
TNSM-2017-01628 1



Abstract—In a multi-tenancy SDN environment, physical

devices such as switches are shared among tenants. In addition to

a centralized controller, each tenant has his own controller that

manages resources allocated to the tenant. Hence, the centralized

controller performs SDN resource virtualization among tenants

and acts as proxy between physical resources and tenant

controllers. In order to manage the flow tables of the SDN

switches, two partitioning strategies are considered. Hard

partitioning of flow tables allocates a fixed amount of flow entries

to each tenant, but flow tables are wasted if the tenant does not

actually use them. On the other hand, soft partitioning strategy

shares available flow entries among tenants, resulting in higher

utilization but a resource monopoly problem, i.e., flow entries

dominated by some greedy tenants. To achieve high flow table

utilization and avoid the resource monopoly problem, we propose

a Soft-Partitioning Resource Manager (SPRM) to manage the

flow table resources in a multi-tenancy SDN environment. In

SPRM, the allowed number of flow entries for each tenant ranges

from a lower bound which equals to the tenant’s quota to an

upper bound which is dynamically adjusted according to the

tenant’s past usage. If an incoming flow request of a tenant is

beyond his lower bound but under his upper bound, it could be

temporarily accepted when there are free entries available. These

borrowed flow entries will later be replaced if needed. If a request

of a tenant is beyond his upper bound, SPRM will select a

least-recently used flow entry of the tenant and replace it with the

new request. In addition, SPRM monitors flow table resources

and submits modify flow entry messages directly to SDN switches

without checks by the management plane as possible in order to

reduce flow modification latency. As a result, SPRM could reach

higher flow table utilization and lower both flow entry miss rate

and Packet_in events. Experimental results show that 100% flow

rejections, and 95% Packet_in events are reduced while flow

modification latency is decreased by 30%, as compared to hard

partitioning.

Index Terms—SDN, OpenFlow, soft-partitioning, resource

management, multi-tenancy

First manuscript received on Oct. 12, 2016. Revisions received on Mar. 3,

2017. Resubmitted manuscript received on Oct 6, 2017.
This work was supported in part by Ministry of Science and y, Taiwan, and

in part by Chunghwa Telecom.

Y. D. Lin and J. H. Chen are with Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan, (e-mail:

ydlin@cs.nctu.edu.tw, a7533258@gmail.com).

T. L Liu is with National Center for High Performance Computing, Tainan,
Taiwan, (e-mail: tlliu@narlabs.org.tw).

Y. C. Lai is with Department of Information Management, National Taiwan

University of Science and Technology, Taipei, Taiwan, (e-mail:
laiyc@cs.ntust.edu.tw)

I. INTRODUCTION

etwork virtualization allows IT managers to consolidate

multiple physical networks by dividing the network into

multiple segments or creating software-only networks among

virtual machines. The goal of network virtualization is to

improve provision time and manageability with automation by

adding new software elements. The process of network

virtualization may be programmable with application

programming interface (API) calls, or simply configured

through web user interface (UI) or command-line interface

without programmability. In the past, Virtual Private Network

and other technologies are deployed to achieve network

virtualization by provisioning tunnels across multiple network

domains. However, these tunnels are configured with

vendor-specific commands or software so that cross-vendor

operation cannot be reconfigured easily for modern cloud

environments. Recently, the idea of Software Defined Network

(SDN) [1][2] arises by separating control and data planes. With

centralized control plane and standard programmable API for

configuring devices, SDN can assign traffic flows on demand,

provide application-level Quality of Services, manage the

networks conveniently, and enable dynamic network

virtualization without vendor lock-in.

According to the survey in [3] by A. Blenk et al, when

network providers perform network virtualization with SDN

technology, there are two kinds of virtual network provisioning.

One is traditional multi-tenant network, where network

providers use SDN applications to allocate virtual networks

from physical network resources. Tenants do not need SDN

controller in their virtual environment and simply configure

required options as in traditional networks. Current solutions

include OpenDaylight Virtual Tenant Network [4], and so on.

The other kind is multi-tenant SDN (a.k.a. Virtualizing the

SDN Network [3]), where network providers use the controller

as a proxy to virtualize SDN resources. Tenants have to install

their own SDN controllers, called as tenant controller, to

administrate virtual SDN switches through OpenFlow protocol

and use SDN applications to manage their own virtual networks.

In this architecture, a proxy controller (a.k.a SDN network

hypervisor [3]) acts as the control plane for physical switches

and the data plane for tenant controllers. With proxy controller,

SDN network is much more flexible because multi-layer

virtualization can be achieved and each tenant could choose its

own controller. Current solutions include FlowVisor [5],

OpenVirteX [6], CoVisor [7], ADVisor [8] and so on.

In SDN networks with proxy controller, resource

Ying-Dar Lin, Fellow, IEEE, Te-Lung Liu, Member, IEEE, Jian-Hao Chen, and Yuan-Cheng Lai,

Member, IEEE

Soft Partitioning Flow Tables for Virtual

Networking in Multi-tenant Software Defined

Networks

N

TNSM-2017-01628

partitioning is an important issue. Various tenants share the

same physical resources, such as bandwidth and flow table

require proper partitioning techniques. Flow table [1][2][3]

exists in each SDN switch, which consists of a set of flow

entries. For each incoming packet, if there is a

entry, the action that associated with the entry will be

else the packet will be executed with pre

action. In this paper, we focus on the flow table partitioning

among the tenants.

Flow table partitioning methods can be further divided into

two categories: hard partitioning and soft partitioning. In hard

partitioning, each tenant has a flow table limitation, namely

quota, as the upper bound, and each tenant has no authority to

consume quotas from other tenants. This type of partitioning

will waste flow table space when high demand tenant

insufficient quota but low demand tenants

flow entries. On the other hand, for soft partitioning strategy,

each tenant has a quota as the lower bound and flow table

resources are shared among tenants. For tenants that request

more flow entries, they are allowed to use

tenants’ quotas and therefore resource wasting can be avoided.

Although resources could be shared with soft partitioning,

total flow table size is still limited by hardware. When one

tenant consumes a huge amount of flow entries, other tenants

may not be able to set their flow entries. We refer this situation

as resource monopoly problem.

In this paper, we propose a mechanism called

Soft-Partitioning Resource Manager (SPRM)

multi-tenancy SDN environment. SPRM inherits the concept of

soft partitioning to obtain high flow table utilization

tries to avoid the resource monopoly problem

addition to the quota as lower bound, we also limit

with a dynamic upper bound according to tenant

a tenant has a new request that exceeds his quota but is under

the upper bound, SPRM will accept the request when there are

free entries available. These flow entries may be replaced la

if needed. If the new request is beyond the tenant

we will locate a least-recently used flow entry from this

and then replace it with the new request. Hence, we can assure

that all requests can be satisfied.

In the SDN architecture with proxy controller,

modification requests issued from tenant control

examined by the proxy controller to determine if there are flow

entries available along the requested path, which causes flow

modification latency. In order to save the latency, SPRM

monitors the flow table usage of SDN switches and submit t

tenant controller’s request directly to the switches without

checks as possible. Therefore, we can lower the impact of the

processing time of the proxy controller.

The remainder of this paper is organized as follows. Firstly,

we introduce the related backgrounds including OpenFlow,

proxy controller, and management plane in

problem statement is defined in Section III

propose SPRM approach with detail exp

introduce our implementation and exhibit the

in Section V. Finally, we make the conclusions and future work

in Section VI.

partitioning is an important issue. Various tenants share the

such as bandwidth and flow table, that

Flow table [1][2][3]

exists in each SDN switch, which consists of a set of flow

there is a matched flow

, the action that associated with the entry will be executed;

else the packet will be executed with pre-configured default

we focus on the flow table partitioning

Flow table partitioning methods can be further divided into

two categories: hard partitioning and soft partitioning. In hard

ow table limitation, namely

quota, as the upper bound, and each tenant has no authority to

consume quotas from other tenants. This type of partitioning

will waste flow table space when high demand tenants have

s cannot share unused

flow entries. On the other hand, for soft partitioning strategy,

each tenant has a quota as the lower bound and flow table

shared among tenants. For tenants that request

more flow entries, they are allowed to use them from other

and therefore resource wasting can be avoided.

Although resources could be shared with soft partitioning, the

total flow table size is still limited by hardware. When one

huge amount of flow entries, other tenants

ot be able to set their flow entries. We refer this situation

, we propose a mechanism called

esource Manager (SPRM) in a

SPRM inherits the concept of

partitioning to obtain high flow table utilization and further

tries to avoid the resource monopoly problem. That is, in

addition to the quota as lower bound, we also limit each tenant

according to tenant’s past usage. If

t has a new request that exceeds his quota but is under

the upper bound, SPRM will accept the request when there are

flow entries may be replaced later

if needed. If the new request is beyond the tenant’s upper bound,

ecently used flow entry from this tenant

and then replace it with the new request. Hence, we can assure

In the SDN architecture with proxy controller, flow

requests issued from tenant controllers should be

examined by the proxy controller to determine if there are flow

entries available along the requested path, which causes flow

modification latency. In order to save the latency, SPRM

flow table usage of SDN switches and submit the

s request directly to the switches without

checks as possible. Therefore, we can lower the impact of the

is organized as follows. Firstly,

we introduce the related backgrounds including OpenFlow,

in Section II. Next, the

III. In Section IV, we

explanation. Then we

and exhibit the emulation results

. Finally, we make the conclusions and future work

II. BACKGROUND

In this section, we give an overview of the OpenFlow

protocol and introduce multi

management plane. We also briefly describe

with proxy controller which is adopted to provide

multi-tenancy SDN services. Under such scenario, resource

management among various tenants

discuss and compare related works on SDN resource

management.

A. OpenFlow

In SDN architecture, OpenFlow

southbound protocol for the communication between switches

and controller. An SDN switch consists of one or more flow

tables. The controller can add, update, and delete flow entries in

flow tables through the OpenFlow protocol. Each flow entry

consists of match field for packet lookup and

the matched packets. OpenFlow protocol defines several types

of messages to manage switches. In this work, three types of

messages are involved: for arriving packets that cannot match

current flow entries, Packet_in

for the controller to decide the actions to these packets.

Packet_out messages are generated by

new packet to the switches. The c

Flow Entry (OFPT_FLOW_MOD

managing switch states.

