














This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE III
EXAMPLE INPUT INFORMATION

and

b =
	




�
(2.9259 × 458 + 3.9221 × 871) − (2.9259 + 3.9221) × 458+871

2

�

� �
2.92592 + 3.92212

� − (2.9259 + 3.9221) × 2.9259+3.9221
2

�

�

�

= 414.575.

Based on (5), we have MT = −755.006 + 414.575 × ID.
Finally, we use the obtained prediction function to process
input events. For example, if the movement time is 900 ms,
the prediction distance will be

D =
�

2
(900−(−755.006))

414.575 − 1
�

× 50 = 745.5761

according to the prediction function.
MQRS is also feasible in supporting small computing infras-

tructure because MPQS requires a very little computation. The
core equations of MPQS are (4)–(6), in which (4) and (5) can
be executed offline before MPQS starts to run. On the other
hand, (6) is a very simple online exponentiation operation and
can be done in few instructions by a CPU with floating-point
unit. For CPU that does not support floating-point computa-
tion, (6) can be done by an approximation function efficiently.
MPQS is independent on OS, library, middleware, and hard-
ware. MPQS can be integrated with smartphones or handheld
devices as long as the system parameters and input variables
listed on Table II are available. Based on the information,
MPQS utilizes motion prediction and slack time to reduce
the number of janks and the computation load of CPU and
GPU so as to improve the smoothness of human–smartphone
interaction.

V. IMPLEMENTATION

This section introduces the implementation of the MPQS
system. It first describes the architecture and data flow of
Android display mechanism. It then introduces the detailed
implementation of the MPQS.

A. Android Display Mechanism Architecture

In order to process upcoming frames, we perform a
series of operations, including adopting the ADSS to
perform frame computation and composition and requir-
ing the WindowManager to intercept and pass input event.
WindowManager is a system service used to receive signals
from monitor. As shown in Fig. 11, the lowest layer is physi-
cal layer that contains input devices, which generates gestures
events. The responsibility of the device drivers is to parse ges-
ture events and transform the events into standard Linux I/O
event formats. The EventHub then reads these events from
Linux kernel and passes the event information to InputReader.
The responsibility of InputReader is to decode input ges-
ture events and generate a sequence of Android input events.

Fig. 11. Input pipeline.

Fig. 12. Related class diagram.

The input events then are dispatched to associated applications
through InputDispatcher.

As Fig. 12 shows, SurfaceFlinger uses EventThread to
monitor the VSync signals. EventThread communicates with
VsyncHandler to monitor VSync signals. Whenever receives
a VSync signal in onVSyncReceived, EventThread will
informs the MessageQueue by calling cb_eventReceive to
generates a refresh event and inform onMessageReceived in
SurfaceFlinger to process the upcoming events in createDis-
playEvent.

Fig. 13 shows the architecture and data flow of display
mechanism. Threads 1 and 2 are system threads created by



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: SMOOTHED GRAPHIC USER INTERACTION ON SMARTPHONES WITH MOTION PREDICTION 9

Fig. 13. Display mechanism and flow.

Android. A user application is called activity in Android.
Whenever a user generates a gesture event, such as touch,
tap, scroll, and so on, the event will be sent to Activity
by the InputDispatcher in WindowManager, and passed to
ViewGroup. ViewGroup determines which view can handle
this event. For general applications, touch event may trigger
onDraw method to refresh the content in a view. As mentioned
in Fig. 3, SurfaceComposerClient uses a surface to possess a
canvas to draw. When onDraw method is invoked, a canvas
should be locked by surface. A canvas holds three buffers:
1) front; 2) back; and 3) temporary buffer. A concurrent run-
ning system will use SurfaceFlinger to check the surface. If
surface is updated, SurfaceFlinger will compose all surfaces in
each layer from top to bottom and render them to the output
device.

