Standard Operating
Procedures for Embedded

Linux Systems

Follow these procedures for the smoothest path to great embedded Linux.
CHI-HUNG CHOU, TSUNG-HSIEN YANG, SHIH-CHIANG TSAO AND YING-DAR LIN

Procedures for developing embedded systems are very complicated.
New engineers typically take a long time to become familiar with these
procedures. Therefore, we have developed a standard operating proce-
dure (SOP) to save the costs of constructing an embedded system and
reduce the complexity. The SOP includes five standard procedures for
building a Linux-based embedded system, as shown in Figure 1. You can
follow the procedures discussed in this article for building a prototypal
system. Also, we introduce ten useful methods for downsizing your
system. Finally, we show the effect of these methods on downsizing
your embedded system—a content-aware network security gateway.

Five Standard Procedures
To build an embedded system, the first step is to select a target platform.
The platform involves both hardware and software. The hardware platform
includes the processor, bus and I/O; the software platform includes the
bootloader, kernel and root filesystem. You must select each item in the
target platform carefully to ensure that the hardware and software work
together. For instance, bootloaders relate directly to the hardware. If the
selected bootloader does not support your hardware platform, the whole
embedded system cannot power on. Moreover, an operating system that
requires MMU may fail to collaborate with MMU-supported processors.
Second, in addition to the target platform, a development platform
also Is necessary. You cannot compile embedded software programs on
the target platform, because the target platform often has a small RAM
and slow CPU to minimize cost and power consumption. Therefore,
you need to prepare a development platform with a fast CPU and large
RAM to compile these programs. Besides, because the two platforms

5 standard procedures for building a system

P | _ ' - A b
§ Select a Set up Gret i Integrate | Iest your |
5 target your dev. .| required it _____ 5| packages | system | |
A 1 I |
platform i | platform | packages '
B | !

| MR e Lk ML S AR TRl | rar—r—————

10 useful methods for downsizing the system

i BT 1 : b i
Hardware- % Only | Optimal | | Decreasing Il
compatible | | necessary compiling © | static mem |
kernel | | modules | | parameters | | allocation | :
| 15 O | A ——— -

For root file system

: : e }
Using | Removing l Usinga |
:r.
|

—) | . I

Building | Removing || Using |

BusyBox | useless small C '} yourself | useless || CramFS§ Il
libraries documents | f

hibrary i': libraries |
|]

— i

Figure 1. Procedures and Methods for Building and Downsizing Your
Embedded Systems

88 | august 2007 www.linuxjournal.com

have different hardware architectures, a cross-compiler environment Is
necessary. Buildroot is such a package to offer this environment. It has
a friendly user interface to assist in choosing the hardware platform
and the required software package. By using Buildroot, you can gener-
ate a cross-compilation toolchain and a root filesystem easily with
built-in application packages for your embedded system.

After setting up the environment, the next step is identifying the
packages required by your system. You can accomplish this by selecting
the built-in packages directly from the menuconfig of Buildroot, or you
can download them from the Internet. In fact, Buildroot provides a list
of useful packages, such as iproute2, freeswan and squid. Buildroot
also ensures that these packages can link successtully with uClibc, a C
library with a smaller size than Glibc. If you cannot find the suitable
packages, you will have to modify existing packages or write new ones.

Having obtained the required packages, the next step is integrating
them into the embedded system. Integrating here means using a cross-
compiler to compile the source code into forms that can be executed in
the target platform, and then adding them into the root filesystem. You
can add packages into the root filesystem through Buildroot in any of
three ways, as shown in Figure 2. Method 1 is to select them directly from
the options in Buildroot. If the packages are not available in Buildroot, you
may need to write a makefile for the package to indicate how to down-
load, configure, compile and install the package. Also, you need to modify

Method 1

Method 2 Method 3

£ package into
bulidroot build_ARCH'

~ Add package into
bulidioot packages’
customize source.

‘Make options in
Buildroot menu

S-Piﬂ{‘t options
to rebuild

_Compress the
reot divectory |

' Put the image into =~ USing chrootto 4
5 eintlate target :

. target platform
et pa platform

Figure 2. Three Methods for Adding Packages into Your Root Filesystem

the config.in file of Buildroot to display the option of the package in the
configuration menu. However, if you would not like to write these config-
uration files, you can use Method 2. In Method 2, you simply place the
compiled packages in the directory named customize, and then Buildroot
copies these compiled packages into the root filesystem during the build-
Ing procedures, according to the rules given in customize.mk. However, if
you simply want to verify the functionality of a single package, you don't
need to rebuild the whole image. The steps in Method 3 are to mount the
root filesystem on any one directory and then copy the compiled packages
into the directory. Finally, unmount the directory, and you will get an
updated root image. However, Method 3 may fail if the free space in the
mounted filesystem is not enough for the new packages. In that case, you
can adjust the parameters given in ext2root.mk to reserve more free space
in your root filesystem during the period of system development.