Figure 1 shows the basic SDN forwarding process. In step 1,

the first packet from Host 1 is received by Switch 1 and misses

the flow table lookup. Next, Switch 1 sends

to Controller in step 2. In step 3, after Controller receives

Packet_in message, it processes with internal logic flow or

upper layer applications and then sets flow entries to related

switches according to the processing results using

OFPT_FLOW_MOD message. Controller then sends the first

packet back to Switch 1 with

the packet is forwarded to the destination Host 2 in step 5.

Finally, subsequent packets could be matched with the flow

entry and are forwarded to Hos

Fig. 1. Basic SDN Forwarding Process

However, flow table miss might cause huge latency because

the controller needs to process

2

ACKGROUND

, we give an overview of the OpenFlow

protocol and introduce multi-tenancy SDN architecture with

management plane. We also briefly describe SDN networks

which is adopted to provide

tenancy SDN services. Under such scenario, resource

management among various tenants is critical. Hence, we

related works on SDN resource

In SDN architecture, OpenFlow [13] is a well-known

protocol for the communication between switches

and controller. An SDN switch consists of one or more flow

tables. The controller can add, update, and delete flow entries in

flow tables through the OpenFlow protocol. Each flow entry

for packet lookup and actions to apply to

matched packets. OpenFlow protocol defines several types

of messages to manage switches. In this work, three types of

messages are involved: for arriving packets that cannot match

in messages are issued by switches

controller to decide the actions to these packets.

messages are generated by the controller to inject a

The controller also applies Modify

OFPT_FLOW_MOD) messages to switches for

Figure 1 shows the basic SDN forwarding process. In step 1,

the first packet from Host 1 is received by Switch 1 and misses

the flow table lookup. Next, Switch 1 sends Packet_in message

to Controller in step 2. In step 3, after Controller receives

message, it processes with internal logic flow or

upper layer applications and then sets flow entries to related

switches according to the processing results using

message. Controller then sends the first

packet back to Switch 1 with Packet_out message in step 4 and

the packet is forwarded to the destination Host 2 in step 5.

Finally, subsequent packets could be matched with the flow

entry and are forwarded to Host 2 in step 6.

Basic SDN Forwarding Process

might cause huge latency because

the controller needs to process more Packet_in and Packet_out

TNSM-2017-01628

messages. Therefore, it is an important indicator to illustrate

network stability.

B. Virtual Network and Multi-tenancy SDN

Virtualization technique is not a new concept. Virtual

memory and virtual disk are widely discussed in the past for

creating virtual machines. Similarly, network virtualization

could share underlying network among multiple users and is a

hot issue in computer communication recently. From survey in

[14], virtual local area networks (VLANs) allow multiple

department of a company to share a physical LAN with

isolation, while virtual private networks (VPNs) allow

companies and employees to use public networks with the same

level of security they enjoy in their private networks. However,

solutions of these proposals are proprietary without standard

API, and it is difficult to provision virtual networks

dynamically. SDN, a new protocol to separate the data plane

and control plane, provides standard API to the centralized

control plane. With programmability feature of SDN, dynamic

network virtualization can be achieved.

Multi-tenancy means that there are multiple tena

the same physical resource. Similarly, multi

means multiple tenants sharing the same SDN network.

According to tenants’ expectations to virtualized networks, we

can divide multi-tenancy SDN into two kinds

Section 1. In the first kind, SDN network is virtualized by tools

like OpenDayLight VTN [4] into multiple traditional networks.

In another kind, SDN network is virtualized into several virtual

SDN networks. Current solution of this type includes

FlowVisor [5], OpenVirteX [6], CoVisor [

FlowVisor is the first hypervisor controller introduced by

ON.Lab. However, it misses some functions to implement full

network virtualization and there are works like ADVisor [8] to

overcome it. OpenVirteX [6] is the recent update of FlowVisor

that could slice the network by full packet header space

hence supports fully virtualized networks.

C. Multi-tenancy SDN Architecture with

In 2014, Open Network Fundation (ONF) defined

architecture for management by policy-

SDN [15]. In this work, we modify this management plane

proxy controller. Figure 2 shows how management plane works

in a multi-tenancy SDN. Two managers are defined in

management plane: root manager and tenant

manager could send policies to coordinator in control plane.

Coordinator manages the data plane and tenant networks

according to the policies with data plane control function

(DPCF). Tenants have their own tenant manager to manage

their own virtual network. Tenant manager communicates with

SDN applications and these applications send some messages

we called intent to agent through API calls. Then the agent

could send the message to virtualizer for validation. Finally,

DPCF sends the validated OpenFlow message to the underlying

data plane.

There are several advantages with SDN management plane.

First, it can reduce control plane overhead because

management plane could work independently from proxy

messages. Therefore, it is an important indicator to illustrate

tenancy SDN

Virtualization technique is not a new concept. Virtual

memory and virtual disk are widely discussed in the past for

creating virtual machines. Similarly, network virtualization

multiple users and is a

hot issue in computer communication recently. From survey in

, virtual local area networks (VLANs) allow multiple

department of a company to share a physical LAN with

isolation, while virtual private networks (VPNs) allow

companies and employees to use public networks with the same

level of security they enjoy in their private networks. However,

solutions of these proposals are proprietary without standard

API, and it is difficult to provision virtual networks

SDN, a new protocol to separate the data plane

and control plane, provides standard API to the centralized

control plane. With programmability feature of SDN, dynamic

multiple tenants sharing

the same physical resource. Similarly, multi-tenancy SDN

means multiple tenants sharing the same SDN network.

According to tenants’ expectations to virtualized networks, we

kinds as discussed in

, SDN network is virtualized by tools

] into multiple traditional networks.

, SDN network is virtualized into several virtual

SDN networks. Current solution of this type includes

[7], and ADVisor [8].

FlowVisor is the first hypervisor controller introduced by

ON.Lab. However, it misses some functions to implement full

works like ADVisor [8] to

recent update of FlowVisor

full packet header space and

 Management Plane

In 2014, Open Network Fundation (ONF) defined the

-based multi-tenancy

]. In this work, we modify this management plane with

. Figure 2 shows how management plane works

tenancy SDN. Two managers are defined in

management plane: root manager and tenant manager. Root

manager could send policies to coordinator in control plane.

Coordinator manages the data plane and tenant networks

according to the policies with data plane control function

(DPCF). Tenants have their own tenant manager to manage

irtual network. Tenant manager communicates with

SDN applications and these applications send some messages

we called intent to agent through API calls. Then the agent

could send the message to virtualizer for validation. Finally,

OpenFlow message to the underlying

There are several advantages with SDN management plane.

First, it can reduce control plane overhead because

management plane could work independently from proxy

controller. Also, management functions such as

modularized for several agents. In addition, third party

developers could contribute their management module easily.

Fig. 2. Policy-based Multi

D. SDN Networks with Proxy Contoroller

In the SDN network architecture with

multi-tenancy OpenFlow networks, there is a

controller serves as a proxy sitting between tenant controllers

and physical OpenFlow switches. As illustrated figure 3, a

virtualization layer is located entirely within a proxy c

The proxy controller behaves as a virtual OpenFlow switch

providing views of the virtual OpenFlow networks to tenant

controllers. Meanwhile, for physical OpenFlow switches,

proxy controller behaves as the OpenFlow controller.

architecture does not require physical OpenFlow switch any

additional functionality for virtualization. Currently, the

some implementations such as FlowVisor [

[6].

Fig. 3. SDN Networks with

E. Related Work

In this subsection, we discuss some related works regarding

SDN resource management algorithms

in table I. We compare these propo

working environment, resource for share, partition type, and

switch mode for management

3

controller. Also, management functions such as QoS can be

modularized for several agents. In addition, third party

developers could contribute their management module easily.

ased Multi-Tenancy SDN

SDN Networks with Proxy Contoroller

In the SDN network architecture with proxy controller [5] for

nFlow networks, there is a centralized

sitting between tenant controllers

and physical OpenFlow switches. As illustrated figure 3, a

virtualization layer is located entirely within a proxy controller.

The proxy controller behaves as a virtual OpenFlow switch

providing views of the virtual OpenFlow networks to tenant

controllers. Meanwhile, for physical OpenFlow switches,

proxy controller behaves as the OpenFlow controller.Such

es not require physical OpenFlow switch any

additional functionality for virtualization. Currently, there are

such as FlowVisor [5] and OpenVirteX

SDN Networks with Proxy Controller

discuss some related works regarding

SDN resource management algorithms and list the comparison

We compare these proposals according to four factors:

working environment, resource for share, partition type, and

for management. For working environment, each

TNSM-2017-01628 4

proposal may works in multi-tenant or single tenant SDN

environment. The resource for share could be bandwidth or

flow table. As to partition type, these works could use either

soft partitioning or hard partitioning method. Please note that

these partitioning methods only apply to multi-tenant SDN

environment only. Finally, the switch mode for management

contains in-line mode, sniff mode, and hybrid mode. In in-line

mode, the controller applies the flow request to the SDN

switches after the management planes checks the resource

availability. This will ensure the submitted flows are valid but

may cause an extra latency. In sniff mode, when controller

receives a flow request, it applies the requested flow to SDN

switches and passes the request to management for check in

parallel. The flow will be installed right away without latency

in sniff mode. However, if the request is detected as invalid by

management plane, it will take another extra overhead to fall

back the switches to the original state. Therefore, we propose

hybrid mode in our work that monitors the flow resources. If

there are enough flow entries available, sniff mode will be used.

When the flow table in SDN switch is full, we will use in-line

mode instead. Details of the modes are given in Section IV B.

TABLE I

RELATED WORK ON SDN RESOURCE MANAGEMENT

Feature

Algorithm

Work in
multi-
tenant

SDN

Resource
sharing

Partition
type

Switch mode
for

management

Packet schedule
[10]

no bandwidth N/A in-line

Bandwidth

schedule with

Hadoop [11]

no bandwidth N/A sniff

EnterpriseVisor

[12]
yes bandwidth

soft

partition

in-line

Flow Table
Management

[16]

no flow table N/A in-line

Flow Table

Management
based on

Forwarding

Paths [17]

no flow table N/A in-line

Our approach
(SPRM)

yes flow table
soft

partition
hybrid

From Table 1, we could see that previous works discuss only

on bandwidth management issue. In [10], the authors propose

packet scheduling method that could improve bandwidth QoS

and management performance. Its management algorithm

works in in-line mode. Bandwidth scheduling with big data

analysis is discussed in [11] and it manages the traffic in sniff

mode with remote Hadoop server. However, both [10] and [11]

did not apply to multi-tenancy SDN environment. For

multi-tenancy SDN environment, EnterpriseVisor, which

extends hypervisors with bandwidth management functions, is

proposed in [12]. It could perform the soft partitioning for the

bandwidth with in-line mode operation. In [16], the authors

propose a flow table management mechanism. However, it

does not support multi-tenancy SDN environment and works in

in-line mode. The authors of [17] proposed another flow table

management algorithm based on flow forwarding paths in order

to reach higher performance level. Nevertheless, it operates in

single tenant scenario without considering multi-tenancy.

