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ABSTRACT Local access data networks (LADNs) are promising paradigms for reducing latency, decreasing
energy consumption, and improving the quality of service (QoS) of fifth-generation (5G) radio access
networks (RANs) that support vehicle-to-everything (V2X) communications. Remote radio heads (RRHs)
that support V2X applications can be turned on or off depending on traffic demand to achieve optimal
resource management and save energy by minimizing the activation of LADN servers in cloud-RANs
(C-RANs). In this study, we investigated the problem of how to manage resources optimally in LADN while
guaranteeing V2X QoS requirements. We formulated the resource allocation problem as an optimization
problem to reduce the number of active RRHs subject to uplink bandwidth constraints. We calculated
intercell interference (ICI) and uplink signal-to-interference-plus-noise ratio (SINR) to appropriately assign
vehicles to RRHs.We solved the resource management problem by using an optimal algorithm and proposed
heuristic algorithms to address the complexity of large-scale scenarios. The numerical results demonstrated
that our model could efficiently utilize resources and provide optimal associations between vehicles and
RRHs, thereby leading to energy savings. In particular, optimal associations could save up to 70% of energy
in a scenario consisting of hundreds of vehicles. The computation time for a small-sized problem was
approximately 60 ms, which means that the proposed model can be suitable for real-time control. Even on a
large scale, the running time for a scenario with thousands of vehicles is still short. Therefore, the impact of
vehicles’ density is not harmful to the scalability of the whole approach.

INDEX TERMS 5G, local access data network (LADN), optimization, resource management, vehicle-to-
everything (V2X) communications.

I. INTRODUCTION
The fifth-generation (5G) radio access networks (RANs) are
expected to provide ultra-high data rate connectivity of user
equipment (UE) with ultra-low latency. The third-generation
partnership project (3GPP) specifies service requirements
to enhance the quality of service (QoS) of 5G RANs
in supporting vehicle-to-everything (V2X) scenarios that
include vehicle platooning, remote driving, automated coop-
erative driving, collective perception of the environment, and
collision avoidance [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

V2X communications enable information sharing and
exchanging between a vehicle and any entity that may affect
its functionality. Hence, vehicles can cooperate with other
vehicles, pedestrians, devices, networks, and infrastructures.
The goal is to improve road safety by reducing vehicular
accidents using safety messages [2]. The society of auto-
motive engineers (SAE) defines safety messages as basic
safety messages (BSMs) that contain information about the
vehicle’s state which includes location, speed, acceleration,
and direction. BSMs regularly sent ten times a second to
enable V2X applications [3].

V2X communications also enhance the efficiency of
traffic flows by using effective route planning and guidance.
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FIGURE 1. Overview of the architecture of LADN.

3GPP identifies four types of V2X communications: vehicle-
to-network (V2N), vehicle-to-vehicle (V2V), vehicle-to-
pedestrian (V2P), and vehicle-to-infrastructure (V2I), where
infrastructure elements are, e.g., road-side units (RSUs) or
traffic lights. The four types of V2X applications provide
intelligent services to end users. These services encompass
real-time traffic and routing, collision avoidance, traffic
signal timing, priority, and safety alerts [4].

Local access data network (LADN) is a promising
paradigm for providing high-efficiency V2X communica-
tions and meeting 5G V2X service requirements [1], i.e., the
maximum latency should be 10 - 25 ms, and the minimum
availability should be 90%–99.99%. LADN reduces latency,
minimizes energy consumption, and improves the QoS for 5G
networks. It achieves these service requirements by pushing
the computing and networking services into proximity of
UEs. LADN is defined as a multi-access edge computing
(MAEC) paradigm that provides a distributed computing
environment that brings network capabilities closer to UE,
which leads to deploying services with minimum delays [5].

Fig. 1 illustrates an overview of LADN, where LADN is
deployed near the edge and close to the UEs, while the
UEs are located at the LADN service area. Furthermore, 5G
new base stations (gNBs) are located at the network edge,
RSUs are deployed closer to the UEs, and remote radio heads
(RRHs) are identical to the remote antennas of RSUs.

Resource management is considered a challenge that plays
a central role in minimizing the activation of LADN servers
in Cloud-RAN (C-RAN), saving energy, and executing tasks
that need ultra-low latency requirements [6]. In 5G RAN
supporting V2X applications, the problem which affects
the network functionality is how to efficiently allocate
the available radio resources, i.e., resource blocks (RBs),
in LADN [7]. Various tasks required by V2X applications
have different resource requirements, including communica-
tion resources for task transmission [8]. Tasks completion
of V2X applications can be realized as locally computed,

offloaded to neighboring vehicles, or offloaded to LADN.
Task offloading depends on task data size, vehicle mobility,
and latency [9].

RRHs could be turned off or activated subject to the
traffic demand to optimize resource management and save
energy [10]. To manage the resource efficiently, assignments
between UEs and RRHs should be proper concerning
inter-cell interference (ICI) and signal-to-interference-plus-
noise ratio (SINR) management. The interference results
not only from LADN but also from other terminals of the
cellular network (e.g., other network slices) and could lead
to performance degradation in the vehicular environment. ICI
management plays a role in ensuring satisfactory link quality.
SINR values determine the channel quality indicator (CQI)
used to build a mapping table that associates UEs with RRHs.
Optimal associations between UE and RRH produce less
traffic in vehicular networks leading to a minimized number
of active RRHs and optimized resource management.