Finally, Figure 2 depicts two ways to test and verify whether the func-
tions of a package are normal. The basic way is to download the root
filesystem into the target platform and execute the package directly.
However, doing this usually takes a long time. Another way is to boot the
root filesystem in a virtual machine, such as QEMU and VMware. Using a
virtual machine to examine a compiled image is fast and convenient, but a
virtual machine may not simulate some characteristics, such as hardware
interrupts. Hardware interrupts involve quick reaction behavior, so they can-
not be implemented by virtual machines easily. Finally, if the target platform
has the same CPU architecture as your develop-
ment platform, you can use chroot to replace
your local system with the target root filesystem.

By following the five procedures outlined,
you can build the root filesystem for your
embedded system. However, there s still one
problem that may be troubling you—how to
downsize your embedded systems or how to
use less Flash RAM to store the kernel and root
filesystem. Requiring less RAM means that you
can cut the cost of your embedded system.

Ten Downsizing Methods

The organization of the downsizing issue is dis-
played in the bottom of Figure 1. We divide the
methods into two parts, because the software
platform of an embedded system typically con-
sists of a kernel and root filesystem. The first
part is how to get a small kernel, and the sec-
ond part is how to downsize each component
in the root filesystem, including libraries and
shells. The second part also discusses how to
compress the whole root filesystem. We
describe all methods in detail below, along with
experimental results. After explaining all meth-
ods, we show the effect of these methods on
our laboratory embedded system, called the

step in downsizing the kernel. If you choose an inappropriate kernel,
the system may be not only large but also unable to use processor
power effectively. For example, a standard Linux kernel on a hardware
platform without MMU cannot work normally. Such a hardware plat-
form requires a specific MMU-less kernel, such as uClinux. Most peo-
ple use the standard Linux kernel and attempt to trim its size.

The next step is to include only the necessary modules in the stan-
dard Linux kernel by a correct configuration. In fact, the default con-
figuration of a Linux kernel includes many unused modules, which
causes you to have a big kernel. Figure 3(a) shows the experimental
results on the downsizing effect of the correct configuration. In this
case, a system supporting TCP/IP has a kernel image that is only
59.84% of the size of a system supporting all network protocols.

To downsize the kernel, the third step is to use the optimization
parameters when compiling the kernel. Using parameters -O1, -02
or -O3 can improve performance, and using -Os can reduce size.
However, optimizing for both performance and size simultaneously is
not possible. Therefore, we generally select -O2 to achieve a balance
between size and performance. As shown in Figure 3(b), the -Os
parameter reduces the size of the kernel image by 22.82% as
compared with -O3, but it causes worse performance.

Besides including only the necessary modules and compiling the ker-
nel with the optimal parameters, to downsize the kernel further, you can

o

Customized Solutions for...

Linux, BSD, W2K

High Performance Networking Solutions
e Data Center Management

e Application Clustering

e Network and Storage Engines

Rackmount Server Products
e 1U Starting at $499: C3-1GHz, LAN, 256MB, 20GB IDE
e 2U with 16 Blades, Fast Deployment & more...

Wall system. Table 1 presents the specification
for the Wall system. The system is a network
security gateway that provides application-layer
content filters, such as antispam and antivirus.

Methods for the Linux Kernel
Selecting an appropriate kernel is the first

iron

SYSTEMS®
CALL:

Iron Systems, Inc.
540 Dado Street, San Jose, CA 95131
www.ironsystems.com

1-800-921-IRON

www.linuxjournal.com august 2007 | 89

Table 1. Specification of Wall

Kernel X86, MMU, QoS, Ethernet,

Wireless

Linux 2.6.6;
1,302,362 Bytes

Connection LAN, DMZ, WAN, DHCP
DNS relay, Dynarmic DNS,

Link load balance, Bridge mode

ppp-2.4.1, rp-pppoe-3.5

Security IPSec, PPTP, L2TP, SSL-VPN freeswan2.06, 12tpd-0.69
Firewall NAT, firewall, UPNP, traffic iptables-1.2.9, hotplug,
profiling, APP firewall iproute2
Antispam, antivirus, p3scan
POP3 proxy
Transparent proxy, URL, p3scan

