

A STREAM-BASED MAIL PROXY WITH INTERLEAVED DECOMPRESSION

AND VIRUS SCANNING

Ying-Dar Lin1, Szu-Hao Chen1, Po-Ching Lin1 and Yuang-Chen Lai2

1Department of Computer Science
National Chiao Tung University, HsinChu, Taiwan

2Department of Information Management
National Taiwan University of Science and Technology, Taipei, Taiwan
Email: 1{ydlin, cwjan, pclin}@cis.nctu.edu.tw, 2laiyc@cs.ntust.edu.tw

ABSTRACT
Anti-virus systems can operate on access gateways for
centralized management and early virus blocking. When
serving a group of computers, the traditional storage-
based mechanism is less scalable because the mail should
be stored. This work designs a stream-based mail proxy
that processes the mail segment by segment without
storing the entire mail and interleaves the MIME parsing,
decoding, decompression and virus scanning. We
integrate several modified open source packages into the
proxy and use the system call select to achieve single-
process concurrency. The benchmarking reveals this new
proxy is seven times faster than the storage-based one on
simply forwarding, three times faster on virus scanning,
and twice faster on both file decompression and virus
scanning. This proxy keeps nearly constant memory
consumption and works without disk storage, while the
storage-based proxy requires the disk space to be
proportional to the number of clients and the mail size.

KEY WORDS
viruses and worms, stream-based, mail proxy,
decompression.

1. Introduction

Conventionally, anti-virus systems run on host
computers. Since most infections come from outside
networks, blocking viruses on the access gateway appears
to be a trend. Such gateway-based centralized
management could reduce the cost of maintaining the
anti-virus system on a number of internal host computers.
Virus scanning on the gateway can be storage-based and
stream-based. The former receives the entire mail content
before scanning, while the latter scans the part that has
been received and sends it out immediately after the
scanning. The storage-based scanning has poor scalability
in storage. For example, if 10,000 connections send 500
KB files concurrently, the total storage occupying the
gateway will be 5 GB. The system needs large storage
and hence is costly.

By interleaving receiving, scanning and sending, the
required memory buffer size in a connection can be
ideally kept constant rather than proportion to the file size.
All the components in the processing flow should be also
stream-based. For instance, the mail content may be
MIME encoded, compressed and encrypted. Fortunately,
the decoding and decompression can be streamed-based,
i.e. interleaved.

This work implements a stream-based mail proxy
with interleaved decompressing and virus scanning.
Several open source packages are selected to be integrated:
Net::SMTP::Server [1] as the SMTP protocol handler and
another modified version as the POP3 handler, ClamAV
[2] for anti-virus, and Zlib [3] + Compress::Zlib [4] for
file decompression. For better performance and lower
memory consumption, the system is implemented as a
single-process proxy. A series of external and internal
benchmarks are performed after the integration. This
proxy is compared with AMaViS [5] in terms of
throughput, latency, and the space required in memory
and disk. We intend to study the questions. (1) How can
file decompression and virus scanning be interleaved
seamlessly? (2) By how much can the stream-based proxy
improve the scalability and performance? (3) How heavy
are the decompression and virus scanning compared with
other components?

The rest of this paper is organized as follows.
Section 2 reviews related works. Section 3 describes the
design issues. The system architecture and workflow are
presented in Section 4. Section 5 details the system
implementation. Section 6 presents the benchmark results
of both the stream-based and the storage-based systems.
Section 7 concludes this work.

2. Related Works

Most commercial products are storage-based, such as
InterScan messaging Security Suite from TrendMicro [6],
FortiGate series from Fortinet [7] and F-pod series from
FRISK Software [8]. The open source project AMaViS is
also storage-based. Until March 2005, the only

commercial stream-based anti-virus gateway is Content
Security Gateway from CPScure [9], but its inner working
is unknown since it is a black box. The open source
project Anomy [10] is a mail-sanitizing tool on F-pod. Its
MIME parser treats mail as a stream of data, but the
attachment is still processed in a storage-based fashion.
One reason that storage-based anti-virus systems still
dominate the market is they are versatile in handling an
infected file, such as quarantine that stored the infected
file for later retrieval. A stream-based anti-virus system
simply drops the infected file, and so the file is destroyed.