In this work, we investigate the problem of how to
perform an effective resource allocation in LADN to optimize
resource utilization and save energy while guaranteeing the
QoS requirements for V2X communications represented by
uplink data rates, SINR values, and available uplink RBs.
We focus on the resource management problem in V2X
communications by analytically calculating the ICI and
uplink SINR to minimize energy consumption subject to
uplink bandwidth constraints. We propose a mathematical
formulation of the resource management problem as an
optimization problemwith an objective function to reduce the
number of active RRHs.

In particular, given the number of RRHs and vehicles,
we need to determine the optimal assignments between
vehicles and RRHs, and the state of specific RRHs to
minimize the number of activated RRHs while satisfying
the constraints on the number of RBs and data rates.
We formulate the optimization problem as a 0-1 integer
linear programming (ILP) problem. Then, we use the CPLEX
suite [11] to solve our ILP problem and evaluate the proposed
model. Moreover, to deal with the complexity of large
scenarios (hundreds of RRHs and thousands of vehicles),
we present solutions with heuristic algorithms [12] that
produce near-optimal solutions without the guarantee of
finding the optimal ones. Since our optimization problem is
structurally matching the bin packing problem,1 known to be
NP-complete, we apply the following heuristic algorithms:
First-Fit (FF), Best-Fit (BF), First-Fit-Decreasing (FFD), and
Best-Fit-Decreasing (BFD). The main contributions of this
paper are summarized as follows:

1) We investigate the problem of how to realize effective
resource management in 5G RAN supporting V2X
communications and formulate it as an optimization
problem to minimize the number of turned-on RRHs
subject to uplink bandwidth constraints.

1Where we have items with various volumes and the goal is to assign those
items into a minimum number of bins of limited capacities.
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2) We use the CPLEX suite to obtain optimal solutions
to our resource allocation problem for small and
medium scenarios. We suggest solutions with heuristic
algorithms to deal with the complexity of large-scale
optimization problems.

3) We confront the proposed heuristic algorithms using
the theory of a fully polynomial time approximation
scheme (FPTAS) class. We also compare our proposed
algorithms with two meta-heuristic algorithms, particle
swarm optimization (PSO) and genetic algorithm
(GA), concerning the number of activated RRHs and
computation time.

4) We compare optimal vs. strongest-signal vehicle asso-
ciations and optimal vs. heuristic solutions to assess our
proposedmodel by analyzing energy consumption. The
results imply that our proposed model can efficiently
allocate resources and save energy while guaranteeing
the QoS requirements.

5) We analyze the impact of the required data rate and
the density of vehicles on the number of active RRHs.
We examine the effect of vehicle density on the
computation time of optimal and heuristic solutions.

This paper is extended from an earlier version presented in
IEEE 92nd VTC 2020-Fall [13], with extensions on SINR
constraint, heuristic algorithms evaluation, and scalability
analysis. The main differences are as follows:

1) The number of symbols is changed to 14 to realize 5G
subcarriers. New obtained values of RB data rates and
required RBs.

2) SINR’s constraint is added to make the mathematical
model practical and efficient.

3) New obtained optimal and heuristic solutions.
4) Evaluation of the proposed heuristic algorithms using

FPTAS class and implementing PSO and GA algo-
rithms.

The remainder of this paper is organized as follows.
Section II summarizes the related studies on resource
allocation for 5GV2X communications. Section III describes
the configuration of the system model, including an example
of V2X network topology. In Section IV we present the
calculations of SINR, ICI, and required RBs, formulate the
optimization problem, and propose the heuristic algorithms.
The numerical results are presented in Section V. Conclu-
sions are drawn in Section VI, and future work is pointed out
therein.

II. RELATED WORK
Numerous research papers examined the resource alloca-
tion problem for 5G V2X communications and vehicular
networks. Table 1 summarizes the objectives, constraints,
decisions, and solutions covered in the references in this
section.

In [14], the authors proposed two novel algorithms, the
least delete (LD) algorithm, and the largest-first rounding
with capacity constraints (LFRCC) algorithm, to achieve
energy saving by minimizing the number of turned-on RRHs

while meeting the data requirement of vehicles and the avail-
able capacity of RRHs. LD algorithm efficiently allocated
the resources and had a lower computation complexity than
the LFRCC algorithm, which derived solutions closer to the
optimal ones. The authors of [15] minimized the required
number of RRHs in C-RAN while guaranteeing the QoS of
each user by proposing a low-complexity algorithm based
on the successive elimination of RRHs and simultaneously
solving the optimal deployment problem. They adopted an
abstraction of the average traffic demand in a small area,
referred to as a traffic demand node (TDN). The authors
of [16] conducted a resource allocation to maximize the
sum ergodic capacity of V2X communication links while
guaranteeing the latency constraint expressed by the latency
violation probability. They decomposed the spectrum and
power allocation problem into two sub-problems to obtain
a global optimum solution in polynomial time. In [17], the
authors investigated a modified switching cost model to
jointly optimize a switching on/off strategy and user associa-
tion policy with the consideration of the user’s QoS, intended
to maximize the energy efficiency (EE) of dense cellular
networks with partial base stations (BSs). They proposed a
two-step sub-optimal algorithm to optimize BSs’ working
states and user association policy. Authors of [18] introduced
an approach to power allocation with EE optimization
in a cellular device-to-device-based V2X communication
network. The optimization problem is simplified to a power
allocation problem by exploiting Lagrangian dualmethod and
solved using a three-loop iterative algorithm.