When concerning flow table resource, most hardware SDN

switches implement flow table with ternary content addressable

memories (TCAM). With the limitation of capacity and power

consumption considerations, A. Liu et al. proposed TCAM

Razor [19] to minimize TCAM usage as possible so that we can

utilize TCAM capacity more effectively. Similar techniques are

applied to SDN environment. The authors in [20] investigate

the effectiveness between automatic and manual rule

compaction with possible side-effects. M. Rifai et al. proposed

MINNIE [21] for compressing flow rules and evaluate on a real

testbed. Although flow compaction approaches are not

discussed in this paper, we would like to consider them in our

future works.

From table I, there is no previous work discussing flow table

sharing strategy in a multi-tenancy SDN environment currently.

The SPRM proposed in this paper manages flow table resource

with soft partitioning strategy for multi-tenancy SDN. We also

propose hybrid mode that mixes in-line mode with sniff mode

for better performance.

III. PROBLEM STATEMENT

In this section, we specify the notations used in this paper

and formulize the problem statement. We also give a simple

example that demonstrates the resource management problem

with soft and hard partitioning.

A. Notation Descriptions

Table II shows the notations used in SPRM. For the

parameters related to the proxy controller, we would like to

identify each tenant with T and record its flow table lower

bound Q.

 T={ti} is the set of tenant identifications where ti is the i-th

tenant.

 Q={qi | qi>0} is the set of lower bound quota limitation of

each tenant where qi is the quota of ti

For the SDN switches, there are parameters of total flow

table size TFS and idle flow table size IFS.

 TFS is the total flow table size in a switch

 IFS represents number of idle flow table size in a switch.

As to the parameters for the tenants, we would like to

represent the flow request sequence of the tenants by TR. For

each tenant, we would like to record is current flow table usage

TUE, past flow table usage TUErec and number of rejected

requests TRR.

 TR represents the sequence of tenant’s flow entry request.

 TUE={tuei | tuei≥0, i>0} is the set of tenant’s flow usage in

a switch, where tuei is the usage of i-th tenant.

 TUErec={tueri | i>0} is the set of historical records of

tenant’s usage where tueri is the historical usage of i-th

tenant. We define tueri={ri,j | ri,j ,≥0, j>0} where ri,j is the

tuei in j-th second.

TNSM-2017-01628 5

 TRR={trri | trri≥0, i>0} is the set of the number of rejected

requests, where trri is the rejected counts of i-th tenant.

TABLE II

NOTATION DESCRIPTIONS

Categories Notation Descriptions

Proxy
controller

T={ti | i>0} The set of tenant ID

Q={qi | qi>0}
The set of quota for

each tenant

Switch

TFS
The total flow table

size in a switch

IFS
The number of idle
flow table size in a
switch

Tenant

TR
Tenant sequence of
entry request

TUE={tuei | tuei≥0, i>0}

The set of each
tenant’s flow entry

usage in a switch

TUErec={tueri | i>0},

tueri={ri,j | ri,j ,≥0, j>0}

The set of each
tenant’s flow entry

historical usage in a

switch

TRR={trri | trri≥0, i>0}

The set of the number
of rejected requests

for each tenant

Objective

OVR={ovri | ovri≥0, i>0}

The set of overflow

ratio representing
dynamic upper bound

of each tenant

Qres={rqi | rqi≥0, i>0}

The set of reserved
quota which is used

to calculate OVR

SAR={sari | sari≥0, i>0}

The set of

satisfaction ratio of
each tenant

PKI
The number of total
Packet_in events.

The objectives that we would like to evaluate are also listed

as follows. We will calculate the dynamic flow upper bound for

each tenant OVR, which allows tenants to overuse their quota in

order to minimize request rejections. With fewer rejections, the

number of Packet_in events could also be minimized. We also

define satisfaction ratio SAR for the tenants and would like to

maximize it as possible.

 OVR={ovri | ovri≥0, i>0} represents the set of dynamic

quota upper bound that we call overflow ratio for each

tenants. Details are given in section IV.D.

 Qres={rqi | rqi≥0, i>0} is the set of reserved quota for each

tenant which is used to calculate OVR. Details are give in

section IV.D.

 PKI is the number of total Packet_in events. If the flow

table resource is not well utilized under resource wasting

situation, there are more packet miss the hit of flow entry

and we get higher PKI. An example is given in section III.C.

 SAR={sari | sari≥0, i>0} is tenant’s satisfaction ratio.

Obviously, it would be the ratio of allocated flow entries

(tuei) over total requesting flow entries (allocated entries +

rejected counts = tuei + trri) and represented as

ii

i

trrtue

tue


.

In addition, with SPRM, we can allocate more flow entries

with dynamic overflow ratio when there are residual

resources available. Therefore, there will be no rejections

and the tenant usage tuei is higher than tenant’s quota

limitation qi. Under such situation, we define the

satisfaction ratio as

i

i

q

tue which will be larger than 100%.

Finally, the satisfaction ratio is given as:

100%),(



ii

i

i

i
i

trrtue

tue

q

tue
maxsar . (1)

B. Problem Statement

This work intends to propose a mechanism to avoid the

resource wasting problem in hard partitioning and the resource

monopoly problem in soft partitioning. Given that the tenant set

T, quota set Q, tenant usage TUE, tenant usage historical record

TUErec, switch state TFS and IFS, and tenant request TR, we

want to reduce TRR in order to (1) maximize the minimum of

SAR, so that all tenants can reach 100% satisfaction ratio as

possible, and (2) minimize the PKI. The constraints of the

problem are (1) sum of Q less or equal to TFS, and (2) each

flow entries should be specified with its idle timeout.

C. Example

Fig. 4. Soft Partitioning Example

Fig. 5. Hard Partitioning Example

Figure 4 and figure 5 depict an example of resource

management problem with soft partitioning and hard

partitioning, respectively. Assume there are 5 tenants T={1, 2, 3,

4, 5}, Q={4, 4, 4, 4, 4}, TFS=20, and TR sequence = {1, 1, 1, 1,

2, 1, 2, 1, 1, 1, 1, 1, 3, 4, 5, 5, 1, 1, 2, 1, 1, 1, 4, 5, 5, 5, 5, 5, 4, 1}.

The characters in TR sequence represent the corresponding

1 2 1 3 1

1 1 1 4 1

1 2 1 5 2

1 1 1 5 1

Flow table in switch

IFS=0 TRR={3,0,0,2,5}

1 2 3 4 5

1 2 4 5

1 2 4 5

1 5

Flow table in switch

IFS=5 TRR={11,0,0,0,3}

TNSM-2017-01628

tenant’s request. (i.e., ‘1’ in TR sequence represents a reque

from tenant ‘1’). Proxy controller will set entries according to

TR sequence in first-come-first-served manner. In soft

partitioning, tenants have no upper bound limitation and proxy

controller only set the first twenty requests because the

limitation of TFS. As shown in figure 4, the requests are

allocated from up to down and left to right according to TR

sequence. We could observe that IFS is zero. However,

more than trr1 due to its late requests. The situation results in

resource monopoly problem because tenant ‘

of space. On the other hand, hard partitioning defines a static

upper bound limitation for each tenant. In figure 5, each tenant

is reserved a column of flow entries and the requests are

allocated from up to down. With hard partitioning strategy,

tenant ‘4’ can be fully satisfied (trr4=0) and

3. However, both IFS and trr1 are raised much higher,

generating lots of Packet_in messages and

This situation results in resource wasting problem because

high-usage tenants could not use the idle space that a

low-usage tenants.

IV. SOFT-PARTITIONING RESOURCE M

In this section, we state our proposed mechanism,

Soft-Partitioning Resource Manager (SPRM) and its detail

operations.

A. Overview

Fig. 6. Management Plane Architecture

We propose SPRM based on multi-tenancy SDN with proxy

controller proposed by ONF. Figure 6 illustrates the elements

for flow table resource management in this architecture. First,

proxy controller receives the Packet_in

data-plane switch and passes it to tenant controller in control

plane. After a routing decision is determined, tenant controller

sends the OFPT_FLOW_MOD message to proxy controller.

Afterwards, this OFPT_FLOW_MOD

passed to management agent to check the availabil

table entries. Management agent will make the decision and

send a policy message to proxy controller. According to the

’ in TR sequence represents a request

’). Proxy controller will set entries according to

served manner. In soft

partitioning, tenants have no upper bound limitation and proxy

controller only set the first twenty requests because the

. As shown in figure 4, the requests are

n and left to right according to TR

is zero. However, trr5 is

due to its late requests. The situation results in

resource monopoly problem because tenant ‘1’ occupied most

partitioning defines a static

upper bound limitation for each tenant. In figure 5, each tenant

is reserved a column of flow entries and the requests are

allocated from up to down. With hard partitioning strategy,

and trr5 is decreased to

are raised much higher,

and PKI gets higher too.

This situation results in resource wasting problem because

usage tenants could not use the idle space that allocated to

MANAGER (SPRM)

, we state our proposed mechanism,

Partitioning Resource Manager (SPRM) and its detailed

Management Plane Architecture

tenancy SDN with proxy

proposed by ONF. Figure 6 illustrates the elements

for flow table resource management in this architecture. First,

Packet_in message from

asses it to tenant controller in control

plane. After a routing decision is determined, tenant controller

message to proxy controller.

 message would be

passed to management agent to check the availability of flow

. Management agent will make the decision and

send a policy message to proxy controller. According to the

policy, proxy controller executes the agent’s decision to

data-plane switch.

When a tenant sends a OFPT_FLOW_MOD

proxy controller, proxy controller forwards it to management

plane to determine possible situations shown in

situations are classified according to tenant’s flow usage and

availability of idle entry space in the switch. In situation 1,

when the switch has idle entry space and the tenant’s flow

usage is under its quota, a new flow entry can be set for the

tenant without any problem. If the switch has idle entry space

but the tenant has exhausted its quota, as situation 2

that the tenant wants to overflow its quota and the new entry is

allowed to be set on the residual free flow space. In such case,

we define an upper bound for each tenant,

where ovri is the upper bound of tenant

has to be done. On the other hand, the tenant’s usage exceeds

the upper bound and we have to release a flow entry of this

tenant, which is selected by a replacement algorithm. In

situation 3, switch has no idle

available entry space under its quota. It represents that other

tenants have consumed this tenant’s quota. We will determine a

victim tenant who has the largest satisfaction ratio

flow entry from victim tenant with the new requesting flow.

