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A B S T R A C T

Protocol reverse engineering is helpful to automatically obtain the specifications of protocols that are useful
for network management, network security systems and test case generation tools. To achieve better accuracy,
these kinds of applications require good models that can capture not only the order of exchanging messages
(control flow aspect) but also the data being transmitted (data flow aspect). However, current techniques only
focus on inferring the control flow represented as a Finite State Machine (FSM) and without interpreting the
data flow. The Extended Finite State Machine (EFSM), embedding memory in the states and data guard in
the FSM transitions, is a method commonly used to represent the data flow. In this work, we propose ReFSM,
a novel approach to infer the EFSMs of protocols from only network packet traces. The proposed method is
evaluated by using datasets of real-world network traffic traces of four protocols: FTP, SMTP, BitTorrent and
PPLive. Based on the results, the coverage, accuracy scores of correctness and behavior of inferred models
are always higher than 90%. The precision and recall values of message type identification are, at least, well
above 94% and 96%, respectively. The inferred EFSMs are close to the correct model derived from protocol
specification.
1. Introduction

Detailed understanding of protocol specification is helpful not only
for the operation of network intrusion detection systems but also es-
sential for the development of protocol fuzzer and test case generation
tools. In the testing domain, smart fuzzers are one of the most useful
tools for testing the robustness of the implementation of network
security systems. Smart fuzzers need to know how to generate the
right messages in the right states (Bossert et al., 2014). Furthermore,
based on behavioral models, a set of conformance test cases aimed at
verification can also be generated by automated test case generation
tools (Tappler et al., 2017; Dahbura et al., 1990).

However, obtaining protocol specifications is a tedious and time-
consuming task. For instance, it took more than 12 years to complete
the reverse engineering of the SMB protocol of Microsoft Server Mes-
sage Block (Cui et al., 2007). Even for open protocols such as FTP,
HTTP, and MQTT, it takes much time and effort to carefully analyze
and manually translate the open source documents to formulate a
behavioral model. In addition to such known protocols, there are
more than 40% of Internet traffic belong to such unknown application
protocols (Wang et al., 2011), and specifications are not available for
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those proprietary protocols. A considerable number of them are private
protocols that enterprises tend to conceal while others are malware and
botnets, which are hidden by attackers. Therefore, automatic protocol
reverse engineering has recently been proposed to carry out such
specification inference.

1.1. Motivation

As indicated in the PI Project (Beddoe, 2018), the methods of
protocol reverse engineering can be divided into two types of execution
trace (application inference) and network trace (network inference) (Sija
et al., 2018; Kleber et al., 2019; Duchene et al., 2018). Although appli-
cation inference can formulate a behavioral model very effectively, it
is difficult to carry out as a result of the unavailability of specifications
and source codes (Kleber et al., 2019).

The network inference method relies on protocol traces to ac-
tively reconstruct the behavioral model and infer protocol message
formats. Intrusion detection systems typically rely on a parser to per-
form deep packet inspection based on protocol specifications (Paxson,
1999) (Amiri et al., 2011). The operation of network honeypots, which
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is used to carry out malware analysis, requires protocol models and
message formats so that interaction with the attacking endpoint be-
comes possible (Wang et al., 2012). Vulnerability discovery tools also
leverage the protocol behavioral models, such as finite state machines
(FSMs), to produce illegitimate and unexpected patterns (Bossert et al.,
2014). For example, in order to reveal potential vulnerabilities of a
targeted application, the knowledge of a wrong sequence number,
acknowledgment number, and invalid transitions are essential.

Most of the time it is relatively easy to obtain the network traffic
traces for protocol reverse engineering analysis from an Internet Service
Provider. However, in behavioral model reconstruction, current imple-
mentations tend to focus only on the capture of control flow aspects as
a Finite State Machines (FSM), without the reference to those in data
flow (Duchene et al., 2018). Moreover, the message format inference
result, enforced by the message type identification, is not accurate in
both a keyword analysis approach and distance-based methods adopted
in the construction of the FSM.

To improve the FSM performance, a behavioral model termed the
Extended Finite State Machines (EFSM) and consisting of both data
flow and control flow information, is proposed in this paper. An EFSM,
comprising memories in states and data guards annotated in conditional
transitions, can represent more specific and correct behaviors with a
significant reduction of states compared to those of the FSM (Lorenzoli
et al., 2006). Extended Finite State Machine (EFSM) inference is a
promising solution to the behavior exhibited by traditional FSMs: the
exhibiting behavior of FSM depends on an internal state (Foster et al.,
2018). In other words, with the help of data guards and memories, an
EFSM makes the transition conditional, as data checking is required
before transitions are allowed (Petrenko et al., 2004).

1.2. Contributions

In this paper, we present the pioneering work on methodologies and
system implementation that employ network traces as the input to infer
the EFSM of given protocols. The processing flow chart of the proposed
ReFSM, as shown in Fig. 1, is composed of four main module: Data Pre-
rocessing, Message Type Identification, FSM Reconstruction, and Semantic
eduction.

The Data Pre-processing module takes the raw packet data, reassem-
le it, and extracts network sessions. Abnormal messages removal and
issing messages handling are part of the process. Based on the hybrid
ethodologies of Apriori and K-mean, the message type identification

s responsible for clustering the messages from the data of the net-
ork sessions. The FSM reconstruction module infers the states and

ransitions of the finite state machine. It further minimizes the num-
er of states by using k-tail merging methodology. The inter-message
nd intra-message dependencies are significant to the inference of the
ehavioral communication model. Therefore, the semantic deduction
odule is designed to detect the dependencies of these messages and

inds the data guards and memories.
The main contributions of this work can be summarized as follows.

• ReFSM, a novel method to infer the EFSMs of network protocols,
is proposed by considering not only the aspects of the control flow
but also the data flow information from network traffic traces.

• A hybrid message type identification method consisting of key-
word analysis and distance-based methods is proposed to over-
come the isolating limitations for accuracy enhancement of in-
ferred FSM.

• The methodologies of semantic deduction and the correlation de-
tection technique are presented to infer inter-message and intra-
message dependencies.

• This paper presents K-tail state merging to minimize the number
of states and perform Daikon and Pearson product-moment for
dependencies analysis.

• The use of data guard and memory is demonstrated with the
accuracy-enhanced FSM for the proposed EFSM construction.
2

The structure of this paper is as follows. Section 2, gives a gen-
eral background to the methodologies of protocol reverse engineering.
The proposed methodologies and implementations concerning data
pre-processing, message type identification, FSM construction, and se-
mantic deduction are described in Section 3 along with the problems
addressed in this paper. In particular, Section 3.5 presents a detailed
discussions on the major steps in the semantic deduction module, which
produces the EFSM. Section 4 discusses the setup of overall system
testing and evaluation strategy. Detailed discussion of complexity com-
parisons are provided in Section 5. Section 6 presents the experiment
results and discussions related to performance and complexity. Finally,
in Section 7, we summarize the work presented and make suggestions
regarding future work.

2. Background and related work

The ultimate goal of network-traces based protocol reverse engi-
neering is to determine both message formats and behavioral models of
communication protocols by trace analysis. Therefore, methodologies
generally proposed can be categorized into message type identification,
message format inference, semantic deduction, and behavior model
construction (Kleber et al., 2019; Sija et al., 2018).

The ScriptGen tool (Leita et al., 2005) relies on the PI project (Bed-
doe, 2018), which uses bioinformatics techniques to infer message
format. PI uses the Needleman and Wunsch (N&W) (Needleman and
Wunsch, 1970) sequence alignment algorithm not only to calculate
distance score for message clustering (message type identification) but
also to identify common parts of messages in the same cluster for
the format of messages exposure. This concept is further developed
in SciptGen and extended to reconstruct deterministic finite state ma-
chines to generate a set of scripts for a honeypot, which can mimic
a protocol to interact with attackers. Based on the same approach,
Netjob (Bossert et al., 2014) modifies N&W and Unweighted Pairwise
Groups with Arithmetic Averaging (UPGMA) hierarchical clustering
algorithm (Sokal and Michener, 1958) with the help of contextual
information to enhance the accuracy of message type identification.
To this end, the authors developed a framework that allows actively
collecting traces with context information.

The main idea proposed by Kleber et al. (2020) is to use vector
distance on unequally-sized feature vectors by combining two popu-
lar methodologies of Hirschberg alignment and the DBSCAN cluster
algorithm. However, Kleber et al. only focused on the message type
identification, which is just one part of whole protocol-model reverse
engineering. The system output is a set of message types of pro-
tocol. These authors are not concerned with the control and data
flow of a protocol. Moreover, only stateless protocols are evaluated
in the system. In another approach, ReverX (Antunes et al., 2011)
and AutoReEngine (Luo and Yu, 2013) leverage keyword analysis to
re-build a Finite State Machine. While ReverX constructs a graph by
a generalization heuristic and then reduces it by conventional FSM
minimization, AutoReEngine applies a popular data mining technique,
Apriori, to find the most frequent string of bytes with keyword analysis
for FSM construction. Without further minimization, the AutoReEngine
model often contains a large number of states.

