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A B S T R A C T

In this paper we study Hash-based Traffic Steering on Softswitches (HATS) which is a load balancing scheme for
chaining virtualized network functions (VNFs), with the aim of mitigating the control and data plane overheads
of existing methods. Our method uses a flow-hashing technique applied to softswitches to carry out server and
network load balancing without triggering the controller. By exploiting the advantages of HATS, we then derive
two algorithms, HATS with Flowcell-based Multipathing (HATS-Flowcell) and Dynamic Weight Adjustment for
HATS (D-HATS), to address hash collision problems which downgrade system performance. The first algorithm
divides an elephant flow into various equal-size flowcells, which are distributed over network paths as individual
flows. The second algorithm periodically updates the hashing weights of VNFs and network paths according to
their current load status. Our implementation demonstrates that HATS can be readily deployed on commodity
network hardware. Furthermore, our experimental results show that D-HATS has roughly the same load balanc-
ing performance with Least Load First (LLF), a controller-based service chaining algorithm; while significantly
reducing the number of flow entries and service chaining time by 54% and 93%.

1. Introduction

The concept of Network function virtualization (NFV) (Mijumbi et
al., 2016) has the potential to enable flexible deployment, manage-
ment, and provision of networking services in providers’ data centers.
With such a concept hardware-based appliances, i.e., middleboxes, are
replaced with virtualized network functions (VNFs). Also, a composite
network service can be provided via a service chain, which is a service
policy defining a sequence of VNFs being applied to service requests,
i.e., data flows (Quinn and Guichard, 2014). For example, a network
security service may require data flows to pass through a firewall, fol-
lowed by a content filter before ending up at an intrusion prevention
system (IPS). To provide such services in a data center, network oper-
ators have to construct service paths, which are instances of service
chains created using the overlay topology of VNFs. In other words, ser-
vice paths define the interconnections of VNFs in an overlay network
through which data flows have to be steered.

Service path instantiation, i.e., service chaining, raises two impor-
tant concerns: VNF load balancing and network path load balancing
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(Thai et al., 2016). The first concern arises from the fact that there are
multiple parallel instances of each VNF type for scale-out reasons. As
a result, any proposed VNF load balancing scheme has to spread net-
work traffic across those instances when service paths are being built.
Furthermore, because of the multipath capacity of data center network
topology, there should be a network load balancing solution for ser-
vice path construction. These two issues have to be addressed to ensure
operational efficiency and system performance.

A variety of research papers (Thai et al., 2016; Gember et al., 2013;
Qazi et al., 2013; Carpio et al., 2017; Wang et al., 2017; Lin et al.,
2016) have attempted to address the problems of load-balanced service
chaining. Broadly speaking, almost all prior studies on service chaining
are SDN-based solutions, in which the proposed load balancing algo-
rithms are mostly implemented in the management and control planes.
In other words, an SDN controller is responsible for computing service
paths and then inserting forwarding rules to the data plane switches to
steer flows across the required VNFs. Although these proffered solutions
can fulfill the desired service requirements, they all have two critical
drawbacks. The first is control plane overheads. This means the con-
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troller needs to process a remarkable number of simultaneous packet-in
events sent from the data plane. The second is data plane overheads,
which are an enormous number of flow entries inserted into switches
as each service path needs to be converted to a set of flow entries on
all relevant switches. This also results in long flow setup times, which
probably downgrades the system performance. According to Thai et al.
(2016), such time is approximately 80% of the total service chaining
time. To decrease control and data plane overheads, the authors in Lin
et al. (2016) introduced a hash-based method to achieve load balancing
among service nodes in an NFV environment. However, network load
balancing issue was ignored in that work, and it required the support
of an OpenFlow group table on hardware switches.

In this paper, we propose a load balancing system for chaining
VNFs in a data center, called Hash-based Traffic Steering on Softswitches
(HATS). The aim of this work is to diminish control and data plane over-
heads in existing service chaining solutions. The main idea behind our
design is that a centralized controller is employed to collect network
topology and to pro-actively install the corresponding load balancing
information to edge softswitches (software-based switches), which steer
network traffic to different VNFs via multiple paths. VNF and path selec-
tions required to construct service paths are made by flow matching and
hashing at softswitches instead of triggering the controller. This solu-
tion not only supports VNF and network load balancing but also signif-
icantly decreases system overheads. Furthermore, there are no special
requirements for additional network hardware in this proposal.

