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Summary

Equal‐cost multipath (ECMP)–based traffic engineering (TE) methods are com-

monly used in intra–data center (DC) networks to improve the transmission

performance for east‐west traffic (ie, traffic from server to server within a DC).

However, applying ECMP on inter‐DC wide area network (WAN) offers limited

performance enhancement as a result of irregular network topology. Since TE

can be intelligently and efficiently realized with software‐defined networking

(SDN), SDN‐based multipath becomes a popular option. However, SDN suffers

from scalability issue caused by limited ternary content‐addressable memory

(TCAM) size. In this paper, we propose an SDN‐based TE method called

dynamic flow‐entry‐saving multipath (DFSM) for inter‐DC traffic forwarding.

DFSM adopts source‐destination–based multipath forwarding and latency‐

aware traffic splitting to reduce the consumption of flow entries and achieve

load balancing. The evaluation results indicate that DFSM saves 15% to 30% of

system flow entries in practical topologies and reduces the standard deviation

of path latencies from 10% to 7% than do label‐switched tunneling, and also

reduces average latency by 10% to 48% by consuming 6% to 20% more flow

entries than do ECMP in less‐interconnected topologies. Note that the perfor-

mance gain may not always be proportional to flow entry investment, with

the interconnectivity between nodes being an important factor. The evaluation

also indicates that per‐flow provision consumes several times the flow entries

consumed by DFSM but reduces latency by 10% at most. Besides, DFSM

reduces the standard deviation of path latencies from 14% to 7% than do even

traffic splitting.
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1 | INTRODUCTION

Internet service provider (ISP) nowadays builds clouds to deliver various online services. In recent trends, a cloud often
consists of multiple data centers (DCs) located in different geographic areas, supporting application data exchanges and
remote backup, as well as regional service. For intra‐DC networks, Fat‐tree2 (or leaf‐spine) is commonly adopted for
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fault tolerance and reducing implementation costs. And for inter‐DC networks, a large‐scale cloud often connects
multiple DCs via a wide area network (WAN).
1.1 | Multipath routing: intra‐DC vs inter‐DC

Many services in the cloud rely on low‐latency DC interconnect (DCI) to enhance user experience (eg, streaming and
web service); because of large and rapidly growing inter‐DC traffic, traffic engineering (TE) methods are widely used
to enhance inter‐DC WAN performance. Multipath routing is a common way for TE; it, compared with single path
routing, enhances bandwidth utilization and mitigates congestion. Traditional networks use Open Shortest Path First
(OSPF). If there exists more than one shortest path between a node pair, the source node will split traffic into flows
by a hash function and map the flows to these paths for transmission according to an equal‐cost multipath (ECMP)
mechanism.3 For an intra‐DC network with leaf‐spine topology, the number of shortest paths between each leaf node
pair is equal to the number of spine nodes in the network, and therefore, ECMP‐based TE methods4-7 are commonly
used in intra‐DC networks to improve the transmission performance for east‐west traffic. However, the number of
shortest paths between each node pair varies with irregular topologies, and applying ECMP on inter‐DC WAN offers
limited performance enhancement when there are few or no extra paths to share the traffic load.
1.2 | Software‐defined inter‐DC WAN

Software‐defined networking (SDN) decouples the control plane and the data (forwarding) plane, relying on a central-
ized controller to collect global network information and to forward flows in the network, by setting the forwarding
rules to switches. Compared with traditional multi‐protocol label switching IP/MPLS‐based TE, SDN‐based TE8 can
be much more intelligently and efficiently realized thanks to the centralized global view of complicated networks
and flexible flow control ability. An SDN‐based TE approach simplifies per‐flow‐ or application‐based quality of service
(QoS) provisioning. For example, FlowQoS9 performs on‐the‐fly application identification for each flow of users of a
broadband access network, and it forwards individual flows according to user‐specified priorities for those applications.
While a per‐flow approach brings finer granularity, it suffers from a scalability issue. OpenFlow10 is a popular standard
for SDN. In an OpenFlow deployment, switches rely on ternary content‐addressable memory (TCAM)11 to store flow
entries (forwarding entries), which results in TCAM size becoming the bottleneck of SDN. To mitigate this scalability
issue, a differentiated services (DiffServ) model12 divides the incoming flows into several classes and treats packets in
the same class identically (ie, to the same set of tunnel paths). Both Google13 and Microsoft14 deployed software‐defined
inter‐DC WAN, mapping site‐to‐site traffic to a set of tunnels to maximize the network utilization.