Thework of [19] aimed to investigate a joint spectrum shar-
ing and power allocation scheme for a heterogeneous vehicu-
lar environment. These authors formulated a low-complexity
resource allocation problem to maximize the sum rate of
both cellular and vehicular UEs for a V2X communications
scenario while guaranteeing a fair coexistence among all
UEs. In [20], the authors proposed a two-stage scheme
of centralized resource allocation and distributed power
control to meet the requirement of the new radio (NR) V2X
mode 1. They employed the non-orthogonal multiple access
(NOMA) technologies in vehicle groups. The novel approach
maximized the system capacity and minimized the power
consumption of the 5G vehicular network. They proposed
a graph-based matching approach to allocate the resources
for the centralized method and a non-cooperative game to
control the power of vehicle groups for the distributed one.
The authors of [21] introduced a novel resource allocation
strategy based onCloud-V2X communications to enhance the
reliability and latency of vehicular networks. The resource
allocation problem is formulated as an optimization problem
to minimize the overall latency by allocating the radio
resource to the vehicular network.

The work in [22] proposed maximizing the EE of
ultra-dense networks by optimizing the user association and
small-cell BS on/off strategies. The optimization problem is
formulated as a non-convex nonlinear programming problem
and then decomposed into two sub-problems and resolved
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individually as a user association strategy and a small-cell
BS on/off strategy. In [23], the authors proposed a multi-level
algorithm to solve the coordinated scheduling and power
control optimization problem and improve the EE in C-RAN.
The objective is to maximize the EE subject to constraints
that provide full-frequency reuse among RRHs. The RRHs
would be switched off or on according to the distribution
of the users. The authors of [24] proposed the notion of a
virtual BS formed by allocating virtualized network resources
and formulated the energy-efficient optimization problem
using an ILP to minimize the total energy consumption
in C- RAN. They proposed novel energy-saving schemes
for the network planning and traffic engineering stages,
with a solution algorithm that minimized the number of
active baseband process units (BBUs). The work in [25]
formulated a joint computation and ultra-reliable and
low-latency communication (URLLC) resource allocation
strategy for MEC-based V2X communications, considering
the significance of reliability and delay in vehicular net-
works. The authors formulated a joint power consumption
optimization problem to reduce inter-cell interference and
maximize the throughput while satisfying reliability and
network stability. In [26], the authors proposed a BS
switching and sleep mode optimization method intending
to minimize the power consumption in wireless networks
while ensuring that the arriving user traffic is sufficiently
covered. They used the long-short-term memory (LSTM)
prediction model and solved the Lyapunov optimization
problem to obtain the optimal BS switching solution. The
work in [27] formulated the energy-saving problem of BSs
in cellular networks as a minimum energy cost problem.
The authors developed the minimum cost flow algorithm to
solve the optimization problem by choosing which BSs to
be active during a period. They proposed a scheme in two
steps to minimize the total energy cost of BSs: minimizing
the energy cost of all BSs in a time unit independently
without considering the cost of switching BS on/off and the
switching cost of the state transitions for BSs over the entire
period.

Although numerous studies have investigated the resource
management problem in vehicular networks, the resource
assignment between UEs and RRHs based on ICI and
SINR has not been addressed extensively. These concern the
calculations of ICI and uplink SINR since the management of
ICI and SINR leads to optimal associations between vehicles
and RRHs produces less traffic in the vehicular network
and minimizes the number of active RRHs. These lead to
optimized resource management. For example, although [15]
and [23] proposed efficient resource management solutions,
the work in [15] did not consider the interference from
other RRHs, and the adopted abstraction could not precisely
represent the traffic demands of users which led to failure
in ensuring the QoS requirements of all TDNs. The work
in [23] did not consider a constraint on the available
capacity of the RRH. In addition, the proposed algorithm
indicates all assignments, which might lead to immense

FIGURE 2. A small example of V2X network topology.

computational complexity when considering a large-scale
scenario. Furthermore, previous works did not consider the
QoS guarantee of all UEs in the optimization objectives. Only
the work in [14] considers the allocation problem in the V2X
environment, as this work does.

The differences between our work and [14] are in the
interference model and the QoS requirement of each vehicle.
Our work differs from [14] by finding the optimal solutions
while guaranteeing the data rates of vehicles. Therefore,
the main differences are summarized as follows: (1) We
analytically calculate the values of ICI and uplink SINR.
(2) We formulate the resource management problem as
an optimization problem to minimize energy consumption.
(3) We determine the optimal associations between UEs and
RRHs according to the values of ICI and SINR. (4) We
minimize the number of active RRHs subject to uplink
bandwidth constraints represented by ICI and SINR.

III. SYSTEM MODEL
We consider a V2X computing infrastructure consisting of
sets of UEs and gNBs, where the gNB is the 3GPP 5G next-
generation BS which provides new radio communication
capabilities towards the UEs. V2X computing infrastructure
is C-RAN-based and constituted by densely deployed RRHs
connected to a pool of BBUs, whereas the BBU provides
signal processing, and RRH provides radio frequency pro-
cessing. LADN can be deployed near the gNBs to execute
the communication offloaded tasks, whereas the uplink traffic
is sent to RRHs. To achieve optimal resource management
and save energy, RRH, and its corresponding BBU can be
turned on or off depending on the uplink traffic and under the
constraint of uplink bandwidth requirement.