In contrast, Veritas (Wang et al., 2011) and PRISMA (Krueger et al.,
2012) only focus on the construction of a behavioral model of protocols.
The reconstructed behavioral model of Veritas is a probabilistic proto-
col state machine, which is a form of non-deterministic FSM with the
probability of transitions. In message type identification, Veritas also
uses PAM for clustering with Jaccard Index (Jaccard, 1912) as a dis-
tance score. Similarly, PRISMA itself defines a distance metric following
an embedding concept in natural language processing. The messages
are split into tokens by predefined delimiters (textual protocol) or fixed-
size delimiters (binary protocol). It is then further mapped to vector

space to directly calculate distance score applying a Euclidean metric.



Journal of Network and Computer Applications 171 (2020) 102819Y.-D. Lin et al.
Fig. 1. The system architecture of the proposed ReFSM. The Data Pre-processing module is designed to clean, reassemble and extract sessions. The Message Type Identification is
responsible for clustering the incoming messages. The FSM Reconstruction module is used to infer the states and transitions of the finite state machine. The main tasks of Semantic
Deduction module are to find the data guards and memories.
The MINT (Walkinshaw et al., 2016) technique proposed by Walkin-
shaw et al. initiates a Prefix Tree Acceptor (PTA) from execution traces.
The PTA is then minimized and generalized by the Evidence-Driven
State Merging algorithm to obtain the control part of the EFSM. The
state pair with the highest scores of the transaction in the outgoing
paths of the same label is likely to be merged. To infer the data
guards, the author proposed the use of a broad family of data classifier
algorithms in the machine learning domain.

Lo et al. presents (Lo et al., 2012) an empirical setup that compares
four model-inference techniques from software execution traces: K-
Tail (Biermann and Feldman, 1972), kBehavior (Mariani et al., 2011),
GK-Tail (Mariani et al., 2017) and KLFA (Mariani and Pastore, 2008).
Similarly, the work of Krka et al. (2014) provides an empirical study
that compares the quality of the inferred FSM model of four ap-
proaches: traces only, invariant only, invariant-enhanced-traces and
trace-enhanced-invariants. The results highlight the benefit of combin-
ing the trace-based approaches and invariant-based approaches.

The methodology proposed by Goo et al. (2019) leverages another
data mining technique called Continuous Sequential Pattern (CSP) to
extract the probabilistic FSM of plain-text protocols. A hierarchical and
recursive CSP is used in entire methods to infer field format, message
types, and also the flow pattern that form the FSM. The CSP algorithm,
modified from the Generalized Sequential Pattern (GSP) (Srikant and
Agrawal, 1996), only finds the continuous sequences with the restricted
orders of items. This constraint of elements in sequences helps to find
the keyword (static field) of the message more effectively. However,
the protocols (HTTP & DNS) evaluated are stateless, not stateful. The
authors do not mention data part and only focus on the control part
of the protocol. Moreover, the proposed method does not perform any
state merging to reduce the number of states and transitions, and the
size of the FSM may thus be insignificant. They do not process the data
flow, only infer the FSM by using the control ones.

Kleber et al. (2019) Sija et al. (2018) and Narayan et al. (2015)
provided an extensive survey on these significant subjects of protocol
reverse engineering. In these papers, the authors compare the related
works in this field and present the detail of analyzing the technologies
used in each step: pre-processing, message type identification, message
format inference, and protocol model reconstruction.

Table 1 presents the summary of all these selected works in protocol
reverse engineering from network traffic traces.

2.1. Extended finite state machine

A good behavioral models of protocols should capture not only
the order of exchanging messages (control flow aspect) but also the
constraints on the data being transmitted (data flow aspect). One of the
3

Fig. 2. Example of the partial EFSM and FSM state diagrams for the TCP protocol.
The EFSM is capable of checking TCP sequence numbers in the transactions. In EFSM,
sequence number of previous message is stored in memory of state of syn_sent, the
data guard of this state will compare the sequence number of incoming messages with
memory before perform the transition.

most widely-used models is the Extended Finite State Machines, which
enhances Finite State Machines by embedding memory in the states and
data guards in the transitions (Lorenzoli et al., 2006; Petrenko et al.,
2004; Walkinshaw et al., 2016). An Extended Finite State Machine is
typically defined as a 6-tuple EFSM=(𝑆, 𝐼, 𝑂, 𝜎, 𝛿,𝑀), where 𝑆 is the set
of finite states, 𝐼 is the set of inputs, 𝑂 is the set of outputs. 𝑀 is the set
of memories equipped to states. A set of Boolean expression functions
𝛿 ∶ 𝐼 × 𝑀 → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, defined in Eq. (3), is termed as data guards,
and represents the data constraint validation before state transitions.
The symbol 𝜎 ∶ 𝑆 × 𝐼 ×𝑀 → 𝑆 × 𝑂 is the set of transitions regulating
that at state 𝑠 ∈ 𝑆 and corresponding 𝑚 ∈ 𝑀 , if the machines accept
the input as 𝑖 ∈ 𝐼 , the machines enter to state 𝑠′ ∈ 𝑆 and produce
output 𝑜 ∈ 𝑂.

Taking TCP handshake as an example, an EFSM uses a data guard to
check the acknowledged number received and sent sequence numbers
in memory. Fig. 2 shows an example of EFSM and FSM as a part of
TCP operation. After sending syn messages, the client machine enters
the syn_sent state, writes the sending sequence number to memory, and
waits for a response. When the syn_ack message is received, the client
needs to check whether the received sequence number is equal to the
value plus one in memory so that transiting to the established state can
be allowed.
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Table 1
The comparisons of related works in protocol reverse engineering from network traffic traces. The detailed discussions of complexity comparisons are provided
in Section 5. LS: Limited support, S: support.

Methodology Message type Behavioral models reconstruction Message Format Inference

Identification* Models Algorithms Algorithms Semantic
Deduction

Proposed Hybrid Apriori + K-mean Extended FSM
(ReFSM)

K-Tail Sequence Alignment S

AutoReEngine
(Luo and Yu,
2013)

Frequent String
Extraction

Apriori
(k-length constraint)

FSM Sequence Labeling
Apriori

Keyword Group Extraction N/A

CSP (Goo et al.,
2019)

Hierarchical CSP Improved Apriori FSM Recursive CSP FieldHunter’s semantics
inference

S

Discover (Cui
et al., 2007)

Type based Tokenization Recursive
Clustering

N/A N/A Type-based Sequence
Alignment

LS

NetJob (Bossert
et al., 2014)

Distance based K-mean
(N&W alignment score)

FSM N/A Sequence Alignment LS

PRISMA
(Krueger et al.,
2012)

Distance based K-medoids
clustering+Jaccard
Index

FSM Generalization N/A N/A

ReverX (Antunes
et al., 2011)

Keyword analysis PTA + Frequency
Labels

FSM Generalization and
Minimization

Graph generalization N/A

ScriptGen (Leita
et al., 2005)

Distance based Modified N&W
alignment

FSM Generalization and
Minimization

Sequence Alignment N/A

TPRE (Trifil
et al., 2009)

Statistical Keyword
analysis

Variance of the
Distribution

FSM State Splitting N/A N/A

Veritas (Wang
et al., 2011)

Distance based Kolmogorov–Smirnov
Statistical testing

Probabilistic
FSM

N/A N/A N/A
2.2. Daikon and K-Tail algorithm

EFSM inference of communication protocols from only network
traces has not yet been addressed, but several pioneering techniques
have been proposed to infer EFSM model of software from software
execution. The first method to attempt this issue is GK-Tail of Lorenzoli
et al. (2006)(Lorenzoli et al., 2008). In this work, the authors used the
K-Tail algorithm to infer the control part (FSM). The Daikon invariant
detection system is adopted to derive the data guards as the extended
part of the FSM (Mariani et al., 2017).

The K-Tail algorithm is a model reduction algorithm which helps
to simplify the complicated models by merging their equivalent states.
The basic idea of the K-Tail algorithm (Biermann and Feldman, 1972)
is that two states are equivalent if they share the same behavior in
the next k transitions. An example of k=2 is illustrated in Fig. 3. The
state 𝑆0

2 and 𝑆1
2 are equivalent because they share the same 2-tails

{
(

𝑖3∕𝑜3
)

,
(

𝑖4∕𝑜4
)

}, which is similar to the pair of (𝑆0
3 , 𝑆

𝑢
3 ) because their

2-tails is {
(

𝑖4∕𝑜4
)

,
(

𝑖5∕𝑜5
)

}. The result of this algorithm is the reduced
FSM in Fig. 4. This heuristic is effective for reducing non-deterministic
FSMs where the standard deterministic FSM minimization algorithm
fails. Software reverse engineering methods typically used it to obtain
minimized models.