B. MPQS Mechanism Architecture

MPQS is an application layer motion prediction system.
The implementation of MPQS is based on Android 4.1.2
JellyBean [19]. MPQS first intercepts and reproduces drag
events. It then reallocates frame rendering. In order to sim-
ulate a similar operation of Android display mechanism in
the application layer, we wrote a call back function name
doFrame based on Choreographer which is triggered by
VSync signals. A call back function will invoke sendDoFrame
method in RenderHandler to inform RenderThread. As Fig. 14
shows, we provide two handlers and one render thread. The
ActivityHandler maintains UI message while RenderHandler
is responsible for the callback function triggered by VSync
signals. After the RenderHandler passes input events, the
RenderThread takes out the frame from ReallocationModule
and informs ActivityHandler to trigger activity UI to update
screen. We also implement a TouchEventListener in activity in
order to handle the drag event from specific view, for exam-
ple, a button in activity. Event listener is an interface provided
by Android API that contains a single callback method trig-
gered by user interaction. In this listener, it calls prediction
module in MPQS to calculate the distance of movement. For
example, if the predicted distance is 600 pixels and we will
display those frames in 1 s under 30 frames/s. The distance

Fig. 14. Testbed class diagram.

between each frame is 20 pixels, which is transformed to rel-
ative polar coordinate by RenderThread. The RenderThread
is a thread invoked by VSync callback function doFrame
in choreographer. In our implementation, we handle the UI
update frequency in doFrame, and the update frequency is
30 frames/s.

For example, when we drag the button in an activity, the
drag event will be caught by the event listener. The input
information Is, Ir, and Id then is passed to MPQS to gen-
erate frames. These frames will be processed and displayed
by render thread when VSync signal is arrived.

SurfaceFlinger provides surface to an activity. There is a
canvas in a surface. Canvas can be regarded as the actual
memory space used to store the content of a view. Memory
space will be sent to framebuffer later by SurfaceFlinger. In
our implementation, in order to reduce computation load, we
will reproduce output frames by different display refresh rate.
For example, if the number of output frames is 60 frames and
the refresh rate is 60 frames/s, the number of output frame
will not be changed. On the other hand, if the refresh rate is
30 frames/s, only 30 frames will be output in order to reduce
computation load.

VI. EXPERIMENTS

The experiment environment and results will be discussed
in this section. We first introduce the testbed used in the
experiment. We then discuss the experimental results.

A. Experiment Testbed

The testbed is built on beagleboard-xM [20]. On this plat-
form, we use Android API getRefreshRate to get the display
refresh rate 77.85 frames/s and lv 12 ms. The tolerance draw-
ing time is set to 2 ms, which means that available drawing
time is 12 − 2 = 10 (ms). In order to collect drag informa-
tion, we have to know the coordinates of the starting point and
stoping point of drag operation and the movement time MT.
The collected data are used to construct our prediction mod-
ule We repeat the experiment of dragging gesture 200 times
and show the results in Fig. 15. The start time a is equal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 15. Linear fitting result.

to −506.231 with ±133.6(26.38%) asymptotic standard error
and the speed b is 552.716 with ±42.04(7.605%) asymptotic
standard error. These values were calculated by gnuplot with
linear fitting function. Gnuplot is an utility that can gener-
ate 2-D and 3-D plots of data and data fits. The experiment
result of MT between ID 3 and 3.5 is dispersed. It means
although movement distance D are similar, the movement time
MT are quite different. Hence, it is desirable to have a tracer
in prediction module. The detailed results are discussed in the
following sections.

B. Experiment Results

In this section, we first discuss the accuracy of motion
prediction. We then investigate the effectiveness of the
proposed method in reducing the number of janks.

1) Accuracy of Motion Prediction and Impacts of Prediction
Misestimate: Accuracy is an important factor that can affect
the performance of motion prediction of MPQS. The more
accurate the prediction is, the more CPU load can be reduced.
On the other hands, prediction errors will induce extra CPU
overhead to discard all frames and repredict new movement.
In this paper, we built a tracer to improve the accuracy in
prediction results. We conducted the operation more than 200
times and record the results in each operation, we take the
first ten records as prediction vector, and predict coordinate
of destination by vector. Each predicted coordinate and actual
coordinate will be calculated in standard error, and the result is
(αx, αy) = ±(26.6910, 45.0678) pixels. Based on this result,
we understand there is a certain error in user interactions
on the screen. This error will lead user notice that the pre-
dicted pointing position is different with user’s action. So, we
add a correction function in prediction module, and record
operation results again. Amended conditions is set to com-
parison in every 100 pixels to the actual coordinate. When
the coordinate difference is larger than 10 pixels, the tracer
triggers interrupts, and computes standard error again in the
last step of interaction. The result shows a correction will
be generated every 233.74 pixels. In this paper, the aver-
age move distance is 745.5761 pixels and the average move

