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a b s t r a c t 

The Machine Learning-based Intrusion Detection System (ML-IDS) becomes more popular because it 

doesn’t need to manually update the rules and can recognize variants better, However, due to the data 

privacy issue in ML-IDS, the Federated Learning-based IDS (FL-IDS) was proposed. In each round of fed- 

erated learning, each participant first trains its local model and sends the model’s weights to the global 

server, which then aggregates the received weights and distributes the aggregated global model to par- 

ticipants. An attacker will use poisoning attacks, including label-flipping attacks and backdoor attacks, to 

directly generate a malicious local model and indirectly pollute the global model. Currently, a few studies 

defend against poisoning attacks, but they only discuss label-flipping attacks in the image field. Therefore, 

we propose a two-phase defense mechanism, called Defending Poisoning Attacks in Federated Learning 

(DPA-FL), applied to intrusion detection. The first phase employs relative differences to quickly compare 

weights between participants because the local models of attackers and benign participants are quite dif- 

ferent. The second phase tests the aggregated model with the dataset and tries to find the attackers when 

its accuracy is low. Experiment results show that DPA-FL can reach 96.5% accuracy in defending against 

poisoning attacks. Compared with other defense mechanisms, DPA-FL can improve F1-score by 20 ∼64% 

under backdoor attacks. Also, DPA-FL can exclude the attackers within twelve rounds when the attackers 

are few. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

An Intrusion Detection System (IDS), which is a real-time net- 

ork monitoring and defense system, will trigger alerts to admin- 

strators once suspicious or malicious activities are discovered. In 

eneral, there are two types of IDS, signature-based and anomaly- 

ased detection, where the former utilizes signatures while the lat- 

er adopts rules to identify intrusions. However, these predefined 

ignatures and rules require manual updates by experts. In an in- 

reasingly complex network, it is impossible to keep pace with the 

volution of quirky intrusions. 

To resolve the shortcomings of traditional IDSs, Machine Learn- 

ng (ML) has been utilized to detect intrusions. Currently, many 
∗ Corresponding author. 

E-mail address: laiyc@cs.ntust.edu.tw (Y.-C. Lai) . 
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tudies have employed Machine Learning-based Intrusion Detec- 

ion Systems (ML-IDS) to verify the feasibility of such approaches. 

lthough ML-IDS excels at intrusion detection, it requires gathering 

 copious amount of network data to be trained in a centralized 

L server. Unfortunately, some private data are privacy-concerned. 

hus adopting an ML-IDS approach is not suitable for use in sensi- 

ive or confidential environments where data leakage will generate 

erious security and privacy issues ( Rey et al., 2022 ). 

Federated Learning (FL) resolves the data privacy issue without 

he necessity of storing data on a centralized server in ML train- 

ng. In each round of a Federated Learning-based Intrusion Detec- 

ion System (FL-IDS) ( Al-Marri et al., 2020 , Nguyen et al., 2019 ),

ach participant first trains its local model and sends the model’s 

eights to the global server, which then aggregates the received 

eights and distributes the aggregated global model to partici- 

ants. Therefore, FL-IDS has the advantage of cooperative learning 

o obtain a better model by using a large amount of data. Also, 

https://doi.org/10.1016/j.cose.2023.103205
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103205&domain=pdf
mailto:laiyc@cs.ntust.edu.tw
https://doi.org/10.1016/j.cose.2023.103205
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t does not require centralizing data and sharing data, resulting in 

he protection of data privacy. 

Both ML-IDS and FL-IDS systems are prone to adversarial at- 

acks ( Papernot et al., 2016 , Biggio et al., 2013 , Biggio et al., 2012 ,

iao et al., 2015 , Wang et al., 2019 ), which create adversarial sam-

les to interfere with machine learning, resulting in an inaccurate 

odel. The most common types of adversarial attacks are evasion 

ttacks ( Biggio et al., 2013 ) and poisoning attacks ( Biggio et al.,

012 ). The former evades detection by altering the samples, but 

t does not pollute the training data itself. Poisoning attacks, such 

s label-flipping attacks ( Xiao et al., 2015 ) and backdoor attacks 

 Wang et al., 2019 ), directly pollute the training data to generate a

orrupted model. The label-flipping attacks flip the labels in train- 

ng data while backdoor attacks place some hidden triggering con- 

itions in given training targets. 

Although ML-IDS and FL-IDS both are susceptible to poisoning 

ttacks, there are some significant differences between them: (1) 

he FL global model, which will be affected by weights uploaded 

rom malicious participants (called attackers sometimes in this pa- 

er; they are interchangeable), damages other benign local models. 

herefore, in FL, a participant must not only defend against the at- 

acks from its model but also defend against the attacks from other 

ocal models, which will affect the global model. On the other 

and, the ML model is only affected by its training data. (2) The FL 

lobal server only receives weights uploaded by local models, so 

t cannot perceive the original data and suspect data using some 

ata analysis techniques, resulting in more difficulty in intrusion 

etection. (3) There are usually a lot of participants in FL-IDS, so 

t is more difficult to screen many participants, making them sus- 

eptible to being attacked. (4) FL can detect attackers during each 

ound and exclude them from the system while ML can only detect 

hem after the training process has been finished. 

Currently, there is a little research on poisoning attacks and de- 

ense in the field of FL. The research focusing on attacks mainly 

iscussed attack methods and demonstrated the effects of poi- 

oning attacks on FL ( Zhang et al., 2019 , Zhang et al., 2020 ,

agdasaryan et al., 2020 , Zhou et al., 2021 , Nguyen et al., 2020 ).

he research focusing on defense mainly discussed how to de- 

end against label-flipping attacks ( Short et al., 2020 , Liu et al., 

021 , Doku and Rawat, 2021 , Huang et al., 2021 , Chen et al., 2020 ,

hou et al ). Most of them relied on utilizing the overall accuracy 

f testing data to determine whether the FL is under attack. How- 

ver, these methods overlook backdoor attacks, which do not affect 

verall accuracy and thus are difficult to be detected. The research 

n ( Gu and Yang, 2021 ) defended against both label-flipping and 

ackdoor attacks, but it only focused on the image field. Also, it 

sed compression and decompression methods, which are not di- 

ectly applicable to IDS. 