In our model of the system under study, as shown in
Fig. 2, we consider a network topology consisting of LADN,
RRHs (co-located with gNBs in crossroads), and vehicles
(presented on a regular grid of streets). These vehicles
need to send sensor information to LADN so that a local
digital map can be constructed, which implies that the uplink
traffic (i.e., the communication offloading) is offloaded to
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TABLE 1. Comparison of research publications.

RRH. In this model, we skipped modeling the mobility
and considered snapshots of vehicles’ positions. We neglect
the influence of ICI by assuming a perfect orthogonal
frequency-division multiplexing (OFDM) reception. The
interference specified in this model occurred due to the
cellular nature of LADN being a virtual part of a cellular
network. So, the interference could happen from other
terminals that belong to the vehicular environment and not
necessarily being a part of LADN (e.g., other network
slices).

In our model, we focused on turning the RRH on or
off without specifying the energy model within the RRH

(e.g., energy consumption due to the use of RBs or energy
consumption at BBU), which is not of the central concern,
so the energy consumption occurs only when the RRH is
turned-on. In particular, we investigate a scenario consisting
of a set of RRHs (n = 1, 2, . . . ,N ) and a set of vehicles
(v = 1, 2, . . . ,V ). Each RRH n has a number of available
RBs per time slot, denoted by MRBn. Each vehicle v, if it is
associated with RRH n, will require several RBs per time slot
for sending sensing data, denoted by Rn,v. The required RBs
depend on SINR values and uplink data rates.

Table 2 summarizes themathematical notations used in this
paper.
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TABLE 2. Mathematical notations used throughout the paper.

IV. PROBLEM FORMULATION
Given the number of RRHs with available uplink RBs and
the number of vehicles with required RBs for sending data
to RRHs, we need to decide whether to turn the RRHs on or
off and determine the optimal associations of vehicles with
RRHs. Our goal aims at reducing the number of turned-on
RRHs depending on the required tasks and subject to the
uplink bandwidth constraints exemplified by ICI and SINR.

SINR can be expressed as the signal power divided by the
noise power plus the interference power of other signals in
the network. SINR can be calculated from the transmission
power of the vehicle and the interference power level of other
interfering RRHs in the network. SINR values for the uplink
transmission can be obtained as

SINRn,v =
Pvd−α

n,v

NOC + Isum
, (1)

where Pv is the transmission power of the vehicle v, dn,v is
the distance between the vehicle v and the center of RRH n,
α is the attenuation factor, i.e., the path loss, and calculated
from COST 231-Hata Model [28], NOC is the power spectral
density of a white noise source, and Isum is the aggregated
uplink ICI.

Assuming that the network model is loaded fully with
traffic, the usage of omnidirectional antennas, and the regular
coverage pattern occurs, we could approximate the uplink ICI
from the RRH nwith a log-normal distribution by analytically
determining the statistical parameters [29]. Therefore, the

aggregated uplink ICI, Isum, is approximated with another
log-normal distribution and calculated according to

Isum =

N∑
i=1,i!=n

Ii, (2)

where Ii is the mean value of the uplink ICI of the interfering
RRH i and for each RRH, only a single interference source is
considered since only one vehicle is scheduled per RB. Ii is
computed as2

Ii =

∫ 1

0

∫ 2π

0

PvC−(α+1)rα+1

π (
√
r2 + 4 + 4r cos θ)α

drdθ, (3)

where C is the RRH coverage in kilometers, r is the distance
from the transmitter to the receiver in kilometers, θ is the
vehicle’s angle to the directed line connecting the target RRH
to the interfering RRH, and (r2 + 4 + 4r cos θ )1/2 denotes
the distance between the target RRH and the interfering
RRH [29].

After calculating SINR values for each vehicle, we need to
calculate RB data rate according to SINR value, CQI index,
and efficiency from themapping table that determines various
CQI indices based on different modulation orders, SINR
ranges, and efficiencies [30]. We use this mapping to obtain
the number of necessary RBs. For the sake of simplicity,
we consider both UEs and gNBs forming the network
working in single-input-single-output (SISO) mode [30]. The
CQI index is calculated at the UE and reported to the gNB.
We use the CQI to determine the efficiency and calculate the
data rate of an RB. An RB per time slot of 1ms consists
of 12 subcarriers of 15 kHz wide in frequency, and each
subcarrier consists of 14 symbols. Accordingly, the data rate
of an RB is calculated as

RB_data_rate (bits/ms) = 12 × 14 × efficiency. (4)

After calculating the data rates of RBs, we can determine
the number of RBs (Rn,v) requested by each vehicle to execute
its uplink task. Rn,v depends on the uplink and RB’s data
rates, i.e., UL_DRv and RB_data_rate. We use the following
formula.

Rn,v =
UL_DRv

RB_data_rate
. (5)

A. OPTIMIZATION TASK
Considering N RRHs with a number of available uplink RBs
(namely MRBn) and V vehicles with a number of required
RBs per time slot for sending the sensing data from vehicle
v to the RRH n (namely Rn,v), we need to determine yvn
which denotes whether the vehicle v is associated with RRH
n or not; and xn which indicates whether to turn the RRH
n on or off. The whole optimization problem minimizes
the number of active RRHs while satisfying the constraints

2In this paper, we focus on the optimization problem rather than on the
interference and SINR. For further details, we refer the reader to [29].
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on Rn,v and MRBn. We formulate it as min
∑N

n=1 xn, subject
to

V∑
v=1

yvnRn,v ≤ MRBn, n = 1, . . . ,N , (6)

V∑
v=1

yvnSINRn,v ≥ H , n = 1, . . . ,N , (7)

N∑
n=1

yvn = 1, v = 1, . . . ,V , (8)

xn ≥ yvn, n = 1, . . . ,N ; v = 1, . . . ,V , (9)

xn, yvn ∈ {0, 1}, n = 1, . . . ,N ; v = 1, . . . ,V .