HATS is derived from the popular hash-based load balancing scheme
(Lin et al., 2016; Hopps, 2017), which selects VNFs and network paths
among candidates to construct service paths based on the hash value of
flows’ header fields. Unfortunately, hash collisions cause a few elephant
flows (long-lived and high bandwidth demands) to have the same hash
value. These flows then travel to the same VNFs and network paths,
even though the others may be lightly loaded. Such collisions may sig-
nificantly degrade the system load balancing performance. To address
this problem, we investigate two algorithms that are HATS with Flowcell-
based Multipathing (HATS-Flowcell) and Dynamic Weight Adjustment for
HATS (D-HATS). In the first algorithm, an elephant flow is split into
various equal-size bursts of packets, or flowcells. The flowcells are then
spread over network paths as individual flows. The second algorithm
does not divide elephant flows to different sub-flows, but periodically
updates the hashing weights of VNFs and network paths according to
their current load status. Over-loaded VNFs and network paths tend to
have smaller weights than under-loaded ones. In this way, the algorithm
can address hash collision issues effectively.

We have developed our proposals using OpenDayLight (ODL)
controller platform (Opendaylight, 2017) and Open vSwitch (Open
vSwitch, 2017), whereby VNF and path selections are executed by
the SELECT type of OpenFlow group table. The performance of HATS-
Flowcell and D-HATS was evaluated using the Mininet network emula-
tor (Mininet, 2017) with VNFs implemented by Click elements (Kohler
et al., 2000). The experimental results showed that our proposed algo-
rithms could effectively carry out VNF and network path load balancing
while significantly decreasing the number of flow entries and service
chaining time, compared to a controller-based service chaining algo-
rithm.

Compared to an earlier conference version of this work (Thai et al.,
2017), we add a new section which provides background knowledge
on NFV and assesses existing load-balanced service chaining studies.
Furthermore, an additional algorithm D-HATS, with its design, imple-
mentation, and experimental results, is added, with the aim of improv-
ing system load balancing performance. We also include more detailed
analysis and comparisons between the proposed algorithms.

The rest of this paper is organized as follows. In Section 2, we review
the background knowledge and related work of this study. Our load-
balanced service chaining problem is described in Section 3, and in
Section 4, we elaborate the proposed algorithms and their implemen-
tation. Evaluation and experimental results are presented in Section 5,

and Section 6 concludes this paper.

2. Background and related work

We first give a brief overview of NFV and then review existing load
balancing solutions for service chaining which are closely related to our
work.

2.1. Background - network function virtualization

Telecommunication service providers have traditionally relied on
proprietary appliances to offer network services. This expensive equip-
ment has long product cycles, low service agility and cannot be flexibly
deployed, which requires not only costly investments but also prevents
network services from being upgrading. The concept of NFV has been
proposed to address these issues by moving packet processing tasks
from purpose-built hardware appliances to software-based functions.
In other words, the functions are implemented on virtual machines
by exploiting virtualization and cloud technology (Baker et al., 2015;
Al-Dawsari et al., 2015). The virtual machines are programmed to
play roles of network traffic processing functions such as firewall,
IDS/IPS, NAT, video transcoding, and HTTP proxy/cache. In literature,
these functions are referred as virtualized network functions (VNFs).
By applying NFV, different VNFs can run on general-purpose servers
and share underlying resources. Furthermore, the VNFs can be flexibly
deployed at various times in different locations of a network such as
federated data centers, core servers, and network edges. This flexibil-
ity can enhance system performance and provide dynamic scaling on
service provisioning.

With the aim to develop standards for NFV, the European Telecom-
munication Standards Institute (ETSI) (ETSI - NFV, 2017) introduced an
NFV architecture framework, which has been widely accepted by both
academia and industry. There are two key components in the architec-
ture, NFV infrastructure (NFVI) and an NFV management and orches-
tration platform (NFV-MANO). The NFVI includes both hardware and
software resources that provide processing capacity for VNFs and con-
nectivity among them. At a higher tier, the deployment and operation
of these VNFs over the NFVI resources are managed by NFV-MANO.