A defense mechanism against poisoning attacks in FL can be 

andled in participants or in the global server. The former is sim- 

lar to defending against poisoning attacks in ML models, so the 

atter is our focus. In this paper, we propose the Defense against 

oisoning Attacks in Federated Learning (DPA-FL) method, which 

dopts a two-phase mechanism, to defend the global model against 

oisoning attacks. The first phase, called the Relative Phase (RP), 

creens for possible attackers using the relative differences be- 

ween the weights of attackers and those of benign participants. 

he second phase, called Absolute Phase (AP), conducts accuracy 

esting on a small-size dataset. When the model’s accuracy is too 

ow, it is very likely to be attacked by attackers, so AP can uti- 

ize the accuracy to determine whether any attacker contributes to 

his global model. Since testing a dataset takes much time even 

or a small-size dataset, AP usually takes more time but can obtain 

etter classification accuracy than RP. Therefore, using such a two- 

hase method not only enhances classification accuracy but also 

aises detecting efficiency. 
2 
Specifically, our proposed DPA-FL is composed of RP and AP. 

P uses the local outlier factor (LOF) to calculate the deviation of 

eights for each local model. The second quartile is used for classi- 

ying benign participants, while the third quartile distance and the 

nterquartile range (IQR) are used to screen attackers. After exclud- 

ng some obvious participants, including benign participants and 

ttackers, the remaining uncertain participants are tested in AP. 

ince backdoor attacks will not affect overall accuracy, they cannot 

e detected with testing by using the original dataset. Therefore, 

e insert some data which suffers from backdoor attacks into the 

esting dataset and conduct model testing with this new backdoor- 

mbedded dataset to especially defend against backdoor attacks. 

t the same time, AP employs reinforcement learning (RL) to ad- 

ust the screening threshold and utilizes the dichotomy method to 

creen a set of participants which include attackers. 

The contribution of this paper is as follows. First, this paper in- 

estigates how to detect poisoning attacks, including label-flipping 

ttacks and backdoor attacks, in the FL-IDS, unlike other studies 

hich only focus on label-flipping attacks or focus on the ML-IDS. 

econd, this paper proposes a two-phase method, DPA-FL, which 

tilizes both relative comparison and absolute accuracy to quickly 

educe the damage caused by poisoning attacks. Third, this paper 

ompares DPA-FL with other defense approaches under different 

cenarios, investigates their performance, and verifies the outper- 

ormance of DPA-FL. 

This paper is organized as follows. Section 2 introduces some 

ackground of FL and poisoning attacks, as well as related works. 

ection 3 describes the system model and gives the problem state- 

ent. Section 4 describes the concept of DPA-FL and its detailed 

lgorithms. The experiments and results are given in Section 5 . Fi- 

ally, Section 6 gives the conclusions and some future work. 

. Background 

In this section, we first describe federated learning and then 

ove to poisoning attacks. Afterward, we provide a detailed review 

f related work to show their differences from this paper. Finally, 

ome techniques, including local outlier factor and reinforcement 

earning used in this study, are introduced. 

.1. Federated Learning 

Federated Learning (FL) was developed to guarantee that data 

s stored within local devices for privacy while allowing for coop- 

rative learning ( Yang et al., 2019 ). A FL framework usually con- 

ists of two entities; some participants and a global server. Let 

 = { 1 , . . . , N } represent the set of N participants, where par- 

icipant i ∈ N has its private dataset D i , utilizes this dataset to 

rain a local model w i , and uploads the resulting weights to the 

lobal server. The global server then aggregates all of the received 

eights, w = ∪ i ∈ N w i , into a global model w G . Here, local models 

efer to models trained by participants, while the global model 

efers to the model aggregated by the global server. The FL training 

rocess usually consists of the following three steps: 

Step 1 (Task initialization): The global server first specifies the 

global model used and the training weights, and then broad- 

casts the initialized global model weights w 

0 
G 

to the given 

participants where the superscript represents the round 

number and a value of 0 represents the initial round. 

Step 2 (Training for local model): After receiving global model 

w 

t−1 
G 

, each participant utilizes its local data to do training 

and further updates the local model weight w 

t 
i 

to minimize 

the loss function L ( w 

t 
i 
) as 

w 

t∗
i = arg min 

w 

t 
i 

L 
(
w 

t 
i 

)
. (1) 
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The updated local model’s weights will be sent back to the 

lobal server. 

Step 3 (Aggregation for global model): The global server aggre- 

gates local models’ weights from participants and then re- 

turns the updated global model weight w 

t 
G 

to participants. 

The loss function L ( w 

t 
G 
) for the global server is as 

L 
(
w 

t 
G 

)
= 

1 

N 

N ∑ 

i =1 

L 
(
w 

t 
i 

)
. (2) 

Steps 2 to 3 are repeated until the global loss function con- 

erges or reaches the desired accuracy. 

In the FL training process, the aggregation of the global model 

s a key operation. To minimize the global loss function in (2), 

 commonly used method is FedAVG, which averages the shared 

eights of different participants ( Nilsson et al., 2018 ), as 

 

t 
G = 

∑ 

i ∈ N | D i | w 

t 
i ∑ 

i ∈ N | D i | , (3) 

here | D i | denotes the amount of data in | D i | . 

.2. Poisoning Attacks 

Poisoning attacks can be classified into two categories, label- 

ipping attacks and backdoor attacks, based on their approaches. 

abel-flipping attacks flip the labels of the original training sam- 

les ( Xiao et al., 2015 ), causing the trained model to deviate 

rom its original detection boundary and resulting in detecting er- 

ors. Backdoor attacks utilize “hidden triggers” to train the model 

 Wang et al., 2019 ). Since backdoor attacks expand the original 

ataset to plant hidden triggers, the accuracy of detecting original 

ata is still preserved. That is, the detection accuracy of the entire 

odel is not affected. Errors only appear when certain targets are 

riggered. 