URL keyword,
content keyword

MSHN log Development based
on L7Filter
T TC

\Web, SSL, FTP, log rotation

Management

thttpd-2.21h, Openssl-0.9.74,
putre-ftpd-1.0.17a, cron

Platform 1386, IXP (simple version)

decrease the size of the static buffer and array allocated in the kernel,
because the kernel typically declares a large buffer and array for standard
PCs. To find out which buffer or array occupies large memory space, you
can use the command nm. This command can list the allocated size of
each variable in an object file. With that information, you can browse the
corresponding source code of the object file and alter the initial size of the
buffer or array. Another approach for shrinking the buffer size is to modify
the options in the menuconfig of the kernel to decrease the maximum
number of supported peripherals, as shown in Figure 3(c) and (d).

Methods for the Root Filesystem

As shown in Figure 1, we identify six methods for downsizing the root
filesystem. First, you can adopt a tool called BusyBox, which provides a
fairly complete environment for any small or embedded system. BusyBox
combines tiny versions of many common UNIX utilities into a single
small executable file, and it is highly modular, allowing commands to be
included or excluded at compile time. The space used for BusyBox is
7.04% of that of the original tool, as demonstrated in Figure 4.

Next, we introduce three methods for removing unused libraries or
downsizing required libraries. First, you can use the command Idd to
identify the required shared libraries for each program, and then with
this information, you can remove the unused libraries. Notably, if a
shared library is not used by programs, you additionally should check
whether it is used by other shared libraries. Figure 4 shows that remov-
Ing redundant libraries reduces the root filesystem to 6.55% of its origi-
nal size. Second, you can replace the standard C library with a small C
library, such as uClibc, Newlib or diet libc. Such libraries remove the
unused functions, so their size is smaller than Glibc, as shown in Table
2. This table presents the differences in functionality between the four
libraries. Third, you can use a library optimizer tool named Libopt to
rebuild the libraries that include the only necessary functions for the
executable programs and shared libraries found in the root filesystem.
This tool utilizes objdump and nm to gather information about library
object files, shared libraries and executable programs.

The fifth method for downsizing the root filesystem is to remove

90 | august 2007 www.linuxjournal.com

le 2. Comparison between Different C Libraries

Largest Small Smallest Small
Good Good Bad Normal
Fastest Fast Fast Fast
Yes Yes Yes Yes
MMU-less No Yes Yes Yes
supporting
Licensing LGPL LGPL LGPL BSD, GPL
menuconfig only make Jconfigure
Standard C Needs Often linked Managed by
library cross-compiler as static library Red Hat
toolchain

unnecessary documents. You can eliminate some directories, such as
/home, /mnt, /opt, /root, /boot and /proc, if unused. You also can remove
the man, info, include and example directories to reduce the size when
additionally integrating a package into the root filesystem. In general, an
embedded system executes only specific programs, so users can operate
it easily without the help documents or examples in these directories.

The final method is to avoid uncompressing the whole root filesys-
tem into SDRAM. The root filesystem is compressed to save the stored
space, for example, Flash RAM. However, after the filesystem is uncom-
pressed into SDRAM, the Flash memory allocated for the filesystem is
no longer necessary. For instance, if the compressed size of the root

)

parameter | Kernel Compile Time Mote
(a) size (KBY | { mm:ss)
ﬁgz”{%} ik / -01 995 04:59 C;E:imizs
perforrmnance
i1l No Network / -0z 1073 05:31 GI_F:im'rae
performance
1073 With TCR/P even maore
SO0l C Smarty -03 | 1218 06:05 Optimize
1792 | with all kinds of performance -02
network and inline
(Stupid) : functions
12838 | with all options e 250 S h oM Reoie

o, modified options

{4

CONFIG_MTDRAM_TOTAL SIZE=4096 - 192
CONFIG_MTDRAM_ERASE_SIZE=128 -> 32
CONFIG_BLK_DEV_RAM_COUNT=16 -> 1
CONFIG_BLK_DEY_RAM_SIZE=16384 -» 1024
CONFIG_LOG_BUF_SHIFT=14 -> 12