Along with standardization activities, there has been a variety of
attempts to provide NFV-enabled solutions. OPNFV (Open Platform
for NFV (OPNFV), 2017) is an open source platform that attempts to
establish an ecosystem for NFV. The platform allows users to integrate
solutions from third-party projects such as ODL (Opendaylight, 2017),
ONOS (Open Network Operating System, 2017), OpenStack (Open-
Stack, 2017), and Open vSwitch (Open vSwitch, 2017), in order to
construct NFVI and NFV-MANO. By exploiting Xen-based virtualiza-
tion (Barham et al., 2003) and network I/O optimization techniques,
ClickOS (Martins et al., 2014) enables developers to implement various
high-performance network functions using small-size, quick-booting,
short-delay virtual machines. Similarly, the authors in Hwang et al.
(2015) have developed a NetVM platform, which is built on top of KVM
platform (Kivity et al., 2007) and Intel DPDK library (DPDK, 2017).
The solution produces customizable data plane processing which can
achieve near hardware performance.

2.2. Related work - load-balanced service chaining

By the concept of NFV, a composite network service can be provided
through a service chain, which is a pre-defined sequence of VNFs being
applied to data flows. To accommodate user requests for such services,
providers need to carry out service chaining by selecting appropriate
VNFs and network paths to construct service paths, in which data flows
need to be steered across.

It is well-known that one should balance VNF and network path
loads while performing service chaining to ensure efficient system

2



M.-T. Thai et al. Journal of Network and Computer Applications 109 (2018) 1–10

performance. Several studies have been carried out to address such
requirements. A typical approach is to implement load balancing algo-
rithms to a centralized SDN controller. In other words, the controller
selects appropriate VNFs and network paths among suitable candidates
to construct service paths according to the algorithms and then sets for-
warding entries to the data plane. For example, SIMPLE (Qazi et al.,
2013) introduced an online load balancing problem formulated as a
linear programming problem whose objective is to minimize the maxi-
mum service functions load across the network. On the other hand, an
offline optimization problem for multi-resource load balancing in NFV
environment was proposed by Wang et al. (2017). The authors in Thai
et al. (2016) developed a joint optimization algorithm aimed at balanc-
ing network and server load concurrently. Their experimental results
showed that joint optimization outperforms a sequential algorithm.
Stratos (Gember et al., 2013) also jointly balanced loads between ser-
vice functions and network paths by splitting network traffic across ser-
vice functions according to their network latency. However, the method
distributes the packets of a flow to different instances of a stateful ser-
vice function, which may cause incorrect processing results. Carpio et
al. (2017) studied a VNF placement problem whose objective was to
utilize the cost for all links in the network. Their results indicated that
VNF placement schemes have a significant impact on network load bal-
ancing performance.

In all above proposed solutions, the controller must track the infor-
mation of VNFs and network paths to select the appropriate ones for
service chaining when receiving packet-in events from data plane. It is
a challenging task because of the enormous numbers of service requests
in a data center environment. Furthermore, the controller needs to con-
vert service chaining rules to flow entries which are then inserted into
relevant data plane switches. Such a large number of flow entries results
in long service chaining time, which would dramatically downgrade
system performance. To address the disadvantages of controller-based
solutions, BHT (Lin et al., 2016) first constructed a tree of VNFs, and
then used a flow-hashing technique to spread incoming traffic among
the VNFs. By doing so, this approach was able to balance loads among
VNFs in an NFV environment. Although the solution can achieve effi-
cient load balancing performance, it requires the support of OpenFlow
group table on hardware switches.

3. Problem description

This section first formally describes the terminology used in this
study, and then states the problem to be addressed.

3.1. Terminology

3.1.1. Virtualized network function (VNF)
In service chaining, a VNF is a service node offering a network

function responsible for a particular treatment of received packets. Let
N = {ni,0 ≤ i < |N|} be the set of |N| network functions provided by
the system. The VNFs of the system are denoted by a set F = {fi,j ,0 ≤ j <
Mi}, where fi,j and Mi are the jth instance and the number of instances of
ni, respectively. We use V(fi,j) to indicate the volume of network traffic
arriving at VNF fi,j.

3.1.2. Network topology
Let S = {sk,0 ≤ k < |S|} be the set of |S| softswitches in the network

topology to which VNFs are connected. The softswitch-to-softswitch
paths in the network are represented by a set P = {pu

k,k′ ,0 ≤ k, k′ < |S|},
where pu

k,k′ is the uth path from softswitch sk to softswitch sk′ . V(pu
k,k′ )

denotes the volume of network traffic transmitted through the path
pu

k,k′ . Further, let L = {lki,j} denote the locations of VNFs in the network,
where the binary variable lki,j ∈ {0,1} indicates whether a VNF fi,j ∈ F

is attached to a softswitch sk ∈ S, where

lki,j =
{

1 fi,j is attached to sk,

0 otherwise
(1)

3.1.3. Service request
Let rv ∈ R be a service request arriving in the system, which

demands a service chain cv ∈ C for its processing. The service chain
cv is defined as a couple (N′

v, ≺v), where N′
v ⊆ N is the set of network

functions demanded by cv and ≺v represents the sequential order of the
network functions ni ∈ N′

v.

