splitting the goto table evenly
into different memory banks. Conversely, W–M benefits
substantially (by about 43.7%) from having two banks as
presented in Table 1b, because of the use of two tables that
simplifies the distribution of data.
5. Conclusions and future work

This study investigates the resource allocation methodol-
ogies of network processors by implementing and evaluating
a memory access intensive application, the network intru-
sion prevention system. The hardware platform, IXP2400
is introduced, and the necessary software processing stages
to be mapped to the platform are identified. Among these
processing stages, the packet inspection is implemented with
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the Aho–Corasick and Wu–Manber algorithms. External
and internal benchmarks are then undertaken to examine
the effect of resource allocation and the possible bottlenecks.
The observations should be applicable to other network pro-
cessors because of similar components and architectures.

Benchmark results show that the system can scale up
to 670 Mbps using Aho–Corasick and 133 Mbps using
Wu–Manber. The throughput is influenced mostly by the
total number of threads while the ME utilizations are not
fully utilized. SRAM is then found to be the bottleneck,
since I · J exceeds the upper bound k of appropriate mem-
ory usage. The upper bound can be further adopted to esti-
mate an appropriate (I, J) combination for both
algorithms. An appropriate (I, J) can always be derived
when given an application, algorithm and hardware speci-
fications, such as the memory service time and processor
clock rate.

Two work arounds are proposed to solve the SRAM
bottleneck. The first is to employ multiple memory banks,
which yields a 43.7% improvement in Wu–Manber, since
the signature can easy be evenly distributed among the
banks. The other is to apply a multi-port memory that
enables simultaneous memory accesses. The proposed
approach appears to be particularly helpful to algorithms,
such as Aho–Corasick, that have data structures that are
difficult to split uniformly among banks.

Two issues will be investigated in the future. First,
although synthesized traffic is acceptable given the level
of error (Antonatos et al., 2004), real traces are preferable.
Another issue is to consider the allocation strategy for
computational-intensive applications.
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