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Abstract—The smoothness of human–smartphone interaction
directly influences users experience and affects their purchase
decisions. A commonly used method to improve user interaction
of smartphones is to optimize the CPU scheduler. However,
optimizing the CPU scheduler requires a modification of oper-
ating system. In addition, the improvement of the smoothness
of human–smartphone interaction may be limited because the
display subsystem is not optimized. Therefore, in this paper, we
design a motion prediction queuing system, named MPQS, to
improve the smoothness of human–smartphone interaction. For
this, we use the information of vector, speed, movement, provided
by the queuing mechanism of Android, to predict the movement
of user-smartphone interaction. Based on the prediction, we then
utilize available execution time between frames to perform image
processing. We conducted a set of experiments on beagleboard-
xM to evaluate the performance of MPQS. Our experiment
results show that the proposed method can reduce the number
of jank by up to 21.75%.

Index Terms—Frame interval, graphic user interaction, motion
prediction, smartphones, smoothness.

I. INTRODUCTION

SMARTPHONES have played an important role in
our daily life because they provide many valu-

able applications, such as shopping, news browsing, map
navigation, e-mail, and video playing. The smoothness of
human–smartphone interaction directly influences users expe-
rience and affects their purchase decisions. According to
Nielsen [1] and Miller [2] investigation, 0.1 s is the minimum
delay that human can feel. A delay is noticeable if the interval
of the delay is longer than 1 s. Further, if the delay is longer
than 10 s, users will switch to other tasks. Similar results can
be found in [3], in which 0.2 s is the minimum threshold for
human to perceive a delay of an application. As a result, it
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becomes an important issue for smartphone manufactures to
improve the smoothness of human–smartphone interaction.

A simple and intuitive method to improve user interaction
of smartphones is to use graphics acceleration [4]. Although
graphics acceleration can boost performance levels, it
increases hardware cost. Central processing unit (CPU) sched-
ulers are another targets for optimization because they
also affect the smoothness of human–smartphone interaction.
Wang et al. [5] and Wong et al. [6] systematically analyzed
and measured the performance of three schedulers: 1) O(1);
2) rotating staircase deadline scheduler (RSDL); and 3) com-
pletely fair scheduler (CFS). The O(1) scheduler provided con-
stant time scheduling services so as to minimize the amount
of jitter incurred by the invocation of the scheduler. However,
the O(1) algorithm utilized a complicated method to classify
tasks. The calculation of determining the interactivity of tasks
may also incorrect and results in a performance degradation.
RSDL aimed to deliver a better fairness among tasks. However,
it may induce a long response time of starved tasks. The
design goal of CFS is to provide a fair CPU resource allocation
among executing tasks. However, it may sacrifice performance
of interactivity tasks. Although the above scheduling poli-
cies may improve the performance of interactive tasks, it
requires a modification of operating system (OS). In addition,
the improvement of the smoothness of human–smartphone
interaction may be limited because the display subsystem
is not optimized. Therefore, the research problem of this
paper is to improve the smoothness of human–smartphone
interaction.

Average frame rate is the most commonly used index to
measure the smoothness of a video. The higher the frame
rate is, the better the quality of played back video becomes.
However, two videos with the same average frame rate can
provide very different user experiences, because one may
abruptly drop a large number of frames while another may
maintain a uniform frame rate. Li [7] claimed that the smooth-
ness of user interactions can be measured by five key indexes:
1) response delay; 2) maximal frame time; 3) frame time vari-
ance; 4) frame per second; and 5) frame drop rate. In addition,
Wen [8] provided six different indexes to evaluate the smooth-
ness of smartphones. They are the mean of frame intervals
(MFIs), variance of frame intervals (VFIs), maximal frame
interval (MaxFI), frame no response, times of MaxFI, and
number of frame intervals (NFIs). According to the analysis
results of the above researches, VFI is the most representa-
tive index to evaluate the smoothness of human–smartphone
interaction. Their research results also showed that if intervals
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Fig. 1. Illustrated example of jank.

between frames vary significantly, the delay becomes notice-
able. In this paper, we use jank as performance index, which
is defined as the number of nonupdated screens in a given
time slot. The more the number of janks, the poorer the
performance, and the higher VFI. As Fig. 1 shows, the
display (i.e., the screen of a smartphone) is updated periodi-
cally according to the vertical synchronization (VSnyc) signal.
Displaying a frame requires the computation of CPU and
graphics processing unit (GPU). The display subsystem first
uses CPU to calculate the regions that should be refreshed and
then marks the regions as dirty regions. Next, the display sub-
system adopts GPU to draw the display by updating the video
buffer. The computation workload of CPU and GPU should
be finished before the VSnyc signal is triggered. Otherwise,
the screen will not be updated in time. As shown in Fig. 1, a
jank happens at the time when the second VSnyc is triggered
and the computation of CPU and GPU is not completed.