The concept of stream-based design has been
existent in other application domains in the research field.
A cut-through switch can send out a portion of a packet
before the entire packet is received. A “segment-based
proxy cache of multimedia streams” [11] treats the whole
video as variable-sized segments. Chi et al. [12] discussed
on-the-fly compression/decompression on a Web proxy.

3. Design issues

3.1 Overheads in a storage-based mail proxy

AMaViS is selected for observing the overheads of a
storage-based mail proxy because of its popularity.
AMaViS is a Perl program and acts as an interface
connecting two mail transport agents (MTAs). An MTA
receives mail from port 25 and passes the mail to
AMaViS for virus scanning. If no virus is found, AMaViS
transmits this mail to another MTA that relays it to the
target mail server. Three overheads are in the process: (1)
file access, (2) inter-process communications and (3)
process forking in AMaViS. For (1), AMaViS receives
the mail and decodes attachments into files. If the files
need to be decompressed, AMaViS calls an external
program to decompress them into other files, and then
calls the virus scanner to scan these files. For (2), inter-
process communications exist between AMaViS and the
two MTAs. They also occur when AMaViS calls the
external programs for file decompression and virus
scanning. For (3), a per-client process is forked for each
incoming connection. These processes occupy the
memory and the fork system call is heavy.

3.2 Overheads in a storage-based mail proxy

The essential requirement of a stream-based mail
proxy is that each component in the proxy should be
stream-based. The processing includes MIME parsing,
decoding, file decompressing, virus scanning and
encoding. The proxy receives a part of a mail in a
memory buffer, and then processes the buffer according
to its content. For example, decompressing and decoding
require extra buffers. The processing is on the buffer
rather than on the entire file.

We prefer a single-process proxy with socket I/O
multiplexing to handle concurrency because the
implementation of Perl threads is inefficient [14]. The
single-process architecture is memory efficient and works
without context-switching overheads. There is also no
thread synchronization and inter-process communications.
This architecture could render high scalability in terms of
the number of connections.

A storage-based system stores the decompressed
files, which may be much larger than the original files,
making a denial-of-service attack possible. The storage-
based system thus often bypasses or blocks the file whose
size exceeds a threshold after the decompression.
Fortunately, stream-based file decompression is feasible
for most compression formats according to our survey.
Table 1 summarizes the feasibility of common
compression formats.

TABLE 1: Feasibility of file decompression for common
compression formats.

Format Algorithm File
extension

Stream
possible?

UNIX
compress

LZW .Z Yes

gzip Deflate
(LZ77+Huffman)

.gz
or .tgz

Yes

zip Deflate .zip Yes
7zip LZMA .7z Yes
rar LZSS .rar Yes
bzip2 BWT .bz2 Yes (in

blocks)
lha LZ78+Huffman .lha

or .lzh
Yes

self-
extraction

format-dependent .exe may be
feasible

A file can be compressed more than once, i.e.
recursively, and a compressed archive may contain
multiple compressed files. It is difficult for on-the-fly
decompressing to handle the recursive compression,
because parsing the decompressed content continuously is
needed to check if another compressed file exists. When
the archive contains multiple compressed files with
recursive compression, the communications between
several decompressing and parsing processes are
complicated. By contrast, the storage-based system can
simply solve this problem by recursive decompression
using the external program sequentially.

The stream-based system scans individual buffers
where segments of file content are processed, but virus
patterns may be across the segment boundaries. There are
two solutions to this problem. The system can keep the
scanning state of the virus scanner, i.e. which signature
has its head matched the tail of the last segment and the
matching position. Another solution uses a mechanism
called cushioned scanning [15]. A cushioned scan extends
the buffer with sufficiently large data from the tail of the
previous scan buffer on the head side. That is, data in the

cushion buffer is scanned twice. The size of a cushion
buffer should not be shorter than the longest pattern in the
virus database.