A poisoning attack is usually composed of two steps: 

Step 1 (poisoned data generation): The attacker generates poi- 

soned data based on the given target. To generate a label- 

flipping attack, the attacker obtains a sample x j (the j - 

th sample) from the training dataset datasets D . The orig- 

inal label y j is flipped to become the erroneous one y ′ 
j 
, 

as 

D 

P 
j = 

{(
x j , y 

’ 
j 

)}
, j ∈ 1 , . . . , | D | , (4) 

here | D | represents the number of data in training set D . 

On the other hand, a backdoor attack copies or emulates a sam- 

le x j from the training dataset D and inserts a hidden trigger L for 

his sample. The label of this sample is then changed into the at- 

ack target y ′ 
j 

to generate a backdoor sample as 

 

P 
j = 

{(
L 
(
x j 

)
, y ’ j 

)}
, j ∈ 1 , . . . , | D | . (5) 

Step 2 (mixture of malicious data and original data): The 

poisoned dataset D 

P 
j 

is mixed with the original training 

dataset D , resulting in a corrupted dataset D 

∗ = D ∪ D 

P 
j 
, j ∈

1 , . . . , | D | . The attackers can generate the desired amount

of malicious samples according to their real needs. This new 

dataset is then used to train a corrupted model, which can- 

not defend against poisoning attacks. 
3 
.3. Related Work 

Table 1 contains related work, which can be divided into 

wo main categories: attacks ( Zhang et al., 2019 , Zhang et al., 

020 , Bagdasaryan et al., 2020 , Zhou et al., 2021 , Nguyen et al.,

020 ) and defense ( Short et al., 2020 , Liu et al., 2021 , Doku and

awat, 2021 , Huang et al., 2021 , Chen et al., 2020 , Zhou et al ,

u and Yang, 2021 ) in FL. We summarize them according to the 

ttributes of domain, environment, technique , and approach . Most 

apers on FL attack/defense mainly considered the image domain 

nd used datasets like MNIST and CIFAR-10. Few papers discussed 

he IDS domain and mainly employed open-source datasets like CI- 

IDS2017 ( Panigrahi and Borah, 2018 ). The local classifiers adopted 

ere usually neural networks like Convolutional Neural Network 

CNN) or Recurrent Neural Network (RNN). Although most papers 

ocusing on attacks covered backdoor attacks, most papers focusing 

n defense only discussed label-flipping attacks instead. 

Papers focusing on attacks stressed how to increase the at- 

acking successful rate. In order to generate malicious data to be 

imilar to benign ones, many studies utilized Generative Adversar- 

al Network (GAN) to pose as benign participants, obtained suffi- 

ient training parameters, and converted them into data used in 

ackdoor or label-flipping attacks ( Zhang et al., 2019 , Zhang et al., 

020 ). Because FL is unable to perceive the training process of lo- 

al models, some works directly replaced local models with the 

odel with backdoor attacks ( Bagdasaryan et al., 2020 ). Because 

ocal models in FL are self-trained and self-managed, ( Zhou et al., 

021 ) mentioned the possibility of directly modifying weights to 

chieve backdoor attacks. However, the above papers only investi- 

ated image datasets. In the IDS domain, a study assumed that the 

articipant continues to acquire training data on detection, so the 

ttacker utilizes this characteristic to transfer backdoor data to the 

articipant ( Nguyen et al., 2020 ). 

Most papers on defense considered image or character datasets 

 Short et al., 2020 , Liu et al., 2021 , Doku and Rawat, 2021 ,

uang et al., 2021 , Gu and Yang, 2021 ). By employing blockchain 

echnology to verify and evaluate participants, it is possible to de- 

end against label-flipping attacks ( Short et al., 2020 ). D2MIF was 

roposed to remove label-flipping attackers by conducting accu- 

acy testing on the global server and adopting Isolation Forest 

IForest) algorithm to determine model saliency ( Liu et al., 2021 ). 

he paper in ( Doku and Rawat, 2021 ) constructed a mediator be- 

ween the global server and participants, as well as analyzed local 

ata to determine whether local models are under label-flipping 

ttacks. Through multiple random recombination and accuracy ver- 

fication tests, it is possible to separate benign participants and at- 

ackers to defend against label-flipping attacks ( Huang et al., 2021 ). 

he study in ( Gu and Yang, 2021 ) used a Conditional Variational 

utoencoder (CVAE) to calculate the errors in model updating and 

mployed the results to determine whether the model is under at- 

ack. The only study against poisoning attacks in IDS utilizes the 

ttention mechanism of the Gated Recurrent Unit (GRU) algorithm 

o calculate the importance of uploaded weights and determine the 

aliency of local models ( Chen et al., 2020 ). 

Although a Differentially Private Federated Learning model 

DPFL) focused on the field of image ( Zhou et al ), it also used accu-

acy testing and compare the accuracy of different participants to 

dentify attackers. At first glance, it seems a little bit similar to our 

pproach, but there are four main differences: (1) DPFL method re- 

uires manually pre-defining and updating important parameters, 

hile ours relies on RL to dynamically do so. (2) DPFL only de- 

reases the influence degrees of attackers, but ours cleans up the 

ttackers completely. (3) DFPL is not particularly designed to de- 

end against backdoor attacks, while ours can defend against both 

ackdoor and label-flipping attacks. (4) The last and most impor- 

ant difference is that DFPL only adopts one phase, but ours adopts 
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Table 1 

Methods of poisoning attacks and defense in federated learning 

Type Paper Domain Environment Technique 

Dataset Classifier Attack Defense Phase Method 

Attack ( Zhang et al., 

2019 ) 

Image MNIST, AT&T CNN LF N/A 1 • Generative adversarial 

networks 

• Mimicking other 

participants 

( Zhang et al., 

2020 ) 

Image MNIST, 

Fashion-MNIST, 

CIFAR-10 

CNN LF, BD N/A 1 Generative adversarial networks 

( Bagdasaryan et al., 

2020 ) 

Image CIFAR-10 CNN BD N/A 1 Model replacement 

( Zhou et al., 2021 ) Image MNIST, CIFAR-10 CNN BD N/A 1 Injecting poisoning neurons 

( Nguyen et al., 

2020 ) 