(10)

The above-mentioned objective function is subject to the
following constraints: constraint (6) ensures that the number
of required RBs per time slot to uplink data from vehicle
v to the RRH n should not exceed the number of available
uplink RBs at the RRH n, constraint (7) indicates that vehicle
v can be assigned to RRH n if the predicted SINR is larger
than the assumed threshold H , constraint (8) states that each
vehicle v should be associated with one and only one RRH,
constraint (9) ensures that vehicle v can be connected to RRH
n only if RRH n is turned on, and constraint (10) indicates the
lower and the upper bounds of the binary decision variables.

B. HEURISTIC ALGORITHMS
We apply heuristic algorithms to address the complexity
of the ILP problem for the big-sized scenario. Heuristic
algorithms produce competitive and fast but not necessarily
optimal solutions. Since our ILP problem is structurally based
on the bin packing problem, known to be NP-complete,
we apply the following heuristic algorithms (implemented
in MATLAB): First-Fit (FF), Best-Fit (BF), First-Fit-
Decreasing (FFD), and Best- Fit-Decreasing (BFD) [31].

Wemodel the resource allocation problem as a bin-packing
problem to efficiently associate vehicles with a set of RRHs
and minimize the number of used RRHs. The resource
allocation problem depends to a great extent on the size of
the tasks requested by vehicles. Hence, it is necessary to
determine if the problem is online or offline because the latter
case, we can provide better assignments (we have an overall
view and plan). In the online allocation problem, we obtain
the tasks requested by the vehicles separately and assign
vehicles to RRHs.We can apply FF and BF algorithms to deal
with online allocation problems. In the offline management
problem, we know the tasks requested by vehicles at the
beginning of the assignment. We can use FFD and BFD
algorithms to solve offline management problems [32].

The FF algorithm (Alg.1), being the basis for the other
algorithms, works as follows: initially, all RRHs (counter-
parts of bins in bin packing problem) are empty. We start by
assigning vehicles to the first RRH with sufficient capacity,
i.e., available RBs. Then, we update the available RBs of
RRH. If the RRH has no uplink RBs, we find a new RRH

Algorithm 1 First-Fit & First-Fit-Decreasing

for All ReqRB v = 1,2,. . . ,V do
for All RRHs n = 1,2,. . . ,N do

if First RRH n has a sufficient capacity then
Assign ReqRB v to RRH n.
Update RRH n remaining capacity.

else
Find a new RRH n and assign ReqRB v to
it.
Update RRH n remaining capacity.

For the First-Fit-Decreasing algorithm:
1- Sort ReqRBs in descending order.
2- Apply First-Fit Algorithm to the sorted ReqRBs.

Algorithm 2 Best-Fit & Best-Fit-Decreasing

for All ReqRB v = 1,2,. . . ,V do
for All RRHs n = 1,2,. . . ,N do

if RRH n has the minimum remaining
capacity then

Assign ReqRB v to RRH n.
Update RRH n remaining capacity.

else
Find a new RRH n with remaining
capacity that best match the size of
ReqRB v and assign ReqRB v to it.
Update RRH n remaining capacity.

For the Best-Fit-Decreasing algorithm:
1- Sort ReqRBs in descending order.
2- Apply Best-Fit Algorithm to the sorted ReqRBs.

and repeat the procedure until all vehicles are assigned. For
the FFD algorithm, we first sort the vehicles’ required RBs
in descending order then we apply the FF algorithm. In the
BF algorithm, we find the RRH whose remaining capacity
best matches the size of the required RBs, and then assign
vehicles to that RRH (i.e., the best RRH with the least
available RBs). For the BFD algorithm, we first sort the
vehicles’ required RBs in descending order then we apply the
BF algorithm.

The complexity of the heuristic algorithms is analyzed
as follows. In the worst case of the FF algorithm, a new
RRH is turned on to serve each associated vehicle with its
ReqRBs. Thus, the loops iterate over all ReqRBs and RRHs,
and the time complexity is is O(V 2). The FFD algorithm
is influenced significantly by the execution time of the FF
algorithm, so the time complexity of the FFD algorithm is
O(V 2). For the BF algorithm, all RRHs are examined to
determine the minimum remaining capacity that best matches
the ReqRBs of each vehicle. Hence, the time complexity is
O(V 2). Since the BFD algorithm is dominated by the running
time of the BF algorithm, the time complexity of the BFD
algorithm is O(V 2).
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TABLE 3. Evaluation parameters.

V. RESULTS AND EVALUATION
In this section, we evaluated our resource management
problem under three scenarios of V2X network topologies
with diverse sizes: 1)

1) A small-sized scenario (up to tens of RRHs and
vehicles): we set the number of vehicles to 10, 20, 30,
40, and 50, and the number of RRHs to 4, and fixed
locations.

2) A medium-sized scenario (tens of RRHs and hundreds
of vehicles): we set the number of vehicles at 100,
200, 300, and 400, and the number of RRHs at 40, and
random locations.

3) A big-sized scenario (hundreds of RRHs and thousands
of vehicles): we set the number of vehicles at 1000,
2000, 3000, and 4000, and the number of RRHs at 400,
and random locations.