In this paper, we aim to reduce the number of janks so
as to improve smoothness of human–smartphone interaction.
For this aim, we use the information of vector, speed, and
movement, provided by the queuing mechanism of Android,
to predict the movement of user-smartphone interaction. Based
on the prediction, we utilize the slack time between tasks to
preprocess portions of raw data in the video buffer. Two meth-
ods are proposed to improve smoothness. First, we condense
the computation load of both CPU and GPU so as to mini-
mize the number of janks. All frames need to be processed
before they can be rendered. In an event-driven application,
the rendered frame will be displayed in next frame slot. The
major advantage of the proposed method is that we can obtain
the events in advance, and preprocess those frames to reduce
computation of both CPU and GPU. Second, we use the same
prediction mechanism to get future events to reduce computa-
tion. The main idea is to reduce the number of output frames.
We ensure that the minimum frames per second is larger or
equal to 30 so that the reduction of frames will not affect user
experience.

To our best knowledge, this is the first work that utilizes
motion prediction and slack time to reduce the number of janks
and the computation load of CPU and GPU so as to improve
the smoothness of human–smartphone interaction. The major
difference between our method and existing works is that we
focus on how to reduce the computation load rather than how
to properly manage resource content among concurrent run-
ning processes. The major contributions of this paper include
the following.

1) Adopting motion prediction to get future events to
reduce computation of both CPU and GPU.

2) Utilizing slack time to preprocess following frames to
reduce the number of janks.

3) Providing a thorough review on the Android display
subsystem (ADSS).

4) Conducting a series of experiments in a real environment
to critically evaluate the performance and feasibility of
the proposed method.

In short, we provide a new system that reveal new oppor-
tunities to improve the smoothness of human–smartphone
interaction.

The remainder of this paper is structured as follows.
Section II presents the background. Section III describes the
assumption and problem statements, and Section IV describes
the architecture of motion prediction queuing system (MPQS).
Section V describes implementation issues. The experimental
results and case study are presented in Section VI. Finally,
we conclude this paper and discuss the future works in
Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we first provide background information of
the ADSS. We then discuss related work that aimed to improve
interactivity.

A. Android Display Subsystem Architecture

Fig. 2 shows the architecture of ADSS. The first layer,
also the top layer, is application layer. Based on the data
types, we classify applications into three different categories.
Applications belong to the first category are general appli-
cations which display data in red, green, and blue (RGB)
color model. Most applications belong to the first category.
Applications belong to the second category display informa-
tion in luminance, chrominance, and chroma (YUV) color
space. Example applications include camera preview and video
playback. These applications sent YUV data directly to the
kernel and display data through overlay interface. The third
category is similar to the first category, but the displayed data
need to be processed by Open Graphics Library (OpenGL),
Open Vector Graphics, Scalable Vector Graphics, and Skia.
Example applications include games, navigation map, and
flash software. The second layer is the framework layer, and
the core module is named SurfaceFlinger which provides
services to all processes who needs rendering. Because the
overlay interface is packaged in SurfaceFlinger, the processes
that need to use the overlay interface have to communi-
cate with SurfaceFlinger. In addition, SurfaceFlinger will use
OpenGL to compose different surfaces. Graphics hardware
abstract layer (HAL), is invoked by 2-D/3-D applications and
SurfaceFlinger to perform graphics processing. The third layer
is HAL, which provides control channels and data channels to
upper layers, and interacts with image processing unit (IPU)
driver. The IPU driver handles image data processing such
as transforming YUV to RGB or performing image rotation.
Gralloc is divided into two parts. The first part is used by
persistent memory (PMEM) to communicate upper layer. The
second part is used to refresh frame buffer, which stores the
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Fig. 2. Architecture of ADSS.

Fig. 3. Relationship between application surface and SurfaceFlinger.

displayed frames. Upper layer sends frame data to OS ker-
nel through the overlay or the frame buffer. If the hardware
OpenGL for embedded systems (OpenGL ES) does not sup-
port the corresponding functions, image data will be processed
by software. The fourth layer is the kernel device drivers,
which includes frame buffer driver and IPU Overlay driver.
PMEM and Kernel GNU Scientific Library are the encapsu-
lation of PMEM driver and GPU. The last layer is physical
layer which is composed by different hardware devices.

SurfaceFlinger is the core services of ADSS. The main
function of SurfaceFlinger is surface composer. It constructs
2-D or 3-D surface for all kinds of applications, and sends
the final surface data to the display memory. Each applica-
tion has several z-order layers, and each surface in a layer is
a canvas that allows applications to paint on it. Surfaces in
application are obtained from SurfaceComposerClient which
is an interface to communicate with SurfaceFlinger. The com-
munication channel between surface and SurfaceFlinger is
binder. Binder is an interprocess communication mechanism
provided in Android. When application modified content in
surface then the transaction is passed to SurfaceFlinger and
informs the loop thread to update frame. SurfaceFlinger then
composes each surface by position, size, and z-order. The
relationship between application surface and SurfaceFlinger
is shown in Fig. 3.