3.1.4. VNF and path load balancing
We define the VNF load balancing criterion of the system as

VL = max
ni∈N

max
fi,j∈ni

(
V(fi,j)∑

fi,j∈ni

V(fi,j)
) ∗ 100%, (2)

which is the maximum percentage of the volume of network traffic
arriving at VNFs fi,j ∈ ni,∀ni ∈ N. Similarly, the path load balancing
criterion of the system is defined as

NL = max
pu

k,k′
∈P

(
V(pu

k,k′ )∑
pu

k,k′
∈P

V(pu
k,k′ )

) ∗ 100%, (3)

which is the maximum percentage of the volume of network traffic
transmitted through paths pu

k,k′ ∈ P.

3.1.5. Control and data plane overhead
The overhead includes the number of flow entries in the system and

the average service chaining time for service requests. The former is
denoted by E, and the latter is denoted by T.

3.2. Problem statement

Given a set of VNFs F, an overlay network topology G(S,P, L), and
a set of service requests R, the objective of this work is to develop an
efficient service chaining mechanism which not only provides server
and network load balancing but also minimizes control and data plane
overheads. In other words, we aim to minimize VL, NL and lower E, T
at the same time when making service chaining decisions.

4. Hash-based load balanced Traffic Steering on Softswitches

In this section, we present our solution for solving the service chain-
ing problem defined in Section 3. We first give the overview of HATS
with its fundamental design ideas. The details are then elaborated in
the subsequent subsections. Finally, we introduce the implementation
of HATS using the ODL controller and Open vSwitch platform.

4.1. Approach overview

The architecture of HATS shown in Fig. 1 presents an overview of
HATS where VNFs are deployed in virtual machines running on phys-
ical servers. The VNFs are connected to a data center network using
softswitches. To accommodate service requests arriving at a gateway,
the system has to make service chaining decisions that force the flows
to travel through the VNFs in the desired order. We aim to provide the
VNF and network path load balancing while reducing the control and
data plane overhead in service chaining. This requirement is satisfied by
our design, which consists the fundamental design decisions described
below.
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Fig. 1. The architecture of HATS.

4.1.1. Hash-based Traffic Steering on Softswitches
Most literature does not differentiate service chaining and traffic

steering. Here we define service chaining as finding the appropriate
VNFs and the associated order that must be applied to flows, and traffic
steering as forwarding packets through VNFs. Chaining is thus to com-
pute the service paths in the background periodically and store them in
the flow tables which are looked up when steering packets.

Current studies (Thai et al., 2016; Gember et al., 2013; Qazi et al.,
2013; Carpio et al., 2017; Wang et al., 2017) only implement load bal-
ancing intelligence in service chaining algorithms, while in HATS, load
balancing resides in both service chaining and traffic steering proce-
dures. The fundamental idea is that the controller does not construct
service paths with specific VNFs and network paths, but pro-actively
only inserts the information of possible candidates to data plane com-
ponents such as softswitches and gateways. The components then select
specific VNFs and network paths by hashing packets’ header during
traffic steering operations instead of triggering the controller. By doing
so, HATS not only spreads flows to multiple VNFs and paths for load
balancing but also reduces the number of packet-in events sent to the
controller. Furthermore, HATS has no need of per-flow matching at
switches; therefore, the number of flow entries and the waiting time
for flow entry setup are markedly lowered. It should be noted that the
gateways in this architecture are responsible for steering network traffic
to the first VNFs of service paths.

4.1.2. Per-softswitch load balancing
The hash-based VNF and network load balancing can be done at per-

gateway, per-softswitch, and per-hop levels. In this study we choose the
second option, in which the information of available VNFs and network
paths is kept in softswitches. After a packet is processed by a VNF, it
will be redirected to a softswitch responsible for determining the next
VNF by flow-hashing. Such steps are repeated until the packet travels
through all required VNFs and returns to a gateway. Similarly, pre-
configured softswitch-to-softswitch paths are inserted to softswitches,
and network traffic is also split into these paths by flow-hashing. The
hardware switches in the network are only responsible for tunneling
network traffic from one softswitch to another.