IDS DÏoT, UNSW, 

Private dataset 

RNN BBD N/A 1 Indirect attack 

Defense ( Short et al., 2020 ) Image MNIST SGD LF Blockchain 1 Data validation 

( Liu et al., 2021 ) Image MNIST, 

Fashion-MNIST 

CNN LF RL, IForest 1 Pre-aggregation 

( Doku and 

Rawat, 2021 ) 

Text IMDB SVM LF PoCI 1 Data vetting (mediator) 

( Huang et al., 

2021 ) 

Image MNIST, 

Fashion-MNIST 

CNN LF SAGE 1 • Shuffling 

• Regrouping 

( Chen et al., 2020 ) IDS KDD CUP 99, 

CICIDS2017, 

WSN-DS 

GRU-SVM LF FedAGRU 1 Attention mechanism 

( Zhou et al ) Image MNIST, 

Fashion-MNIST, 

CIFAR–10 

ResNet20 LF Accuracy 

detection 

1 Data testing 

( Gu and 

Yang, 2021 ) 

Text, Image Vehicle, Synthetic, 

MNIST, FEMINIST 

BDL LF, BD CVAE 1 Comparison of local models’ 

weight 

DPA-FL IDS CICIDS2017 CNN LF, BD RL, LOF 2 RP: Comparison of local models’ 

weights 

AP: Data testing 

∗BDL: Bayesian Deep Learning, LF: Label-flipping, BD: Backdoor, PoCI: Proof of Common Interest, RL: Reinforcement Learning, IForest: Isolation forest, CVAE: Conditional 

Variational AutoEncoder, SAGE: Shuffling and Regrouping based Defense Framework 
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wo phases to simultaneously take efficiency and accuracy into ac- 

ount. 

.4. Used Techniques 

.4.1. Local Outlier Factor 

Local Outlier Factor (LOF) is a detection method based on spa- 

ial density anomalies. When a data point is in a dense region, it 

s regarded as a normal one. On the other hand, when it is in a

parse region, it will be regarded as an outlier. LOF consists of two 

teps: (1) For each data point, calculate its distances to other data 

oints and sort these distances. (2) Find the neighbors of each data 

oint and calculate its LOF score. 

Let the distance between the data point P and O be d ( P, O ) and

he k -distance of O , which means the distance between O and the 

 -th closest neighbor, be d k (O ) . Use these values to calculate the

eachability distance between point P and point O , r k ( P, O ) , as the

aximum of the k -distance of O and the distance between P and 

 , such as 

 k ( P, O ) = max [ d k ( O ) , d ( P, O ) ] . (6) 

Next, calculate the Local Reachability Density (LRD) using 

quation (6) to determine whether a data point is in a dense re- 

ion. Taking point P as an example. Its LRD can be calculated as 

R D k ( P ) = 

1 ∑ 

O ∈ N k ( P ) r k ( P,O ) 

| N k ( P ) | 
, (7) 

here N k (P ) represents the first k nearest neighbors of point P . 

If the LRD is large, point P is located in a dense region, and vice

ersa. Finally, we further obtain the LOF by summing up the LRD 
4 
f all neighbors of P and dividing the average by its LRD , as 

O F k ( P ) = 

∑ 

O ∈ N k ( P ) LR D k ( O ) 

| N k ( P ) | LR D k ( P ) 
. (8) 

A larger LOF means that the point has less density than its 

eighbors, so it is more likely to be an outlier. On the contrary, 

 smaller LOF means the point has a higher density than its neigh- 

ors, meaning that it is more likely to be a normal one. 

.4.2. Reinforcement Learning 

Supervised learning methods require labeled data for training, 

ut it is impossible to collect such type of data in many situations. 

L can solve this problem in training ( Sutton and Barto, 1998 ). In

n agent of RL, there are three related parts: actions ( a ), states ( s ),

nd rewards ( r ), where a is the action chosen by the agent from

he set of all actions A , s represents the state to denote external 

nvironment, and r is the feedback from the environment given the 

hose action. In RL, a policy is used to instruct the agent on how 

o proceed with the next action. This is done by calculating the 

xpected value of the cumulative reward received by conducting a 

ertain action. 

Q-Learning, Deep Q-learning Network (DQN) ( Mnih et al., 

013 ), and Twin Delayed Deep Deterministic Policy Gradient (TD3) 

 Thrun and Schwartz, 1993 ) are typical methods of RL algorithms. 

-Learning records learned policies to determine which action to 

ake. That is, each state, action, and corresponding reward are 

ecorded in Q-table for future reference. However, it is very diffi- 

ult to construct Q-table in a complicated environment. To solve 

his problem, DQN uses a neural network, which inputs a state 

nd outputs a Q value, to replace the Q-table. Also to increase effi- 

iency, DQN adds an experience pool, so the policies can be stored 

nd repeatedly used. 
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Fig. 1. TD3 neural network architecture 
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However, using a neural network to estimate the Q values 

ay cause its overestimation, resulting in the instability of the 

odel. Especially in an environment that requires continuous ac- 

ions, which may generate cascading errors, TD3 was proposed to 

olve this problem ( Thrun and Schwartz, 1993 ). Figure 1 depicts 

he architecture of TD3, which is composed of six networks: Actor 

etwork: P ( s ; u ) , Target Actor Network: P tar ( s ; u ′ ) , Critic Network 

: Q 1 ( a, s ; w 1 ) , Target Critic Network 1: Q 

tar 
1 

( a, s ; w 1 
′ ) , Critic Net-

ork 2: Q 2 ( a, s ; w 2 ) , and Target Critic network 2: Q 

tar 
2 

( a, s ; w 2 
′ ) .

he variables before and after the semicolon represent input and 

eural network parameters, respectively. P ( s ; u ) is responsible for 

pdating the parameters of the policy network. It chooses an ac- 

ion a from the possible action set A depending on the current 

tate s and calculates the expected reward r and the next state s ′ .
 

tar ( s ; u ′ ) calculates the best action a ’ given s based on the expe- 

ience pool. Its parameters are periodically updated from P ( s ; u ) . 