Daikon (Ernst et al., 2001) is an implementation of dynamic in-
variant detection. It is a template-based, machine learning technique
that can be applied to arbitrary data. It can take the raw execution
traces or the values of variables as input and finds the best matching
properties (rules) for all observed values of variables. To illustrate the
outputs of Daikon, we denote 𝑥, 𝑦 as variables and 𝑎, 𝑏 as constant.
Taking the input of all observed values of 𝑥, 𝑦, Daikon reports a simpler
invariant (a constraint) with related constants 𝑎, 𝑏. For a single variable,
it discovers a constraint that holds over its values. Daikon can produce
simpler invariant such as being a constant (𝑥 = 𝑎), in enumerative sets
of values (𝑥 ∈ 𝑎, 𝑏), or in a range that is restricted by values of minimum
and maximum (𝑎 ≤ 𝑥 ≤ 𝑏). For multiple variables, it finds a correlation
between the values of variables. It can also determine constraints based
only on the dataset containing observed values of the variable so that
it can be used to infer the data guard of EFSMs.
4

2.3. Message type identification

Message type identification, a core component of protocol reverse
engineering, has significant effects on the accuracy of final results.
It also creates an abstraction of messages similar to group messages
that are semantically related. Each group contains many messages
which share the same structure pattern and similar purpose. Taking
the FTP protocol as an example, the ‘‘USER’’ message type always
contains the expression ‘‘USER <email>’’ and is used to authorize the
username of systems. Current studies based on network traces often
rely on keyword-based or distance-based clustering algorithms to identify
protocol message types.

Keyword-based methods mostly leverage the frequently-occurring
strings, also named as keywords (e.g., ‘‘USER’’, ‘‘PASS’’) to distinguish
message types. They use statistical tests such as the Kolmogorov–
Smirnov test, Statistical t-test, Apriori (Agrawal and Srikant, 1994),
and Distribution of Variances (Trifil et al., 2009) to extract distinctive
keywords.

ReverX (Antunes et al., 2011) adopted the frequency labels, a
keyword-based analysis methodology to construct the Prefix Tree Ac-
ceptor (PTA). It assumed the message fields are usually split by pre-
defined delimiters. The authors of TPRE (Trifil et al., 2009) assumed
that there is a command/control byte (bit) that is located in the fixed
position to represent the message type. The major cost of the proposed
methodology is the computation of the Variance of the Distribution of
the Variances (VDV) for every position in messages.

NetJob (Bossert et al., 2014) used the K-mean algorithm with the
N&W alignment score as distance metric. In ScriptGen (Leita et al.,
2005), the authors used the same methods of Netjob with modified
N&W alignment. PRISMA (Krueger et al., 2012) adopted the k-medoids
clustering algorithm with Jaccard index as distance metric.

As a result of applying the frequency of a string, this kind of method
often ignores unique message types that rarely occur (e.g., ‘‘PWD’’,
‘‘QUIT’’). Another drawback is keyword misperception: There are some
terms used in hot topics that appear frequently and are easily confused
with actual protocol keywords. These limitations lead to the inaccurate
identification of message types, as incorrect messages are grouped into

different clusters.
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Fig. 3. The initial FSM obtained from sessions of message sequences. For every input sequence, the process starts from the root and travels down along the tree. A new path
is created if there are no existing paths. The state 𝑆0

2 and 𝑆1
2 can be merged because of the shared 2-tails of 𝑖3∕𝑜3 and 𝑖4∕𝑜4. The pair of states 𝑆0

3 and 𝑆𝑢
3 can also be merged

because of the shared 2-tails of 𝑖5∕𝑜5 and 𝑖4∕𝑜4.
Fig. 4. The new FSM after merging by K-Tail mechanism with K=2 from the FSM shown in Fig. 3. The state 𝑆0
2 and 𝑆1

2 is merged as 𝑆0
2 . The pair of states 𝑆0

3 and 𝑆𝑢
3 is also

merged as 𝑆0
3 .
Distance-based methods apply an unsupervised machine learning
algorithm with a similarity metric of messages for message clustering.
This approach merges pairs of clusters by their similarity. Among many
machine learning techniques, unweighted pairwise groups with arith-
metic averaging (UPGMA) and Partitioning around Medoid (PAM) are
the most popular. Several metrics have been proposed, such as the Jac-
card index (Jaccard, 1912), Needleman and Wunsch (N&W) (Needle-
man and Wunsch, 1970) or the Longest Common String (LCS). The
disadvantage of this approach is that a knowledge of the number
of clusters is required in advance. Sometimes, it is hard to define.
Otherwise, these methods are easy to apply under specified or over
specified clustering in practice.

2.4. Inter and intra message dependencies

The term ‘‘semantic deduction’’ refers to a process that infers inter-
and intra-message dependencies that exhibit the semantic meaning
of fields in messages. The term inter-message dependency represents
the relationship of a field that regulates the property of another field
in different messages, such as cookies (HTTP) and sequence number
(TCP). Intra-message dependency is a correlation between fields within
one message, for example, consistency fields as check-sum or direction
field as length and offset.

Although inter and intra-message dependencies play an essential
role in building the right messages and interactions, only a few existing
works can support such inferences. As a result of a massive amount of
5

possible dependencies, all approaches eventually leverage heuristics for
searching with the support of human interpretation. Finding the most
matches in a predefined set of rules is offered by PRISMA (Krueger
et al., 2012) and ScriptGen (Leita et al., 2005) for the semantic de-
duction. However, they require a few manual interpretation step to
establish a set of rules and can only cover a little semantics.

3. ReFSM System Architecture

The ReFSM processing model, consists of four major modules: data
pre-processing, message type identification, FSM construction and semantic
deduction, is illustrated in Fig. 1. First, the traffic traces of a particular
protocol have to be pre-processed in steps: message reassembly, session
extraction, and cleaning. The message type identification module uses
the Apriori keyword analysis to extract protocol keywords and to deter-
mine the number of the clusters before clustering messages into groups
by k-means algorithm. Each group is considered as a different message
type. The results are then fed to the FSM construction module to infer
the FSM by using initialization and K-Tail merging algorithm. After
the correct FSM has been determined, the semantic deduction module
extracts sub-datasets containing values of message fields in observed
messages. Further analysis is performed to search the correlation of
fields in the messages. The result, thus deduced, is used to form the
data guards on each transition in the EFSM.
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3.1. Problem statement

Given a set of network traces 𝑇 𝑟 containing sessions of target proto-
ol, the objective of our work is to reconstruct an accurate behavioral
odel for protocol in the form of EFSM with six-tuple (𝑆, 𝐼, 𝑂, 𝜎,𝑀 and
) information. The greater correctness and coverage scores reflect the
uality of the model.

Table 2 lists the notations used in this work. A packet, denoted
s 𝑃𝑘 is the primary element of communication between two entities.
he session 𝑆𝑒𝑠 = {𝑃𝑘𝑖|𝑖 = 1, 𝑁} is the ordered sequence of packets;

t is defined by its five-tuple source address, source port, destination
ddress, destination port and timestamp. The input in our system is the
etwork traces 𝑇 𝑟 = {𝑆𝑒𝑠𝑗 |𝑗 = 1, 𝐾} which consists of set of sessions.

We assume that each session only contains information of the target
protocol. The set of states, inputs, outputs, transitions, memory and
data guard of EFSM are denoted by 𝐼, 𝑂, 𝜎,𝑀 and 𝛥. The 𝐸𝐹𝑆𝑀 𝑖𝑛𝑓

epresents the inferred model reconstructed from network trace 𝑇 𝑟.
The 𝐸𝐹𝑆𝑀 𝑡𝑟𝑢𝑒 represents the actual model extracted from the exact
specification of the target protocol.

3.2. Data pre-processing module

This module takes traffic traces from TCP dump files as input. At the
beginning of this process, messages are parsed to extract sessions based
on the 5-tuple packet header fields: source address, source port, desti-
nation address, destination port and type of transport layer protocol.
The fragmented messages are then assembled, and the duplicates and
re-transmissions are removed. The remaining messages continue to be
parsed by ignoring unrelated messages; only the payloads containing
the information of the target application protocol are kept for further
analysis.

3.3. Message type identification module

Hybrid keyword-analysis and distance-based approaches are used to
increase the quality of message type identification.

Based on the modification of AutoReEngine (Luo and Yu, 2013),
the Apriori keyword analysis is used to identify the keywords. The
algorithm interactively finds the high frequency and close sequences of
bytes (or string) with stable position variance by the Apriori method.
In each iteration, only closed sequences with a frequency higher than
a pre-defined threshold are defined as keywords.

After the keywords extraction process, the keyword series observed
in the dataset can be used as the unique format of message types. Each
keyword series is a group. The extracted keyword series resolve the
limitation of having the number of clusters in advance of k-means. Also,
the number of clusters is also determined before the k-means algorithm.
The distance metric is based on the Jaccard index (Jaccard, 1912)
defined as 1− |𝑎

⋂

𝑏|
|𝑎
⋃

𝑏| where 𝑎, 𝑏 are the character array of the messages.
he issues of threshold and keyword misperception are resolved by the

terative k-means clustering based on the distance metric. The k-means
lustering algorithm helps to calibrate the keyword extraction in the
irst step. The undecided message sets are kept to overcome the issue
f a missing keyword so that the extraction process can be repeated.
ecause the size of the dataset is reduced, the keywords which have a

ow occurrence in the original dataset can be revealed. For instance, in
ig. 5, the keywords ‘‘QUIT’’ and ‘‘RNFR’’ are recovered in the second
teration. The procedure ends when the undecided set is empty or
6

cceptable.
3.4. FSM construction module

The goal of this module is to infer a conventional FSM model with
4-tuple: (𝑆, 𝐼, 𝑂, 𝜎) before the construction of the EFSM model. The
proposed methodology consists of two parts: the initialization and state
merging.