Although SDN has the potential to substantially simplify network management, SDN may be deployed incremen-
tally in an existing network along with legacy network devices, because of the budget constraints.15,16 Partial SDN
deployment, which is also called hybrid SDN, is increasingly considered as a transition phase towards full SDN
deployment. In this transition phase, maintenance of legacy devices still depends on manual operation and experience.
Several researches17-19 focus on TE in SDN/OSPF hybrid network; these approaches mainly adjust the OSPF weights or
inject fake nodes/links into OSPF protocol to alter the forwarding behavior of legacy devices, and they also split flows at
a fraction of network nodes, ie, SDN nodes.

As more and more SDN‐centric network operating systems (eg, PICA8,20 Switch Light OS,21 and Open Network
Linux22) and white box switch vendors (eg, Juniper, Dell, Edge‐Core, and Quanta) emerge, SDN deployment is no
longer a high cost. In this paper, we consider TE in fully deployed SDN.
1.3 | Scalability of inter‐DC WAN

Central Office Re‐architected as a Datacenter (CORD)23 integrates SDN, network function virtualization (NFV), and
Cloud technologies to transform edge Telco Central Offices into agile DCs, enabling network operators to deliver
innovative services. In future years, the number of DCs will explode because of this trend (for example, AT&T currently
operates 4700 Central Offices), and so does the consumption of flow entries in software‐defined inter‐DC WAN.
Consequently, the scalability issue should be carefully considered.
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1.4 | The proposed method

In this paper, we propose an SDN‐based TE method called dynamic flow‐entry‐saving multipath (DFSM) for traffic
forwarding in software‐defined inter‐DC WAN to meet latency demands of DCI services between DC pairs with fewest
flow entries. DFSM has the following features.
1.4.1 | Flow‐entry‐saving multipath

For flow entry saving, DFSM uses source‐destination–based forwarding, ie, a forwarding node forwards packets to pos-
sible next hops, on the basis of both packet's source and destination addresses (eg, IP). With source‐destination–based
forwarding, traffic splitting can occur at every forwarding node. Compared with popular label‐switched tunneling14

(ie, a source node scatters the traffic over multiple tunnels, and each forwarding node forwards each packet along a
tunnel on the basis of packet's label pushed by the source node), source‐destination–based forwarding merges per‐
tunnel flow entries and splits traffic at intersection‐forwarding nodes (or split points) crossed by multiple paths. For ease
of discussion, every intersection node of two paths is also called a split point.
1.4.2 | Intra‐DC‐pair fairness

The most common implementation of flow‐based path selection relies on hash functions; since the result of path
selection is randomly determined by hash, the latency experienced by each flow is unpredictable. In order to achieve
better flow latency control, DFSM offers equal‐latency paths for each DC pair by latency‐aware traffic splitting, so as
to prevent flows of the same DC pair from experiencing widely different latencies.
1.4.3 | Inter‐DC‐pair fairness

DFSM allocates available paths to each unsatisfied DC pair that cannot reach its latency demand until all DC pairs are
satisfied, or nothing can be improved. For inter‐DC‐pair fairness, DFSM minimizes the difference of satisfaction degrees
of DC pairs.

In this paper, we evaluate DFSM in terms of the performance of all DC pairs and the consumption of system flow
entries, on the basis of simulation traffic of DC pairs. The following issues are also investigated: (1) the comparison of
the consumption of system flow entries and average path latency between the adoption of DFSM, label‐switched tunnel-
ing, ECMP, and per‐flow provision; and (2) the comparison of standard deviation of path latencies between the adoption
of DFSM, source‐destination–based forwarding with even traffic splitting, and label‐switched tunneling with latency‐
aware traffic splitting.

The contribution of this paper is summarized below. First, we proposed a TE method called DFSM, which saves flow
entries while executing dynamic multipath adjustment in software‐defined inter‐DC WAN for satisfying latency
demand of DCI service between each DC pair. Second, we considered both inter‐DC‐pair fairness and intra‐DC‐pair
fairness. Third, we evaluate DFSM in terms of performance and the consumption of system flow entries on several
practical topologies, and the results indicate that DFSM provides better flow entry investment returns.