 1 ( a, s ; w 1 ) and Q 2 ( a, s ; w 2 ) calculate the current Q values and 

rovide iterative updates. Q 

tar 
1 

( a, s ; w 1 
′ ) and Q 

tar 
2 

( a, s ; w 2 
′ ) cal- 

ulate the target Q-values, which are updated periodically from 

 1 ( a, s ; w 1 ) and Q 2 ( a, s ; w 2 ) and eventually recorded into the ex- 

erience pool. 

In brief, TD3 utilizes double critic networks to prevent Q val- 

es from being overestimated. That is, the calculation is conducted 

sing the smaller Q value from two networks. 

. System Model and Problem Statement 

This section describes the system model and gives a formal 

roblem statement. 

.1. System Model 

The system architecture is shown in Fig. 2 . This paper mainly 

nvestigates how the global server defends against poisoning at- 

acks initiated by participants. There are a total of N participants, 

ncluding a few attackers. Each participant i has his own training 

ata D i . Attacks are initiated by the attacker i by polluting dataset 

 i . All participants train their own local models using the same 

achine learning method ml . The weight w 

t 
i 

for participant i is 

ploaded to the global server, where t represents the t -th round. 

fter receiving all w 

t 
i 

from all participants, the global server uti- 

izes DPA-FL to determine the set of benign participants, B , and the 

et of attackers, M . It then aggregates the weights of all the benign

odels into the global model w 

t 
G 

and distributes the model back 

o benign participants for further training. 
5 
Table 2 lists notations used in our study and is organized into 

hree categories: participant, model, and attack/defense . We will de- 

cribe the meaning of notations when they are used. 

.2. Problem Description 

The goal of this study is to differentiate benign participants 

rom attackers in the global server to mitigate the damage of poi- 

oning attacks by preventing pollution to the global model, which 

ill propagate to other benign participants. The formal problem 

tatement is defined as follows. 

Given: 

(1) FL parameters: the participant set N and the number of par- 

ticipants N , the machine model ml , and the dataset of the 

i -th participants D i ( 1 ≤ i ≤ N) . 

(2) Poisoning attack P and the stability threshold α. 

Output: the set of benign participants, B, and the set of attack- 

rs, M . 

Objective: maximize the F1-Score, F1 , on classifying the net- 

ork traffic. 

Assumptions: 

(1) The datasets of all participants are Independent and Identi- 

cally Distributed (IID). 

(2) The global server is trusted. Since attackers only indirectly 

affect the global model by uploading their poisoned local 

models, they cannot seize the control of the global server. 

(3) Attackers can spontaneously alter their training samples 

since they completely control their models and arbitrarily 

access/modify the data. 

. Defending Poisoning Attacks in Federated Learning 

We propose a defense mechanism called DPA-FL to mitigate the 

amage of poisoning attacks, including label-flipping and backdoor 

ttacks, in FL-IDS. This section first illustrates the overview of DPA- 

L and then describes its two phases: relative phase and absolute 

hase. 
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Table 2 

Notation table 

Categories Notations Descriptions Property 

Participant N The participant set N = { 1 , . . . , N } where N is 

the number of participants. 

Input 

D i Dataset of the i -th participant Input 

ml Local machine learning method Input 

Model w G Global model Variable 

w i The i -th local model (the i -th participant) Variable 

w i, j The j -th weight in the i -th local model Variable 

w 

t 
i 
(w 

t 
G ) w i (w G ) in the t -th round Variable 

Attack/ 

Defense 

P Poisoning attack Input 

α Stability threshold used in RP and AP Input 

U , B , M Uncertain, Benign, and malicious sets of 

participants, respectively 

Output 

s i Anomaly score (LOF) for the i -th participant (used 

in RP) 

Variable 

x i benignity/maliciousness count of the i -th 

participant 

Variable 

D E Dataset for absolute phase Variable 

A B , A M , A U Accuracy for benign, malicious, and uncertain sets 

of participants, respectively (used in AP) 

Variable 

θ The threshold to judge benign participants and is 

adjusted with RL (used in AP) 

Variable 

F 1 F1-score Result 
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.1. DPA-FL Overview 

DPA-FL classifies participants into three sorted sets: benign par- 

icipants B ; malicious participants (attackers) M , and uncertain 

articipants U . In the beginning, both B and M are empty sets, 

.e., B = M = ∅ , while U is the set of all participants. Participants in

ach set are ordered according to their participants’ identifiers. Af- 

er each round, DPA-FL will move confirmed participants to B or 

 . DPF-FL will execute many rounds until U becomes an empty 

et. Note that although in each round the global server will receive 

he weights w = [ w 1 , w 2 , . . . , w N ] from all participants, it only 

rocesses those participants in the set U because others have been 

onfirmed. To move participants in U to B or M , DPA-FL will con- 

uct two-phase operations: the relative phase (RP) compares the 

ocal models of these participants while the absolute phase (AP) 

onducts accuracy testing on the dataset to determine whether 

hey are benign/malicious or not. 

In RP, although participants provide different model’s weights, 

he model’s weights of an attacker usually differ from those of be- 

ign participants. Since the number of benign participants is usu- 

lly much more than the number of attackers, RP uses LOF to 

alculate the anomaly score and adopts this value to determine 

hether a participant belongs to the benign, malicious, or still un- 

ertain category. Once RP is complete, AP will provide a more ac- 

urate screening. As mentioned in subsection 2.2 , label-flipping at- 

acks do affect overall accuracy, but backdoor attacks only affect 

he accuracy of specific targets. If the testing dataset of this phase 

acks backdoor data, only label-flipping attacks can be detected. 

hus randomly generated backdoor data is inserted into the test- 

ng dataset, so conducting testing can detect the backdoor attacks. 

hen the accuracy is higher than a given threshold, which will be 

djusted by RL, the model is not under attack. On the other hand, 

hen the accuracy is lower than this threshold, AP will further find 

he attacker(s) using the dichotomy. 

The purpose of adopting a two-phase approach is that RP 

an quickly determine whether there is a possibility of mali- 

ious/benign participants, but only for those with significant dif- 

erences (with obviously high/low LOF anomaly scores). However, 

ince some participants have middle LOF anomaly scores, directly 

lassifying them may cause misclassification. Therefore, AP is used 

o accurately determine whether a poisoning attack appears using 

ccuracy testing, but it takes a longer time. Therefore, DPA-FL uses 
6 
P to quickly screen the participants that can be clearly classified, 

nd then passes the uncertain participants to AP for further data 

esting to confirm them. Thus DPA-FL can obtain both high accu- 

acy and efficiency. 