Even though hash-based load balancing algorithm can also be
accomplished in per-gateway and per-hop fashion, we decided to imple-
ment the algorithm in softswitches for three reasons. The first reason is
that a per-gateway approach is inefficient because of the huge num-
ber of possible service paths in the network. While a per-hop approach
performs poorly under asymmetric topologies (Zhou et al., 2014) and
needs special requirements in hardware switches, such as flow-hashing
and SDN support, which result in extra hardware cost and complicate
systems management. The second reason is that softswitches reside at a
suitable location for load balancing tasks, right above VNFs. They can
easily modify packets without requiring any changes to VNFs or hard-
ware switches. It is reasonable that the next destination of a packet and
the path to reach that destination are determined at a softswitch. Redi-
recting the packet to a gateway will raise scalability issues. Last but
not least, softswitch platforms such as Open vSwitch have important
functionalities like SDN-enable and OpenFlow group table, which are
necessary to implement our design.

4.1.3. HATS with flowcell-based multipathing (HATS-Flowcell)
Hash-based load balancing has a severe drawback, which is the hash

collisions of elephant flows. Because the flows share the same hash
value, they travel to the same VNFs and network paths, which dramat-
ically downgrades system load balancing performance. To address this,
we follow the idea of flowcells (He et al., 2015), which are equal-size
bursts of packets, by breaking an elephant flow at a gateway. The flow-
cells are then distributed over the paths as individual flows. Note that
the flowcells of the same flow cannot be processed by different VNFs of
a stateful network function. In other words, in this design the flowcells
must travel through the same VNFs but via different paths.

The flowcell approach promises to provide better load balancing,
but as it spreads packets of the same flow among multiple paths, the
packets may experience different latencies, which introduces packet re-
ordering. The problem must be carefully addressed to ensure the effi-
ciency of any sub-flow load balancing schemes.

4.1.4. Dynamic Weight Adjustment for HATS (D-HATS)
Here we propose the Dynamic Weight Adjustment technique for our

hash-based solution (D-HATS) with the aim of improving load balancing
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Fig. 2. Controller-based service chaining and hash-based traffic steering on an edge softswitch.

Table 1
VNF and path selection tables implementation.

A group entry A bucket Hashed fields Actions

VNF selection
group table

A network function
ni

A VNF fi,j ∈ ni flow_ID and (cv , ni′ ) Push MPLS label
with VNF ID fi,j

Path selection
group table

A pair of softswitches
sk and sk′

A path pu
k,k′

flowcell_ID and fi,j Push MPLS label
with path ID pu

k,k′

performance. Different from HATS-Flowcell, D-HATS avoids packet re-
ordering issues by applying per-flow load balancing, i.e., the technique
does not break a flow to flowcells.

To lower hashing collisions that cause the problems of unbalanced
loads among VNFs and network paths, D-HATS exploits weighted hash
functions to carry out VNF and network path load balancing. That is,
data flows are distributed to VNFs and network paths by hash functions
whose weights may be different. In addition, the weights are dynam-
ically adjusted according to the current load status of the VNFs and
network paths. Specifically, D-HATS measures the volume of network
traffic arriving at a VNF V(fi,j) and a path V(pu

k,k′ ) at every time interval
t. The algorithm then computes the hashing weights wfi,j of a VNF fi,j,
which is defined as

wfi,j =
maxfi,j∈ni

V(fi,j)
V(fi,j)

, (4)

Similarly, D-HATS also computes the hashing weight wpu of a path pu
k,k′ ,

which is defined as

wpu =
maxpu

k,k′
∈PV(pu

k,k′ )

V(pu
k,k′ )

, (5)

Eventually, D-HATS updates the weights of hash functions implemented
in softswitches that are responsible for spreading flows to different
VNFs and paths.

With D-HATS, over-loaded VNFs and network paths, which have
smaller weights, are less likely to be selected than under-loaded ones

during the period t. By doing so, the algorithm reduces the chance of
hashing collisions for congested VNFs and network paths. Hence, it can
perform load balancing more efficiently.