As network traces are collected from real-world traffic, some ses-
sions are incomplete, and messages have ordering issues due to packet
loss and network delay. Thus, data cleaning techniques such as se-
quence reorder and missing value inference needs to be applied to
achieve a better result for the FSM construction.

A message requested by a client and a response from a server can
be represented as (𝑖𝑘, 𝑜𝑘), where 𝑖𝑘, 𝑜𝑘 ∈ 𝑇 and 𝑇 is the set of message
ypes. The session can be represented as a sequence of messages 𝑆𝑒𝑠 =
𝑖1, 𝑜1), (𝑖2, 𝑜2)… (𝑖𝑚, 𝑜𝑚). In the first step of processing, a dataset is fed to
he initialization module to build a Prefix Tree Acceptor, which accepts
ll session sequences. For every session sequence, the process starts
rom the root and travels down along the tree. As shown in Fig. 3, a
ew path is created if there are no existing paths.

Subsequently, the initial FSM is interactively refined by merging
quivalent states based on the K-Tail mechanism. The intuition is that
he protocol state machine always exposes the same behaviors in the
ame state. In other words, the machine produces the same outputs
f the same inputs are submitted at a particular state. Because of
he deterministic characteristic of protocol state machines, the next
ubsequent states in K-Tail of two equivalent states can be merged as
llustrated in Fig. 4.

The state merging procedure is defined in Algorithm 1. For each
tate 𝑠 ∈ 𝑆, we define k-tail(s) as the set of next transitions. Pairs of

states are all compared iteratively to initialize a list of sets consisting
of equivalent states. Based on the list available, two sets are merged
if they share at least one state in common until no two sets can be
merged. At the end of this step, we obtain a list of sets consisting of
equivalent states, and no two sets consist of the same state. For every
set, a new state is created as the representative for all states. Then, for
every original transition, a new transition is added between two new
states. These represent the start and end states of the initial FSM.

Algorithm 1 K-Tail merging algorithm
Merge(𝑎, 𝑏) = 𝑎 ∪ 𝑏
Input :𝑆 set of states, 𝑇 set of transitions
Output: 𝑆 ′ , 𝑇 ′

Initialize 𝑄=𝜙
Foreach pair 𝑠𝑖, 𝑠𝑗∈𝑆 do

if (k-tails(𝑠𝑖) == k-tails(𝑠𝑗)) then 𝑄 ← 𝑄
⋃

(𝑠𝑖, 𝑠𝑗 )
While STOP_FLAG do

STOP_FLAG ← FALSE
Foreach 𝑞𝑖, 𝑞𝑗∈𝑄 do

if 𝑞𝑖
⋂

𝑞𝑗 ≠ 𝜙 then
STOP_FLAG ← TRUE
𝑄 ← 𝑄 − 𝑞𝑖
𝑄 ← 𝑄 − 𝑞𝑗
𝑄 ← 𝑄

⋃

𝑀𝑒𝑟𝑔𝑒(𝑞𝑖, 𝑞𝑗 )
Endwhile
Foreach 𝑞𝑖∈𝑄 do

𝑠′

𝑖←𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒()
𝑆 ′

←𝑆 ′⋃𝑠′

𝑖
Foreach 𝑡𝑗∈𝑇 do

𝑡′𝑗←𝑛𝑒𝑤𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛()
Foreach 𝑞𝑖∈𝑄 do

if 𝑡𝑗 .𝑠𝑡𝑎𝑟𝑡𝑆𝑡𝑎𝑡𝑒∈𝑞𝑖 then 𝑡′𝑗 .𝑠𝑡𝑎𝑟𝑡𝑆𝑡𝑎𝑡𝑒←𝑠′

𝑖

if 𝑡𝑗 .𝑒𝑛𝑑𝑆𝑡𝑎𝑡𝑒∈𝑞𝑖 then 𝑡′𝑗 .𝑒𝑛𝑑𝑆𝑡𝑎𝑡𝑒←𝑠′

𝑖

𝑇 ′
←𝑇 ′⋃𝑡′𝑗
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Table 2
Table of notations.

Category Notation Description

Entity
𝑃𝑘𝑖 The i𝑡ℎ packet
𝑆es = {𝑃𝑘𝑖|𝑖 = 1, 𝑁} The session is sequence of packets.
𝑇 𝑟 = {𝑆𝑒𝑠𝑗 |𝑗 = 1, 𝐾} Traces is set of sequences

Process

𝑆 = {𝑆𝑡} The finite set of states
𝐼 = {𝐼𝑙} The finite set of inputs
𝑂 = {0𝑘} The finite set of outputs
𝑀 = {𝑀𝑠𝑡 } The finite set of memories on states
𝛥 = {𝛱|𝛱𝑙 ∶ 𝐼 ×𝑀 → {0, 1}} The data guards
𝜎 The set of transitions
𝐸𝐹𝑆𝑀 𝑖𝑛𝑓 The six-tuple of inferred EFSM

Evaluation

𝑆𝐼 𝑡𝑟𝑢𝑒 The sequences of true model ‘s input
𝑆𝐼 𝑖𝑛𝑓 The sequences of inferred model ‘s input
𝐸𝐹𝑆𝑀 𝑡𝑟𝑢𝑒 The six-tuple of true EFSM
𝐸𝐹𝑆𝑀(𝑆𝐼) The sequences of output generated by submission 𝑆𝐼 to 𝐸𝐹𝑆𝑀
𝐶𝑜𝑣 = 𝐸𝐹𝑆𝑀 𝑖𝑛𝑓 (𝑆𝐼 𝑡𝑟𝑢𝑒 )

|𝑆𝐼 𝑡𝑟𝑢𝑒 |
The coverage: How many sequences of true input are accepted by inferred model.
Coverage ⇔ Probability (𝐸𝐹𝑆𝑀 𝑡𝑟𝑢𝑒 ⊂ 𝐸𝐹𝑆𝑀 𝑖𝑛𝑓 )

𝐶𝑜𝑟 = 𝐸𝐹𝑆𝑀 𝑡𝑟𝑢𝑒 (𝑆𝐼 𝑖𝑛𝑓 )
|𝑆𝐼 𝑖𝑛𝑓 |

The correctness: How many sequences of inferred input are accepted by true model.
Coverage ⇔ Probability (𝐸𝐹𝑆𝑀 𝑖𝑛𝑓 ⊂ 𝐸𝐹𝑆𝑀 𝑡𝑟𝑢𝑒)

𝑚 The average number of messages in a single cluster.
𝑛 The number of messages.
𝑙 The max length (bytes) of a single message.
𝑑 The total number of possible fields.
𝑡 The number of states in the Prefix Tree Acceptor (PTA).
Fig. 5. A typical example of the processing flow for message types identification with two iterations on the FTP dataset. After the first iteration, with high occurrence frequency,
the keyword of PORT, RETR, PASS and LIST are discovered. The rest of the keywords will be processed in the second iteration.
3.5. Semantic deduction module

After the 4-tuple (𝑆, 𝐼, 𝑂, 𝜎) finite state machine is constructed,
we start to generate the data guards and memories (𝛿,𝑀) for each
transition to form the 6-tuple (𝑆, 𝐼, 𝑂, 𝜎, 𝛿,𝑀) extended finite state
machine. In the beginning, the module identifies the type of message
and decompose the messages into fields. Then it validates the values of
each field to decide whether further actions should be performed.
7

3.5.1. Fields extraction
At this stage, the format of each message type is inferred to obtain

fields and the sub-dataset. For every cluster of different message types,
the multiple Needleman and Wunsch sequence alignment algorithm
(Bossert et al., 2014) is used to extract the format. As a result of
the high computational complexity of this algorithm, a progressive
alignment (Durbin et al., 1998), based on a pre-build guide tree to
decide the order, is used for the alignment process. The results are
composed of a consensus string, dynamic fields, and static fields. The
static fields are similar to those protocol keyword series extracted
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before. A sub-dataset for each dynamic field is built by obtaining all
observed values in the traces and grouping by the response message
type.

Take the FTP protocol for example, given a message of “PORT
5,240,180,205,56,56”, the FTP server identifies that the request com-
and is ‘‘PORT’’ and the data portion is “65,240,180,205,56,56”. The

irst four numbers of the data portion are identified as the encoding
f IP address and the remaining are the port number. The FTP server
urther checks that the port number is within the range of 0 and 255.
ased on this, a field extraction is adopted to build the sub-dataset
ontaining all values of fields before ReFSM uses Daikon to infer the
onstraints hold the overall values of a certain field. An illustrated
xample of PORT message alignment is given in Fig. 6. The left-hand
ide presents the messages in traces and the N&W alignment progress.
he right-hand side shows the sub-dataset of each field in the traffic
races corresponding to the response code of “200”. The sub-datasets
f fields are then mined to deduce the protocol semantics.