Fig. 16. Jank percentage in ADSS and condensed computation.

time is 900 ms. It means that only three interrupts in average
will be generated in one interaction operation. Therefore, the
overhead of the proposed method is negligible. In addition,
with the correction function, the standard error is reduced
to (αx, alphay) = ±(7.3426, 9.5713), and the accuracy of
prediction is increased from 75% to 80%.

2) Computation (Condensed Versus Dispersed): Fig. 16
shows the effect of CPU loading on the jank percentage. The
jank percentage represents the percentage of jank when dis-
playing a series of frames. We compare the ADSS mechanism
with condensed computation mechanism. The reallocation
module will tag a timestamp for each frame. The timestamps
indicates the time the frame should be displayed. The frame
will be dropped when system time has exceeded the expected
display time, and therefore a jank occurs. If the frame applica-
tion cannot obtain the canvas in surface before drawing, then
this frame will not be drawn into the buffer. We called this
situation lock failed frame, which will also generates a jank.
Because of prediction module will induce extra CPU load-
ing to operate condensed computation, jank percentage under
condensed computation mechanism is similar to that of ADSS
mechanism.

3) Computation (Regular Versus Reduction): Fig. 17 shows
the effect of CPU loading on the jank percentage. The result
shows that the average jank percentage is reduced from
48.63% to 34.37% after we added the motion prediction mech-
anism. In particularly, when the CPU loading is in the range
of 90%–100%, the jank percentage is reduced to 29.87%. In
application layer, the touch event is triggered by event dis-
patcher. Although the hardware sampling frequency is around
250 Hz, the touch event we received is much fewer than that
in application. This unstable touch sampling rate will lead to
inaccurate VFI. Our motion prediction, however, can avoid
drawing frames based on the touch event. Because, users will
not notice stutter when jank percentage is lower than 30%, our
method is proved to be a practical solution to smooth graphic
user interaction.

According to our results, MPQS cannot eliminate all janks
because both dropped frames and lock failed frame will



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: SMOOTHED GRAPHIC USER INTERACTION ON SMARTPHONES WITH MOTION PREDICTION 11

TABLE IV
JANK PERCENTAGE AND FPT

Fig. 17. Jank percentage in ADSS and reduced computation.

Fig. 18. Dropped frame ratio and lock failed frame ratio.

induce janks. Fig. 18 shows the average ratio of dropped
frame and lock failed frame. When CPU loading is heavy,
it will decrease the performance of activity. In addition,
choreographer’s callback time is beyond tolerated drawing
time.

To further demonstrate that the proposed mechanism can
reduce jank percentage, we record the drawing time in dif-
ferent CPU loading. As Table IV shows, when CPU loading
is less than 70%, the drawing time does not exceed one
VSync interval, which is 12.98 ms. Therefore the effect of
rescued computation is not significant when the refresh rate

Fig. 19. Jank percentage in different FPS.

is 77.85 frames/s. However, when the CPU loading is larger
than 80%, the time needed to draw each frame becomes
13.65 ms. It means an increase in jank percentage is inevitable
phenomenon.

In the same case, when the display refresh rate is set to
38.92 frames/s in the reduced computation mechanism, the
display interval becomes 25.97 ms. It means that the process-
ing time of drawing becomes much longer than the original
processing time. Therefore, the effect of reduced computa-
tion mechanism is more significant in a higher CPU loading.
VSync interval remains unchanged in 12.98 ms, but real-
location module displays a frame every two VSync. When
the CPU loading exceeds 80%, the processing time of a
frame becomes more longer. Fig. 19 shows the jank per-
centage in different setting of display refresh rate. The jank
percentage in 38.92 frames/s is much lower than that in
77.85 frames/s. But, the relative MFI and MaxFI are also
increased, especially when the refresh rate is lower than
30 frames/s. When the refresh rate is less than 30 frames/s,
the delay becomes noticeable. Hence, the minimum refresh
rate is set to 30 frames/s, and therefore, we have two refresh
rate 77.85 and 38.92 frames/s in this paper.