4.2. Detailed design of HATS

Fig. 2 shows the details of the HATS design, where a centralized
controller is employed to collect the information of service chains C,
VNFs F, and network topology G. The controller then generates traf-
fic steering rules by inserting flow entries into the forwarding tables of
softswitch sk, which involves Next service table, VNF selection table, VNF
location table, and Path selection table. As an upstream packet arrives at
sk, it is processed by the pipelined tables. Based on the packet informa-
tion, such as the desired service chain cv, the current visited network
function ni′ , its flow_ID and flowcell_ID, the tables select next VNF fi,j
and a network path pu

k,k′ to reach the VNF in a load balancing manner
without triggering the controller.

The matching inputs and associated actions of the tables are shown
in Fig. 2. Note that the tables are responsible for processing upstream
packets. For downstream ones, the softswitch just decapsulates the
packets and forwards them to the destination VNFs.

4.2.1. Next service table
The matching inputs are the required service chain cv and the cur-

rent visited network function ni′ . The action is to determine next net-
work function ni for incoming packets.
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Fig. 3. Experimental setup.

Table 2
Load balancing algorithms compared in this paper.

Algorithm Management/Control/
Data plane algorithm

Overhead Packet re-order

HATS-Flowcell Control and data plane • N/A Yes

LLF Management and control
plane

• VNF and path load track-
ing

• Per-flow state

No

D-HATS Control and data plane • VNF and path load track-
ing

• Hashing weight update

No

4.2.2. VNF selection table
The matching input is next network function ni. This table, which

contains the information of available VNFs belonging to the function
ni, will select a particular VNF fi,j by hashing the flow_ID of a packet.
The identifier of fi,j is then encapsulated to the packet by adding an
MPLS label. The flow_ID consists of the packet’s header fields such as
etherType, src/dst MAC, src/dst IP and src/dst UDP/TCP ports, which
identify the flow that the packet belongs to. The controller periodically
maintains the VNFs set F, and then updates this table. Note that VNFs
are dynamically created and destroyed over time in the NFV environ-
ment.

4.2.3. VNF location table
After determining the next VNF fi,j, packets are forwarded to this

table, which is responsible for finding the connected softswitch sk′ of
VNF fi,j. Obviously, the matching input here is fi,j, and the associated
action is to determine sk′ .

4.2.4. Path selection table
Since the VNF location table has determined the destination switch

sk′ , it will select a specified path pu
k,k′ from the current switch sk to the

destination switch sk′ among candidates. The task is done by hashing
packet’s flowcell_ID, which consists of flow_ID and the MPLS TC field
of a packet. In this study, we borrow the MPLS TC field to identify the
flowcell to which the packet belongs. Similar to the VNF selection table,
the identifier of the path pu

k,k′ is also added to the packet using an MPLS
label for routing purposes (Baker et al., 2015; Al-Dawsari et al., 2015).

At a high level, the controller pro-actively computes all softswitch-
to-softswitch paths pu

k,k′ ∈ P. Every path pu
k,k′ is assigned a unique for-

warding identifier. Once the paths are set up, the controller inserts the
relevant forwarding rules into hardware switches to set up routing tun-
nels and installs the path information into the path selection tables in
softswitches.
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Fig. 4. VNF allocation: Homogeneous vs. Heterogeneous.

Fig. 5. The impact of service chain length.

4.3. Implementation

To validate our design, we have implemented HATS using the ODL
controller and Open vSwitch. A module is implemented on the con-
troller to collect network topology and VNF information by sending
query commands to the data plane components via an ODL OpenFlow
plugin. Subsequently, the corresponding flow entries are generated and
then inserted into the switches.

4.3.1. VNF and path selection by OpenFlow group table on open vSwitch
OpenFlow group table (OpenFlow, 2017) consists of multiple group

entries which contain separate lists of actions referred to as OpenFlow

buckets. The group types, which are ALL, INDIRECT, FAST FAILOVER
and SELECT, determine how to apply buckets to incoming packets. For
the group type SELECT, only one bucket is chosen to process packets
using a switch-computed selection mechanism.

Since the selection mechanism of the group type SELECT on Open
vSwitch is to hash a packet’s header fields, we leverage it to implement
the hash-based traffic steering algorithm in HATS. Table 1 shows how
VNF and Path selection tables are installed using Open vSwitch group
tables. Note that we need to use two Open vSwitches to implement a
softswitch sk in HATS because Open vSwitch demands that the group
table must be the last table in pipeline processing.
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Fig. 6. The impact of elephant flows.