The remainder of this paper is organized as follows: Section 2 discusses related works, Section 3 describes the
notations and problem statement, Section 4 illustrates solution details, Section 5 gives an analysis of the flow entry
saving, Section 6 shows the experimental results and related observation, and Section 7 contains the conclusions.
2 | RELATED WORK

2.1 | Traffic splitting

Packet‐based splitting4 and flow‐based splitting24 are widely adopted traffic splitting strategies. Packet‐based splitting is
known to provide better load balancing via finer‐grained traffic control; however, the latency varies widely from path to
path in an inter‐DC WAN because of irregular topology, and out‐of‐order delivery of transmission control protocol
(TCP) packets may easily occur. In order to prevent such out‐of‐order delivery, flow‐based splitting is adopted in DFSM.
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2.2 | Multipath WAN forwarding

Table 1 gives a summary of related works. WL225 uses a single L2 tunnel path to connect a DC pair on top of the Inter-
net, and it adopts a hierarchical addressing scheme to reduce flow entries used in both intra‐DC and inter‐DC networks.
However, L2 tunneling still relies on underlay routing; WL2 does not focus on performance enhancement on inter‐DC
networks. Hybrid Routing26 finds a near‐optimal routing combination of destination‐based routing and explicit routing
(traffic splitting) to minimize the maximum link utilization in a network. Since Hybrid Routing calculates routing on
the basis of multiple given traffic matrices and does not mention dynamic adjustment, it may be unsuitable for
inter‐DC WAN with unpredictable and fast‐changing traffic. wECMP‐d27 replaces even traffic splitting of ECMP with
delay‐sensitive traffic splitting according to given traffic demands to minimize overall end‐to‐end delays, but the
adoption of equal‐cost shortest paths may result in an inability to fully utilize link resources in irregular topologies.
B413 and SWAN14 both adjust the traffic sending rate of each edge DC, and they split inter‐DC traffic at source edge
of a DC pair to scatter the traffic over multiple tunnel paths in order to maximize the utilization of network links.

B413 uses IP in IP tunnel over network running border gateway protocol (BGP) / intermediate system‐to‐intermediate
system (ISIS) to achieve worldwide deployment. SWAN14 uses label‐switched tunneling in SDN; however, these tunnel
paths may cross at some forwarding nodes, at which time per‐tunnel flow entry is required at these intersection‐
forwarding nodes to forward packets of the DC pair. The number of flow entries needed on each forwarding node
increases as the number of DCs connected by inter‐DC WAN increases; how to reduce flow entries needed by each DC
pair while satisfying performance demand of each DC pair is the key to providing scalability.

In summary, for multipath selection, the adoption of k shortest/minimum cost paths provides better link utilization
than do ECMP in irregular topologies. For path provision and traffic splitting, source‐destination–based forwarding,
compared with destination‐based routing, outperforms label‐based switching in flow entry saving and has the ability
to provide DiffServ for different sources.
3 | PROBLEM STATEMENT

Enterprise customers often have their own service level agreement (SLA) for their DCI services. In the light of this, we
consider heterogeneous latency demands for inter‐DC services and suppose that every DC pair has its own bounded
latency demand range.

The main objective of DFSM is to satisfy the latency demand of DCI service between each DC pair while minimizing
the consumption of flow entries. We also consider inter‐DC‐pair fairness and intra‐DC‐pair fairness. For inter‐DC‐pair
fairness, we minimize the difference of satisfaction degrees of DC pairs. Here, the satisfaction degree of a DC pair is
TABLE 1 Related works

Work Objective Path Provision Multipath Selection Traffic Splitting
Path
Adjustment

WL225 Achieve scalable L2 Overlay (L2) No No No

B413 Maximize average
bandwidth

Overlay (L3) Minimum cost paths
without bottleneck
edges

At only source
node

Yes

SWAN14 Maximize network
utilization

Switching (label‐switched
tunneling)

k shortest paths At only source
node

Yes

Hybrid Routing26 Minimize maximum
link utilization

Routing (destination‐
based and explicit
routing)

Finding the
percentage
of traffic demand
on each link

At possible nodes Not mentioned

wECMP‐d27 Minimize overall
end‐to‐end delay

Routing (destination‐
based)

ECMP At possible nodes Not mentioned

DFSM Satisfy each latency
demand

Routing (source‐
destination–based)

k shortest paths At possible nodes Yes

Abbreviations: DFSM, dynamic flow‐entry‐saving multipath; ECMP, equal‐cost multipath.
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defined to be the latency demand upper bound divided by the average path latency. For intra‐DC‐pair fairness, we
minimize path latency difference among all paths allocated for each DC pair.
3.1 | Notation and definition

Table 2 gives the notations. We first model the link latency tij. With given bandwidth μij and measured load λij on linkij,
we use M/M/1 queuing model28 to derive latency tij on linkij, so tij is given by

tij ¼ 1= μij − λij
� �

:

For a DC pair (ss, sd), there may exists many simple paths between ss and sd. Note that both ss and sd are access
points of the network topology G and have a directed link with the border gateway of distinct DC. A simple path pathsd
usually includes many links, so that the latency t_pathsd of pathsd is the sum of the latency of each link on pathsd, and
thus t_pathsd is given by

t pathsd ¼ Σtij; where linkij ∈ pathsd:

Supposing that nsd possible flow paths are used by a DC pair (ss, sd), we define the average path latency
avg_t_pathsd as

avg t pathsd ¼ 1=nsd* Σt pathsd:

The latency demand range of a DC pair (ss, sd) is bounded by thresholdsd
L and thresholdsd

U, depending on the traffic
type. For example, the demand values of thresholdsd

L and thresholdsd
U for the DC pair, which provides latency‐sensitive

services (eg, web service), should be both lower than the demand values for the DC pair, which provides latency‐
tolerant services (eg, data replication).

To satisfy the latency demand of each DC pair (ss, sd) (ie, make the avg_t_pathsd within the range between
thresholdsd

L and thresholdsd
U), we adjust paths for each DC pair globally. To achieve intra‐DC‐pair fairness for a DC pair

(ss, sd), we minimize the standard deviation σsd of path latencies among nsd allocated paths, by adjusting the split ratio
αsdij at each intersection‐forwarding node (or split point) crossed by more than one pathsd. Note that the sum of split
ratios of each split point is equal to 1.
TABLE 2 Notations

Category Notation Description

Topology G = (S, L) The network topology with switches S and links L

Switch si The ith switch (si ∈ S)

Link linkij The directed link from si to sj (si, sj ∈ S; linkij ∈ L; i ≠ j)
l ij, λij, tij The bandwidth, offered load, and latency of linkij

Path pathsd A simple path from ss to sd (ss, sd ∈ S; s ≠ d ≠ d)
t_pathsd The latency of pathsd

Decision variable nsd The number of possible flow paths used for a pair (ss, sd)
αij

sd The split ratio of traffic from ss to sd on linkij for a split point si

Multipath avg_t_pathsd The average latency of nsd used paths
σsd The standard deviation of latencies of nsd used paths
flow entrysd The total number of flow entries used for a pair (ss, sd)

Demand thresholdsd
L The lower bound of demand on average path latency for a pair (ss, sd)

thresholdsd
U The upper bound of demand on average path latency for a pair (ss, sd)
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3.2 | Problem description

With these notations, the objective of DFSM can be described as follows: Given an inter‐DCWANwith topologyG= (S, L),
the latency tij of each linkij belonging to L, the goal is to allocate paths for each DC pair, which minimizes the
number of flow entries flow entrysd and the standard deviation σsd for each DC pair (ss, sd) subject to
thresholdsd

L < avg_t_pathsd < thresholdsd
U, and also minimizes the difference of satisfaction degrees of DC pairs.
4 | DYNAMIC FLOW ‐ENTRY ‐SAVING MULTIPATH

DFSM is implemented as a centralized control plane application that manages multiple OpenFlow controllers (each
responsible for some part of the network), controlling all OpenFlow switches in a fully deployed SDN environment.
DFSM periodically monitors the load of each link by port statistics (tx_bytes/rx_bytes) sampling via OpenFlow control-
lers and computes link latency with given link bandwidth by M/M/1 queuing model. With derived link latencies, DFSM
periodically adjusts paths allocated for DC pairs according to their demands. In addition to periodic path adjustments, a
path adjustment and a new path finding will also be triggered when there is a newly added DC pair (ie, new perfor-
mance demand).

To identify whether a DC pair reaches its latency demand, a demand fulfillment status is recorded for each DC
pair. There are three possible demand fulfillment statuses: oversatisfied (ie, avg_t_pathsd < thresholdsd

L), satisfied
(ie, thresholdsd

L < avg_t_pathsd < thresholdsd
U), and unsatisfied (ie, thresholdsd

U < avg_t_pathsd). To avoid transient
congestion during network updates, the main idea of DFSM is to remove paths for oversatisfied DC pairs and to
allocate available paths to unsatisfied DC pairs.