Finally, situation 4 occurs when switch has no idle entry space

and the tenant wants to overflow the quota. We will replace a

flow entry from the tenant itself with the new requesting flow.

TABLE
FOUR SITUATIONS WHEN OFPT_FLOW_MOD

Tenant

Switch

Flow usage is under tenant’s quota

idle entry

space available

yes
(Situation 1)

Set the entry

no

(Situation 3)

Replace victim

tenant’s flow

The management plane functions include switch mode check,

replacement algorithm, and determination of overflow ratio.

Switch operates in sniff mode if there are idle

in-line mode otherwise. Figure 7 shows the flowchart of

management plane process. For each incoming

OFPT_FLOW_MOD message from proxy controller, we

determine the switch mode and compare

switch operates in sniff mode if there

table (IFS > 0). Otherwise, the switch is put in in

the switch is in sniff mode and

and the flow can be set without any process from management

plane. On the other hand, when

will determine overflow ratio as in situation 2. If

than the dynamic upper bound, we will then release

from the requesting tenant itself. For situation 3, the switch is in

6

policy, proxy controller executes the agent’s decision to

OFPT_FLOW_MOD message to the

proxy controller, proxy controller forwards it to management

plane to determine possible situations shown in Table III. These

according to tenant’s flow usage and

availability of idle entry space in the switch. In situation 1,

when the switch has idle entry space and the tenant’s flow

usage is under its quota, a new flow entry can be set for the

tenant without any problem. If the switch has idle entry space

but the tenant has exhausted its quota, as situation 2, it means

he tenant wants to overflow its quota and the new entry is

allowed to be set on the residual free flow space. In such case,

we define an upper bound for each tenant, OVR={ovri | ovri≥0}

is the upper bound of tenant i. If tuei < ovri, nothing

to be done. On the other hand, the tenant’s usage exceeds

the upper bound and we have to release a flow entry of this

tenant, which is selected by a replacement algorithm. In

situation 3, switch has no idle entry space and the tenant has

pace under its quota. It represents that other

tenants have consumed this tenant’s quota. We will determine a

victim tenant who has the largest satisfaction ratio and replace a

flow entry from victim tenant with the new requesting flow.

4 occurs when switch has no idle entry space

and the tenant wants to overflow the quota. We will replace a

flow entry from the tenant itself with the new requesting flow.

TABLE III
OFPT_FLOW_MOD MESSAGE ISSUED

Flow usage is under tenant’s quota

yes no

(Situation 1)

Set the entry.

(Situation 2)

1. Set the entry.

2. Release tenant’s flow if

tenant’s usage exceeds

upper bound.

(Situation 3)

Replace victim

tenant’s flow.

(Situation 4)

Replace tenant’s flow.

The management plane functions include switch mode check,

and determination of overflow ratio.

in sniff mode if there are idle entry spaces and

line mode otherwise. Figure 7 shows the flowchart of

management plane process. For each incoming

message from proxy controller, we

determine the switch mode and compare tuei with qi. The

switch operates in sniff mode if there are free entries in its flow

> 0). Otherwise, the switch is put in in-line mode. If

the switch is in sniff mode and tuei < qi, it maps to situation 1

and the flow can be set without any process from management

plane. On the other hand, when tuei ≥qi under sniff mode, we

will determine overflow ratio as in situation 2. If tuei is larger

the dynamic upper bound, we will then release a flow entry

self. For situation 3, the switch is in

TNSM-2017-01628

in-line mode and tuei < qi . The management plane will replace

the entry from tenant who has the highest satisfaction ratio,

with the new request. Finally, if tuei ≥ qi under in

in situation 4, the management plane will replace flow entries

from the requesting tenant. Detail operations

the following subsections.

Fig. 7. Flow Chart for Management Function

The complexity of SPRM could be calculated according to

the four possible situations. For situation 1,

constant O(1). In situation 2, the worst case contains overflow

ratio determination and victim entry selection

Overflow ratio is calculated for each tenant within constant

time and the complexity is O(|T|), while the vict

among tenant’s flow entries by LRU-PTR with complexity

O(tuei), Hence, the total complexity for situation 2 is O(|

O(tuei). In situation 3, the complexity includes victim tenant

and victim entry selections. Similar to situation 2, the

complexity for situation 3 is O(|T|)+ O(tue

need only select a victim entry and the complexity is O(

the worst case time complexity is O(|T|)+ O(

selected victim.

B. Mode

Switch mode affects how management plane deals with new

flow requests. We have discussed about in

mode in previous sections. The details are explained as follows

1) In-line Mode

Figure 8 shows how OFPT_FLOW_MOD

proceeded in in-line mode. When a tenant sends a

OFPT_FLOW_MOD message (step 1), proxy controller passes

this message to the management agent for further checking

(step 2). Then management agent sends the resulting policy to

proxy controller and tenant controller that ind

flow requesting could be accepted (step 3)

controller installs the requesting flow to the switches (step 4)

In-line mode guarantees that requests

properly with preventive checks. Nevertheless, it requi

processing path which might cause large flow modification

latency.

Proxy

Controller

Request

Coming

TUE[i]

> = Q[i]

IFS >

0
TUE[

Determine

vic_tenant

(select max(SAT))

NoNo Yes

vic_tenant = i

Select victim

entry

with LRU-PTR

Send remove

victim entry

policy

Send

set entry

policy

Yes

End

vic_tenant

TUE[i] >=

(1+OVR[i])*Q[

Yes

No

situation 1 and 2

4

situation 3 and 4

3

. The management plane will replace

satisfaction ratio, sar,

under in-line mode as

in situation 4, the management plane will replace flow entries

operations will be given in

Management Functions

The complexity of SPRM could be calculated according to

four possible situations. For situation 1, the complexity is in

constant O(1). In situation 2, the worst case contains overflow

selection with LRU-PTR.

calculated for each tenant within constant

while the victim is selected

PTR with complexity

), Hence, the total complexity for situation 2 is O(|T|)+

In situation 3, the complexity includes victim tenant

selections. Similar to situation 2, the

tuei). In situation 4, we

need only select a victim entry and the complexity is O(tuei). So

O(tuei), where i is the

Switch mode affects how management plane deals with new

about in-line mode and sniff

mode in previous sections. The details are explained as follows

OFPT_FLOW_MOD message is

line mode. When a tenant sends a

, proxy controller passes

this message to the management agent for further checking

. Then management agent sends the resulting policy to

that indicates whether the

(step 3). Finally, proxy

to the switches (step 4).

requests could be installed

. Nevertheless, it requires long

processing path which might cause large flow modification

Fig. 8. Message Processing in In

2) Sniff Mode

Figure 9 depicts the processing path of

message in sniff mode. When a tenant sends a

OFPT_FLOW_MOD message

forwards the message to SDN switches directly and mirrors the

message to management agent for validation check

After policy checking, management

both proxy and tenant controller (step 3). If th

flow entries for the request, the connection has been already

setup. Otherwise, there are some switches on the routing path

do not contain enough flow entries for the request. In this case,

the proxy controller will start fall

those installed flow entries (step 4).

could be set right away with management plane processing

simultaneously in order to save the latency caused in in

mode. However, when the flow resource is not enough for

request, it takes more time than in

those pre-installed flows.

Fig. 9. Message Processing in Sniff Mode

3) Hybrid Mode

In order to take advantages of both in

TUE[i]

> = Q[i]
TUE[i] ++

Determine

OVR

Select victim

entry

with LRU-PTR

Send remove

victim entry

policy

vic_tenant = i

] >=

])*Q[i]

Yes

Yes

No

situation 1 and 2
1

2

7

Message Processing in In-line Mode

Figure 9 depicts the processing path of OFPT_FLOW_MOD

message in sniff mode. When a tenant sends a

message (step 1), proxy controller

forwards the message to SDN switches directly and mirrors the

message to management agent for validation check (step 2).

management plane send the result to

both proxy and tenant controller (step 3). If there are available

flow entries for the request, the connection has been already

setup. Otherwise, there are some switches on the routing path

do not contain enough flow entries for the request. In this case,

the proxy controller will start fall-back sequence by removing

those installed flow entries (step 4). In this mode, flow entries

could be set right away with management plane processing

in order to save the latency caused in in-line

However, when the flow resource is not enough for the

request, it takes more time than in-line mode in order to remove

Message Processing in Sniff Mode

In order to take advantages of both in-line mode and sniff

TNSM-2017-01628

mode, SPRM adopts a hybrid mode that combines both modes.

We monitor the flow table usage of the SDN switches. The

switches with idle entry space will be turned into sniff mode for

reducing flow modification latency. Alternatively,

with fully-used flow table are changed to in

to avoid request rejection.

C. Least Recently Used with Partial Timeout Reset (LRU

Replacement

The replacement algorithm is one of the

SPRM. The proposed SPRM executes the replacement

algorithm to determine which flow entry to be replaced, so that

the new requesting flow entry can be set. With the replacement

algorithm, all requests from tenants are accepted, and the

number of Packet_in events can be reduced.

SPRM chooses LRU replacement algorithm because it is a

well-known algorithm with excellent performance

over FIFO and other algorithms [19]. In order to indicate the

least recently used entry, we need to have the knowledge of

accurate idle time of each flow entry. However, there is no

specification in OpenFlow standard to obtain such information.

Therefore, we propose an approach to get approximate idle

time for determining victim entry.

When LRU-PTR selects the victim entry

issue is how to get an approximate idle time of each flow entry.

Our solution uses OpenFlow standard flag to let switch report

the idle timeout on expiration automatically. Then we

the idle timeout of flow entry to let switch intermittently report

the idle state of the flow entry. Details are given in the

following steps. First, when a tenant wants to set a flow entry

with idle_timeout value and passes to proxy controller, proxy

controller changes this to partial_timeout

controller sets an OFPFF_SEND_FLOW_REM

newly added entry. When this entry

partial_timeout, it will send a remove message to proxy

controller. Proxy controller records this time and sets t

again until the original idle_timeout value is reached

when a switch sends remove messages for one entry for

it means that the entry is idled for n�partial

With such solution, we can get the approximate

each flow entry. If the flow entry is matched, the openflow

switch should extend its lifetime with another

However, because the lifetime of the entry is now reduced to

partial_timeout instead of idle_timeout, the flow entry coul

removed before its real lifetime. We call this life cycle problem

and describe our solution as followed:

Figure 10 illustrates the problem of incorrect entry life cycle

with proposed idle time calculation. If one entry had been

matched before it sends the remove message, we only reset the

entry with partial_timeout which might reduce entry life cycle.