.5.2. Deriving data guards
Assuming that the message 𝑖 = [𝑓1, 𝑓2,… , 𝑓𝑡] consists of fields 𝑓𝑡.

he data predicate of a field is defined as

𝑟𝑢(𝑣) =

{

1 𝑖𝑓 𝑣 ∈ 𝐷𝑎𝑖𝑘𝑜𝑛 (𝑓𝑢)
0

. (1)

s mentioned above, the data guard 𝛿 act as predicate on the input
essage. Then the data guard function 𝛿(𝑖, 𝑚) can be defined as

(𝑖, 𝑚) = 𝛿(𝑓1, 𝑓2,… , 𝑓𝑘, 𝑚) (2)

𝑡
⋀

1
𝑃𝑟𝑢(𝑓𝑢)

𝑡
⋀

1
𝐼𝑡𝑟𝑢𝑣(𝑓𝑢, 𝑓𝑣)

𝑡
⋀

1
𝐼𝑡𝑒𝑢𝑚(𝑓𝑢, 𝑚). (3)

The parameters are listed as follows:

• 𝑃𝑟𝑢(𝑓𝑢) → 0, 1 is a data predicate of field 𝑓𝑢for data validation.
As illustrated in Eq. (1), this function checks whether the value
of field 𝑓𝑢 is valid or not.

• 𝐼𝑡𝑟𝑢𝑣(𝑓𝑢, 𝑓𝑣) → 0, 1 is a constraint between values of two fields
𝑓𝑢, 𝑓𝑣, which is also known as the intra-message dependency.

• 𝐼𝑡𝑒𝑢𝑚(𝑓𝑢, 𝑚) → 0, 1 is a constraint between value of field 𝑓𝑢 and the
memories 𝑚 stored in previous message. It is the inter-messages
dependency.

or example, the IP address and port number format in the argument
f FTP’s PORT command are regular expressions of the first type.
he check-sum and direction fields, such as length and offset, are the

ntra-message dependencies. The cookies in the HTTP protocol are
nter-messages dependencies.

.5.3. Constraints on fields
ReFSM relies on the Daikon (Ernst et al., 2001) algorithm to gener-

te the data guard of each field. Daikon deduces a broad set of values in
ub-dataset into a simpler invariant for ReFSM to use as a data guard.

Principally, 𝐷𝑎𝑖𝑘𝑜𝑛 ( ) takes the raw traces or the values of variables
𝑢 as input and finds the best matching properties (rules) for all
bserved values of variables. As shown in Fig. 7, Daikon worked on
he sub-dataset of field 𝑓1 of PORT command data and found that the
alue of 𝑓1 must be in the range of 0 and 255. Similarly, the arguments
f the TYPE command are in the enumerable set of {“A,” “I”}. If this
onstraint is not verified, the finite state machine may replies code of
00 instead of code of 200.
8

.5.4. Inter/intra message dependency
The proposed methodology continues to identify relations between

ields in one or two messages for the formulation of a data guards func-
ion. The core process leverages the Pearson coefficient representing the
trength of dependency on all pairs of attributes in the fields. Potential
andidates are then selected by using Daikon to infer the relationships.

At first, the dataset of attributes is prepared. The process consists of
he field’s value, length, and offset in the protocol message to capture a
ifferent kind of relationship. Note that other fields such as IP address
nd port number are also taken into account. All observed pairs of
ield attributes are computed interactively over sessions in the network
raffic traces.

Once this has been carried out, the Pearson product-moment corre-
ation coefficient 𝜌(𝑋, 𝑌 ) is computed based on each observed pair of
ield attributes (𝑋, 𝑌 ). The absolute value of the correlation coefficient
𝜌(𝑋, 𝑌 )| indicates the strength of the relationship. If the value is close
o one, there is generally a linear correlation between 𝑋 and 𝑌 . If the
alue is close to zero , they are mostly independent. For instance, the
orrelation coefficient value is close to one on the two attributes of
ontent-Length (HTTP header) and Length (IP header) because they
re linear-dependent. Finally, these dependencies are simplified by
pplying the Daikon algorithm so that a linear relationship of (𝑌 = 𝑎𝑋+
) can be derived. The dependencies between fields in the same message
re classified as the 𝐼𝑡𝑟 function. For the dependencies between fields
n two messages are classified as the 𝐼𝑡𝑒 function.

.5.5. Transform FSM to EFSM
As mentioned above, we need to infer the 2-tuple data guard and

emory (𝛿,𝑀) on each transition of the FSM. The data guard function
, as illustrated in Eq. (3), can be inferred by merging the 𝑃𝑟, 𝐼𝑡𝑟
nd 𝐼𝑡𝑒 functions. The values of fields are updated and kept in the
emory of each state for future interactions. A field’s values in previous
essages can be assigned and kept in the memories of states. However,

he size of the memory required is enormous, mainly because of the
equences of the messages that need to be processed. A simple heuristic
n the pair of inter-message dependencies can be adopted to further
educe the size of the memory. Initially the field values of every
essage are kept in the memory temporarily, and can be eliminated

f values are not used in the following messages. Once one of the
ields in the inter-message dependencies pairs appear in the future, the
orresponding value in the memory is kept. The memory in the states
ompletes the 6-tuple of EFSM.

. Evaluation

This section details the system setup and experimental results of the
roposed ReFSM. Its purpose is to evaluate the quality of the inferred
FSM on a given protocol from network traces.

For this evaluation, we use the precise as correctness score and recall
s coverage score. The sequence generated by the exact model 𝑆𝐼 𝑡𝑟𝑢𝑒
nd the inferred model 𝑆𝐼 𝑖𝑛𝑓 is handled by the model of 𝐸𝐹𝑆𝑀 𝑖𝑛𝑓

nd 𝐸𝐹𝑆𝑀 𝑡𝑟𝑢𝑒, respectively, to obtain output. The coverage score
epresents how the inferred model accepts many sequences of valid
nput. The correctness is used to represent how many sequences of
nferred input are accepted by the actual model. The acceptance means
he final state reachability of each input.

In order to measure the effectiveness of the proposed ReFSM, met-
ics of the pair-wise Precision and Recall (Hatzivassiloglou and McKe-
wn, 1993) values are used to evaluate the effectiveness of clustering
lgorithms for message type identification. For the quality of inferred
FSM, the correctness, coverage score, and behavioral accuracy are
dopted for comparison to the conventional FSM. AutoReEngine (Luo
nd Yu, 2013), relying on the Apriori algorithm (Agrawal and Srikant,
994) with a pre-defined threshold and the variances of position to
ilter out keywords is selected for the comparative study. The exper-
mental setup, including datasets and metrics, is presented first. Then,
he evaluation results and the analysis are described in detail.
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Fig. 6. An example of Needleman and Wunsch (N&W) alignment sequences for field extraction. After the alignment procedure, the format of the message type PORT becomes
𝑝𝑜𝑟𝑡 𝑓1 , 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5 , 𝑓6, where 𝑓𝑡 represents a variable. Those values of each field are used to build dataset for each field..
Fig. 7. An example presents the data predicates derived by Daikon. Daikon deduces the broad set of values on the left-hand side to a simpler invariant on the right side. In this
example, Daikon infers the valid value of 𝑓𝑡 in the range of (0,256), and the argument of TYPE message to be {‘A’,’I’}.
4.1. Experimental setup

The prototype of ReFSM is implemented in Java language of approx-
imately 6600 lines of code based on the libraries of jNetPcap, Libpcap
and Daikon (Ernst et al., 2001). The system is capable of accepting
network capture files in tcpdump format as input. The Daikon inference
engine is adopted to derive constraints as data guards on the transition
between states in the EFSM.

Four protocols of FTP, SMTP, BitTorrent, and PPLive are selected
to evaluate the methodology proposed. The datasets of network traces
are collected from publicly available and self-capture sources. The real-
world FTP traces are used from Lawrence Berkeley National Laboratory
(Pang and Paxson, 2003). The anonymized network traces consist of
more than 210,000 FTP messages of 1,800 sessions. However, these
traces still contain malformed messages, and extra steps to eliminate
illegal messages are needed. The FTP traces are merged with network-
ing traces captured from the NCTU university networks. The SMTP
and BitTorrent datasets also are captured from the university network.
Unveiling specifications of proprietary and closed protocols are one of
the motivations of this work, so that PPLive, one of the most popular
P2P video streaming application, is selected. Table 3 summarizes our
datasets used in the evaluation.

4.2. Pair-wise precision and recall

Pair-wise Precision and Recall is one of the most frequently-used
scores to evaluate the effectiveness of clustering. It is used to measure
the quality of the proposed message type identification method. We
denote 𝐸 as the sets of expected clusters, and 𝑅 as the set of actual
9

Table 3
Summary of datasets used in the system performance evaluation.