DFSM consists of the following components: flow‐entry‐saving multipath, intra‐DC‐pair fairness, and inter‐DC‐
pair fairness.
4.1 | Flow‐entry‐saving multipath

4.1.1 | Source‐destination‐based forwarding

Compared with label‐switched tunneling14 (ie, a source node scatters the traffic over multiple tunnels, and each
forwarding node forwards each packet along a tunnel on the basis of packet's label pushed by the source node),
source‐destination–based forwarding merges per‐tunnel flow entries on intersection‐forwarding nodes crossed by mul-
tiple paths. Figure 1 shows the differences between these two forwarding methods. For label‐switched tunneling, split
point si matches packets from each tunnel between the DC pair and keeps packets from being transferred along the
same tunnel (with label swapping), which means the number of flow entries at si is equal to the number of paths
passing through it. For source‐destination–based forwarding, the split point si matches packets with both its source
and destination address and sends each flow to next hop by hash. Therefore, the split point only needs one flow entry
for each DC pair.

According to OpenFlow,10 a flow entry can point to a group entry to perform additional forwarding behaviors
(eg, load balancing and fast failover). Each group entry has action buckets. If “select” group type is used, packets will
be processed by a single bucket in the action buckets, on the basis of a switch‐computed selection algorithm (eg, hash)
and bucket weights. Since group entries are responsible for only the execution of actions, group entries are commonly
stored in static random‐access memory (SRAM).

The traffic splitting of DFSM is implemented by the group entry with the “select” type. All possible routing paths
can be maintained in a group entry at each split point. For a DC pair, each split point only needs one flow entry,
which points to a group entry to split traffic flows to multiple next hops, thereby saving flow entries. According
to the theoretical analysis in Section 5, the more intersection nodes between paths, the more flow entries DFSM
can save.

Note that the cycles between the selected paths will cause “traffic looping” under the source‐destination–based
forwarding, resulting in a portion of the traffic never reaching its destination. In order to prevent “traffic looping,”
DFSM eliminates improper paths by cycle detection29 while computing available paths for new‐added DC pairs.



FIGURE 1 A, Label‐based tunneling. B, Source‐destination–based forwarding
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4.1.2 | Greedy path selection

To meet latency demands with fewer paths (lower TCAM requirements), DFSM assigns the least‐latency paths to
unsatisfied DC pairs. To reduce path computation overhead, DFSM computes available k‐least‐hop‐count paths30 only
for newly added DC pairs. During periodic path adjustments, DFSM finds the least‐latency paths for path allocation by
determining the latencies of these precomputed available paths, instead of recomputing paths every time.
4.2 | Intra‐DC‐pair fairness

To achieve intra‐DC‐pair fairness by offering equal‐latency paths to each DC pair, DFSM takes path latencies into
consideration and decides split ratios at each split point, so as to balance the traffic loads (or latencies) among multiple
paths assigned to each DC pair.

The main idea of latency‐aware traffic splitting in DFSM is to split traffic at intersection‐forwarding nodes and to be
applicable to non–disjoint‐edge paths. As in previous literature,7,14 the basic idea of multipath load balancing in DFSM
is to have the split ratio become inversely proportional to the path load. However, the previous approaches split traffic
for a node pair only at source node7,14 and are designed only for edge‐disjoint paths.7

In DFSM, for a split point, the split ratio corresponding to a specific next hop is inversely proportional to the average
latency of the path segments that start at the split point and proceed via the specific next hop to the destination. Figure 2
FIGURE 2 An example used to illustrate the split ratio
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shows an example used to illustrate the split ratio computation in DFSM. There are three paths—A [ss, si, sj, sd], B [ss, si,
sm, sd], and C [ss, sk, sl, sd]—used by a DC pair (ss, sd). In this case, ss and si are both split points, with the next hops [si,
sk] and [sj, sm], respectively.

To simplify the illustration, the latency of the path segment [si, sj, sd] of A is denoted by t_pathid
A, and the latency of

the path segment [si, sm, sd] of B is denoted by t_pathid
B. For split point si, the split ratio to sj, ie, αij

sd, is inversely
proportional to t_pathid

A; similarly for the split ratio to sm, ie, αim
sd, is inversely proportional to t_pathid

B. To be specific,
we denote the least common multiple of t_pathid

A and t_pathid
B by t_lcmid. Then αij

sd can be expressed as

αijsd ¼ t lcmid=t pathid
A� �
= t lcmid=t pathid

A� �þ t lcmid=t pathid
B� �� �

;

and αim
sd can be expressed as

αimsd ¼ t lcmid=t pathid
B� �
= t lcmid=t pathid

A� �þ t lcmid=t pathid
B� �� �

:

Similarly, for split point ss, the split ratio αsi
sd is inversely proportional to the average latency of paths A and B, and

αsk
sd is inversely proportional to the latency of path C.
4.3 | Inter‐DC‐pair fairness

4.3.1 | Dynamic path adjustment

To achieve inter‐DC‐pair fairness, DFSM allocates available paths to each unsatisfied DC pair during a path adjustment
process, until all DC pairs are satisfied or nothing can be improved (no available paths remain). The process flow of
dynamic path adjustment is illustrated in Figure 3. During an adjustment process, DFSM iteratively picks the least‐
satisfaction DC pair P among all unsatisfied DC pairs and attempts to allocate the least‐latency path to P. Note that
an attempted path addition for a DC pair will be confirmed only when the predicted satisfaction degree of the DC pair
increases and the standard deviation (SD) of the predicted satisfaction degrees of all DC pairs decreases.