4.3.2. Elephant flow detection and flowcell segmentation
To split an elephant flow into two or more flowcells, HATs main-

tains a per-ow counter at the gateway. We install a forwarding rule that
specifies all fields of flow_ID of the flow, and an associated counter of
bytes increases whenever a packet of the flow arrives at the gateway.
A script periodically checks whether the counter exceeds the flowcell
size. If yes, it increases the value of MPLS TC field, which is the flow-
cell identifier of incoming packets and then resets the counter. Note
that when a flowcell identifier exceeds the maximum value of MPLS TC
field, it is reset to zero. An alternative technique for flowcell segmen-
tation is monitoring the TCP sequence numbers of packets in the same
flow. However, this approach is inapplicable to UDP traffic and is not
supported by Open vSwitch.

4.3.3. VNF and path hashing weight adjustment
To dynamically update the hashing weights of VNFs and paths, we

implement a module in the ODL controller which periodically queries
the number of transmitted bytes from softswitch ports. After that, the
controller measures the increment from the last monitoring time, and
then estimates the volume of network traffic that arrives at every VNF
and network path, i.e., V(fi,j) and V(pu

k,k′ ), respectively. Next, the con-
troller computes the weights of VNFs wfi,j and paths wpu using Equa-
tions (4) and (5). Eventually, the controller sends OpenFlow GroupMod
messages to softswithes to modify the weights of corresponding hash
functions in VNF and Path selection tables.

5. Performance evaluation

This section presents the experimental evaluation in which the effec-
tiveness of our proposed algorithms is verified.

5.1. Experimental setup

Fig. 3 shows the experimental setup for evaluating the performance
of our algorithms. Our experiments were conducted in a 4-pod fat-tree
network topology simulated by Mininet network emulator. We used
Click elements to implement four types of VNFs, namely, L2 packet for-
warding (LF), bandwidth shaper (BS), IP packet filter (IF) and network
address translation-NAT (NT). The VNFs were deployed in Mininet
hosts, and there were 16 instances per VNF type. We implemented
HATS in Open vSwitch 2.5.0, and ODL Beryllium-SR2 were deployed
as the SDN controller in our experiments.

Network service requests are TCP flows generated by iPerf3 (iPerf,
2017). We created a new flow every 100 ms by randomly establishing
a connection between pairs of hosts. There were 16 hosts, i.e., from
Host 1 (H01) to Host 16 (H16), in our experiments. In this study, we

follow a heavy-tailed flow size distribution from a data center (Kan-
dula et al., 2009); most of the data bytes are from a small fraction of
elephant flows. In our experiments, unless stated differently, 10% of
flows were elephants whose durations were exponentially distributed
with the mean of 10s, while others, i.e., mice flows, last for 1s. Each
flow required a service chain whose number of network functions was
uniformly generated in the range from 1 to 4.

We compared the performance of HATS-Flowcell and D-HATS to
Least Load First (LLF) algorithm. In contrast to our algorithms, LLF
mostly performs load balancing in the management and control plane.
That is, the controller estimates the current load of VNFs and network
paths by querying the number of transmitted bytes of switch ports in
every 1s. Then, for each required network function in service chains,
the algorithm selects the least loaded VNF and path among feasible
candidates to construct service paths. Since HATS-Flowcell and D-HATS
aim to lower control and plane overheads of existing controller-based
service chaining solutions (Thai et al., 2016; Gember et al., 2013; Qazi
et al., 2013; Carpio et al., 2017; Wang et al., 2017), it is appropriate to
compare the algorithms to LLF, which shares common characteristics
with these solutions.

Table 2 gives a summary of the three algorithms compared in this
paper. The algorithms were compared and discussed based on four met-
rics, namely, the VNF load balancing criteria SL, the network path load
balancing criteria NL, the total number of flow entries E, and the aver-
age service chaining time T. All the experimental results shown here
were obtained by averaging the results of 5 simulation runs. Each run
was terminated on successful completion of 10,000 data flows.

5.2. Result analysis

5.2.1. VNF allocation: homogeneous vs. heterogeneous
In this experiment we observed the performance of investigated

algorithms under homogeneous and heterogeneous VNF allocation sce-
narios. As can be seen in Fig. 3, in a homogeneous scenario a physical
machine consists of only one type of VNFs, whereas each machine con-
sists of all four types of VNFs in a heterogeneous scenario.