We assume that idle_timeout=20 and partial_timeout

shown in the figure, if the entry is matched at time 12, the next

timeout will be 12 + 10 (partial_timeout) = 22 instead of 12 +

20 (idle_timeout) = 32. In order to solve this problem, we

propose a solution that if proxy controller receives remove

message from a timeout entry, it calculates

update time. If this value is larger than

mode, SPRM adopts a hybrid mode that combines both modes.

We monitor the flow table usage of the SDN switches. The

witches with idle entry space will be turned into sniff mode for

flow modification latency. Alternatively, the switches

in-line mode in order

Least Recently Used with Partial Timeout Reset (LRU-PTR)

the core modules in

SPRM. The proposed SPRM executes the replacement

algorithm to determine which flow entry to be replaced, so that

the new requesting flow entry can be set. With the replacement

algorithm, all requests from tenants are accepted, and the

events can be reduced.

SPRM chooses LRU replacement algorithm because it is a

ithm with excellent performance on buffer hit

. In order to indicate the

, we need to have the knowledge of

accurate idle time of each flow entry. However, there is no

specification in OpenFlow standard to obtain such information.

Therefore, we propose an approach to get approximate idle

PTR selects the victim entry, the most important

how to get an approximate idle time of each flow entry.

OpenFlow standard flag to let switch report

the idle timeout on expiration automatically. Then we reduce

ut of flow entry to let switch intermittently report

the idle state of the flow entry. Details are given in the

following steps. First, when a tenant wants to set a flow entry

value and passes to proxy controller, proxy

timeout. Next, proxy

OFPFF_SEND_FLOW_REM flag on the

newly added entry. When this entry has been idled for

, it will send a remove message to proxy

controller. Proxy controller records this time and sets this entry

is reached. Therefore,

when a switch sends remove messages for one entry for n times,

partial_timeout seconds.

can get the approximated idle time of

. If the flow entry is matched, the openflow

its lifetime with another idle_timeout.

However, because the lifetime of the entry is now reduced to

, the flow entry could be

We call this life cycle problem

Figure 10 illustrates the problem of incorrect entry life cycle

with proposed idle time calculation. If one entry had been

s the remove message, we only reset the

which might reduce entry life cycle.

and partial_timeout=10. As

the entry is matched at time 12, the next

) = 22 instead of 12 +

) = 32. In order to solve this problem, we

propose a solution that if proxy controller receives remove

message from a timeout entry, it calculates now_time – last

an partial_timeout, it

represents that this entry had been matched and its idle time had

been reset as 0. Otherwise, we increase the timeout count by 1

and calculate the new idle time. In the same example, when

controller is notified with the timeout entry

calculates 22 (now_time) – 10 (

greater than partial_timeout 10. Thus

the entry had been matched and its idle time had been reset as 0.

Finally, the the flow entry is reset again..

Fig. 10. Life Cycle

Finally, LRU-PTR chooses the entry with the largest idle

time as the victim entry. Figure 11 shows the pseudo code of

LRU-PTR algorithm. With LRU

switches for idle status of each entry every time.

entry in the switch could send remove message to proxy

controller to estimate the approximate idle time automatically.

It efficiently improves the efficiency of selecting victim entries

for replacement.

Fig. 11. Pseudo Code of LRU

D. Usage Range: Overflow Ratio

As discussed in previous sections, an upper bound is set to

limit the number of flow entries used by a tenant. This upper

bound is derived from another parameter, overflow ratio.

Basically, we want to allow tenants to

0 10 12

Original

Life time

Our

Life time

entry

matched

our first

update_time

reset the entry

extend with

extend with

8

represents that this entry had been matched and its idle time had

been reset as 0. Otherwise, we increase the timeout count by 1

and calculate the new idle time. In the same example, when

controller is notified with the timeout entry on time 22, it

10 (last update time) = 12, which is

10. Thus, the controller knows that

the entry had been matched and its idle time had been reset as 0.

Finally, the the flow entry is reset again..

Life Cycle problem

PTR chooses the entry with the largest idle

time as the victim entry. Figure 11 shows the pseudo code of

LRU-PTR, we do not need to ask

switches for idle status of each entry every time. Each flow

entry in the switch could send remove message to proxy

controller to estimate the approximate idle time automatically.

It efficiently improves the efficiency of selecting victim entries

Pseudo Code of LRU-PTR Algorithm

Usage Range: Overflow Ratio

As discussed in previous sections, an upper bound is set to

limit the number of flow entries used by a tenant. This upper

bound is derived from another parameter, overflow ratio.

Basically, we want to allow tenants to use more flow entries

time

3222

idle_timeout = 20

partial_timeout = 10

extend with idle_timeout 12+20=32

extend with partial_timeout 12+10=22

our entry time out

remove the entry

original

entry timeout

remove the entry

miss 10 sec

TNSM-2017-01628

than their quota to increase the flow table utilization. However,

without the limitation of an upper bound, some greedy tenant

will occupy most of flow entries, causing that switches enter

in-line mode easily and suffered from long fl

latency.

Fig. 12. Flow table allocation

Figure 12 shows the flow table allocation in a SDN switch

The black area represents the entries that already

tenants (TUE) and the rest are the idle entries

effectively allocate the IFS among the tenants, we firstly

reserve part of IFS for each tenant according to their past

average usage, which is called reserved quota. The total

reserved quota is the summation of every tenant’s reserved

quota denoted as∑���� and depicted as

Finally, we could locate the size of remaining quota with

IFS –	∑ ����, which is the white area in Fig. 12. The remaining

quota could be allocated for calculating overflow ratio among

the tenants.

Fig. 13. Calculation of Reserved Quota for Tenant

Figure 13 shows how to calculate reserved quota

tenant. Firstly, if the tenant already overuse his quota (

qi), we will not reserve more quota for him by setting

Next, we calculate rqi with qi and tuei in different

than their quota to increase the flow table utilization. However,

without the limitation of an upper bound, some greedy tenant

will occupy most of flow entries, causing that switches enter

line mode easily and suffered from long flow modification

Flow table allocation

flow table allocation in a SDN switch.

that already used by

he rest are the idle entries (IFS). To

the IFS among the tenants, we firstly

reserve part of IFS for each tenant according to their past

average usage, which is called reserved quota. The total

every tenant’s reserved

and depicted as grey area in Fig.12.

remaining quota with

, which is the white area in Fig. 12. The remaining

for calculating overflow ratio among

Quota for Tenant

Figure 13 shows how to calculate reserved quota rq of each

Firstly, if the tenant already overuse his quota (tuei >=

more quota for him by setting rqi=0.

in different cases.

 Case 1: If tenant’s current usage is more than

average usage (i tuetuer 

going to submit more flow entries than past. Hence, w

assume that the tenant

ii tuertue  in the future and allocated

for him.

 Case 2: In Case 1, we would like to confirm that

allocated quota for the tenant

)(ii tuertue  =
itue2

quota qi. Therefore, if 2

allocate up to qi for the tenant so

 Case 3: If tenant’s current usage is

average usage (i tuetuer 

iii tuetuerrq  for the tenant so that his quota could

reach up to his past average usage

 Case 4: In Case 3, if the tenant

his quota qi, we could only allocate

that
iii tueqrq  .

After we determine each tenant

could calculate the total reserved quota

as

 resQ

After we reserved some quota to other tenants, then we

determine IFS – 	∑ ���� as the remaining quota that can be

allocated (the white area in Fig. 12.)

policies are discussed for allocating remaining quota to the

tenant.

1) Total Overflow

Total overflow is a simple allocation method. We expect no

more tenant wants to use the remaining quota. In this policy, we

allocate all remaining quota

overflow its quota and the formula is given as

overflow withTenants of #

(



i

IFS
ovr

2) Equal Overflow

In Equal overflow policy, we expect that some

want to use the remaining quota and avoid huge remaining

quota being allocated to few tenants. So the remaining quota is

equally allocated among all tenants and the calculation of

overflow ratio is

|

(



T

IFS
ovri

3) Weighted Overflow

The weighted overflow is adopted when the tenants are

assigned with different quotas. In this policy, we allocate the

remaining quota to tenants according to the ratio of each

tenant’s quota. Hence, those tenants with larger quota will be

allowed with larger overflow ratio and the formula is calculated

9

f tenant’s current usage is more than his past

)itue , it means that the tenant is

going to submit more flow entries than past. Hence, we

assume that the tenant will request another amount of

in the future and allocated
iii tuertuerq 

we would like to confirm that the total

for the tenant (tuei + rqi = tuei +

ituer) does not exceed his

iii qtuertue  , we could only

for the tenant so that
iii tueqrq  .

f tenant’s current usage is no more than his past

)itue , we would like to reserve

for the tenant so that his quota could

reach up to his past average usage.

the tenant’s past average
ituer exceeds

we could only allocate up to qi for the tenant so

After we determine each tenant’s reserved quota rqi, we

reserved quota (the grey area in Fig. 12.)

 
)(

||

1 i

T

i
rq . (2)

After we reserved some quota to other tenants, then we

as the remaining quota that can be

(the white area in Fig. 12.). The following three

policies are discussed for allocating remaining quota to the

Total overflow is a simple allocation method. We expect no

to use the remaining quota. In this policy, we

allocate all remaining quota among the tenants who want to

quota and the formula is given as

100%
requestoverflow

)


resQ
. (3)

In Equal overflow policy, we expect that some tenants still

want to use the remaining quota and avoid huge remaining

quota being allocated to few tenants. So the remaining quota is

equally allocated among all tenants and the calculation of

100%
|

)


Q res . (4)

The weighted overflow is adopted when the tenants are

assigned with different quotas. In this policy, we allocate the

remaining quota to tenants according to the ratio of each

tenant’s quota. Hence, those tenants with larger quota will be

rger overflow ratio and the formula is calculated

TNSM-2017-01628

as

)( 
TFS

q
QIFSovr i

resi

Figure 14 depicts an example of calculating overflow ratios.