4) Condensed Versus Reduced: According to the result of
Fig. 20, we find that reduced computation mechanism can
reduce the jank percentage significantly. The reason is that the
reduced computation can increase available processing time
in each frame. It prevent FPT from exceeding a restricted
processing time inside a frame. If display refresh rate is
77.85 frames/s, the available processing time is only 12.98 ms



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 20. Jank comparison.

Fig. 21. Improved display mechanism.

for each frame. Reduced computation mechanism can increase
the available processing time up to 26.97 ms for each frame.
Therefore, it can reduce jank percentage effectively. Although
reducing FPS directly without prediction module can also lead
the same result in jank percentage, the touch sampling issue is
still exist. This is because unexpected VFI signals will cause
a noticeable delay.

VII. CONCLUSION

In this paper, we propose the MPQS mechanism to reduce
the number of janks. The proposed MPQS mechanism col-
lects real touch inputs on the target platform and reallocates
display frames. With prediction module, the jank reduction
can be up to 21.75%. Our results also show that the accuracy
of motion prediction can reach up to 80% and induces only
3% CPU overhead to recover a misprediction. The comparison
between condensed and reduced shows that the best method
to reduce jank percentage is computation reduction. It implies
jank percentage can be reduced by advanced graphic hardware.

In addition, if FPT can be fewer than 16 ms and the refresh
rate is 60 frames/s, the jank percentage can be minimized.

In the future, we plan to implement the MPQS in the frame-
work layer of Android system so that we can reduce jank
percentage without a modification of applications. We also
plan to adjust drawing tolerance time by using statistic lev-
eled drawing time. By doing so, we can remove the limitation
of buffer count and solve the buffer issue in condensed com-
putation and adjust lv in SurfaceFlinger. As Fig. 21 shows,
MPQS will be built on the top of the SurfaceFlinger. MPQS
will listen and intercept input event by using WindowManager.
In addition, the prediction module will be used to perform lin-
ear fitting estimation based on the collected events. After the
regression module is constructed, we intercept input events in
order to avoid triggering the onDraw method. Based on the
prediction results, the reallocation module will send a virtual
input event to views in activity to call the onDraw method.
Next, an tracer in prediction module will be used to examine
the correctness of the prediction results. If the prediction is
different from users’ gestures, it will drop the preprocessed
results from the frame queue. In the future, we also plan
to modify the onMessageReceived method of SurfaceFlinger
to control the timing of surface examination. It means that
SurfaceFlinger and surface will be in the asynchronous state
at the same time. In ADSS mechanism, the frame drawn by
surface will be composed and rendered by SurfaceFlinger at
next VSync signal received. After adding MPQS mechanism,
surface can produce preprocessed frames to buffer in advance.
Then SurfaceFlinger can compose and render these frame at
proper time which is advised by prediction module. In another
word, SurfaceFlinger does not necessarily process frames out-
put by surface. SurfaceFlinger can compose and render frames
according to the timestamp which is marked by the realloca-
tion module. The timing of render is decided by reallocation
module. In order to further increase the accuracy of the motion
prediction, we also plan to collect more training data from
different applications.

REFERENCES

[1] J. Nielsen, Usability Engineering. San Francisco, CA, USA:
Morgan Kaufmann, 1993, p. 362.

[2] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proc. Fall Joint Comput. Conf., San Francisco, CA, USA,
Dec. 1968.

[3] Anroid Development. Keeping Your App Responsive. Accessed
on Sep. 2015. [Online]. Available: http://developer.android.com/
training/articles/perf-anr.html

[4] F. Guo, W. Wan, W. Zhang, and X. Feng, “Research of graphics acceler-
ation based on embedded system,” in Proc. IEEE Int. Conf. Audio Lang.
Image Process. (ICALIP), Shanghai, China, 2012, pp. 1120–1124.