4. System Architecture

4.1 System Overview

Fig. 1 presents an overview of the stream-based
system. The thin lines represent the direction of the user
requests, while the bold lines represent the direction of
mail transmission. The dispatcher intercepts the user
requests and redirects them to the corresponding protocol
handler. The protocol handlers include the SMTP and
POP3 handlers. The directions of mail transmission in
SMTP and POP3 are different. The attachments in a mail
are encoded with MIME encoding, so a MIME parser is
required. The MIME parser, decompression engine and
virus scanner are all streamed-based. They can process
the mail segment by segment. If no virus is found, the
original data is forwarded as usual; otherwise, the proxy
breaks the connection immediately and sends a
notification to the user.

dispatcher

virus scanner

decompression engine

MIME parser and decoder

SMTP handler

SMTP server

SMTP proxy SMTP daemon

(1)

(3)

(2)

(4)

user

dispatcher

virus scanner

decompression engine

MIME parser and decoder

SMTP handler

POP3 server

POP3 proxy POP3 daemon

(1)

(4)

(2)

(3)

user

dispatcher

virus scanner

decompression engine

MIME parser and decoder

SMTP handler

SMTP server

SMTP proxy SMTP daemon

(1)

(3)

(2)

(4)

user

dispatcher

virus scanner

decompression engine

MIME parser and decoder

SMTP handler

POP3 server

POP3 proxy POP3 daemon

(1)

(4)

(2)

(3)

user

 Figure 1. An overview of the stream-based proxy for the
SMTP and POP3 traffic.

4.2 Processing workflow

The workflow of processing a mail is the same in

SMTP and POP3. A typical mail is composed of the mail
header, the mail body and the attachments (optional).
Each component is processed sequentially. The mail body
and the attachments are often MIME encoded. MIME
encoded content includes a pair of MIME header and
MIME body. The MIME body is encoded with an
encoding method defined in RFC 2045 [15]. Common
encoding methods are UUE, BASE64, quoted-printable,
etc. The MIME header contains the information of the
MIME body, such as the encoding method, the data type
and the file names of the attachments. The following
describe the processing of each component.

Processing the mail header
The SMTP protocol handler communicates with both

the requester and the destination to initiate the
transmission. When the mail transmission starts, the
proxy reads a block of data from the socket buffer, and
stores it in a raw buffer. The mail header is the first part
of a mail. The header is read from the raw buffer to be
checked if this mail is MIME encoded. If it is, the MIME
parser is ready for parsing the MIME header and the
MIME body.

Processing the mail body
A body parser can be added to check the body if it is

a spam, or if it contains malicious links or JAVA/VB
scripts. A spam mail is blocked, and the malicious scripts
are removed. Since this work focuses on virus scanning,
the mail body is simply forwarded to the destination. The
body parser is not implemented in this work.

Processing the mail attachments
Attachments are mostly encoded and may be

compressed. The MIME parser obtains the file name from
the MIME header. According to the file name, the proxy
processes the attachments in three rules. (1) The non-
malicious files, like those with the extension “*.txt”, can
be ignored because they could not have viruses. (2) The
files need to be scanned for viruses are those with the
extensions such as “*.exe” and “*.doc”. (3) If the
extension suggests a compressed file, the file is
decompressed first and the decompressed file is treated
according to the three rules recursively.

5 System Implementation

5.1 Processing flow in the implementation

This system runs on a PC with Linux kernel version
2.6.10. It is implemented in Perl because of its
outstanding string processing ability and various program
libraries in Perl modules. Fig. 2 presents the processing
flow in the implementation. The text in bold is the
components in the system. The names in the parentheses
are the existing open-source packages used in these
components, all running within a single process in the
user space. The arrows represent the relationship between
these components. For example, the virus scanner
interface calls scanbuf in the ClamAV shared library.
Except that Zlib and ClamAV are shared libraries written
in C, the other components are implemented in Perl.