To evaluate the satisfaction degrees of all DC pairs caused by each path allocation, DFSM estimates link latencies by
a prediction procedure for performance assurance.
FIGURE 3 Flowchart for the dynamic path adjustment. DC indicates data center; SD, standard deviation
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4.3.2 | Performance assurance

In order to verify whether an attempted path addition (or removal) for a DC pair increases (or decreases) its satisfaction
and increases the inter‐DC‐pair fairness, DFSM introduces a performance prediction procedure to decide whether the
attempted path adjustment should be confirmed.

For each path allocation to a DC pair, the prediction procedure of DFSM recomputes the ideal distribution of the
ingress load of the DC pair (ie, the total traffic load sent from one DC to another). In order to reallocate the traffic load
of a given DC pair, eg, P, we roll back to an environment with all the traffic loads of existing DC pairs (except the given
DC pair P), and we reassign the traffic load of P to paths for it on the basis of intra‐DC‐pair fairness. The prediction
procedure then computes each link latency with the estimated link load and given link bandwidth, by M/M/1 queuing
model. With the derived network link latencies, DFSM is able to compute the average path latency for each DC pair.

For example, in Figure 4, the measured ingress load of the DC pair (ss, sd) is 40 units, and a new path is about to be
added for this DC pair. Figure 4A shows the removal of traffic load of this DC pair. For example, at linksi, since the total
split ratio is equal to 50% (αsi

sd), the 20 units (40 * 50%) load distribution should be removed from the current load of
FIGURE 4 An example of link load

estimation after a path addition for a given

DC pair. A, Rollback to an environment

without the traffic loads of the given DC

pair. B, Update the split ratios after the

path addition for the given DC pair. C,

Reassign the traffic load of the given DC

pair to paths for it. DC indicates data

center
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linksi. Since the total split ratio is equal to 25% (αsi
sd * αid

sd) at linkid, the 10 units (40 * 25%) load distribution should be
removed from the current load of linkid. This is similar at the other links. Figure 4B clearly shows the split ratio deter-
mined after path addition. For ease of illustration, we suppose that αsi

sd, αsk
sd, and αsl

sd are equal to 30%, 30%, and 40%,
respectively, as the decision result. Since the total split ratio for linksl in Figure 4C is equal to 40% (αsl

sd), the 16 units
(40 * 40%) load distribution should be added to linksl. It is the same at the other links.
5 | ANALYSIS OF FLOW ENTRY SAVING

Table 3 shows the additional notations for ease of comparison between source‐destination–based forwarding and
label‐switched tunneling.

Recall that all possible routing paths can be maintained in a group entry at each split point. For source‐destination–
based forwarding, group entrysd is equal to the number of split points for a pair (ss, sd), ie, SP. Since the flow entry is
shared on split points and the destination node sd, flow entrysd is equal to 1 shared flow entry on the destination node
sd + the number of split points + the sum of the number of nodes in each used paths except the destination node sd and
the split points. With the additional notations, flow entrysd is given by

flow entrysd ¼ 1þ SP þ Σi¼1
m ni − spi − 1ð Þ ¼ Σi¼1

m ni −mþ 1 − Σi¼1
m spi − SPð Þ: (1)

Since the group entry for label‐switched tunneling is only needed at source node ss for a pair (ss, sd), the total
number of group entries group entrysd is equal to 1. In this case, flow entrysd, the total number of flow entries used
for a pair (ss, sd), is equal to 1 shared flow entry on the source node ss + the sum of the number of nodes in each used
path except the source node ss. So flow entrysd is given by

flow entrysd ¼ 1þ Σi¼1
m ni − 1ð Þ ¼ Σi¼1

m ni −mþ 1: (2)

From Equations 1 and 2, the difference of the number of system flow entries is equal to (Σi=1
m spi − SP); it means

that when SP is fixed, the higher Σi=1
m spi (the more intersection nodes between paths) saves more flow entries.
6 | EVALUATION AND DISCUSSION

In this section, we use Mininet31 to evaluate the performance of DFSM. We respectively construct five inter‐DC WAN
topologies (A‐E, as shown in Figure 5A‐E) with virtual switches (Open vSwitch 2.5.2) and hosts (as local DCs) in a
virtual machine (VM) that has 1 CPU and 2G RAM, and we run the DFSM application over the Ryu32 controller in
the same VM to manage the virtual switches via OpenFlow 1.3. Topologies A to D are the same as the practical topol-
ogies used by wECMP‐d,27 and topology E is the same with the B413 worldwide deployment (note that B4 abstracts each
WAN site into a single node with a single edge of given capacity to each remote site).