Fig. 4a and b clearly show that HATS-Flowcell and D-HATS reduced
control and data plane overheads significantly. Compared with LLF,
HATS-Flowcell and D-HATS decreased the number of flow entries by
about 82% and 43%, from 101.6 thousand to 18.4 thousand and 57.9
thousand, respectively. D-HATS generated a number of flow entries
which are about three times more than those in HATS-Flowcell since
it had to send flow entries to update the weights of hash functions in
the data plane during experimental runs. In terms of service chaining
time, the metric was reduced by over 92%, from 479 ms to about 40 ms
by HATS-Flowcell and D-HATS algorithms because they both did not
need to install per-flow matching entries to data plane switches as LLF

8



M.-T. Thai et al. Journal of Network and Computer Applications 109 (2018) 1–10

algorithm. The results were almost the same in homogeneous and het-
erogeneous scenarios. In other words, VNF allocation strategies do not
affect control and data overheads.

The load balancing performance of compared algorithms is shown
in Fig. 4c and d. The experimental results show that D-HATS has almost
the same VNF and path load balancing performance with LLF. Although
HATS-Flowcell can efficiently perform VNF and path load balancing,
its performance is unfortunately not as good as those of LLF and D-
HATS as a result of hash collisions. There is about 4.0% difference in
the VNF load balancing criterion in both allocation scenarios. In terms
of path load balancing, LLF and D-HATS are about 0.15% better than
HATS-Flowcell in homogeneous and 0.7% better in heterogeneous sce-
narios. Fig. 4d also shows that the three algorithms have better path
load balancing performance in a homogeneous scenario because there
are always multiple paths from a type-i VNF to a type-i′ VNF in the
scenario, but not in the heterogeneous scenario.

5.2.2. The impact of service chain length
We conducted another experiment in which the number of required

network functions in service chains varied in the range of (Quinn and
Guichard, 2014; Gember et al., 2013) functions, and VNFs were homo-
geneously allocated. By doing so, the performance of different algo-
rithms was investigated with various service chain lengths. Note that
we do not show the results of VNF and path load balancing in this
experiment since the service chain lengths clearly do not impact on the
two metrics.

As expected, the results demonstrate that the length of service chains
significantly affects the performance of LLF algorithm, but not HATS-
Flowcell and D-HATS. As can be seen in Fig. 5, the number of flow
entries and the service chaining time increased linearly with the ser-
vice chain length in the LLF algorithm. To be specific, the number of
flow entries increased from 85.5 thousand to 126.2 thousand when the
length was changed from 2 to 4. In other words, LLF requires about two
more entries per flow when the service chain length increases by one
network function. Meanwhile, the service chaining time increased from
446 ms to 589 ms in the service chain length range. On the other hand,
control and data plane overheads are almost stable in HATS-Flowcell
and D-HATS. If the service chain length was set to 4, the difference
between D-HATS and LLF was roughly 54% and 93% in terms of the
number of flow entries and the service chaining time, respectively.

5.2.3. The impact of elephant flows
To understand the influence of elephant flows on the performance of

the three algorithms, we investigated this experiment in which the per-
centage that elephant flows varied from 0% to 30%, and VNF allocation
was homogeneous.

Fig. 6 shows the performance of the three algorithms in terms of VNF
and path load balancing metrics. The experimental results indicate that
LLF and D-HATS were unaffected by the percentage of elephant flows,
with a stable value of about 6.5% and 0.4% in the two metrics, respec-
tively. In the case of HATS-Flowcell, unfortunately, the performance
deteriorated when the percentage of elephant flows was increased from
0% to 30%. The path load balancing metric, for example; increased
from 0.52% to 2.44%. To sum up, elephant flows have a high impact
on HATS-Flowcell, but not on the LLF and D-HATS algorithms.

6. Conclusion

This paper has presented HATS which is an efficient load bal-
ancing system for chaining VNFs in a data center environment. Our
method employs a centralized controller that collects network topology
and then inserts the corresponding load balancing information to edge
softswitches, which are responsible for splitting network traffic to dif-
ferent VNFs through multiple paths, using flow-hashing technique. We
also derived two algorithms, HATS-Flowcell and D-HATS, to address

hash collision issues, to ensure the efficient system performance. Com-
pared to existing studies, our proposals do not require any special
network hardware requirements, while significantly reducing control
and data plane overheads. Furthermore, our proposed algorithms have
roughly the same load balancing performance with LLF, a controller-
based algorithm. Future work will focus on extending HATS to perform
load balancing while supporting dynamic deployment and scaling of
VNFs.
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