Fig. 4. Client and server architecture of ADSS.

ADSS uses client and server architecture, shown in Fig. 4,
for applications and surface to communicate with each other.
The right-hand side of Fig. 4 is server and the left-hand side
of Fig. 4 is client. The responsibility of the server is to create
surfaces. On the other hand, a client provides an interface for
upper layer to control surface, and sends a message to the
server to complete the processing. The architecture is shown
in Fig. 4.

B. Related Work

Several research efforts have been made to improve the
interactivity of an Android system. We divide them into two
categories: 1) kernel level optimization and 2) framework
level optimization. Table I makes a comparison among these
works. The graphics acceleration is a hardware mechanism
which can improve graphical computation. It uses specially
instruction pipeline to reduce computation latency. However,
the specially designed hardware is not supported by all smart-
phones. VT-CFS [9] and MLFQ [10] are OS-level solution to
improve the user interaction. Both methods required a modifi-
cation of OS. Nguyen et al. [21] designed a system prototype
called SmartIO that reduced the application delay by prioritiz-
ing read operations over write operations, and grouping them
based on assigned priorities. Android develop team adopted
control group, SurfaceFlinger and project butter to improve
the smoonthness. Unlike existing works, we developed a
prediction mechanism to further improve the smoonthness of
smartphones.

Linux kernel communities have made significant efforts to
improve the interactivity of Linux by developing sophisticated
task scheduling algorithms. For example, in Linux 2.6, an O(1)

scheduler was proposed to replace original O(n) scheduler in
order to minimize the amount of jitter, OS service overhead,
and influence to programmers. This O(1) algorithm intended
to address the performance issue of interactivity by using a
number of heuristics to determine if tasks were I/O-bound or
CPU-bound. Once it characterized tasks, it promoted the prior-
ities of I/O-bound tasks to improve user experiences. Generally
speaking, the O(1) scheduler can deliver better interactivity
performance than CFS [5], [6]. However, the heuristics may
misclassify characteristics of tasks and lead to starvation and
unfair allocation of CPU resource.

Some research efforts have focused on resource
management in OS, middleware level and big-data infras-
tructures. Wang et al. [22] proposed an optimal priority-free
real-time scheduling to process tasks running in a real-time
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TABLE I
COMPARISONS OF DIFFERENT METHODOLOGIES

system. Li et al. [23] designed scheduling algorithms that
ensure timing correctness and optimize energy consumption
on a processor with variable speeds. Valls and Val [24]
gave a comparative analysis of two different middleware
approaches for reconfiguration of distributed real-time
systems. Basanta-Val and García-Valls [25] explored the inte-
gration of an efficient programming language and high-level
real-time programming abstractions so as to improve the
responsiveness of the system. A library was proposed for
programmers to develop real-time and embedded applications
in C language. Basanta-Val and García-Valls [26] also
developed an integrated technique to manage real-time remote
invocations in Java’s Remote Method Invocation. They further
considered time-critical big-data applications. An architecture
for time-critical big-data system was designed to run time
critical analytics and and applications [27]. The major
difference between our method and these quality of service
techniques is that we focus on how to reduce the computation
load rather than how to properly manage resource content
among concurrent running processes. MPQS and the quality
of service techniques are complementary to each other and
not mutually exclusive.

C. Improved Android Display Subsystem

Android also uses various techniques to enhance the
performance of interactivity. For example, in order to provide
better user experience, Android uses control group mecha-
nism supported by Linux to maintain priority of background
and foreground tasks [11]. Background groups are restricted
to use no more than 10% of processor utilities so that they
will have limited impact on foreground applications. In addi-
tion, Android performs rendering work separately in order to
reduce the time used to draw a screen [12]. Inside Android,
a screen is composed of separate pieces of region called
surfaces. Android draws each surface independently so that
only the updated surface is rendered. Each individual surface
is then composed with others by a dedicated system server

Fig. 5. Display behavior (a) without Vsync and (b) with Vsync.

called SurfaceFlinger. By doing so, total rendering time is
reduced and users can perceive improved interactivity. Further,
a famous Android project, called Butter, was proposed to
improve the performance of rendering [13]. The Butter recon-
structs the ADSS by introducing three effective functions:
1) VSync; 2) triple buffer; and 3) choreographer. As Fig. 5,
the upper part is the case without VSync. Jank happens at
the time when the second VSnyc is triggered and the sec-
ond frame has not been rendered. This is because there is no
mechanism to inform GPU to perform rendering for the sec-
ond frame after the first frame is processed. In order to solve
this problem, Buffer use VSync to interrupt CPU and GPU to
handle upcoming frames. The interval between VSyncs is 16
ms because the display refresh rate is 60 frames/s.