Homodified | Modified

| Size (B | 1097746 1096014

Figure 3. Effects of the Downsizing Methods on the Kernel

B Original system B After using methods

shell&toolk

libraries
Methods

compression

Figure 4. Effects of Downsizing Methods on the Root Filesystem

Vg3 1200 | osquidzsokey | mete
L OBRE Drigin Size
make opltimization T —
3170 4660 and remove .note P
filesystem is 4MB and its compression rate is ol i (€ o7 A
; 3074 DE4S remove man file T T— T T
50%, the system occupies 4MB of Flash e T e svava v ieadbis s WO G TV S Perl
1830 6140 inte iib 31 doos 11 4
memory and 8MB of SDRAM. Therefore, the i i b | an e poe .
1386 5504 JE I o : -
> files / shate 24 pos i 12
system wastes much memory storagg, N | /& N == = e —
because of the duplicate data. For this prob- s ¥ /
lem, you can use CRAMFS. CRAMFS is a read- — e SRR 5 / Before Downsizing: 139 MB
only filesystem, designed for simplicity and oo 20 tmp 0018 After Downsizing:
'l:f . Y d d home 0 008 share 1.4 - 123 I‘um l,"llhm fl:lr [:Iﬂ'f}
space efriciency. You do not need to uncom- = ——— == = - 118 4MB (-9 6MB for inchide)
press a CRAMFS image before mounting it. A lib 0883 us 128 - 102.6MB (-159MB for *.a) |
bhaewes 0032

CRAMFS image is zlib-compressed, one page
at a time to enable random read access. The
metadata is not compressed, but is expressed
In a terse representation that is more space-efficient than in traditional
filesystems, such as ext2 or FAT. However, due to the read-only property
of compressed files, random write access is hard to implement for
them. As shown in Figure 4, CRAMFS compresses the filesystem to
12.77% of its original size.

Now that we've covered the six methods, let’s move on to the
effect of these methods on the Wall Project, as shown in Figure 5.
First, we used BusyBox to substitute for the multiple utility programs
used in the original shell. Then, we compiled all the required packages
with the parameters --strip-unneeded and -02. Next, we used the

Figure 5. Downsizing Results on the Root Filesystem of the Wall Project

info and example. Figure 5(a) illustrates the result of these processes.
However, the size of Wall was still 139MB. Hence, we had to view the
contents of /usr indepth, as shown in Figure 5(b) and (c). In the Wall
Project, removing unneeded documents and files saved 20.6MB of
space. About 15.9MB of space then can be saved by eliminating
unused libraries. However, as you can see, Perl occupied much Space
in our system. Other methods may exist to solve this problem, but it is
sufficient to consider only what we have done above.

We found that the optimization of package size is also useful for
downsizing when integrating a new package into the root filesystem.,

commands strip and objcopy to remove the unnecessary contents of
packages. Finally, we deleted unnecessary directories, such as man,

Actually, most programs and libraries are compiled at optimizing level 2 by
default (gcc options -g and -02) and are compiled for a specific CPU. On

- Expert Incl

| Falko provides expert, dedicated technical support for one of the most comprehensive serverand
S storage product offerings in the industry.

He appreciates the Rackform nServ K501 because he knows AMD's Direct Connect
Architecture ensures that all processor cores will work together with maximum efficiency
and optimized memory performance now. And its 2 Dual-Core AMD Opteran™ 2000 Series
processors are engineered for seamless upgradeability to Quad-Core later.

__ Falko knows that the evolution of technology is constant. He is impressed that the
il..Rackform nServ K501's 24 hot-swap + 2 internal SATA drive system with redundant power
o | supply delivers reliability without sacrificing capacity.

When you partner with Silicon Mechanics, you get more than a Io.hg~ter’m investment in
| AMD technology—you get an expert like Falko.

- A
) T

SiLicoOm
MECHANICS

: Silicon Mechanics and the Silicon Mechanics fogo are registered trademarks of
stlicon Mechanics, Inc. AMD, the AMD Arrow lago, AMD Opteron, and combinations
: thereof, are trademarks of Advanced Micro Devices, Inc.

Intel platforms, software is compiled for i386 processors by default. To
minimize the package size, you should not adopt the -g option, which
adds the debug info in the execution files. Additionally, remember to use
-strip and --strip-all to remove all symbols. In more-advanced methods, we
used the command readelf to check for any redundant sections in the
execution files, and we used objcopy to remove those redundant sections.
However, this approach may be not efficient for small programs.