We compared the optimal and default associations of
vehicles. We also compared the optimal solutions and the
solutions obtained by implementing the above-mentioned
heuristic algorithms. Furthermore, we analyzed the impacts
of the required data rate and the density of vehicles on the
number of turned-on RRHs. Finally, we examined how the
vehicles’ density impacts the computation time of the optimal
and heuristic solutions.

First, we randomly generated the positions of vehicles
and RRHs within the V2X network topology and calculated
the SINR values of vehicles using (1) and depending
on the vehicles’ distances from each RRH. Then, we obtained
the efficiency values from the mapping table [30] and
calculated the data rate of RBs. Finally, we determined the
number of required RBs to serve the requested uplink data
rate by vehicles.

For simplicity and evaluation, we assumed that the vehicles
have similar transmission power (Pv = 23 dBm), similar
uplink data rates (UL_DRv = 1Mb/s), and the maximum
number of RBs per each RRH equals 50 (MRBn = 50RBs).
We chose these values according to the service requirements
for 5G V2X services and to guarantee the QoS requirement
for V2X communications expressed by SINR values and
uplink data rates. Table 3 lists the parameter values used in
the calculations and evaluations.

A. OPTIMAL VS. DEFAULT ASSOCIATIONS
In this subsection, we compared the optimal cf. strongest-
signal associations of vehicles to investigate how much
energy was saved by our proposed model. We obtained
the optimal association from the optimal solution of our
resource management problem. We got the strongest-signal
association according to the default association, where the

FIGURE 3. Comparison of optimal vs. strongest-signal associations.

vehicles are associated with the serving RRH depending on
their SINR values. Thus, in the strongest-signal association,
the vehicle with the higher SINR value would be connected
to the nearest RRH.

Fig. 3 shows the optimal association vs. the strongest-
signal association. We observed that, as the number of
vehicles increased, the optimal association was turning on
fewer RRHs to serve the tasks of vehicles than the strongest-
signal one, which led to energy savings. For the medium-
sized scenario, the energy saved by the optimal assignment
ranged from 30% to about 70%, according to the number
of active RRHs. In addition, for the scenarios consisting of
20, 30, and 40 vehicles, the energy saved by the optimal
association was 50%, and the number of turned-on RRHs was
2. Furthermore, for the scenario consisting of 10 vehicles,
the energy saved by the optimal assignment was 75%. These
imply that the optimal association turned on fewer RRHs than
the default one, which led to saving energy.

Table 4 demonstrates the optimal vs. default associations in
the number of activated RRHs and used RBs. We noticed that
the default assignment turned onmore RRHs than the optimal
one but used fewer RBs. The default association consumed
more energy than the optimal association, especially in the
medium-sized scenario. For 100 vehicles with aggregated
uplink data rate equal to 100 Mb/s, the strongest-signal
association turned on 34 RRHs compared to 9 RRHs
turned on by the optimal assignment. Furthermore, for the
scenario consisting of 400 vehicles with aggregated uplink
data rates equal to 400Mb/s, we observed that the default
assignment consumed about 70% more energy than the
optimal association, depending on the number of activated
RRHs. Both associations used almost the same number
of RBs, i.e., the default association used only about 19%
fewer RBs than the optimal assignment. Thus, the optimal
association activated fewer RRHs than the default one and
minimized energy consumption.

B. OPTIMAL VS. HEURISTIC SOLUTIONS
In this subsection, we compared the optimal vs. heuristic
solutions for small and medium sizes scenarios. We obtained
the optimal solution by solving the resource allocation
problem using the CPLEX solver and the heuristic solution by
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TABLE 4. Comparison of optimal vs. default associations.

TABLE 5. Comparison of optimal vs. heuristic solutions.

implementing the heuristic algorithms using MATLAB [33].
More precisely, we compared the number of turned-on RRHs,
the number of served vehicles per each turned-on RRH, and
the number of RBs used by each activated RRH. In addition,
we analyzed the obtained heuristic solutions for the large-
scale scenario. Furthermore, we evaluated the four heuristic
algorithms using FPTAS to check the approximation level and
implemented PSO and GA algorithms to analyze the number
of active RRHs and the computation time.

Table 5 shows the number of activated RRHs and the
RBs used by active RRHs. We observed that the number of
RRHs turned on by the heuristic solutions was competitive
compared to the ones provided by the exact solutions of
the optimization problem. We obtained competitive results
since we did not consider the constraints on SINR and
vehicles’ associations when we generated solutions based
on the heuristic algorithms. Furthermore, we noticed that
the results obtained from the heuristic and optimal solutions
were similar only in the number of active RRHs, and the
differences were in the number of vehicles served per each
active RRH and in the capacity of the active RRHs, i.e., the
number of RBs used by each active RRH.

Fig. 4 demonstrates the optimal vs. heuristic solutions
concerning the number of vehicles served by each turned-on

FIGURE 4. Served vehicles: optimal vs. heuristic for small size scenario.

RRH in the small-sized scenario. Although the heuristic
algorithms turned on the same number of RRHs as the
optimal results, we observed the differences in the number
of served vehicles which varied among each activated RRH.
For the 20 vehicles scenario, the optimal solutions associated
18 with the first active RRH and 2 with the second active
RRH, while the FF and BF algorithms assigned 19 vehicles
to one turned-on RRH and one to the second turned-on RRH,
and the FFD and BFD results connected 18 with the first
active RRH and 2 with the second active RRH. Also, for the
scenario of 40 vehicles, we noticed that the optimal solutions
scheduled the vehicles equally among the two activated
RRHs, i.e., 20 per each turned-on RRH. Thus, the optimal
associations of vehicles with RRHs led to efficient RRHs
management and energy saving.