For topologies A to E, each link is bidirectional, and the link capacity of each topology is 10 Gbps. For topologies A
to D, six numbered edge switches are chosen to connect six DCs; and for topology E, all 12 nodes are chosen to connect
12 DCs. Each DC sends 20 TCP flows to every other DC at random rate (1 to 3 Gbps) via these selected switches. Since
we have six DCs and 12 DCs in different topology, there are a total of 30 and 132 DC pairs, respectively.
TABLE 3 Additional notations

Notation Description

m The number of paths used for a pair (ss, sd)

pathsdi a used simple path from ss to sd (m ≧ i ≧ 1)

ni The number of nodes in pathsdi

SP The number of split points for a pair (ss, sd)

spi The number of split points in pathsdi (SP ≧ spi)

group entrysd The total number of group entries used for a pair (ss, sd)



FIGURE 5 A–E, Five practical topologies with 30 to 132 DC pairs. DC indicates data center
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In our evaluation, DFSM will try to satisfy the latency demand of each DC pair in each topology. In order to make
DFSM's best efforts to satisfy each DC pair, both the upper bound and lower bound of latency demand set for each DC
pair are equal to 0 seconds per bit so as to never be satisfied.

Table 4 gives the number of iterations and the computation time taken by DFSM. In each iteration of the path
adjustment process, a path addition is performed for a selected DC pair. DFSM takes 3 seconds on average to optimize
30 DC pairs and takes 12 seconds to optimize 132 DC pairs. Since not all DC pairs need to be optimized in practice (not
all DCI services are latency sensitive), the computation time could be reduced.

We evaluate DFSM in terms of the average path latency of all DC pairs and the consumption of system flow entries.



TABLE 4 The number of iterations and the computation time taken by DFSM to satisfy DC pairs

Topology The Number of DC Pairs The Number of Iterations Computation Time, s

A 30 13 4

B 30 13 2

C 30 18 2

D 30 22 4

E 132 50 12

Abbreviations: DC, data center; DFSM, dynamic flow‐entry‐saving multipath.
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6.1 | Compared with ECMP, DFSM reduces 10% to 48% latency by consuming 6% to 20%
more flow entries

Figures 6 and 7 show the number of system flow entries and the corresponding average latency of all DC pairs in each
topology, along with the comparison with ECMP. The results indicate that adopting k (k = 5) shortest paths (DFSM)
reduces about 48%, 14%, 10%, and 27% of average latency of all DC pairs results from adopting ECMP in topologies
A, B, C, and E, by consuming about 8%, 12%, 20%, and 6% more flow entries, respectively.
FIGURE 6 The number of system flow entries. ECMP consumed fewer flow entries than did DFSM because of the fewer available paths.

Label‐based tunneling consumed more flow entries than did DFSM with the same path selection because of the per‐tunnel setting on

intersection‐forwarding nodes. DFSM indicates dynamic flow‐entry‐saving multipath; ECMP, equal‐cost multipath

FIGURE 7 The average latency. Compared with ECMP, DFSM provides higher investment efficiency of flow entries in the less‐

interconnected topologies (A‐E). For label‐based tunneling, the average latency is similar to that of DFSM with the same path selection in

most cases except in topology with more DC pairs (E). DFSM indicates dynamic flow‐entry‐saving multipath; ECMP, equal‐cost multipath
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It can be seen that DFSM provides higher investment efficiency of flow entries in topology A, since there are few
equal‐cost shortest paths between most pairs. Furthermore, since the nodes are highly interconnected in topology D,
there are enough equal‐cost shortest paths, and it makes not much difference in average latency and system flow entry
number between these two cases. In general, a large‐scale deployment may not have a highly interconnected topology as
a result of the consideration of deployment cost and the long distance between forwarding nodes.
6.2 | Compared with label‐switched tunneling, DFSM saves 15% to 30% flow entries and
reduces the standard deviation of path latencies from 10% to 7%

We also applied label‐switched tunneling to the same set of selected paths used in DFSM. Label‐switched tunneling also
splits traffic on the basis of latency estimates but only at source node. Figures 6 and 7 also show the number of system
flow entries and the average latency along with the comparison with label‐switched tunneling; the results indicate that
DFSM saves about 30% system flow entries in topologies A and D, about 15% system flow entries in topologies B and C,
and about 20% system flow entries with 12% latency reduction in topology E.