# Protocol Source Number of Messages Number of Sessions

1 FTP LBNL/Generated 217,281/5,235 1,841/563
2 SMTP Generated 4,862 426
3 BitTorrent Generated 3,289 260
4 PPLive Generated 8,092 281

clusters as a result. We calculate the true positives 𝑡𝑝 by counting the
number of shared pairs in 𝐸 and 𝑅. The false positives 𝑓𝑝 represents the
number of a pair in 𝑅 but not in 𝐸. The false negatives 𝑓𝑛 represents the
number of a pair in 𝐸 but not in 𝑅. Then, the precision and recall are
defined as 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝

𝑓𝑛+𝑡𝑝 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝
𝑓𝑝+𝑡𝑝 . The expected clustering

results are manually derived from the protocol specification. Taking
FTP as examples, 33 commands in RFC 959 (Postel and Reynolds,
1985) can be extracted as 33 clusters of FTP messages of client sides.
Similarly, there are 11 messages clusters in BitTorrent version 1.0 and
9 clusters in SMTP.

4.3. Coverage and correctness scores

In order to compare the performance of two FSMs, previous work
(Wang et al., 2011; Trifil et al., 2009; Krueger et al., 2012; Antunes
et al., 2011) relied on the correctness and coverage (also known as
Precision and Recall, respectively) to compare the inferred FSM and
the one deriving manually from protocol specification.

Coverage is how much of the specification has been inferred by the
model. It is calculated by the percentage of actual sessions (generated
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by the true model) accepted by the inferred model. Correctness is
the percentage of inferred sessions (accepted by the inferred model)
are genuinely accepted by the true model. The acceptance is defined
as the last state’s reachability. In this work, these scores are used to
demonstrate the proposed FSMs part of the inferred EFSM is at least
equivalent or better than those in other works on FSM inference.

4.4. Behavioral accuracy

The techniques of correctness and coverage are, however, inade-
quate to assess the effectiveness of the EFSM, because the data guards
are not covered and the outputs are not taken into consideration.

Produced at states that exhibit the protocol’s response when re-
ceiving the incoming request, the outputs are the only information
that can be observed to verify the internal states of machines. These
are required for the application of behavior-based models, such as
conformance test-case generation and fuzzing tools (Dahbura et al.,
1990). An illustrated example with the FTP protocol is given in Fig. 8.
The same input sequences are applied to both models of FTP protocol
and obverse the outputs sequences. The generated output code values
are {331,230,200,221} while the expected output code values are
{331,230,500,221}. The differences are the return codes of 500 and
200, where the port argument of the PORT command is invalid. The
evaluation of previous works failed in this case because both models
can still reach final states.

It follows then that, the metric inspired by the protocol conformance
test-case generation method and software specification mining theme
(Dallmeier et al., 2012) are adopted here. The set of test cases, con-
sisting of the input sequence and corresponding expected outputs, is
prepared in advance. These inputs are then submitted to the inferred
model to obtain the outputs and compare these to the expected out-
puts. As described, the index of behavioral accuracy, defined as 𝐵𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑇 𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 , is an important quality indicator for both syntax
and semantics of an inferred model of the protocol.

4.5. Test methodology

First, the actual models of protocols are needed to compare with
the inferred models. For known protocols, we manually derived the
accurate models from standard specifications. The model of FTP was
extracted from RFC 959. The models of BitTorrent and SMTP were
derived from specifications. We adopted the model in the work of
Veritas (Wang et al., 2011) for the test because no PPLive standard
specification is available. To obtain an accurate result and eliminate
the test set dependencies, the k-folds cross-validation (Kohavi, 1995),
one of the most popular evaluation method in machine learning, was
applied. The set of traces was randomly split into 𝑘 partitions. Over
𝑘 iterations, one partition was kept to generate test cases and the
remaining partitions were used to infer the models. The final score is
the average of scores of 𝑘 iterations.

To calculate the coverage score, we needed a set of positive ses-
sions, i.e., a sequence of accepted inputs by the actual model. For
example, a session that consists five FTP messages of “USER anony-
mous,” “PASS <password>,” “PORT 140,113,207,14,88,90,” “RETR
/pub/info2017” and “QUIT” (denoted as sequence of {USER, PASS,
PORT, RETR, QUIT}) was accepted as the model that reached the final
state. These sessions were submitted to the inferred models to calculate
the number of sessions to be accepted.

To compute the correctness score, both the positive sessions and
the negative ones rejected by the actual model were necessary. Thus
we had to generate a negative session beforehand, one that was still
accepted by our model but could potentially be rejected by the actual
model. For this, we randomly selected and mutated positive sessions
similar to the methods presented in work by Antunes et al. (2011).
Principally, the mutation of accepted sessions such as swapping mes-
sages, deleting and adding more messages is repeatedly performed
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t

to generate rejected sessions. For instance, the session {USER, PASS,
PORT, RETR, QUIT} is accepted but the sessions {PASS, USER, PORT,
RETR, QUIT} and {USER, PASS, PORT, QUIT, RETR} were rejected.
Finally, to compute the correctness score, the test set consisting of both
accepted and rejected sessions were submitted to inferred models. The
ratio of accepted to rejected sessions affect the correctness score. In this
work, the accepted and rejected session ratios of 4:1, 9:1 and 2:1 were
used. Due to limited space, the results shown in this paper were based
on the ratio of 4:1.

5. Cost analysis and comparison

Most of the protocol reverse engineering tools are developed toward
a specific design targets such as the inference of message format,
reconstruction of the behavior model, or both of them for different use
cases (Kleber et al., 2019). Table 1 lists the comparisons of selected
works in protocol reverse engineering from network traffic traces. In
particular, the core algorithms utilized for the message type identifica-
tion are listed since it is the typical processing step commonly found in
these works of literature.

The proposed ReFSM architecture, as presented in Fig. 1, realizes
four of the primary processing steps targeting the use case of network
test case generation. In the beginning, the system conducts the packet
pre-processing to obtain the protocol messages. The cost is proportional
to the number of messages 𝑛.

The ReFSM system uses two techniques: Apriori algorithm and K-
means for the message type identification. The time complexity of the
K-means clustering is 𝑂(𝑛2). For the Apriori algorithm, the complexity
is 𝑂(

∑𝑙
2 𝑘(𝑘 − 2)|𝐶𝑘|), where |𝐶𝑘| denotes the number of items in the

set containing sub-sequence of k-byte keywords (Tan et al., 2006)
and l is the max-length of a message. Fortunately, armed with the
pruning method of a specific threshold, the message type identification
can be processed efficiently. The CSP is derived from the Generalized
Sequential Pattern (GSP) (Srikant and Agrawal, 1996), an optimized
Apriori algorithm, so that the keywords found by Apriori cover all
keywords found by CSP with less computational complexity. In general,
the empirical evaluation using real-world data sets indicates that the
processing time of GSP is faster than that of the Apriori algorithm
(Agrawal and Srikant, 1994). ReverX (Antunes et al., 2011) adopted
the frequency labels, a keyword-based analysis methodology to con-
struct the Prefix Tree Acceptor (PTA) for message type identification.
NetJob (Bossert et al., 2014) used the K-mean algorithm with the
N&W alignment score as distance metric. The cost of calculating the
distance metric is 𝑂(𝑙2), where 𝑙 is the maximum length of a message.
In ScriptGen (Leita et al., 2005), the authors used the same methods
of Netjob with modified N&W alignment. Overall, the complexity is
still the same. PRISMA (Krueger et al., 2012) took up the k-medoids
clustering algorithm with Jaccard index as distance metric. The cost of
Jaccard index is 𝑂(𝑙2).

The finite state machine construction process consists of two signif-
cant steps: Prefix Tree Acceptor (PTA) generation and state merging.
he system has to process every message to generate the PTA and
herefore, the complexity is 𝑂(𝑛). In the step of state merging, the
ystem searches all pairs of most likely equivalent states. It takes 𝑂(𝑡2),
here 𝑡 is the number of states in the PTA. In the worst-case scenario,
equals 𝑛 (the number of messages), and we can approximate the

complexity to be 𝑂(𝑛2).
The progressive Needleman and Wunsch sequence alignment is

onducted for clusters in the process of semantic deduction. A cluster
onsists of a set of messages having a similar structure. For the N&W
lgorithm, the complexity is 𝑂(𝑚3𝑙2), where 𝑚 is the average number of
essages in a single cluster and 𝑙 is the max length (bytes) of a single
essage. Overall, for all clusters, we can do the sequence alignment in
arallel to reduce the processing time to 𝑂(𝑛𝑚2𝑙2).

Finally, in order to find the message dependencies, the system has

o compute the Pearson correlation coefficient for every possible pair
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Fig. 8. An example of behavioral accuracy score.
Table 4
The processing time (minute) of the tasks for different protocol packet traces. The
experiment is conducted in a workstation consists of an Intel Core™ i5-3210M dual-core
CPU with 8 Gbyte of system memory. The summary of datasets is shown in Table 6.

Tasks/Processing Time (minutes) FTP SMTP BitTorrent PPLive

Data Preparation 4 1 1 3
Message Type Identification 32 10 10 18
FSM Construction 12 2 2 4
Semantic Deduction 50 12 18 20
Total 98 25 31 48

of fields. The time complexity is approximately 𝑂(𝑑2), where 𝑑 is the
total number of possible fields. In the worst-case scenario, 𝑑 equals to
𝑛𝑙.