In order to improve the performance in processing frames,
Butter adopts a multiple buffer mechanism. In Fig. 6(a), the
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TABLE II
NOTATION TABLE

Fig. 6. (a) Two buffers. (b) Triple buffers.

frame in buffer A is being rendered while the frame in buffer
B is being processed so that both CPU and GPU are wait-
ing for each other at the time instant when the second VSync
is trigger. Butter solves this problem by introducing the third
buffer C. As Fig. 6(b) shows, the third buffer C can be used
to process the third frame so that CPU and GPU will not
turn into idle mode in the second time slot. As a result, there
is no jank in the latter case. However, the jank issue still
exists if processing time is longer than 16 ms. Thus, we need
a new mechanism to further reduce computation or increase
availability processing time.

In our work, in order to further reduce the number of
janks, we use the information of vector, speed, and movement,
provided by the queuing mechanism of Android, to predict
the movement of user-smartphone interaction. Based on the
prediction, we utilize the slack time between tasks to prepro-
cess portions of raw data in the video buffer. The preprocessing
helps to reduce the computation load of both CPU and GPU
so as to minimize the number of janks.

III. PROBLEM STATEMENT

This section first explains the terminology and assumption
of this paper. It then formally describes the problem statement.

A. Terminology and Assumptions

In this paper, the frame function is defined as a graphic
instruction, which can be invoked by CPU or GPU. In the
implementation of OpenGL ES [14], a graphic instruction
is executed by CPU if GPU hardware does not support the
instruction. Table II lists the definition of notations used in
this paper. Notation i stands for the level of processing time.
For example, if one frame function takes 100–200 cycles to
complete the operation while another frame function takes
200–300 cycles to completes the operation, then they will be in
different level. We define Tx,i as the processing time of frame
function which includes CPU or GPU processing time in the
ith level. According to the different processing time level, the
weighted value wi is defined as the ratio of frame functions
to one frame. For example, if the current frame contains more
strait line functions than circle functions, we will give strait
line functions a higher weight. In addition, lv is 1/refresh rate,
which depends on system design. Our prediction function p
takes the speed Is, region Ir, and direction Id of user gesture
as input. These three parameters are obtained from Android
system.

B. Problem Description

Fig. 7 demonstrates the processing time frame processing
time (FPT) and idle time Tidle,j in a sequence of time slots. The
time line from left to right is mapped to wall clock time Tc

in real world. When display system handles with a sequence
of frames, it adopts VSync signal to prevent the system doing
anything visible to the display memory buffer until the current
refresh cycle finishes. The time interval between two VSync
is composed of FPT and Tidle,j. According to that, we can
summarize the processing into equation form as follows.
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Fig. 7. FPT.

Equation (1) is used to calculate the computation time in
each frame. Because a frame is constructed by several frame
functions, we level them from low to high according to the
computation time. The wi is related to the ratio of leveled
frame functions used in this frame. In this paper, we regard
wi as the ratio of frame functions

FPT =
k∑

i=1

(
Tx,iwi

)
. (1)

Equation (2) is used to calculate the total processing time of
a sequence of frames. The idle time T(idle) is the interval where
CPU and GPU are idle. We calculate the total processing
time Tc by

Tc =
nF∑

j=1

(
FPTj + Tidle,j

)
. (2)

Assume that the fresh rate of the system is 60 frames/s and
lv is equal to 16 ms. A jank happens if TF > lv. In other words,
a jank happens if FPT is larger than the interval between two
VSync signals. We use (3) to represent the condition that a
jank will happen; that is

Tc

nF
= TF ≤ lv. (3)

The formal problem description is given as follows. Given
Is, Ir, and Id as inputs, we aim to design a set of prediction
function p so as to minimize FPTj and nF , and ensure that
TF ≤ lv.

IV. MOTION PREDICTION QUEUING SYSTEM

This section first gives an overview of MPQS. It then
describes motion prediction, linear fitting, data training,
prediction module, and queuing system, respectively. Finally,
an example is used to explain how MPQS works.

A. Overview of MPQS

MPQS is implemented in application layer. As Fig. 8(a)
shows, the architectures of MPQS are composed of several
modules, and each of them performs different functionali-
ties. The prediction module is used to predict user gestures
based on the historical data stored in the training database.
The prediction results are sent to the reallocation module to
process frames. The processed frames are finally sent to the
frame queue and displayed by the ADSS. The flowchart of
MPQS is shown in Fig. 8(b).

Fig. 8. MPQS (a) architecture overview and (b) algorithm.

We extract system events from the even hander inside
Android kernel. In event handler, we can obtain four impor-
tant information of a user gesture. They are Is, Ir, Id, and Tc,
which are sent to the prediction module for further analysis.
Depending on the system state transition, MPQS decides
whether or not to switch the reallocation module to compute
frame and send the results to the frame queue. Finally, ADSS
gets the frames from the frame queue and renders them on the
output device.

B. Motion Prediction

Motion prediction is used to predict the final position of a
user gesture. This section first introduces Fitts’s law and then
discusses linear fitting and prediction module, respectively.