Conclusion

This article describes the five procedures for making a Linux-based
embedded system and describes ten methods for downsizing the ker-
nel and the root filesystem. After we used these methods, our Wall
Project was downsized by 26.18%. The experiment’s results reveal that
the two most efficient methods are giving correct kernel compilation
parameters and using simplified tools and libraries in the root filesys-
tem. Hopefully, this article helps you understand the procedures and
problems when building a Linux-based embedded system.&

Chi-Hung Chou is currently working on his Masters’ degree in Computer Science at National
Chiao Tung University. His research interests include mesh network and embedded systems. He
can be reached via e-mail at payton345.cs95g@nctu.edu.tw.

Tsung-Hsien Yang is currently working on his Masters” degree in Computer Science at National
Chiao Tung University. His research interests include automatic block module tests and embedded
systems. He can be reached via e-mail at thyang.cs95g@nctu.edu.tw.

Shih-Chiang Tsao is a PhD candidate in Computer Science at National Chiao Tung University and
has been advised by Dr Ying-Dar Lin since 2003. His research interests include TCP-friendly
congestion control algorithms, fair-queuing algorithms and Web QoS. He can be reached via e-
mail at weafon@cs.nctu.edu.tw or through his Web site (www.cs.nctu.edu.tw/~weafon).

Ying-Dar Lin received a PhD in Computer Science from the University of California, Los Angeles
(UCLA) in 1993. He has heen a professor of Computer Science at National Chiao Tung University
since 1999. He also is the founder and director of the Network Benchmarking Lab (NBL), which
reviews the functionality, performance, conformance and interoperability of networking products,
ranging from switch, router and WLAN to network and content security and VoIP. His research
interests include design, analysis, implementation and benchmarking of network protocols and
algorithms, wire-speed switching and routing, quality of services, network security, content net-
working and embedded hardware software co-design. He can be reached via e-mail at
ydlin@cs.nctu.edu.tw or through his Web site (www.cs.nctu.edu.tw/~ydlin).

Resources

John Lombardo, Embedded Linux, 1st ed., New Riders, July 5, 2001.

Todd Fischer, “Optimizing Embedded Linux"”, Dr. Dobb’s, May 2002:
www.ddj.com/184405050.

Lei Yang, Robert P. Dick, Haris Lekatsas and Srimat Chakradhar,
“CRAMES: compressed RAM for embedded systems”, International
Conference on Hardware Software Codesign, Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, Jersey City, New Jersey, 2005, pp: 93-98.

“Buildroot—Usage and documentation v1.2", December 28, 2004:
buildroot.uclibc.org/buildroot.html.

Karim Yaghmour, Building Embedded Linux Systems, 1st ed.,
O'Reilly, 2004.

92 | august 2007 www.linuxjournal.com

AlphaMail Is
Scalable and

Accessible
Web Mail

H

Mail takes a unique approach to
providing a Web-based IMAP client.
TONY KAY

AlphaMail is a high-performance, feature-rich, open-source
Web mail system created at the University of Qregon. The inter-
face includes message snippets in indexes, UTF8 composition and
numerous viewers for attachments (such as image icon preview
and file listings from tarballs). It also tries to strike a balance
between desirable features and too much interface noise. It
was created to address several problems that exist with other
open-source and commercial Web mail systems.

Performance

The first concern AlphaMail addresses is performance. Almost all
Web mail systems (such as Horde's IMP Web mail Client and
SquirrelMail) use IMAP from within the Web server, which is
iIncapable of persisting an IMAP session.

The IMAP protocol is designed to optimize access through
persistent access, so this is an inherent and recognized prob-
lem. The problem is usually mitigated with an IMAP proxy that
maintains a persistent connection. The problems with this
solution are multifaceted.

One problem is that the code in the Web mail client itself
cannot depend on the state of the IMAP connection and must
repeat commands as if each mouse click were a new IMAP
session. This is a problem, because the sequence of required
events for a new session in the IMAP protocol include authen-
ticating and selecting the desired folder. The benchmarks of
several IMAP servers indicate that the repetition of the folder
selection command, even if the folder is already authenticated
and selected (that is, through a proxy), can cause significant
extra server load.

These inefficiencies could be addressed through improve-
ments in the IMAP server and proxy algorithms, but another
problem is intractable: a proxy cannot improve the protocol.
The fact that the Web mail client is using IMAP forces it to
behave as a complete standalone client. If the developers
want to add a complex feature, such as conversation views
(@ la Google mail), which requires complex message cross-
referencing across several folders, the protocol itself becomes
a major impediment.

	1
	2
	3
	4
	5