Fig. 5 compares the optimal and heuristic solutions for
the number of RBs used per each active RRH to serve
100 vehicles. Even though the heuristic and the optimal
solutions provided equivalent results in the number of active
RRHs, we noticed a difference in the capacity of each
activated RRH by applying various algorithms. We also saw
that the number of used RBs obtained by applying the FF
and BF algorithms was the same, and the results obtained
by applying the FFD and BFD were the same. The heuristic
algorithms performed similarly because the behavior of FF
and BF did not depend only on the chosen strategy but also
on the fact that they followed certain similar constraints. For
instance, a new RRH is active only when a vehicle is not
fit in any preactivated RRH. Furthermore, we observed that
the optimal solutions provided a balanced utilization of the
total number of RBs used among each active RRH, which
led to efficient utilization of RRHs’ capacity and dynamic
management of the resource.

Table 6 shows the results of solving the optimiza-
tion problem for the big-sized scenario by applying the
above-mentioned heuristic algorithms. The maximum num-
ber of turned-on RRHs depended on the number of vehicles
and their aggregated uplink data rate. The number of utilized
RBs relied on the vehicles’ density and associations with the
serving RRHs. We noticed that the four heuristic algorithms
produced comparable results related only to the number of
activated RRHs, while the differences were in the number
of vehicles served per each active RRH and in the capacity
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FIGURE 5. Number of RBs used per each RRH for 100 vehicles scenario.

TABLE 6. Number of active RRHs for big size scenario.

of the active RRHs, i.e., the number of RBs used by each
active RRH. We also observed that FFD and BFD algorithms
turned on fewer RRHs for 1000, 3000, and 4000 vehicle
scenarios, which implies that sorting of the vehicles yields
better matching and fewer active RRHs, which led to energy
saving.

We evaluated the proposed heuristic algorithms by check-
ing the level of the approximations obtained using the
results related to the [fully] polynomial time approximation
algorithms (FPTAS) class, known for providing effective
methods to solve the bin packing problem. Given an
NP-complete minimization problem with an objective
function of f , algorithmA belongs to FPTAS if, for any error
parameter ε > 0, it is an ε-approximation scheme. That is,
for any given input of the minimization problem, A returns
a solution s, such that f (s) ≤ (1 + ε)f (s∗), where: s∗ is the
optimum solution for the input of the minimization problem,
and (1 + ε) represents the approximation factor determining
how good the approximation algorithm is [12].

Furthermore, A’s running time depends polynomially on
the input size of the minimization problem and on ⌊1/ε⌋ [12].
In our case, we let x be the number of RRHs obtained by
the heuristic algorithms, and x∗ be the optimal number of
required RRHs. We say that the heuristic algorithms have an
approximation factor (1 + ε) if they provide the following
upper bound: x ≤ (1 + ε)x∗.
Fig. 6 shows the relationship between the optimal and

heuristic solutions corresponding to the error parameter ε.
Notice that the heuristic algorithms guarantee that the upper
bound holds for ε = 1. This implies that the proposed
heuristic algorithms are approximation schemes with (1+ε)-
approximation factor.

FIGURE 6. Optimal and heuristic solutions corresponding to ε.

FIGURE 7. Total requested RBs vs. heuristic solutions.

In our resource allocation problem, given v vehicles
with requested RBs ReqRB1, . . . , ReqRBv ∈ (0, 1],
noting that ReqRB depends on which RRH the vehicle
is associated with, we needed to find an assignment
of unit-sized RRHs that minimized the number of used
RRHs. If the proposed heuristic algorithms used x RRHs,
then at least (x − 1) RRHs are more than half full.
Therefore,

v∑
i=1

ReqRBi >
x − 1
2

. (11)

Fig. 7 illustrates the relationship between the heuristic
solutions and the summation of the RBs requested by the
vehicles. We noticed that the heuristic algorithms guarantee
that (11) holds for all heuristic solutions, x RRHs, and
any total number of requested RBs. Hence, the proposed
heuristic algorithms are approximation schemes with an
approximation factor. Since the summation of the requested
RBs is a lower bound on the optimal number of RRHs x∗,
x − 1 < 2x∗, i.e., x < 2x∗

+ 1 or x ⩽ 2x∗, and so
the proposed heuristic algorithms have a 2-approximation
factor.

We then compared the proposed heuristic algorithms
with the following meta-heuristic algorithms; particle swarm
optimization (PSO) and genetic algorithm (GA) implemented
in MATLAB [34]. PSO is based on a swarm of solutions.
A solution is called a particle that can follow its trajectory,
a previous one, or the swarm’s trajectory. GA is a stochastic
search method using the mechanics of natural selection and
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FIGURE 8. Comparison of active RRHs for PSO, GA, FF, BF, FFD, and BFD.

natural genetics. GA is based on a population of solutions and
searches the solution space using the survival of the fitness-
based strategy.