When the kernel receives the packets, netfilter
redirects the package with destination port 25 (for SMTP)
or port 110 (for POP3) to the port the proxy listens to.
The proxy accepts the connection and identifies a socket
handler. After the SMTP handler communicates with the
socket handler from the SMTP sender, it connects to the
SMTP target to get another socket handler. With both the
source and target socket handlers, a mail processor is

created. The mail processor is written as a module created
as an object at run time.

The mail processor handles the entire mail, including
parsing MIME, reading the buffer from source socket,
scanning the buffer and writing the buffer to target socket.
The MIME parser in the mail processor does not use any
existing open-source codes, but we refer to an open-
source package Anomy, a stream-based MIME parser, to
write our own. Because every connection creates a mail
processor object, the mail processor becomes the main
source in the memory consumption due to a large number
of connections. The mail processor is independent of any
protocol. To monitor the POP3 service, the POP3 handler
instead of the SMTP handler is used.

Kernel

User

receive Dispatcher
(netfiler)

send

SMTP Handler
(Net::SMTP)

IO Multiplexing
while loop
(IO::Select)

Proxy Server
(IO::Socket)

BASE64 Decoder
(MIME::Base64)

Mail Processor
MIME Parser

Decompress
interface

(Compress::Zlib)

Virus scanner
interface

(Mail::ClamAV)

Virus
Scanner
(ClamAV)

Decompress
engine

(Zlib)

redirect()

select()

smtp()

gzread()MIME
Parser()

new()

scanbuf()

write()

Figure 2. Processing flow in the implementation.

The text in the italic type means the codes of that
package is modified for our purposes, including
Net::SMTP, Compress::Zlib and Zlib. Because of I/O
multiplexing, Net::SMTP is modified to process line by
line whenever a socket is selected. Compress::Zlib is a
Perl module and an interface to call the Zlib shared library
in Perl. The original Zlib fails if it reads the end of data
stream that is not equal to the end of file. The limitation is
removed to support partial decompression. Other
packages without modification can be upgraded to a
newer version if the names and arguments of the function
used in package remain their original definitions.

The system supports the file compressed by Zlib at
first in our implementation. Gzopen and gzread are
functions in the Zlib shared library. Because Zlib is
designed to decompress an entire file, it opens a file
handler by gzopen function before any decompressing by
gzread. The system treats the handler handler_out as the
file opened by Zlib, and inputs the decoded data into the
handler handler_in, which connects with the handler
handler_out by the inter-process communication
mechanism called Pipe. The handler handler_in needs to
be set as non-blocking I/O, thus making possible inputting
the decoded data to the handler handler_in and reading
decompressed data from the handler handler_out in turn.

The combination of handler_in, Pipe and handler_out can
be seen as a queue free for reading and writing at any time.
This mechanism is applicable to any compression library
originally designed to handle an entire file.

5.2 Single process concurrency

The proxy is implemented as a single process and
use select to achieve concurrency because both multi-
processing and multi-threading are inefficient and can
consume huge memory. Because only one process
handles all clients in turn, the state of every client is kept.
Every time when I/O multiplexing selects a client to
handle, the system calls the corresponding function
according to the state of clients. Fig. 3 shows the set of
states of a client during mail processing. Except that the
SMTP and “quit or next” states are related to the SMTP
protocol, other states are kinds of MIME parsing
states. ”Bypass”, “scan” and “decompress” handle the
attachments.

To achieve short response time, the processing time
in each state should be short. The SMTP protocol handler
handles one-line protocol message at a time in the SMTP
state. The system reads only 8 KB each time when
handling the three types of attachment. AMaViS, however,
receives all mails and stores them in the disk first, and
then processes mails sequentially. If there is a large file in
front of many small mails, small mails need to wait until
the large one has been finished. The average processing
latency in the storage-based proxy may be long because
the large mail blocks the small mail. The stream-based
proxy can have short latency and service the clients fairly.