Note although DPA-FL is a two-phase approach, the relationship 

f RP and AP is a many-to-one mapping, rather than a one-to-one 

apping. That is, DPA-FL repeats RP many times and conducts AP 

nce because RP consumes significantly less time than AP. Thus, in 

ach round, DPA-FL will repeat RP until no participant can be fur- 

her classified and then AP is executed. The overall process of DPA- 

L continues many rounds until all participants have been classi- 

ed or the convergence is reached. 

.2. Relative phase 

Fig. 3 depicts the flow chart of RP. The participants in U can 

e defined as U = [ u 1 , u 2 , . . . , u | U | ] , where u i represents the i -th par-

icipant in U , and | U | represents the number of elements in U . RP

ill calculate the anomaly score S = [ s 1 , s 2 , . . . , s | U | ] of each partic-

pant in U , where s i is the anomaly score of the i -th participant

n U . Once all anomaly scores are calculated, RP will classify each 

articipant in U into B, M or still U . 

The anomaly score of the local model i, w i , is calculated by us- 

ng LOF. However, w i is a vector that includes multiple weights, i.e., 

 i = [ w i, 1 , w i, 2 , ..., w i, | w i | ] , where w i, j denote the j -th weight of

he i -th local model and | w i | is the number of weights in w i , Here,

nstead of directly using Euclidian distance to calculate LOF, each 

eight is considered individually. This is because we observed a 

act that the model generated by an attacker usually has more 

nomalous weights, rather than the case that some weights have 

arge differences. Thus, we calculate the anomaly score of w i as 

 ( w i ) = 

| w i | ∑ 

j=1 

O 

(
w i, j 

)
, (9) 

 

(
w i, j 

)
= 

{
1 , if LO F k 

(
w i, j 

)
> 1 , 

0 , if LO F k 
(
w i, j 

)
≤ 1 . 

(10) 

The LOF function is from Equation 8 . Here we set k as 20 

 Breunig et al., 20 0 0 ) and the threshold for the LOF score as 1

 Auskalnis et al., 2017 ) . 
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Fig. 3. Flowchart in relative phase 

Fig. 4. Flowchart in absolute phase 
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Thus, for each participant in U , we can obtain its correspond- 

ng anomaly score by using s i = F ( w u i ) to create the anomaly score

et S = [ s 1 , s 2 , . . . , s | U | ] . Then as ( Ma et al., 2022 ), we calculate quar-

iles in S . Let Q1( S ), Q2( S ) and Q3( S ) represent the first, second and

hird quartiles in S , respectively. Consider three facts: (1) attackers 

ccupy a small portion; (2) the anomaly score of an attacker is 

sually larger than that of benign ones; (3) anomaly scores for be- 

ign participants are usually similar. Thus the median Q2( S ) is the 

hreshold to classify the benign participants, that is, the partici- 

ants with anomaly scores below this value are regarded as benign 

nes. To judge the attackers, only the participant with the high- 

st anomaly score is considered. Also the sum of the third quartile 

3( S ) and the interquartile range IQR( S ) = Q3( S )-Q1( S ) as a tougher

hreshold for attackers to prevent misclassification. 

However, even though some participants are classified as be- 

ign and malicious ones, RP will not directly move these partici- 

ants from U into B and M because of the following reason. Since 

ll of the models’ weights are updated and varied during each 

ound. In order to avoid misclassification caused by such variations, 

he classification should be based on a stable state. Thus, we use 

 i to record the benignity/maliciousness count of participant i , and 

et 0 as its initial value. In a round, if participant i is defined as a

enign one, x i is incremented by one, while if it is a malicious one, 

 i is decremented by one. Once x i is greater than a given threshold, 

, there is sufficient evidence to show its benignity, so now partic- 

pant i is confirmed as a benign one and moved from U to B . On

he contrary, if x i is less than −α, participant i will be confirmed 

s an attacker and moved from U to M . 

.3. Absolute phase 

Fig. 4 is the flowchart of AP, which only screens benign 

articipants and attackers in the set of uncertain participants 

 = [ u 1 , u 2 , . . . , u | U | ]. Thus, AP first aggregates the models in U, B ,

nd M , and uses the dataset D 

E to test these aggregated models to 

btain the corresponding accuracy A 

U , A 

B , and A 

M . When a special 

ase of B = ∅ happens, A 

B is set as 1. Similarly, A 

M is set as 0 when

 special case of M = ∅ appears. 

A 

M and A 

B provide a useful guide to judge whether some at- 

ackers exist in the set of U . Observing that U usually includes 

ore benign participants and fewer attackers, so A 

U should be 

loser to A 

B and far away A 

M . Thus A 

M is directly set as the ma- 
7 
icious threshold because if U contains some benign participants, 

ts accuracy A 

U should not be lower than the accuracy A 

M . That is, 

hen A 

U ≤ A 

M , all participants in U are regarded as attackers, i.e., 

ach x u i is decremented by one. On the other hand, directly using 

 

B as the benign threshold is not proper. The reasons are based 

n two observations: (1) U usually includes many benign partici- 

ants and few attackers, causing that A 

U might be very close to A 

B . 

2) The aggregated model and its accuracy will vary in each round. 

herefore, it is necessary to adopt a tolerance θ to prevent misclas- 

ification. Thus A 

B − θ is set as the benign threshold. That is, when 

 

U ≥ A 

B − θ , all participants in U are regarded as benign ones, i.e., 

ach x u i is increased by one. Finally, when A 

M < A 

U < A 

B − θ , the 

et U is most likely to contain both benign participants and at- 

ackers. In this case, AP divides U into two subsets through the di- 

hotomy and recursively repeats the same procedure for these two 

ubsets to classify the participant in U . Finally, each participant u i 
n U can be classified into B, M, or U according to its x u i . 

Two things need to handle in AP: creating dataset D 

E and deter- 

ining θ . About dataset D 

E , in order to detect backdoor attacks, we 

ample the original dataset, generate backdoor attack data using 

quation (5) , and insert the poisoned data into the original dataset, 

llowing DPA-FL to defend against backdoor attacks. 