[5] S. Wang et al., “Fairness and interactivity of three CPU schedulers in
Linux,” in Proc. 15th IEEE Int. Conf. Embedded Real-Time Comput.
Syst. Appl., Beijing, China, 2009, pp. 172–177.

[6] C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, and W. Fun,
“Fairness and interactive performance of O(1) and CFS Linux kernel
schedulers,” in Proc. Int. Symp. Inf. Technol., Kuala Lumpur, Malaysia,
2008, pp. 1–8.

[7] X. F. Li. (Dec. 12, 2011). Quantify and Optimize the User Interactions
With Android Devices. [Online]. Available: http://software.intel.com/
en-us/articles/quantify-and-optimize-the-user-interactions-with-android-
devices

[8] C. L. Wen, “Benchmarking handheld GUI: Smoothness QoE,” M.S.
thesis, Dept. CSIE, Nat. Chiao Tung Univ., Hsinchu, Taiwan, 2013.

http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/articles/perf-anr.html
http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices
http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices
http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: SMOOTHED GRAPHIC USER INTERACTION ON SMARTPHONES WITH MOTION PREDICTION 13

[9] S. Huh, J. Yoo, and S. Hong, “Improving interactivity via VT-CFS
and framework-assisted task characterization for Linux/Android
smartphones,” in Proc. IEEE 18th Int. Conf. Embedded Real-Time
Comput. Syst. Appl. (RTCSA), Seoul, South Korea, 2012,
pp. 250–259.

[10] L. A. Torrey, J. Coleman, and B. P. Miller, “A comparison of interactiv-
ity in the Linux 2.6 scheduler and an MLFQ scheduler,” Softw. Pract.
Experience, vol. 37, no. 4, pp. 347–364, 2007.

[11] Android Development Process. Accessed on Sep. 2015.
[Online]. Available: http://developer.android.com/reference/android/
os/Process.html

[12] Android Development. How Android Renders Graphics. Accessed
on Sep. 2015. [Online]. Available: https://source.android.com/
devices/graphics.html. sec.2

[13] Wikipedia. Android Version History. Accessed on Sep. 2015.
[Online]. Available: http://en.wikipedia.org/wiki/Android_version_
history.sec.Android_4.1_Jelly_Bean_.28API_level_16.29

[14] OpenGL ES. The Standard for Embedded Accelerated 3D
Graphics. Accessed on Sep. 2015. [Online]. Available:
http://www.khronos.org/opengles/

[15] P. M. Fitts, “The information capacity of the human motor system in
controlling the amplitude of movement,” J. Exp. Psychol., vol. 47, no. 6,
pp. 381–391, 1954.

[16] I. S. MacKenzie, “Fitts’ law as a research and design tool in
human-computer interaction,” Human Comput. Interact., vol. 7, no. 1,
pp. 91–139, 1992.

[17] S. A. Douglas, A. E. Kirkpatrick, and I. S. MacKenzie, “Testing pointing
device performance and user assessment with the ISO 9241, part 9 stan-
dard,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., Pittsburgh,
PA, USA, 1999, pp. 215–222.

[18] I. S. MacKenzie, T. Kauppinen, and M. Silfverberg, “Accuracy mea-
sures for evaluating computer pointing devices,” in Proc. SIGCHI
Conf. Human Factors Comput. Syst., Seattle, WA, USA, 2001,
pp. 9–16.

[19] Android 4.3, Jelly Bean. Accessed on Sep. 2015. [Online]. Available:
http://www.android.com/about/jelly-bean/

[20] Wikipedia. System Time. Accessed on Sep. 2015. [Online]. Available:
http://en.wikipedia.org/wiki/System_time

[21] D. T. Nguyen et al., “Reducing smartphone application delay through
read/write isolation,” in Proc. 13th Annu. Int. Conf. Mobile Syst. Appl.
Serv. (MobiSys), Florence, Italy, 2015, pp. 287–300.

[22] X. Wang, Z. Li, and W. M. Wonham, “Optimal priority-free
conditionally-preemptive real-time scheduling of periodic tasks based
on DES supervisory control,” IEEE Trans. Syst., Man, Cybern., Syst.,
to be published.