SMTP

mail header

first body

MIME header

text/plainbypassscan decompress

dangerous
attachment

compressed
attachment

quit or next

Without MIME

send next mail

data end

Figure 3. The states of mail processing.

6 Benchmarking

6.1 Test bed

We compare the stream-based mail proxy with a
storage-based mail proxy, AMaViS. These two proxies
are installed on a PC with 1GHz Pentium III CPU,

512MB SDRAM, 20GB hard disk and 100 Mbps Ethernet.
The operation system is Linux with kernel version 2.6.10.
Perl 5.8.5 runs both proxies since both are implemented in
Perl. Both proxies use ClamAV version 0.83 as the virus
scanning engine. Postfix serves as the MTA to work with
AMaViS.

For fairness, AMaViS is configured in the following
way. (1) The mail spam function is disabled since our
stream-based proxy does not check the spam. (2)
ClamAV runs in daemon mode that is faster than
command line mode. (3) The cache mechanism is
disabled in AMaViS. Two types of mail serve as the mail
traffic in our benchmarking to represent different
processing mechanism. The first is the mail with 1 MB
executable attachment and will not to be scanned for
viruses or decompressed. The proxy simply forwards this
mail. The second is the mail attaching the compressed file
from the above 1 MB file. The compression ratio is 37%.
Both proxies have the same content to be scanned.

6.2 Performance and the impact of different mail
content

The latency and throughput are measured in the
external benchmarks. The latency is the time from the
start of sending one mail to the end of receiving on target
MTA. When the proxy is used, it holds the mail for a
while. The latency with our proxy, AMaViS and no proxy
environment are observed. Fig. 4 presents the
improvement in latency. The latency is 102 ms without
extra processing of the proxy. When the proxy function is
involved, our proxy exhibits much shorter latency than
AMaViS in all configurations. Our proxy takes 213 ms
and 105 ms when forwarding a mail; AMaViS takes 1553
ms and 780 ms. Compared in virus scanning and
decompressing, the latency of our proxy 518 ms and 527
ms, shorter than 1802 ms and 1267 of AMaViS.

External benchmarking -- latency

0
500
1000
1500
2000

no proxy AMaViS stream-based

la
te
nc
y
(m
s)

F+O (original) F+O (compressed)

F+V+O (original) F+D+V+O (compressed)

Figure 4. Latency of sending a mail.
(F: forwarding O: other mail processing V: virus scanning

D: decompressing)

Throughput is defined as the total processed mail
size divided by the elapsed time. A large number of
identical mails are sent through the proxy and the total
elapsed time is measured. The throughput of our proxy

with simple forwarding is 65.2 Mbps, which is very close
to the throughput of 69.93 Mbps without any proxy.
AMaViS gets the throughput of 9.51 Mbps even when it
disables both anti-virus and anti-spam functions. The
storage-based architecture itself is a bottleneck.

Fig. 5 shows the throughput with virus scanning and
decompression. With virus scanning but without
decompression, our proxy has 21.79 Mbps. Dropping
from 65.2 Mbps in simple virus scanning implies virus
scanning is a bottleneck. AMaViS gets 6.9 Mbps with
virus scanning, slightly dropped from 9.51 Mbps in
simple forwarding. The notation “_E” denotes the
effective throughput in scanning decompressed files.
Because the file size is expanded after decompression, the
effective throughput is higher than the throughput
calculated from the original file size.

External benchmarking -- throughput

0

5

10

15

20

25

scan decompress decompress_E

th
ro
ug
hp
ut
 (
M
bp
s)

AMaViS stream-based

Figure 5. Throughput with virus scanning and
decompression.

6.3 Buffer Requirement

We evaluate the buffer usage by monitoring the disk
and memory usage of two proxies while there are a
variable number of clients. Each client sends one mail
attaching a 300KB file compressed from a 1 MB file. Fig.
6 presents the memory and storage usage of both proxies.