The tolerance θ is an important parameter and is determined 

y using TD3. The state in TD3 is ( A 

U , A 

B ) while the action is ad-

usting (increasing or decreasing) θ . For higher efficiency, the range 

f adjustment is limited. If θ is less than 0, the benign threshold, 

 

B − θ , will be higher than A 

B . This case is unreasonable and will 

esult in serious misclassification of benign participants. On the 

ther hand, if θ is larger than A 

B − A 

U , the benign threshold will 

e lower than A 

U and this case is also unreasonable. Therefore, the 

D3 action is limited to set θ ranging between 0 and A 

B − A 

U . Ac- 

ording to the adjusted θ and the accuracy of participants in U , we 

artition U into two subsets, GB , and GM , where GB includes the 

articipants with accuracy better than to A 

B − θ in U while oth- 

rs in U belong to GM . The accuracy of participants exist in GB and

M is calculated as A 

GB and A 

GM , respectively. Finally, the TD3 uses 

he following equation as its reward, as 

 = −A 

GM + A 

GB × | GB | 
| U | − θ, (11) 

here | GB | is the number of participants in GB and | U | is the num-

er of participants in U . 
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Table 3 

Experimental data structure 

Type 

Benign 80.3% DoS GoldenEye 0.4% 

DoS Hulk 8.2% FTP-Patator 0.4% 

PortScan 5.6% SSH-Patator 0.3% 

DDoS 4.5% Other 0.3% 

Category 

Training 60% Absolute-phase testing 20% 

Testing 20% 
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We expect that the accuracy of benign participants is high and 

he accuracy of attackers is low. Thus the reward is set as adding 

 

GB and subtracting A 

GM . However, to avoid wrongly classifying the 

ttackers, the influence degree of A 

GM should be higher and set as 

 while the influence degree of A 

GB is according to the percentage 

f benign participants in GB . Also if θ is not considered, the reward 

ould be the same regardless of this value, making it impossible 

o find the best tolerance which is the closest border to classify 

enign participants. 

Through this reward setting, TD3 finds the tolerance θ which 

s the closest border that does not cause misclassification of be- 

ign participants. Finally, this step in TD3 will be repeated several 

imes until the reward reaches convergence. Considering that the 

D3 process is time-consuming and the accuracy difference of be- 

ign participants is not significant, once θ is decided in a round, 

t will be fixed and don’t need to be recalculated by TD3 in future 

ounds. 

.4. Example 

An example is provided to illustrate the complete operation of 

PA-FL. Assuming there are 12 participants, including one attacker 

No. 1) and 11 benign participants (No. 2-12). The stability thresh- 

ld value α is 1 in this example for simplification although it will 

e set larger in a realistic environment. 

In the first round, since all participants have 

ot been classified, U is equivalent to set N , i.e., 

 = N = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12] . On the other 

and, B and M are empty sets. In RP, LOF will be used to calcu-

ate the anomaly score S = [11 , 7 , 6 , 7 , 5 , 4 , 5 , 6 , 7 , 9 , 9 , 8] 

f all participants in U . By calculating the quartiles Q1(S ) = 

 . 5 , Q2(S ) = 7 , Q3(S ) = 8 . 5 , we define the benign threshold as

2(S ) = 7 , and malicious threshold as 2 × Q3(S ) − Q1(S ) = 11 . 5 .

ere, five participants 3, 5, 6, 7, and 8 have anomaly scores 

, 5, 4, 5, and 6, respectively, which are less than the benign 

hreshold 7, so their corresponding labels x 3 , x 5 , x 6 , x 7 , x 8 will 

e incremented by one. On the other hand, participant 1 with the 

argest anomaly score, 11, does not reach the malicious threshold, 

1.5, meaning that no participant will be labeled as malicious. 

hus, since stability threshold α is 1, RP will move five benign 

articipants to B and no participant to M , i.e., B = [3, 5, 6, 7, 8] and

 = ∅ . 
In the beginning of AP, M = ∅ , B = [3, 5, 6, 7, 8] and U = [1, 2, 4,

, 10, 11, 12]. The three groups will be separately aggregated and 

ested for accuracy. Assume we obtain A 

B = 0 . 92 , A 

U = 0 . 88 , and

 

M = 0 because of M = ∅ . To further classify participants in U , we

se the RL algorithm TD3 to determine θ according to the state 

0.88, 0.92), with the action of adjusting the range locating be- 

ween 0 and 0.04 ( A 

B − A 

U ) . Assuming that the action is setting 

as 0.03, malicious participant GM = [1] is successfully screened 

nd its accuracy A 

GM as 0.84, and benign participants GB = [2, 4, 9, 

0, 11, 12] are also screened out and its accuracy as 0.92. Then the 

eward calculation is -0.84 + (0.92 × 6/7)-0.03 = -0.0814. When the 

ction is setting θ as 0.02, the attackers and benign participants 

ame as that in the case of θ as 0.03 are also screened out and the

eward can be calculated as -0.84 + (0.92 × 6/7)-0.02 = -0.0714. Fur- 

her, if the θ is set to 0.01, the classification results are the same, 

ut the reward is -0.84 + (0.92 × 6/7)-0.01 = -0.0614. Here assume 

hat the final θ generated by TD3 is 0.01. 

Since A 

M < A 

U < A 

B − θ (0 < 0 . 88 < 0 . 92 − 0 . 01) , AP cannot di-

ectly determine the participants in U to belong to B and M , AP 

ill split the participants in U by dichotomy. For example, split- 

ing U into two subsets [1, 2, 4] and [9, 10, 11, 12], and repeating

he same procedure in AP for these two subsets. Assume finally 

hat the attacker (No. 1) is successfully screened out, so the value 

f x is decreased by one. Others are classified as benign partic- 
1 

8 
pants, so x 2 , x 4 , x 9 , x 10 , x 11 , and x 12 are increased by one. As the 

tability threshold α is 1 in this example, AP further moves six be- 

ign participants [2, 4, 9, 10, 11, 12] to B and one participant [1] to

 . Finally, we obtain B = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and M = [1] .