Assume there has 5 tenants T={A, B, C, D, E},

TFS = 20, TR sequence = {A, A, A, A, B, A, B, A}and average

tuer of tenant B is 1. When the flow table is allocated as shown

in figure 14, there is only one tenant A wants to overuse the

remaining quota. We could calculate rq of each tenant,

1, 0, 0, 0}. Then ∑���� =1, so IFS -

remaining quota. Finally, we could calculate

according to the formula of each overflow ratio policy. If the

flow table utilization goes up, the ovr of the same tenant will

drop down. When ovr drops down, tenant could not overuse the

remaining quota and has to release its own flow entries for new

requests.

Fig. 14. Overflow Ratio Example

V. EXPERIMENTS AND RESULT

In this section, we describe our experiment environment and

experimental results.

A. Implementation

Fig. 15. System Architecture

Figure 15 shows the system architecture of the experiments.

100% . (5)

Figure 14 depicts an example of calculating overflow ratios.

={A, B, C, D, E}, Q={5, 3, 4, 4, 4},

sequence = {A, A, A, A, B, A, B, A}and average

of tenant B is 1. When the flow table is allocated as shown

in figure 14, there is only one tenant A wants to overuse the

of each tenant, Qres={0,

 ∑���� =12 for the

remaining quota. Finally, we could calculate ovr of tenant A

according to the formula of each overflow ratio policy. If the

of the same tenant will

down, tenant could not overuse the

remaining quota and has to release its own flow entries for new

Overflow Ratio Example

ESULTS

, we describe our experiment environment and

System Architecture

Figure 15 shows the system architecture of the experiments.

We implement the system based on OpenFlow 1.0 [

[22] is deployed as controllers for tenants. We choose

OpenVirteX [6] as proxy controller and modify its functions for

the communication with SPRM. We also add features that deal

with management plane policies and idle timeout messages for

tracking the flow states. The key functions of SPRM such as the

replacement algorithm and overflow ratio calculation could be

implemented on a remote server to reduce proxy controller’s

overhead.

When a tenant application sends a flow modify message to

proxy controller, the tenant request handler forwards the

request to SPRM through MQTT

uses JSON-RPC API of OpenVirteX to get tenant’s

information. After checking tenant state and making decisions

of replaced entries, SPRM sends the policies back to proxy

controller through MQTT. Finally, OpenVirteX communicates

with switches according to the policie

B. Environment Setup

There are two servers equipped with Intel core i5

3.10GHz and 24GB DRAM installed with VMWare

Workstation for the emulation environment. Several virtual

machines are allocated with two core p

DRAM on these servers. The first server emulates 5 virtual

machines as tenant controllers. Another server emulates the

system elements with 3 virtual machines, including SPRM

management plane, OpenVirteX as proxy controller, and

MQTT broker for the communication between OpenVirte

SPRM. Finally, we use Mininet

network and combine it with the elements described above.

TABLE
SYSTEM DEFAULT

Categories Field

Tenant

|T|

Q

Switch TFS

Ryu application Flow entry idle_timeout

SPRM

LRU-PTR partial_timeout

Overflow ratio policy

Traffic

generator:
Ostinato

Source IP

Destination IP

Number of Connections

Inter-arrival time between
connections

Packet Rate

The default settings and configurations

shown in Table IV. The number of tenant

10

We implement the system based on OpenFlow 1.0 [13]. Ryu

is deployed as controllers for tenants. We choose

] as proxy controller and modify its functions for

the communication with SPRM. We also add features that deal

with management plane policies and idle timeout messages for

tracking the flow states. The key functions of SPRM such as the

m and overflow ratio calculation could be

implemented on a remote server to reduce proxy controller’s

When a tenant application sends a flow modify message to

proxy controller, the tenant request handler forwards the

request to SPRM through MQTT [23] protocol. SPRM then

RPC API of OpenVirteX to get tenant’s

information. After checking tenant state and making decisions

of replaced entries, SPRM sends the policies back to proxy

controller through MQTT. Finally, OpenVirteX communicates

h switches according to the policies.

There are two servers equipped with Intel core i5-4440 CPU

3.10GHz and 24GB DRAM installed with VMWare

Workstation for the emulation environment. Several virtual

machines are allocated with two core processors and 2GB

DRAM on these servers. The first server emulates 5 virtual

machines as tenant controllers. Another server emulates the

system elements with 3 virtual machines, including SPRM

management plane, OpenVirteX as proxy controller, and

er for the communication between OpenVirteX and

SPRM. Finally, we use Mininet [24] to emulate the physical

network and combine it with the elements described above.

TABLE IV
EFAULT SETTINGS

Field Default Values

5

[100, 200, 400, 200, 100]

1000

Flow entry idle_timeout 30 s

PTR partial_timeout 10 s

Overflow ratio policy Total overflow

10.0.0.1 ~ 10.0.0.5

(µ=3, σ=0.6)

10.0.0.6 ~ 10.0.3.255

(µ=512, σ=300)

Number of Connections 40000

arrival time between
5 ms

1000 packets/s for 50

packets

The default settings and configurations of our test cases are

The number of tenant |T| is 5 and the quota

TNSM-2017-01628

set Q for these tenants is [100, 200, 400, 200, 100].

table size in a switch TFS is 100. The idle timeout for each new

flow entry is 30 seconds. We set partial_timeout

and select total overflow policy as default

dynamically create connections, Ostinato

packet generator. We use normal distribution to

generate source and destination IPs. For traffic source, there are

5 source IPs ranges from 10.0.0.1 to 10.0.0.5

mean µ to 3 and standard deviation σ to

range of destination IP is from 10.0.0.6 to 10.0.3.255,

default value of µ is 512 and σ is 300. Total 4

are generated and there is a 5 ms delay between connections.

Each connection transfers 50 packets with rate

packet/second, which lasts 50/1,000 = 0.05s = 50ms.

our total simulation time = 40,000 connection * 50ms +

intervals * 5ms = 2,199,995ms = 36.67min.

flow modification latency, Cbench [26] is used to compare the

overhead.

C. Experiment Results

In this section, we provide the experiment results to observe

the values of SAR and PKI. We compare SAR

OVX, hard partitioning, and SPRM. For SPRM, we perform the

simulations with different overflow ratio policies for

comparison. Finally, the performance of flow modification

latencies is discussed.

1) Comparison among OpenVirteX, Hard Partitioning and

SPRM

Fig. 16. Results of Satisfaction Ratio

Figure 16 shows maximum and minimum

among OpenVerteX without flow table management functions

(denoted as OVX), hard partitioning, and proposed SPRM. The

x-axis represents the standard deviation

distribution. With smaller σ, the distribution of TR is more

uneven and most of the traffic requests come from specific

tenants. As a result, the resource monopoly problem is more

serious. Hence, we can investigate the performance of SAR

under different distribution patterns of source and

IPs by assigning different values of σ. We can observe that

SPRM outperforms OVX because the minimum

can reach 100% while the minimum SAR

when σ=0.2. That means, under the situation with few greedy

tenants, these greedy tenants dominate the resources with OVX

[100, 200, 400, 200, 100]. The flow

The idle timeout for each new

partial_timeout as 10 seconds

total overflow policy as default policy. To

dynamically create connections, Ostinato [25] is adopted as

We use normal distribution to randomly

generate source and destination IPs. For traffic source, there are

5 source IPs ranges from 10.0.0.1 to 10.0.0.5 and we set the

to 0.6 as default. The

range of destination IP is from 10.0.0.6 to 10.0.3.255, the

Total 40,000 connections

here is a 5 ms delay between connections.

50 packets with rate 1,000

, which lasts 50/1,000 = 0.05s = 50ms. Hence,

000 connection * 50ms + 39,999

= 2,199,995ms = 36.67min. In order to observe

is used to compare the

In this section, we provide the experiment results to observe

SAR and PKI among

, hard partitioning, and SPRM. For SPRM, we perform the

with different overflow ratio policies for

comparison. Finally, the performance of flow modification

Comparison among OpenVirteX, Hard Partitioning and

Satisfaction Ratio

Figure 16 shows maximum and minimum SAR of tenants

without flow table management functions

, hard partitioning, and proposed SPRM. The

standard deviation σ , of normal

, the distribution of TR is more

even and most of the traffic requests come from specific

As a result, the resource monopoly problem is more

investigate the performance of SAR

patterns of source and destination

We can observe that

SPRM outperforms OVX because the minimum SAR of SPRM

 of OVX is only 52%

That means, under the situation with few greedy

greedy tenants dominate the resources with OVX

easily. SPRM, on the other hand, limits these greedy tenants by

calculating overflow ratio and

resources among tenants. From the results we can assure that

SPRM could eliminate the resource monopoly problem

effectively. Although hard partitioning strategy could deal with

this issue, it lacks of the flexibility of overflow mechan

that the maximum of SAR cannot be higher than 100%.

 Fig. 17. Results of

Fig. 18. Result of Flow Table Utilization

Figure 17 presents the PKI

tests for each case. Standard deviations of the cases are the

calculated and depicted on the bars. In addition, we calculate

probability values (p-values) for statistical measurement. *

means p-value < 0.01 when comparing SPRM with OVS;

means p-value < 0.01 when comparing SPRM with hard

partitioning strategy. We can see that both * and # are true on

different cases which means that it is im

performances of both OVX and hard partitioning

SPRM. From the figure, we can observe that t

of SPRM is better than OVX and hard partitionin

quota is the upper bound in hard partitioning strategy, those

tenants who want to request new flow entries over their quota

will be rejected. On the other hand, there is no quota limitation

in OVX and the requests will be rejected when flow tabl

utilization reaches 100%. In SDN networks, these rejected

entries will cause large PKI that enlarges controller’s burden. In

1

10

100

1000

10000

100000

1000000

OVX Hard

partitioning

SPRM OVX

0.2

* #

11

, on the other hand, limits these greedy tenants by

calculating overflow ratio and could fairly allocate the

From the results we can assure that

SPRM could eliminate the resource monopoly problem

effectively. Although hard partitioning strategy could deal with

this issue, it lacks of the flexibility of overflow mechanism, so

cannot be higher than 100%.