Fig. 8 and Fig. 9 show the comparison of active RRH and
computation time, corresponding to the proposed heuristic
algorithms and the implementation of PSO and GA. We set
the population size to 40 and 50 for GA and PSO,
respectively. We set the number of iterations to 100 for the
small-sized problem and 1000 for the medium-sized and
big-sized scenarios. For the small-sized problem, the four
heuristic algorithms turned on the same number of RRHs
as both PSO and GA, but the heuristic algorithms ran faster
than PSO and GA. For the medium and large scenarios with
hundreds and thousands of vehicles, the heuristic algorithms
turned on fewer RRHs and ran faster than PSO and GA,
which implies that the proposed heuristic algorithms outper-
formed PSO and GA in generating near-optimal solutions
during a shorter time. The performance improvement is
because the heuristic algorithms are problem-dependent and
adapted to the bin packing problem, while GA and PSO
are problem-independent algorithms that have difficulty in
formulating the suitable fitness function and determining
parameters such as the population size and crossover.
Furthermore, GA turned on fewer RRHS and ran faster than
PSO, which implies that GA performed better than PSO.
PSO and GA needed more time to find near-optimal solutions
compared to the performance of the four proposed heuristic
algorithms.

C. IMPACT OF REQUIRED DATA RATES
In this subsection, according to the optimal results obtained
using CPLEX, we analyze the impact of the data rate
required by each vehicle on the number of active RRHs
for the small and medium sizes scenarios. The number
of active RRHs depended on the requested RBs needed
to realize vehicle tasks and the vehicle associations with
RRHs.

Fig. 10 shows the impact of the required uplink data rate
on the number of turned-on RRHs. The labeled numbers
above the curve indicate the number of turned-on RRHs.
Intuitively, as the requested data rate increases, so is the
number of active RRHs. We observed that 1 RRH turned on

FIGURE 9. Comparison of computation time for PSO, GA, FF, BF, FFD, and
BFD.

FIGURE 10. Required data rate vs. active RRHs.

to serve vehicles with aggregated uplink data rates equal to
10Mb/s. We also noticed that 28 RRHs were activated to
realize aggregated uplink data rates of 400Mb/s. To serve
vehicles with uplink data rates varied from 10 to 400Mb/s,
the number of activated RRHs varies from 1 to 28, which
implies that the optimum resource allocation and vehicles’
associations with the serving RRHs led to fewer active RRHs
and saved energy.

D. IMPACT OF VEHICLES DENSITY
In this subsection, according to the optimal solutions to
our resource management problem, we report the impact
of the number of vehicles on the number of turned-on
RRHs for network topologies of small and medium sizes.
The number of turned-on RRHs relied on the vehicles’
density per each RRH and assignments between vehicles and
RRHs.

Fig. 11 shows the impact of the density of vehicles on
the number of active RRHs. The labeled numbers above the
curve indicate the number of active RRHs. Intuitively, as the
vehicles’ density increased, so was the number of turned-
on RRHs. We observed that although the vehicles’ density
increased 40 times, the number of active RRHs increased
28 times, which implies that the optimal associations
of vehicles with serving RRHs led to efficient resource
utilization and energy saving by minimizing the number of
turned-on RRHs.
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FIGURE 11. Number of vehicles vs. active RRHs.

TABLE 7. Elapsed time, measured in seconds, of solving the resource
management problem.

E. IMPACT ON COMPUTATION TIME
In this subsection, we compare the execution times of solving
the optimization problem and running heuristic algorithms
for the small, medium, and big sizes scenarios. We ran each
implementation ten times and calculated the average elapsed
time.

Table 7 shows the impact of the number of vehicles on
the computation time measured in seconds. We compared the
elapsed time of solving the resource management problem by
implementing optimal and heuristic solutions. We obtained
the optimal results for the small-sized problem in a reasonable
execution time of around 60ms. For the scenarios consisting
of 300 and 400 vehicles, we observed that the elapsed time
was too long because the CPLEX solver had a choice of
algorithms for solving linear programming problems, and the
execution time would depend not only on the problem size
but also on the selected algorithm. In addition, the values
of computation time for the big-sized scenario were not
available because of memory shortage (a typical phenomenon
for large instances). Furthermore, the heuristic algorithms
provided competitive solutions to the optimal ones in a
suitable implementation time.

TABLE 8. List of abbreviations.

VI. CONCLUSION
We investigated the problem of resource management in
5G LADN supporting V2X communications. The resource
management problem was formulated mathematically as
an optimization task based on ILP and solved using a
professional solver. We applied heuristic algorithms to
provide solutionmethods for large instances.We achieved the
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optimal solutions for the small-sized scenario in appropriate
implementation times. The proposed heuristic algorithms ran
efficiently even with the big-sized problem and produced
solutions that approximated the optimal ones in suitable
acceptable execution times of seconds.

Our numerical results demonstrated that the proposed
model is suitable for V2X applications and provides dynamic
resource management depending on the uplink traffic while
reducing energy consumption. Therefore, the proposedmodel
could efficiently utilize resources and save energy while
guaranteeing the QoS requirements of V2X communications.
For the small-sized problem, the computation time was
around 60 ms, which meant we could apply the proposed
model in real-time applications. The energy saved by the
optimal associations between vehicles and RRHs was up to
70%, which meant the proposed model provided efficient
resource utilization leading to energy saving.

For future work and further research, additional constraints
could be added to make the model more realistic (e.g.,
mobility of vehicles and latency). Communication and
energy models could be considered to enhance the network
performance (e.g., energy consumption due to using RBs
or energy consumption at BBU). In addition, the impact of
more factors on model performance could be investigated
(e.g., CQI distribution and power of RRHs). Also, working
with non-regular environments (e.g., existing town street
networks) would be interesting. Furthermore, the situation
when LADN is in the vicinity of both RSUs and gNBs
could be analyzed with queuing modeling by determining the
optimal ratio of the sensing data transferred to the gNB.
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