1) Fitts’s Law: Fitts’s law [15] is a widely used
human movement model. Fitts’s law has been formulated
in several different ways. A common form, proposed by
MacKenzie et al. [16], [18] and Douglas et al. [17] for 1-D
movement is

MT = a + b × log2

(
1 + D

W

)
(4)

where MT is the move time of the movement, a stands for the
start or stop time of the device, and b stands for the speed of
device. Both a and b are constants, which can be determined
experimentally by fitting a straight line. The D is the distance
between the starting point and the center of the target posi-
tion. W is the width of the target measured along the axis of
motion. The binary logarithm in Fitts’s law is called the index
of difficulty (ID) for the target, and has units of bits. ID is
a measurement of the theoretical difficulty of performing an
aiming movement. For easy of computation, we rewrite the
Fitts’s law as

MT = a + b × ID (5)

ID = log2

(
1 + D

W

)
. (6)
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Fig. 9. Concept of reallocation.

Equations (5) and (6) show that a movement will take longer
to complete if the area of the target region is small or the
location of the target region is far away.

2) Linear Fitting and Data Training: Before performing
the prediction on a smartphone, we have to construct a fitting
linear equation from training data. This is because the constant
coefficients a and b are hardware dependent.

3) Prediction Module: The prediction module is used to
predict the final position of a user triggered movement. The
Fitts’s law and our prediction module differ in the target of
prediction. The Fitts’s law is used to predict the movement
time while our prediction module is used to predict the final
position of a movement. Therefore, based on (5) and (6), we
obtain the MT by solving

D =
(

2
MT−a

b − 1
)

× W. (7)

C. Queuing System

The reallocation module is used to maintain the frame
queue, which stores a sequence of frame according to the
prediction result. Reallocation module is designed to balance
frame time variance by reducing the number of frames or
rearranging the frames.

We use an example, shown in Fig. 9, to explain the main
concept of the reallocation module. Assume that a user moves
a surface A from point R (700, 300) to point L (100, 300)
and the movement takes 10 s to complete. It implies that the
system needs to render 600 frames if the frequency of VSync
is 60 Hz. When user’s finger moves one pixel, it needs to
update one frame. The reallocation module will reduce the
frame number so as to average frame time variance. For exam-
ple, if the distance between two continuous frames is enlarged
to 30 dots per frame, only 20 frames need to be rendered and
the computation load is reduced to 1/3 its original execution
time.

The algorithm of the prediction module is shown in
Fig. 10(a). First, we use the information MT and ID stored
in training database to estimate regression model and obtain
the parameters a and b. Second, we retrieve Is, Ir, and Id to
measure D by (7). Finally, we send the output information MT,
lv, Is, Ir, and Id to the reallocation module. In addition, in this
paper, we build a tracer to ensure the tracking accuracy of
prediction results. For this, the tracer will record every single
interaction operations from user, and compare it with actual

Fig. 10. (a) Prediction module. (b) Reallocation module.

results. When the predicted result does not match the actual
result, the tracer will issue an interrupt signal to inform reallo-
cation module to drop those completed frames, and notice the
prediction module to predict results by new interaction oper-
ations. The algorithm of the reallocation module is shown in
Fig. 10(b). Reallocation module will drop all frames in the
frame queue if an interrupt is received from the prediction
module. Otherwise, it will generate frames according to the
prediction results. In this paper, we use D, MT, and Is to
calculate frmCnt. Variable idx is used to count the index of
processing frame. The maximum value of idx is frmCnt. For
example, if the input speed Is is 10 pixels per millisecond, the
movement time MT, based on the training database, is 90 ms.
The movement distance D will be determined. Finally, we use
D and lv to determine frmCnt.

D. Illustrated Example

We use an example to explain how we get the parameters a
and b of (7) from the training data module. As Table III shows,
we assume that the target width is 50 pixels. In the first round,
the movement distance is 330 pixels and the movement time
is 458 ms. In the second round, the movement distance is 708
pixels and the movement time is 871 ms. Therefore, the IDs
are log2((330/50) + 1) = 2.9259 and log2((708/50) + 1) =
3.9221. Based on the IDs, we construct a linear fitting equation
with constant

a =
(

458 + 871

2
− 414.575 × 2.9259 + 3.9221

2

)
= −755.005
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TABLE III
EXAMPLE INPUT INFORMATION

and

b =
⎛

⎝

(
(2.9259 × 458 + 3.9221 × 871) − (2.9259 + 3.9221) × 458+871

2

)

((
2.92592 + 3.92212

) − (2.9259 + 3.9221) × 2.9259+3.9221
2

)

⎞

⎠

= 414.575.