Results of PKI

Result of Flow Table Utilization

PKI for each algorithm. We run 10

tests for each case. Standard deviations of the cases are the

on the bars. In addition, we calculate

values) for statistical measurement. *

value < 0.01 when comparing SPRM with OVS; #

value < 0.01 when comparing SPRM with hard

n see that both * and # are true on

different cases which means that it is improbable for PKI

performances of both OVX and hard partitioning to match

. From the figure, we can observe that the performance

of SPRM is better than OVX and hard partitioning. Because

quota is the upper bound in hard partitioning strategy, those

tenants who want to request new flow entries over their quota

will be rejected. On the other hand, there is no quota limitation

in OVX and the requests will be rejected when flow table

utilization reaches 100%. In SDN networks, these rejected

that enlarges controller’s burden. In

OVX Hard

partitioning

SPRM OVX Hard

partitioning

SPRM

0.6 1

PKI Reject entries

* # * #

TNSM-2017-01628

SPRM, we design the replacement algorithm to reduce the

rejection rate. From the results, we learn that SPRM reduces

95% of PKI and 100% of rejected entries.

We illustrate the utilization of flow table with CDF as y

in figure 18. Hard partitioning could only reach up to 82.5%

because quota cannot be shared among tenants. OVX can

achieve 100% utilization because there is no flo

management mechanism and every tenant can acquire flow

entries if available. The proposed SPRM reaches 93%

utilization which is much better than hard partitioning and close

to OVX. However, since OVX suffers from large amount of

rejections and PKI, we think SPRM is the best choice among

these strategies.

2) Comparison among different policies of SPRM

We have learned that SPRM outperforms both OpenVirte

and hard partitioning on both SAR and PKI

would like to analyze the performance among several SPRM

policies and find the best setting of SPRM.

In this part, we use partial_timeout value as x

best LRU-PTR configuration. In addition, we also collocate

with each overflow ratio policies to observe the performance.

Figure 19 depicts the minimum and maximum

tenants under different SPRM policies. Obviously, minimum

SAR of each policy reaches 100%. It means that there will be no

resource monopoly problem with SPRM. We also observe that

the maximum SAR of policies with total overflow performs

better than the others. The reason is that total overflow allocates

more flow table size only to the tenant who wants to overuse.

As a comparison, equal overflow allocates flow table for the

other tenants without requesting. Because of the characteristic,

SAR in equal overflow is less than total overflow and weight

overflow. In this figure, we could also discover that there has no

correlation between partial_timeout

performance because partial_timeout might not aff

tenant’s usage range.

Fig. 19. Results of Satisfaction Ratio with SPRM Policies

Figure 20 depicts the PKI performance under different

policies. We run 10 tests for each case. Standard deviations of

the cases are the calculated and depicted on each dot. Again, we

calculate p-values for statistical measurement. * means p

SPRM, we design the replacement algorithm to reduce the

rejection rate. From the results, we learn that SPRM reduces

nd 100% of rejected entries.

We illustrate the utilization of flow table with CDF as y-axis

in figure 18. Hard partitioning could only reach up to 82.5%

because quota cannot be shared among tenants. OVX can

achieve 100% utilization because there is no flow table

management mechanism and every tenant can acquire flow

entries if available. The proposed SPRM reaches 93%

utilization which is much better than hard partitioning and close

to OVX. However, since OVX suffers from large amount of

we think SPRM is the best choice among

olicies of SPRM

We have learned that SPRM outperforms both OpenVirteX

PKI. In this part, we

among several SPRM

policies and find the best setting of SPRM.

value as x-axis to find the

PTR configuration. In addition, we also collocate

with each overflow ratio policies to observe the performance.

e 19 depicts the minimum and maximum SAR of all

tenants under different SPRM policies. Obviously, minimum

of each policy reaches 100%. It means that there will be no

resource monopoly problem with SPRM. We also observe that

with total overflow performs

better than the others. The reason is that total overflow allocates

more flow table size only to the tenant who wants to overuse.

As a comparison, equal overflow allocates flow table for the

cause of the characteristic,

in equal overflow is less than total overflow and weight

overflow. In this figure, we could also discover that there has no

 value and SAR

might not affect the

Satisfaction Ratio with SPRM Policies

performance under different

We run 10 tests for each case. Standard deviations of

on each dot. Again, we

values for statistical measurement. * means p-value

< 0.05 when comparing total overflow policy with weighted

overflow policy; # means p-value < 0.05 when comparing

overflow policy with equal overflow policy

is true for all cases, which means that it is im

overflow policy to match total overflow policy

partial_timeout is 15 and 20, which means it is

weighted overflow policy to match total overflow p

these 2 cases. For PKI, partial_timeout

performance apparently. When we use smaller

it will generate more flow entry reset events which cause

controller and switch processing overhead. On the other hand,

if we set a larger partial_timeout

each entry would not be approximated to the real idle time.

Therefore, we want to find a best

overflow ratio policy. From the result,

our scenario has the minimal PKI. If we set it to

PKI is raised because of the entry gap. On the other hand, if we

set a larger partial_timeout,

estimated idle time is not close to real idle time. Figure 2

shows that total overflow policy is better than equal and

weighted overflow policies. The reason is that there are more

flow spaces reserved for tenants with lower usage in both equal

and weighted overflow policies. Therefore, few flow spaces are

reserved for high-demand tenants, resulting in poor

performance.

Fig. 20. Results of PKI

3) Flow Modification Latency

From previous results, we have showed that SPRM

outperforms OVX and hard partitioning. However, proxy

controller architecture adopted

modification latency. In this

regarding to flow modification latency and explain how

overflow ratio affects it.

From figure 21 we can see that OpenVirte

raises the latency with 0.5 ms. If we adopt flow table

management with in-line mode, the overhead increases 3 times

higher. On the other hand, the latency with sniff mode is

close to OpenVirteX, and the performance of hybrid mode

equals to sniff mode. Because SPRM with overflow ratio

pre-reserves flow entries for potential tenants and hence our

hybrid mode will stays in sniff mode, which could be observed

in figure 22.

6500

6800

7100

7400

7700

8000

8300

8600

10 15

Total

* # #

P
K

I

Partial_timeout value (sec)

12

< 0.05 when comparing total overflow policy with weighted

value < 0.05 when comparing total

equal overflow policy. We can see that #

which means that it is improbable for equal

total overflow policy. * is false when

is 15 and 20, which means it is probable for

weighted overflow policy to match total overflow policy on

partial_timeout affects the LRU-PTR

performance apparently. When we use smaller partial_timeout,

it will generate more flow entry reset events which cause

controller and switch processing overhead. On the other hand,

partial_timeout, the idle time we calculate for

each entry would not be approximated to the real idle time.

Therefore, we want to find a best partial_timeout value and

overflow ratio policy. From the result, partial_timeout=15 in

our scenario has the minimal PKI. If we set it to 10 seconds, the

is raised because of the entry gap. On the other hand, if we

, PKI is also raised because the

estimated idle time is not close to real idle time. Figure 20 also

shows that total overflow policy is better than equal and

overflow policies. The reason is that there are more

flow spaces reserved for tenants with lower usage in both equal

and weighted overflow policies. Therefore, few flow spaces are

demand tenants, resulting in poor

Fig. 20. Results of PKI with SPRM Policies

Flow Modification Latency

From previous results, we have showed that SPRM

outperforms OVX and hard partitioning. However, proxy

architecture adopted in SPRM may cause higher flow

modification latency. In this part, we illustrate the result

regarding to flow modification latency and explain how

From figure 21 we can see that OpenVirteX proxy controller

raises the latency with 0.5 ms. If we adopt flow table

line mode, the overhead increases 3 times

higher. On the other hand, the latency with sniff mode is very

X, and the performance of hybrid mode

. Because SPRM with overflow ratio

reserves flow entries for potential tenants and hence our

hybrid mode will stays in sniff mode, which could be observed

20 25 30

Total Equal Weight

*
* #

Partial_timeout value (sec)

TNSM-2017-01628

We can observe how many flow requests might be processed

in in-line mode with different policies in figure 22. There are

30% requests of LRU-PTR without overflow ratio processed in

in-line mode. If we deploy overflow ratio policies, these

requests would be scattered into situations that switches have

enough flow table space and all requests are processed in sniff

mode. This is because that if there is no upper bound limited by

overflow ratio, the utilization of flow table reaches 100% easily

with heavy tenants. On the other hand, the overflow ratio

reserves spaces to tenant with small traffics and the switch can

work in sniff mode at all times.

Fig. 21. Results of Flow Modification Latency

Fig. 22. Occupancy of four Situations

VI. CONCLUSIONS AND FUTURE

In this paper, we proposed SPRM for managing the flow

table resource in a multi-tenancy SDN environments. SPRM

inherits the concept of soft partitioning to maintain high flow

entry utilization. To avoid a resource monopoly problem and

speedup flow modification latency, SPRM extra adopts three

novel concepts: hybrid mode, usage range,

replacement. We also implemented SPRM in a managing

server and modified OpenVirteX as a proxy controller, which

cooperates with SPRM.

The experiment results show that OpenVirte

management plane suffers from the resource monopoly

problem and not all tenants are satisfied. However, hard

e can observe how many flow requests might be processed

erent policies in figure 22. There are

PTR without overflow ratio processed in

line mode. If we deploy overflow ratio policies, these

requests would be scattered into situations that switches have

ests are processed in sniff

mode. This is because that if there is no upper bound limited by

overflow ratio, the utilization of flow table reaches 100% easily

with heavy tenants. On the other hand, the overflow ratio

affics and the switch can

of Flow Modification Latency

Situations

FUTURE WORK

In this paper, we proposed SPRM for managing the flow

tenancy SDN environments. SPRM

inherits the concept of soft partitioning to maintain high flow

entry utilization. To avoid a resource monopoly problem and

speedup flow modification latency, SPRM extra adopts three

ange, and LRU-PTR

implemented SPRM in a managing

server and modified OpenVirteX as a proxy controller, which

The experiment results show that OpenVirteX without

management plane suffers from the resource monopoly

problem and not all tenants are satisfied. However, hard

partitioning strategy causes a lot of

increases controller’s overhead. From our experiment results,

we could choose the total overflow policy

to reach better performance. In addition, the minimum of

with SPRM could reach 100%, which

OpenVirteX without management. SPRM also saves 100%

rejections and reduces 95%

hard partitioning strategy. As to flow table utilization, we could

observe that SPRM could reach up

82.5% of hard partitioning strategy and solves the resource

wasting problem. Hence, SPRM not only solves these

problems but also reduces at least 30% in

avoid high flow modification latency by using overflow ratio.

In a multi-tenancy environment, some implementations of

proxy controller could provide big switch feature, which

represents that multiple physical switches are mapped as a

single virtual switch. How to manage a big switch is a great

challenge because a single flow entry on the virtual switch will

be mapped to multiple flow entries on multiple physical

switches. We believe that there are more issues to study with

big switch feature enabled in the future

REFERENCES

[1] S. Sezer, S. Scott-Hayward, P.