Let us take the processing of the FTP protocol trace as an example.
There are a total of 200,000 messages (n) distributed in 27 clusters. The
max length of a single message (𝑙) is 40 bytes. Therefore, the number of
messages in each cluster (𝑚) is approximately 7400. The total number
of possible fields (𝑑) is approximately 80. Table 4 lists the processing
time of each major task for different protocol packet traces. The most
time-consuming task is the progressive N&W sequence alignment in the
semantic deduction module.

6. Results and discussions

In this section, we present our evaluation results for FTP, SMTP, Bit-
Torrent, and PPLive protocols. Fig. 9 represents the inferred extended
finite state machines (EFSMs). As mentioned before, the quality of
message type identification has a major impact on the inferred models
so that we analyze it first before discussing the quality of inferred
EFSMs.

6.1. Message type identification accuracy

The proposed ReFSM detected all of 26 FTP commands on the
server-side. The remaining commands, a total of 33, according to those
in RFC 959, could not be extracted because of the absence of traces.
A total of nine SMTP keywords were detected. Table 5 shows the lists
of keywords extracted from the network traces in human-readable form
instead of the byte sequence. In the case of BitTorrent and PPLive proto-
col, the keywords are given in the form of byte sequences. For example,
the first sequence {0 × 13, 0 × 42, 0 × 69, 0 × 74, 0 × 54, 0 × 6f,
0 × 72, 0 × 72, 0 × 65, 0 × 6e, 0 × 74, 0 × 20, 0 × 70, 0 × 72, 0 × 6f,
0 × 63, 0 × 6c} is marked as keyword HANDSHAKE in the BitTorrent
protocol (The BitTorrent Protocol Specification, 2017). Except for the
HANDSHAKE messages, the other keywords always start with a four-
byte sequence and one following byte identifying the message type.
For the PPLive, ReFSM identified eight clusters corresponding to eight
keywords, as shown in Table 5. The third byte of each keyword reveals
the type of certain message. This result is comparable to protocol
state messages of PPLive in Veritas (Wang et al., 2011). The keywords
analysis result of SMTP leads to an ideal precision score. However,
the recall was 97% because two isolated clusters of EHLO and HELO
messages were miss-classified from the same cluster.
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By contrast, the messages of BITFIELD and REQUEST in BitTorrent
protocol were similar. The proposed method was unable to find the
keywords to distinguish and merge them into one cluster. Thus, the
precision was only 94%, while recall was nearly perfect.

For all protocols, as shown in Fig. 10, values of pairwise precision
and recall of ReFSM were higher than those of AutoReEngine. The
iterative keyword analysis was helpful in finding the missing keywords
of FTP; the K-means clustering algorithm helped calibrate the issue
of over-specific extracted keywords. Thus, both precision and recall
values of FTP were considerably improved. Similarly, the results of
PPLive were higher than those in the AutoReEngine approach. For
SMTP and BitTorrent, ReFSM remained of the same accuracy as that
for AutoReEngine.

6.2. Quality of inferred EFSM

In this section, we analyze the quality of the inferred EFSM. First,
we present the discussions on the effectiveness of using data guard
and examine the impact of K-Tail parameters on the conciseness of
final EFSM, and we then discuss the correctness, coverage scores, and
behavioral accuracy score.

Table 3 summarizes the number of states of our EFSM for each
protocol dataset with the K-Tail parameter. The EFSM models with our
ReFSM with K-Tail of one are concise at all protocols. The number of
states in the ideal models of FTP, SMTP, BitTorrent, and PPLive are
5, 8, 5 and 9. The K-Tail merging mechanism significantly reduces
the number of states, and the K-Tail parameter impacts only on the
conciseness and not on the quality of the inferred models. Both inferred
models of K-Tail revealed similar behaviors that are analyzed in the
next section.

6.2.1. Effectiveness of data guard
With the help of Daikon and Pearson product-moment correlation,

ReFSM can infer the constraints on the value of fields and the value of
fields across the messages. This constraint can be a form of data guards
that check whether the field’s value is valid.

Take the FTP as an example; the TYPE messages have the format
"TYPE x," and the valid set of x is the enumerable set of {A, I}. If the
value of x is not in {‘A’, ‘I’} the incoming message will be rejected,
and the return messages will be 500. If x is on the list, the protocol
model will reply message with a code of 200. Another significant
inferred data guard of FTP is in the PORT messages, with the format
𝑝𝑜𝑟𝑡 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, and the valid set of 𝑓𝑖 is between 0 and 255. It
means the data guards will check whether 𝑓𝑖 is in the range from 0 to
255. If not, it will reject the incoming message and return a message
500 code.

Furthermore, ReFSM uses the Pearson product-moments to find the
pair of fields/variables that have a strong correlation; it helps to find
the dependencies between fields. In the case of PORT messages of FTP,
ReFSM found that 𝑓1, 𝑓2, 𝑓3, 𝑓4 have to be equal to the IPv4 address of
servers. The data guards of this state will compare 𝑓1, 𝑓2, 𝑓3, and 𝑓4 to
the server’s IPv4 address.

In the case of SMTP, ReFSM found that the valid value of arguments
after "MAIL FROM" or "MAIL TO/RCPT TO" have to contain an "@"
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Fig. 9. The inferred extended finite state machines (EFSMs) for the protocols of FTP, SMTP, PPLive and BitTorrent.
Fig. 10. The precision and recall results of message type identification.
Table 5
The results of keyword analysis on the protocols of FTP, SMTP, PPLive, and BitTorrent.

Protocol Extracted keywords #clusters/#true
clusters

FTP USER, PASS, PORT, OPTS, MODE, CWD, PASV, RETR, TYPE, HELP, SITE, STOR, SIZE, MKD, CLNT, ALLO,
REST, STAT, MDTM, NLST, LIST, RNFR, RNTO, DELE, ABOR, QUIT

27/26

SMTP EHLO, HELO, MAIL FROM: , RCPT TO: , DATA, QUIT, RSET, AUTH, User, Pass 10/9

BitTorrent {0 × 13, 0 × 42, 0 × 69, 0 × 74, 0 × 54, 0 × 6f, 0 × 72, 0 × 72, 0 × 65, 0 × 6e, 0 × 74, 0 × 20, 0 × 70,
0 × 72, 0 × 6f, 0 × 63, 0 × 6c} (HANDSHAKE),
{0 × 00, 0 × 00, 0 × 00, 0 × 01, 0 × 00} (CHOKE),
{0 × 00, 0 × 00, 0 × 00, 0 × 01, 0 × 01} (UNCHOKE),
{0 × 00, 0 × 00, 0 × 00, 0 × 01, 0 × 02} (INTERESTED),
{0 × 00, 0 × 00, 0 × 00, 0 × 01, 0 × 03} (NOT INTERESTED)
{0 × 00, 0 × 00, 0 × 00, 0 × 05, 0 × 04} (HAVE),
{0 × 00, 0 × 00, 0 × 00, 0 × 01, 0 × 05} (BITFIELD),
{0 × 00, 0 × 00, 0 × 00, 0 × 0d, 0 × 06} (REQUEST),
{0 × 00, 0 × 00, 0 × 00, 0 × 0d, 0 × 08} (CANCEL)

9/10

PPLive {0xe9, 0 × 03, 0 × 49, 0 × 01, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 98}
{0xe9, 0 × 03, 0 × 4a, 0 × 01, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 01}
{0xe9, 0 × 03, 0 × 50, 0 × 00, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 9b}
{0xe9, 0 × 03, 0 × 51, 0 × 01, 0 × 98, 0xab}
{0xe9, 0 × 03, 0 × 53, 0 × 00, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 5b}
{0xe9, 0 × 03, 0 × 61, 0 × 01, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 01}
{0xe9, 0 × 03, 0 × 62, 0 × 01, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 01}
{0xe9, 0 × 03, 0 × 63, 0 × 01, 0 × 98, 0xab, 0 × 01, 0 × 02, 0 × 01}

9/8
such as "MAIL FROM x@y," where x and y are strings with at least one
character (not empty string).
12
In BitTorrent protocol, after a client sends the first HANDSHAKE
messages (the message that starts with the keywords mentioned in



Journal of Network and Computer Applications 171 (2020) 102819Y.-D. Lin et al.

s

c
o
s
a
i
F
a
t
“
a

a
o
p
m
r

Table 6
Summary of immediate results of EFSM inference for the protocols of FTP, SMTP, PPLive and BitTorrent.

Protocol No. of Sessions No. of PTA nodes K-Tail No. of States No. of Transitions No. of Data guards

1000 9168 k=1 5 28
k=2 782 867

FTP 750 8552 k=1 5 28 35
k=2 650 760

500 4958 k=1 5 28
k=2 470 512

SMTP 426 45 k=1 8 8 3
k=2 45 64

BitTorrent 260 32 k=1 5 10 5
k=2 32 48

PPLive 281 82 k=1 9 14 0
k=2 92 82
Section 6.1), the EFSM will hold 20 following bits as memories. When
a client receives the response messages from servers, the data guards
will compare the string of 20 bits in response messages with the value
in memories of the state that were previously sent before transiting the
states.