Based on (5), we have MT = −755.006 + 414.575 × ID.
Finally, we use the obtained prediction function to process
input events. For example, if the movement time is 900 ms,
the prediction distance will be

D =
(

2
(900−(−755.006))

414.575 − 1
)

× 50 = 745.5761

according to the prediction function.
MQRS is also feasible in supporting small computing infras-

tructure because MPQS requires a very little computation. The
core equations of MPQS are (4)–(6), in which (4) and (5) can
be executed offline before MPQS starts to run. On the other
hand, (6) is a very simple online exponentiation operation and
can be done in few instructions by a CPU with floating-point
unit. For CPU that does not support floating-point computa-
tion, (6) can be done by an approximation function efficiently.
MPQS is independent on OS, library, middleware, and hard-
ware. MPQS can be integrated with smartphones or handheld
devices as long as the system parameters and input variables
listed on Table II are available. Based on the information,
MPQS utilizes motion prediction and slack time to reduce
the number of janks and the computation load of CPU and
GPU so as to improve the smoothness of human–smartphone
interaction.

V. IMPLEMENTATION

This section introduces the implementation of the MPQS
system. It first describes the architecture and data flow of
Android display mechanism. It then introduces the detailed
implementation of the MPQS.

A. Android Display Mechanism Architecture

In order to process upcoming frames, we perform a
series of operations, including adopting the ADSS to
perform frame computation and composition and requir-
ing the WindowManager to intercept and pass input event.
WindowManager is a system service used to receive signals
from monitor. As shown in Fig. 11, the lowest layer is physi-
cal layer that contains input devices, which generates gestures
events. The responsibility of the device drivers is to parse ges-
ture events and transform the events into standard Linux I/O
event formats. The EventHub then reads these events from
Linux kernel and passes the event information to InputReader.
The responsibility of InputReader is to decode input ges-
ture events and generate a sequence of Android input events.

Fig. 11. Input pipeline.

Fig. 12. Related class diagram.

The input events then are dispatched to associated applications
through InputDispatcher.

As Fig. 12 shows, SurfaceFlinger uses EventThread to
monitor the VSync signals. EventThread communicates with
VsyncHandler to monitor VSync signals. Whenever receives
a VSync signal in onVSyncReceived, EventThread will
informs the MessageQueue by calling cb_eventReceive to
generates a refresh event and inform onMessageReceived in
SurfaceFlinger to process the upcoming events in createDis-
playEvent.

Fig. 13 shows the architecture and data flow of display
mechanism. Threads 1 and 2 are system threads created by
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Fig. 13. Display mechanism and flow.

Android. A user application is called activity in Android.
Whenever a user generates a gesture event, such as touch,
tap, scroll, and so on, the event will be sent to Activity
by the InputDispatcher in WindowManager, and passed to
ViewGroup. ViewGroup determines which view can handle
this event. For general applications, touch event may trigger
onDraw method to refresh the content in a view. As mentioned
in Fig. 3, SurfaceComposerClient uses a surface to possess a
canvas to draw. When onDraw method is invoked, a canvas
should be locked by surface. A canvas holds three buffers:
1) front; 2) back; and 3) temporary buffer. A concurrent run-
ning system will use SurfaceFlinger to check the surface. If
surface is updated, SurfaceFlinger will compose all surfaces in
each layer from top to bottom and render them to the output
device.

B. MPQS Mechanism Architecture

MPQS is an application layer motion prediction system.
The implementation of MPQS is based on Android 4.1.2
JellyBean [19]. MPQS first intercepts and reproduces drag
events. It then reallocates frame rendering. In order to sim-
ulate a similar operation of Android display mechanism in
the application layer, we wrote a call back function name
doFrame based on Choreographer which is triggered by
VSync signals. A call back function will invoke sendDoFrame
method in RenderHandler to inform RenderThread. As Fig. 14
shows, we provide two handlers and one render thread. The
ActivityHandler maintains UI message while RenderHandler
is responsible for the callback function triggered by VSync
signals. After the RenderHandler passes input events, the
RenderThread takes out the frame from ReallocationModule
and informs ActivityHandler to trigger activity UI to update
screen. We also implement a TouchEventListener in activity in
order to handle the drag event from specific view, for exam-
ple, a button in activity. Event listener is an interface provided
by Android API that contains a single callback method trig-
gered by user interaction. In this listener, it calls prediction
module in MPQS to calculate the distance of movement. For
example, if the predicted distance is 600 pixels and we will
display those frames in 1 s under 30 frames/s. The distance

Fig. 14. Testbed class diagram.

between each frame is 20 pixels, which is transformed to rel-
ative polar coordinate by RenderThread. The RenderThread
is a thread invoked by VSync callback function doFrame
in choreographer. In our implementation, we handle the UI
update frequency in doFrame, and the update frequency is
30 frames/s.

For example, when we drag the button in an activity, the
drag event will be caught by the event listener. The input
information Is, Ir, and Id then is passed to MPQS to gen-
erate frames. These frames will be processed and displayed
by render thread when VSync signal is arrived.

SurfaceFlinger provides surface to an activity. There is a
canvas in a surface. Canvas can be regarded as the actual
memory space used to store the content of a view. Memory
space will be sent to framebuffer later by SurfaceFlinger. In
our implementation, in order to reduce computation load, we
will reproduce output frames by different display refresh rate.
For example, if the number of output frames is 60 frames and
the refresh rate is 60 frames/s, the number of output frame
will not be changed. On the other hand, if the refresh rate is
30 frames/s, only 30 frames will be output in order to reduce
computation load.