Finnegan, N. Viljoen, M. Miller and N. Rao
Implementation challenges for software

Communications Magazine, vol.
[2] A. Lara, A. Kolasani, B. Ramamurthy

openflow: A survey,” IEEE Communications

no 1, 2014, pp. 493-512.

[3] A. Blenk, A. Basta, M. Reisslein, W
Virtualization Hypervisors for Software Defined Networking

Communications Surveys & Tutorials

[4] "OpenDaylight VTN Gerrit Project
https://github.com/opendaylight/vtn.

[5] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N.

McKeown and G. Parulkar, "Flowvisor: A network virtualization layer,"
OpenFlow Switch Consortium, T

[6] Al-Shabibi, Ali, D. Leenheer, Marc, Gerola and Matteo, "OpenVirteX:

Make your virtual SDNs programmable,"
workshop on Hot topics in softw

[7] X. Jin, J. Gossels, J. Rexford and D. Walker, "Covisor: A compositional

hypervisor for software-defined networks,"
Networked Systems Design and Implementation (NSDI 15)

87-101.

[8] E. Salvadori, R. Doriguzzi Corin, A. Broglio
Virtual Network Topologies in OpenFlow

Global Telecommunications Conference

Kathmandu, 2011, pp. 1-6.
[9] S. Gebert, M. Jarschel, S. Herrnleben, T. Zinner

Visor: An Emulation Layer for Multi

Fourth European Workshop on Software Defined Networks
pp. 117-118.

[10] A. Ishimori, F. Farias, E. Cerqueira and A. Abele

packet schedulers for improving QoS on OpenFlow/SDN networking,"
Second European Workshop on

2013, pp. 81-86.

[11] P. Qin, B. Dai, B. Huang and G. Xu, "Bandwidth
sdn in hadoop: A new trend for big data,"

March 2014.

[12] J.-L. Chen, Y.-W. Ma, H.-Y. Kuo and W.
Software-Defined enterprise network resource management engine,

IEEE/SICE International Symposium on System Integration (SII)

pp. 381-384.
[13] "OpenFlow Switch Specification

https://www.opennetworking.org/images/stories/downloads/sdn
es/onf-specifications/openflow/openflow

13

partitioning strategy causes a lot of Packet_in events and

increases controller’s overhead. From our experiment results,

he total overflow policy with SPRM in order

. In addition, the minimum of SAR

with SPRM could reach 100%, which performs 48% better than

without management. SPRM also saves 100%

rejections and reduces 95% PKI messages as compared with

hard partitioning strategy. As to flow table utilization, we could

reach up to 93%, which is higher than

hard partitioning strategy and solves the resource

problem. Hence, SPRM not only solves these two

problems but also reduces at least 30% in-line mode requests to

avoid high flow modification latency by using overflow ratio.

tenancy environment, some implementations of

proxy controller could provide big switch feature, which

that multiple physical switches are mapped as a

single virtual switch. How to manage a big switch is a great

challenge because a single flow entry on the virtual switch will

be mapped to multiple flow entries on multiple physical

there are more issues to study with

in the future.

EFERENCES

Hayward, P.-K. Chouhan, B. Fraser, D. Lake, J.

Finnegan, N. Viljoen, M. Miller and N. Rao, "Are we ready for SDN?
Implementation challenges for software-defined networks," IEEE

, vol. 51, no. 7, pp. 36-43, July 2013.
B. Ramamurthy, “Network innovation using

IEEE Communications Surveys & Tutorials, vol. 16,

Reisslein, W. Kellerer, “Survey on Network
Virtualization Hypervisors for Software Defined Networking,” IEEE

Communications Surveys & Tutorials, vol. 18, no 1, 2016, pp. 655-685.

Gerrit Project," [Online]. Available:
https://github.com/opendaylight/vtn.

K. Yap, G. Appenzeller, M. Casado, N.

McKeown and G. Parulkar, "Flowvisor: A network virtualization layer,"
, Tech. Rep, pp. 1-13, 2009.

Shabibi, Ali, D. Leenheer, Marc, Gerola and Matteo, "OpenVirteX:

Make your virtual SDNs programmable," Proceedings of the third
workshop on Hot topics in software defined networking, 2014, pp. 25-30.

xford and D. Walker, "Covisor: A compositional

defined networks," 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), 2015, pp.

E. Salvadori, R. Doriguzzi Corin, A. Broglio, M. Gerola, "Generalizing
Virtual Network Topologies in OpenFlow-Based Networks," 2011 IEEE

Global Telecommunications Conference (GLOBECOM 2011),

S. Gebert, M. Jarschel, S. Herrnleben, T. Zinner, P. Tran-Gia, "Table

Visor: An Emulation Layer for Multi-table Open Flow Switches," 2015

Fourth European Workshop on Software Defined Networks, Bilbao, 2015,

arias, E. Cerqueira and A. Abelem, "Control of multiple

proving QoS on OpenFlow/SDN networking,"
Second European Workshop on Software Defined Networks (EWSDN),

P. Qin, B. Dai, B. Huang and G. Xu, "Bandwidth-aware scheduling with
sdn in hadoop: A new trend for big data," IEEE Systems Journal, pp. 1-8,

Y. Kuo and W.-C. Hung, "Enterprise visor: A
Defined enterprise network resource management engine,"

IEEE/SICE International Symposium on System Integration (SII), 2014,

cification version 1.0.0," [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-resourc
specifications/openflow/openflow-spec-v1.0.0.pdf.

TNSM-2017-01628 14

[14] R. Jain and S. Paul, "Network virtualization and software defined

networking for cloud computing: a survey," IEEE Communications
Magazine, vol. 50, no. 14, pp. 24-31, November 2013.

[15] "ONF SDN Architecture Issue 1.1," [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-resourc
es/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf.

[16] J. Kohn, D. Rowell, F. Shi and G. Aybay, "Managing a Flow Table". U.S.

Patent 9065724, Jun. 23, 2015.
[17] D. Kim and B.-D. Lee, “An Efficient Flow Table Management Scheme

for SDNs Based On Flow Forwarding Paths,” Advanced Science and

Technology Letters, vol.135, pp.88-93, 2016.
[18] Dan, Asit, Towsley and Don, "An approximate analysis of the LRU and

FIFO buffer replacement schemes," ACM SIGMETRICS conference on

Measurement and modeling of computer systems, 1990, pp. 143-152.
[19] A. X. Liu, C. R. Meiners, E. Torng, "TCAM Razor: A Systematic

Approach Towards Minimizing Packet Classifiers in TCAMs," 2007

IEEE International Conference on Network Protocols, Beijing, 2007, pp.
266-275.

[20] C. Yu, C. Lumezanu, H. V. Madhyastha, and G. Jiang, “Characterizing

Rule Compression Mechanisms in Software-defined Networks,” 17th
International Conference on Passive and Active Measurement

(PAM2016), Greece, 2016.

[21] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco, J.
Moulierac, and G. Urvoy-Kelle, “Too many SDN rules? Compress them

with MINNIE,” 2015 IEEE Global Telecommunications Conference

(GLOBECOM 2015), San Diego, 2015.
[22] "Ryu," [Online]. Available: https://osrg.github.io/ryu/.

[23] "Wikipedia for MQTT protocol," [Online]. Available:
https://en.wikipedia.org/wiki/MQTT.

[24] Mininet, [Online]. Available: http://www.mininet.org.

[25] Ostinato, [Online]. Available: http://ostinato.org/.
[26] R. Sherwood, Cbench Controller Benchmarker, [Online]. Available:

http://www.openflow.org/wk/index.php/Oflops.

[27] R. C. S. Morling and G. D. Cain, “MININET: a packet-switching mini
computer network for real-time instrumentation,” AIM International

Meeting of Minicomputer and Data Communications, Jan. 1975.

Ying-Dar Lin (F’13) is a

Distinguished Professor of computer

science at National Chiao Tung

University (NCTU), Taiwan. He

received his Ph.D. in computer science

from the University of California at Los

Angeles (UCLA) in 1993. He was a

visiting scholar at Cisco Systems in San

Jose, California, during 2007–2008.

Since 2002, he has been the founder and director of Network

Benchmarking Lab (NBL, www.nbl.org.tw), which reviews

network products with real traffic and has been an approved test

lab of the Open Networking Foundation (ONF) since July 2014.

He also cofounded L7 Networks Inc. in 2002, which was later

acquired by D-Link Corp. His research interests include

network security and wireless communications. His work on

multihop cellular was the first along this line, and has been

cited over 650

times and standardized into IEEE 802.11s, IEEE 802.15.5,

IEEE 802.16j, and 3GPP LTE-Advanced. He is also an IEEE

Distinguished Lecturer (2014–2015) and an ONF Research

Associate. He currently serves on the editorial boards of several

IEEE journals and magazines. He published a textbook,

Computer Networks: An Open Source Approach

(www.mhhe.com/lin), with Ren-Hung Hwang and Fred Baker

(McGraw-Hill, 2011).

Te-Lung Liu (M’99) received the B.S.

and Ph.D. degrees in computer science

from National Tsing Hua University,

Hsinchu, Taiwan, R.O.C., in 1995 and

2002, respecively. He is currently a

Research Scientist in National Center for

High-Performance Computing, Tainan,

Taiwan, R.O.C. He is also a Team

Member of the Taiwan Advanced

Research and Education Network

(TWAREN) and Research Associate of Open Networking

Foundation (ONF). Now He is working on SDN Testbed in

Taiwan. His current research interests include Software

Defined Networking, Future Internet, optical networks, and

network design.

Jian-Hao Chen received the B.S. degree

in computer science information

engineering from National Chiayi

University, Chiayi, Taiwan, in 2014 and

the M.S. degree in computer science

engineering from National Chiao Tung

University, Hsinchu, Taiwan, in 2016. His

research interest includes the development

of Software Defined Networking and

network virtualization technology. Mr. Chen also has a lot of

developing experience of web application with SDN and real

time web services.

Yuan-Cheng Lai received the Ph.D.

degree in Computer Science from National

Chiao Tung University, Taiwan, in 1997.

In August 2001, he joined the faculty of

the Department of Information

Management at National Taiwan

University of Science and Technology,

Taiwan, where he had been a professor

since February 2008. His research interests include wireless

networks, network performance evaluation, network security,

and Internet applications.