6.2.2. Coverage and correctness of inferred EFSMs
The parameter of k-folds equal to five is applied to assess coverage

and correctness. It means that 20% of sessions are held in traces to test.
The ratio of accepted and rejected is 4:1. The results, shown in Fig. 11,
confirm the quality of our FSM part of EFSM. Almost 100% of the states
in the specification are covered. This is mainly due to the simplicity
of SMTP and the richness of the dataset. Also, all valid sessions are
accepted by the inferred model.

Similarly, the coverage of BitTorrent and PPLive is also high. The
cognitive complexity of FTP with a broad set of commands leads to
the lowest coverage at 91%. There are some commands (transitions)
in the test set that are randomly neglected in the training set so that
the ReFSM is not able to learn. The correctness score is never below
90%, which guarantees that the models inferred are close to the actual
models.

6.2.3. Behavioral accuracy
In the same way, the k-folds value of five was used to calculate the

behavioral accuracy. Primarily, the ReFSM relies on Daikon to generate
the data guard, including the valid syntax of data and the dependencies.
Table 6 lists the number of data constraints extracted by ReFSM from
datasets of four protocols. Among many data constraints of FTP, the
constraints on the PORT command’s arguments are significant. The first
four numbers, separated by a colon, should be mapped to the IP address
of the server and the port number should be higher than 255. One of the
detected data guards of BitTorrent is that the first 20 bytes of hash_id
hould be consistent with a HANDSHAKE message.

To show the effectiveness of the extended part (data flow) of EFSM,
omparative study of behavioral accuracy with FSM only was carried
ut. Basically, FSMs of existing works only represent control flow
o that the outputs are determined only by the input message type
nd without considering the data flow portion. For example, with the
ncoming message of “PORT 65,240,180,205,0,0,” shown in Fig. 8, the
SMs always produced the response code “200” (to notify successful
ction), based on the recognition of PORT command. At the same
ime, the EFSMs, with the help of the data guard, check the data of
65,240,180,205,0,0” and return the code “500” to notify unsuccessful
ction.

For FTP protocol, shown on the right-hand side of Fig. 11, 89% on
verage of generated outputs of inferred EFSMs match the expected
utputs. The FSM without data guard and memories only correctly
roduced 78% of outputs. It means that the behavior of the inferred
odel is nearly comparable to the actual model in each state. The

emaining errors are related to the information that is absent in traces.
13
For instance, with a received message of “SIZE reference.tar.gz,” the
inferred EFSM outputs the message code of “213” and the size of the
file. However, the actual reply message is “550” because there is no
such file in this system. This characteristic depends on the environment
of the system and cannot be inferred from network traces. The results
of 93% and 98% indicate that ReFSM can construct faithful EFSM
of the corresponding BitTorrent and SMTP protocols. The ReFSM can
adequately expose the same behaviors to the actual model manually
derived from the specification.

The design of PPlive is based on two protocols: channels list distri-
bution protocol and streaming protocols. The channels list distribution
protocol relies on the HTTP protocol to send a zip file from a server
to a client. This zip file consists of many records of TV channels and
peers watching the channels. After unzipping the file and obtaining
peer-related information from specific channels, PPLive client uses the
streaming protocol to register itself to the overlay network and start to
exchange the video chunk. The protocol adopts an encryption mech-
anism to prevent it from being identified and supervised by the ISP.
Therefore, our method fails for this protocol as other statistic approach
methods do and the behavioral accuracy of PPLive is not provided.

6.2.4. Impact of trace size
In this work, the metrics of coverage and correctness are used to

demonstrate the proposed EFSM reconstruction is at least equivalent or
better than those in other works. Coverage is calculated by the percent-
age of actual sessions accepted by the inferred model. Correctness is the
percentage of inferred sessions that are genuinely accepted by the true
model, where the acceptance is defined as the last state’s reachability.

Therefore, in the training phase, the more sessions in a network
trace, the more faithful a model can be obtained. However, it leads
to an increase in processing time for learning. To evaluate the system
performance, files of FTP traces with different sizes are fed into ReFSM
to infer the EFSM models and compute the correctness, coverage, and
behavioral scores. The size of the training dataset was increased by
10% in each run. Fig. 12 shows the relationship between the number
of sessions and the quality of the models. The ideal number of sessions
for the EFSM model inference is approximately 400.

7. Conclusion

In this work, we propose the ReFSM, a novel analysis methodology
that infers the behavioral model of protocols in the form of an extended
finite state machine (EFSMs) from network traces. In particular, the
data flow, represented by the data guard and memory on the transitions
of states, is taken into account for the construction of the EFSM. It
is different from the previous work on traditional reverse engineering
problems where only the control flow information is considered. The
inferred models are equipped with the constraints on data values.
Daikon deduces those constraints using correlation analysis techniques.
Furthermore, ReFSM leverages the K-Tail mechanism, which is widely
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Fig. 11. The coverage, correctness and behavioral accuracy of inferred EFSMs. Coverage is calculated by the percentage of actual sessions (generated by the true model) accepted
by the inferred model. Correctness is the percentage of inferred sessions (accepted by the inferred model) that are genuinely accepted by the true model.
Fig. 12. The score of correctness and coverage represents the quality of an inferred
model based on the number of training traces. Coverage is calculated by the percentage
of actual sessions accepted by the inferred model. Correctness is the percentage of
inferred sessions that are genuinely accepted by the true model. The ideal number of
sessions for EFSM model inference is approximately 400 as the correctness score grows
up to 90%.

used in software behavior inference to enhance the accuracy of classical
FSM (control flow) operations.

A prototype was developed based on Java language and evaluated
with network traffic traces of four protocols: FTP, SMTP, PPLive, and
BitTorrent. Several performance metrics were also used to evaluate the
results. Since the message type identification is defined as an unsu-
pervised clustering process, a pair-wise precision and recall score was
adopted. For the quality of inferred models, the correctness and cov-
erage were used to evaluate the part of classical FSM. The behavioral
accuracy was measured for the evaluation of the EFSM.

The preliminary experimental results indicate the excellent quality
of the inferred EFSMs. For all the protocols tested, BitTorrent, FTP and
SMTP, the proposed EFSM reached a two-fold increase in behavioral
accuracy compared to that of the FSM of AutoReEngine. Leverage on
the iterative keyword analysis and k-mean clustering, the precision and
recall values of message type identification are, at least, well above 94%
and 96%, respectively. Moreover, armed with the extra data guards, the
scores of coverage and correctness attained 93% and 98% for BitTorrent
and SMTP.

The high scores of pair-wise precision and recall also represent the
effectiveness of our hybrid method for messages clustering. The mes-
sages are correctly identified and grouped based on the specifications
required. This accurate result is the premise on which to construct the
behavioral models. It guarantees that at least ReFSM is capable of in-
ferring the corrected FSMs. Based on the excellent behavioral accuracy
scores, the ReFSM is capable of capturing the behavior of incoming
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messages for a given protocol. It provides the model with output
response messages to enable network systems administrators to conduct
network testing and manage security operations more effectively.

7.1. Limitations

There are four main limitations associated with the design of
ReFSM: traces dependency, key–value pair protocols, encrypted pro-
tocols and a pre-defined set of data guard forms. As the construction
of the behavioral model depends on the network traffic traces, the
proposed inference method cannot identify the message type if no
particular messages of this type appear in the traces. Therefore, it is
difficult to infer a complete model of the protocol if the individual
states cannot be reached as a result of an incomplete collection of
messages in the traces.

The encryption process changes the statistical properties of the pro-
tocol so that the proposed inference methods cannot accurately extract
the keywords and identify the message types. Therefore, ReFSM cannot
infer the behavioral model of encrypted protocols. ReFSM leverages the
N&W sequence alignment algorithm to extract the fields and format
of messages before performing the semantic deduction. In practice,
this method is efficient in HTTP and FTP protocols where payloads
are encoded in the form of a key–value pair. It is also suitable for
protocols, such as BitTorrent, where each byte is implied as a field.
Another limitation is associated with using the Daikon algorithm to
infer the data guards in the protocol message. The essence of the data
guard inference is to formulate a function which maps data value into
a Boolean value of true or false. Daikon can only infer limited types
of constraints such as range, constant, and enumerative set of values. It
is, therefore, a challenging task to find all possible data guards for all
protocols.

7.2. Future work

We are currently working on a comparative study with the existing
works to verify our method. In particular, the proposed methodology
is applied to test case generation tools and stateful fuzzing applications
to assess the usefulness of our inferred EFSMs. Some enhancements
regarding the prototype of test case generation, based on the inferred
EFSMs model with the unique input/output (UIO) (Dahbura et al.,
1990) sequence, can be pursued to showcase such capability. Moreover,
Walkinshaw et al. (2016) proposed the machine learning techniques to
infer data guard instead of using Daikon in the ReFSM. Data guard is in
the form of a Decision Tree binary classifier that constructed by C4.5
algorithm. The techniques provided by Foster et al. (2018) can also be
adopted to build more efficient and accurate EFSM.

In addition to the N&W sequence alignment algorithm, readers are
recommended to pursue the adoption of methods (Cui et al., 2007;
Bermudez et al., 2016) which are able to carry out format extractions
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with higher accuracy for more protocols. The machine learning classi-
fier (Walkinshaw et al., 2016) producing binary output labels can also
be utilized as a potentially improved solution for the construction of
data guards.
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