The average σsd (standard deviation of path latencies of each DC pair) is about 7% and 10%, respectively, of
average path latency for all topologies when the source‐destination–based forwarding and the label‐switched tunneling
is adopted.

Table 5 further shows the factors that affect flow entry saving. As mentioned in Section 5, for a DC pair, the
difference of system flow entry number between source‐destination–based forwarding and label‐switched tunneling is
equal to (Σi=1

m spi − SP), where SP is the number of split points for a pair, m is the number of used paths, and
Σi=1

m spi is the sum of the number of split points in each used path. In Table 5, we use the term “mp‐pairs” to refer
to pairs that use more than one path. Note that there are 27% to 57% mp‐pairs in topologies A to E, and each mp‐pair
uses 2.2 to 2.6 paths on average in different topologies. To illustrate the flow entry saving, we take topology E for
example, where each mp‐pair saves about 3.5 (6.4‐2.9) flow entries on average, compared with label‐switched tunneling.
Since there are 36 mp‐pairs, the total amount of saved flow entry is equal to 126 (36 * 3.5).
6.3 | Compared with per‐flow provision, per‐flow provision for 600 flows (20 flows per DC
pair) consumes about 16 times of flow entries

To implement per‐flow provision, we assign single shortest (least‐latency) path to each flow of total 600 TCP flows (20
flows per DC pair). The average latency of each pair is the average path latency of its 20 flows. Figure 8 shows the
number of system flow entries and the corresponding average latency of all DC pairs in each topology (A to D), along
with the comparison with per‐flow provision. The result indicates that adopting per‐flow provision consumes about 16
times the system flow entries consumed by DFSM but reduces latency by 10% at most (in topology D).
6.4 | Compared with even traffic splitting, DFSM reduces the standard deviation of path
latencies from 14% to 7%

The average σsd (standard deviation of path latencies of each DC pair) is about 7% and 14%, respectively, of average path
latency for all topologies when the latency‐aware traffic splitting and the even traffic splitting are adopted.
TABLE 5 The factors that affect flow entry saving

Topology
The Number
of mp‐pairs

The Average Number of Used
Paths (m) of all mp‐pairs

The Average Number of
Σi=1

m spi of All mp‐pairs
The Average Number of Split
Points (SP) of all mp‐pairs

A 17 2.2 5.4 2.5

B 11 2.6 3.3 1.7

C 14 2.2 3.4 1.6

D 16 2.5 5.4 2.4

E 36 2.3 6.4 2.9



FIGURE 8 DFSM vs per‐flow provision. DFSM indicates dynamic flow‐entry‐saving multipath
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7 | CONCLUSION AND FUTURE WORK

In this paper, we propose an SDN‐based TE method called DFSM for inter‐DC traffic forwarding. For flow entry saving,
DFSM uses source‐destination–based forwarding instead of label‐switched tunneling, so as to merge flow entries at
intersection‐forwarding nodes. Under the source‐destination–based forwarding, DFSM adopts latency‐aware traffic
splitting at each intersection‐forwarding node to achieve better flow latency control. In addition, the fairness of path
assignment is also considered. Evaluation results show that DFSM, compared with label‐switched tunneling, saves
15% to 30% system flow entries in practical topologies and reduces the standard deviation of path latencies from 10%
to 7%. DFSM also reduces average latency by 10% to 48% by consuming 6% to 20% more flow entries than do ECMP
in less‐interconnected topologies. From the comparison with ECMP, it can be seen that the performance gain may
not always be proportional to flow entry investment, with the interconnectivity between nodes being an important
factor. The evaluation also indicates that per‐flow provision consumes several times the flow entries consumed by
DFSM but reduces latency by 10% at most. Besides, DFSM, compared with even traffic splitting, reduces the standard
deviation of path latencies from 14% to 7%.

Since asynchronous changes of split ratios can cause transient congestion,33 a network update usually must be
performed in multiple well‐planned steps. zUpdate33 performs congestion‐free DC network (DCN) updates under
asynchronous switch and traffic matrix changes. Computing and implementing an update plan for inter‐DC network
would be much more challenging because of irregular topology. In future work, we will handle this issue.
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