VI. EXPERIMENTS

The experiment environment and results will be discussed
in this section. We first introduce the testbed used in the
experiment. We then discuss the experimental results.

A. Experiment Testbed

The testbed is built on beagleboard-xM [20]. On this plat-
form, we use Android API getRefreshRate to get the display
refresh rate 77.85 frames/s and lv 12 ms. The tolerance draw-
ing time is set to 2 ms, which means that available drawing
time is 12 − 2 = 10 (ms). In order to collect drag informa-
tion, we have to know the coordinates of the starting point and
stoping point of drag operation and the movement time MT.
The collected data are used to construct our prediction mod-
ule We repeat the experiment of dragging gesture 200 times
and show the results in Fig. 15. The start time a is equal
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Fig. 15. Linear fitting result.

to −506.231 with ±133.6(26.38%) asymptotic standard error
and the speed b is 552.716 with ±42.04(7.605%) asymptotic
standard error. These values were calculated by gnuplot with
linear fitting function. Gnuplot is an utility that can gener-
ate 2-D and 3-D plots of data and data fits. The experiment
result of MT between ID 3 and 3.5 is dispersed. It means
although movement distance D are similar, the movement time
MT are quite different. Hence, it is desirable to have a tracer
in prediction module. The detailed results are discussed in the
following sections.

B. Experiment Results

In this section, we first discuss the accuracy of motion
prediction. We then investigate the effectiveness of the
proposed method in reducing the number of janks.

1) Accuracy of Motion Prediction and Impacts of Prediction
Misestimate: Accuracy is an important factor that can affect
the performance of motion prediction of MPQS. The more
accurate the prediction is, the more CPU load can be reduced.
On the other hands, prediction errors will induce extra CPU
overhead to discard all frames and repredict new movement.
In this paper, we built a tracer to improve the accuracy in
prediction results. We conducted the operation more than 200
times and record the results in each operation, we take the
first ten records as prediction vector, and predict coordinate
of destination by vector. Each predicted coordinate and actual
coordinate will be calculated in standard error, and the result is
(αx, αy) = ±(26.6910, 45.0678) pixels. Based on this result,
we understand there is a certain error in user interactions
on the screen. This error will lead user notice that the pre-
dicted pointing position is different with user’s action. So, we
add a correction function in prediction module, and record
operation results again. Amended conditions is set to com-
parison in every 100 pixels to the actual coordinate. When
the coordinate difference is larger than 10 pixels, the tracer
triggers interrupts, and computes standard error again in the
last step of interaction. The result shows a correction will
be generated every 233.74 pixels. In this paper, the aver-
age move distance is 745.5761 pixels and the average move

Fig. 16. Jank percentage in ADSS and condensed computation.

time is 900 ms. It means that only three interrupts in average
will be generated in one interaction operation. Therefore, the
overhead of the proposed method is negligible. In addition,
with the correction function, the standard error is reduced
to (αx, alphay) = ±(7.3426, 9.5713), and the accuracy of
prediction is increased from 75% to 80%.

2) Computation (Condensed Versus Dispersed): Fig. 16
shows the effect of CPU loading on the jank percentage. The
jank percentage represents the percentage of jank when dis-
playing a series of frames. We compare the ADSS mechanism
with condensed computation mechanism. The reallocation
module will tag a timestamp for each frame. The timestamps
indicates the time the frame should be displayed. The frame
will be dropped when system time has exceeded the expected
display time, and therefore a jank occurs. If the frame applica-
tion cannot obtain the canvas in surface before drawing, then
this frame will not be drawn into the buffer. We called this
situation lock failed frame, which will also generates a jank.
Because of prediction module will induce extra CPU load-
ing to operate condensed computation, jank percentage under
condensed computation mechanism is similar to that of ADSS
mechanism.

3) Computation (Regular Versus Reduction): Fig. 17 shows
the effect of CPU loading on the jank percentage. The result
shows that the average jank percentage is reduced from
48.63% to 34.37% after we added the motion prediction mech-
anism. In particularly, when the CPU loading is in the range
of 90%–100%, the jank percentage is reduced to 29.87%. In
application layer, the touch event is triggered by event dis-
patcher. Although the hardware sampling frequency is around
250 Hz, the touch event we received is much fewer than that
in application. This unstable touch sampling rate will lead to
inaccurate VFI. Our motion prediction, however, can avoid
drawing frames based on the touch event. Because, users will
not notice stutter when jank percentage is lower than 30%, our
method is proved to be a practical solution to smooth graphic
user interaction.

According to our results, MPQS cannot eliminate all janks
because both dropped frames and lock failed frame will
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TABLE IV
JANK PERCENTAGE AND FPT

Fig. 17. Jank percentage in ADSS and reduced computation.