[23] J. Li, L. Shu, J.-J. Chen, and G. Li, “Energy-efficient schedul-
ing in nonpreemptive systems with real-time constraints,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 43, no. 2, pp. 332–344,
Mar. 2013.

[24] M. G. Valls and P. B. Val, “Comparative analysis of two different mid-
dleware approaches for reconfiguration of distributed real-time systems,”
J. Syst. Architect. vol. 60, no. 2, pp. 221–233, 2014.

[25] P. Basanta-Val and M. García-Valls, “A library for developing real-time
and embedded applications in C,” J. Syst. Architect., vol. 61, nos. 5–6,
pp. 239–255, 2015.

[26] P. Basanta-Val and M. García-Valls, “Resource management policies for
real-time Java remote invocations,” J. Parallel Distrib. Comput., vol. 74,
no. 1, pp. 1930–1944, 2014.

[27] P. Basanta-Val, N. C. Audsley, A. J. Wellings, I. Gray, and
N. Fernandez-Garcia, “Architecting time-critical big-data systems,”
IEEE Trans. Big Data, vol. 2, no. 4, pp. 310–324, Dec. 2016.

Ying-Dar Lin (F’13) received the Ph.D. degree in
computer science from the University of California
at Los Angeles, Los Angeles, CA, USA, in 1993.

He is a Distinguished Professor of Computer
Science with National Chiao Tung University,
Hsinchu, Taiwan. He was a Visiting Scholar with
Cisco Systems, San Jose, CA, USA, from 2007
to 2008. Since 2002, he has been the Founder
and the Director of the Network Benchmarking
Laboratory, National Chiao Tung University, which
reviews network products with real traffic and has

been with the Certified Test Laboratory of the Open Networking Foundation
since 2014. He also cofounded L7 Networks Inc., Hsinchu, in 2002, which was
later acquired by D-Link Corporation. His current research interests include
network security, wireless communications, and network cloudification. His
research on multihop cellular was the first along this line, and has been cited
over 750 times and standardized into IEEE 802.11s, IEEE 802.15.5, IEEE
802.16j, and 3GPP LTE-Advanced.

Dr. Lin is the Editor-in-Chief of the IEEE COMMUNICATIONS SURVEYS

AND TUTORIALS. He serves on the editorial boards of several IEEE jour-
nals and magazines. He is an IEEE Distinguished Lecturer for the period
2014–2017, and an ONF Research Associate.

Edward T.-H. Chu (M’10) received the Ph.D.
degree from National Tsing Hua University,
Hsinchu, Taiwan, in 2010.

He has over four years of work experience in
industry, where he researched on embedded soft-
ware. He was a Visiting Scholar with Purdue
University, West Lafayette, IN, USA, in 2009. He
joined the Department of Electronic and Computer
Science Information Engineering, National Yunlin
University of Science and Technology, Douliu,
Taiwan, as an Assistant Professor in 2010, and has

become an Associate Professor in 2015. He holds a Chinese patent. His current
research interests include embedded systems and real-time operating systems.

Evan Chang received the M.S. degree in com-
puter science from National Chiao Tung University,
Hsinchu, Taiwan.

He is a Software Engineer with Sonix Technology
Co., Ltd. His current research interests include
embedded systems and human–machine interaction.

Yuan-Cheng Lai received the Ph.D. degree in com-
puter science from National Chiao Tung University,
Hsinchu, Taiwan, in 1997.

He joined the faculty of the Department
of Information Management, National Taiwan
University of Science and Technology, Taipei,
Taiwan, in 2001, and has been a Professor
since 2008. His current research interests include
performance analysis, protocol design, wireless
networks, and Internet of Things applications.

http://developer.android.com/reference/android/os/Process.html
http://developer.android.com/reference/android/os/Process.html
https://source.android.com/devices/graphics.html. sec.2
https://source.android.com/devices/graphics.html. sec.2
http://en.wikipedia.org/wiki/Android_version_history.sec.Android_4.1_Jelly_Bean_.28API_level_16.29
http://en.wikipedia.org/wiki/Android_version_history.sec.Android_4.1_Jelly_Bean_.28API_level_16.29
http://www.khronos.org/opengles/
http://www.android.com/about/jelly-bean/
http://en.wikipedia.org/wiki/System_time