Internal Benchmark - Space Usage

0
100000
200000
300000
400000

500000
600000
700000
800000

0 10 20 30 40 50 60 70 80
Clients

S
iz
e
(K
B
) Amavis_mem

Amavis_disk

Amavis_total

Stream_mem

Figure 6. Space usage of memory and disk.

Amavis_mem and Amavis_disk denote the memory
usage and disk usage, respectively. Because AMaViS
need to cooperate with Postfix, both are counted.
Amavis_total is the sum of Amavis_mem and

Amavis_disk. Stream_mem means the memory usage of
our proxy. Since no temporary files are in the stream-
based proxy, there is no disk usage. The storage-based
proxy is shown to use much more space on both memory
and disk than our stream-based proxy, which uses nearly
constant memory space. The extra memory consumption
in the stream-based proxy is the creation of the mail
processor object, as discussed in Section 5.1.

In the internal bottleneck analysis, the execution time
of each step in the mail processing is recorded. The steps
include SMTP handling, MIME parsing, decompression,
and virus scanning. Among them, virus scanning takes
above 60% of the total execution time, while
decompression takes only around 10%. This testing
reveals that virus scanning is the bottleneck that should be
accelerated in a better approach, such as hardware
implementation or a better searching algorithm for virus
signatures.

7 Conclusions and Future Work

This work designs and implements a stream-based
mail proxy with interleaved decompression and virus
scanning to prevent the storage of an entire mail. Without
storing the entire mail, the file system access is eliminated
and the buffer usage is saved. The external benchmarks
prove the effectiveness of our stream-based proxy over
the storage-based proxy, both in latency and throughput.
In simple forwarding, the throughput of our proxy is 65.2
Mbps, while that of AMaViS is only 9.51 Mbps. In virus
scanning, the throughput of our proxy is 21.79, while that
of AMaViS is 6.9 Mbps. The disk space required is
proportional to the number clients and the mail size in
AMaViS. Our proxy shows nearly constant memory
consumption compared with AMaViS. The internal
benchmarking reveals virus scanning is the bottleneck.

This system is feasible at the embedded system
environment without a hard disk and is more scalable than
the traditional storage-based proxy. Anti-spam is another
useful function in the mail proxy, and it can be added into
a future version of the streamed-based proxy.

References
[1] Perl module -- Net::SMTP::Server,
http://search.cpan.org/~macgyver/SMTP-Server-
1.1/Server.pm.
[2] Clam AntiVirus system, http://www.clamav.net.
[3] Zlib, http://www.gzip.org/zlib.
[4] Perl module: Compress::Zlib,
http://search.cpan.org/~pmqs/Compress-Zlib-
1.3.4/Zlib.pm.
[5]AMaViS -- A Mail Virus Scanner,
http://www.amavis.org.
[6] Trend Micro, http://www.trendmicro.com.
[7] Fortinet, http://www.fortinet.com.
[8] F-pod Antivirus, http://www.f-prot.com.

[9] CP Secure, http://www.cpsecure.com.
[10] The Anomy mail tools, http://mailtool.anomy.net.
[11] K. Wu, P.S. Yu and J.L. Wolf, Segment-based Proxy
Caching of Multimedia Streams. Proc. 10th Intl. World
Wide Web, Hong Kong, 2001, 36-44.
[12] C.H. Chi, J. Deng, Y.H. Lim, Compression Proxy
Server: Design and Implementation. Proc. 2nd USENIX
Symp. Internet Technologies & Systems (USITS), Boulder,
CO, 1999.
[13] Things you need to know before programming Perl
ithreads, http://www.perlmonks.org/?node=288022.
[14] Y. Miretskiy, A. Das, C.P. Wright and E. Zadok,
Avfs: An On-access Anti-Virus File System, Proc. 13th
USENIX Security Symposium, San Diego, CA, 2004, 73-
88.
[16] N. Freed and N. Borenstein, Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC 2045, 1996.