Fig. 18. Dropped frame ratio and lock failed frame ratio.

induce janks. Fig. 18 shows the average ratio of dropped
frame and lock failed frame. When CPU loading is heavy,
it will decrease the performance of activity. In addition,
choreographer’s callback time is beyond tolerated drawing
time.

To further demonstrate that the proposed mechanism can
reduce jank percentage, we record the drawing time in dif-
ferent CPU loading. As Table IV shows, when CPU loading
is less than 70%, the drawing time does not exceed one
VSync interval, which is 12.98 ms. Therefore the effect of
rescued computation is not significant when the refresh rate

Fig. 19. Jank percentage in different FPS.

is 77.85 frames/s. However, when the CPU loading is larger
than 80%, the time needed to draw each frame becomes
13.65 ms. It means an increase in jank percentage is inevitable
phenomenon.

In the same case, when the display refresh rate is set to
38.92 frames/s in the reduced computation mechanism, the
display interval becomes 25.97 ms. It means that the process-
ing time of drawing becomes much longer than the original
processing time. Therefore, the effect of reduced computa-
tion mechanism is more significant in a higher CPU loading.
VSync interval remains unchanged in 12.98 ms, but real-
location module displays a frame every two VSync. When
the CPU loading exceeds 80%, the processing time of a
frame becomes more longer. Fig. 19 shows the jank per-
centage in different setting of display refresh rate. The jank
percentage in 38.92 frames/s is much lower than that in
77.85 frames/s. But, the relative MFI and MaxFI are also
increased, especially when the refresh rate is lower than
30 frames/s. When the refresh rate is less than 30 frames/s,
the delay becomes noticeable. Hence, the minimum refresh
rate is set to 30 frames/s, and therefore, we have two refresh
rate 77.85 and 38.92 frames/s in this paper.

4) Condensed Versus Reduced: According to the result of
Fig. 20, we find that reduced computation mechanism can
reduce the jank percentage significantly. The reason is that the
reduced computation can increase available processing time
in each frame. It prevent FPT from exceeding a restricted
processing time inside a frame. If display refresh rate is
77.85 frames/s, the available processing time is only 12.98 ms



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 20. Jank comparison.

Fig. 21. Improved display mechanism.

for each frame. Reduced computation mechanism can increase
the available processing time up to 26.97 ms for each frame.
Therefore, it can reduce jank percentage effectively. Although
reducing FPS directly without prediction module can also lead
the same result in jank percentage, the touch sampling issue is
still exist. This is because unexpected VFI signals will cause
a noticeable delay.

VII. CONCLUSION

In this paper, we propose the MPQS mechanism to reduce
the number of janks. The proposed MPQS mechanism col-
lects real touch inputs on the target platform and reallocates
display frames. With prediction module, the jank reduction
can be up to 21.75%. Our results also show that the accuracy
of motion prediction can reach up to 80% and induces only
3% CPU overhead to recover a misprediction. The comparison
between condensed and reduced shows that the best method
to reduce jank percentage is computation reduction. It implies
jank percentage can be reduced by advanced graphic hardware.

In addition, if FPT can be fewer than 16 ms and the refresh
rate is 60 frames/s, the jank percentage can be minimized.

In the future, we plan to implement the MPQS in the frame-
work layer of Android system so that we can reduce jank
percentage without a modification of applications. We also
plan to adjust drawing tolerance time by using statistic lev-
eled drawing time. By doing so, we can remove the limitation
of buffer count and solve the buffer issue in condensed com-
putation and adjust lv in SurfaceFlinger. As Fig. 21 shows,
MPQS will be built on the top of the SurfaceFlinger. MPQS
will listen and intercept input event by using WindowManager.
In addition, the prediction module will be used to perform lin-
ear fitting estimation based on the collected events. After the
regression module is constructed, we intercept input events in
order to avoid triggering the onDraw method. Based on the
prediction results, the reallocation module will send a virtual
input event to views in activity to call the onDraw method.
Next, an tracer in prediction module will be used to examine
the correctness of the prediction results. If the prediction is
different from users’ gestures, it will drop the preprocessed
results from the frame queue. In the future, we also plan
to modify the onMessageReceived method of SurfaceFlinger
to control the timing of surface examination. It means that
SurfaceFlinger and surface will be in the asynchronous state
at the same time. In ADSS mechanism, the frame drawn by
surface will be composed and rendered by SurfaceFlinger at
next VSync signal received. After adding MPQS mechanism,
surface can produce preprocessed frames to buffer in advance.
Then SurfaceFlinger can compose and render these frame at
proper time which is advised by prediction module. In another
word, SurfaceFlinger does not necessarily process frames out-
put by surface. SurfaceFlinger can compose and render frames
according to the timestamp which is marked by the realloca-
tion module. The timing of render is decided by reallocation
module. In order to further increase the accuracy of the motion
prediction, we also plan to collect more training data from
different applications.
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