. Experiments 

This section conducts some experiments to compare DPA-FL 

ith other defense mechanisms. It also discusses the effect of dif- 

erent parameters on DPA-FL. 

.1. Experiment Setting 

.1.1. Dataset 

Experimental data were obtained from the CICIDS2017 

ataset compiled by the Canadian Institute of Network Secu- 

ity ( Panigrahi and Borah, 2018 ). This dataset includes 15 types 

f network traffic, such as Benign, PortScan, and DDoS, and 79 

ifferent f eatures, such as traffic variation, temporal continuity, 

nd traffic type. However, the scarcity of some types makes them 

nsuited to machine learning which needs a large amount of data, 

o they are combined into a category named “Other”. The rest 

emains unchanged, composing a total of 8 categories, as shown 

n Table 3 . We partition the dataset into training data, testing data 

n AP, i.e., D 

E , and testing data on measuring performance using a 

atio of 60%:20%:20%. The training data will be equally distributed 

mong all participants using the method in ( Chen et al., 2020 ). 

Although our used dataset is imbalanced with 80% of benign 

amples, we don’t extra execute any balancing process because 

he amount of attacks is still enough for well-training. Most of 

he literature did not do data balancing specifically for datasets. 

or example, ( Chen et al., 2020 ) also used the CICIDS2017 dataset 

or training and testing, but only split the dataset equally without 

alancing the attack data with the benign data. Other studies in 

 Preuveneers et al., 2018 , Neto et al., 2022 ), which focused on fea-

ure deletion and normalization, also did not execute any balancing 

rocess. 

.1.2. FL-IDS Model 

The experiment architecture includes a global server, which 

ses the FedAVG algorithm for aggregation, and 12 participants, as 

hown in Table 4 . Our proposed DPA-FL is installed in the global 

erver to defend against poisoning attacks. The participants train 

heir models using CNN which consists of two convolutional layers 

nd one fully connected layer. The convolutional layers have 3 × 3 

ernels with a 20% dropout ratio and a 2 × 2 max pooling layer. 

The stability threshold, α, between 3 to 5 is suggested from our 

xperiment results, although they are not shown here. Thus, in the 

xperiment, the default setting of this parameter is 3. 

.1.3. Attack 

To verify the capability of DPA-FL against poisoning attacks, the 

xperiment uses two label-flipping attacks and one backdoor at- 

ack. (1) Label-flipping (Random): The attacker takes a portion of 
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Table 4 

Model parameters 

Model 

Learning algorithm CNN Aggregation algorithm FedAVG 

Model Parameters 

Local model N 12 Learning rate 0.001 

Batch size 256 Epoch 5 

Maximum round 20 

Defense Parameter 

α 3 
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he data from his own training data to poison it, and then replaces 

he original data with the poisoned data in the training dataset. 

andom flipping utilizes random numbers to generate erroneous 

abels from the sampled data without altering features. (2) Label- 

ipping (PGD): The attacker uses the Projected Gradient Descent 

PGD) algorithm ( Madry et al., 2017 ) to alter the labels. (3) Back-

oor: The attacker embeds backdoors that trigger in the “destina- 

ion port” feature, causing all poisoned data with port 1200 to be 

isclassified as benign traffic. Common backdoor attacks bury cus- 

omized triggers into training data features. In the image domain, 

 typical approach is embedding tiny special shapes or symbols 

nto the normal picture ( Wang et al., 2019 , Zhang et al., 2020 ). In

he IDS domain, the time-to-live (TTL) value is used as a trigger 

 Bachl et al., 2019 ). Following the same concept and without los- 

ng any generalization, we choose “destination port” as the feature 

o bury the triggers in our experiment because some network pro- 

ocols do not have the TTL field. 

Since most participants are benign and poisoned data usually 

ccupy 20% to 40% of all data ( Short et al., 2020 , Liu et al., 2021 ,

hen et al., 2020 , Zhou et al ), we assume that only one attacker

xists and the poisoned data is 30% of the training data. 

.1.4. Competitors and Performance Metrics 

To evaluate the performance of DPA-FL, we compare it with 

hree other mechanisms: (1) FedAVG: This is a baseline without 

ny defense. (2) D2MIF ( Liu et al., 2021 ): This method is based on

he accuracy testing on the dataset. Once this accuracy is lower 

han that of the original model, the IForest algorithm will be used 

o calculate the score of each participant. It also uses RL to modify 

 screening threshold. When the participant’s score is lower than 

his threshold, it will be blocked from the current aggregation and 
Fig. 5. Accuracy dynamics of DPA

9 
ermanently removed after three blockings. (3) DPFL ( Zhou et al ): 

his method evaluates the models’ weights of participants using 

ccuracy testing. If the anomaly score of a participant exceeds a 

hreshold, its influence degree on aggregation is decreased. 

To evaluate the performance of the above mechanisms and 

PA-FL, we adopt three performance metrics: (1) F1-Score (Partic- 

pant): This is used to investigate the classification of participants. 

2) F1-Score (Traffic): This is used to determine whether each de- 

ense method is able to correctly classify begin and malicious traf- 

c. (3) Detection round: This is the total number of rounds needed 

o detect the attackers. The first two are the performance metric 

bout accuracy while the last is the performance metric about ef- 

ciency. 

The results are averaged by conducting 10 experiments, which 

andomly partition the dataset and distribute the partitioned 

ataset among participants. 

.2. Dynamics Observation 

This experiment compares DPA-FL with other defense mecha- 

isms against poisoning attacks. In order to understand the accu- 

acy of each mechanism in each round, Fig. 5 shows the dynamics 

f accuracy in classifying traffic for DPA-FL, FedAVG, D2MIF, and 

PFL. There are three insightful observations. 

First, for all mechanisms except FedAVG, more rounds will gen- 

rate higher accuracy in classifying traffic. In the first few rounds, 

hese methods do not have enough knowledge to differentiate the 

enign participants from attackers, so their accuracy will be lower. 

owever, as the rounds pass, these mechanisms can learn some 

nowledge according to their specific designs, so their accuracy is 

ncreased. On the other hand, except for this first round, FedAVG 

ill be almost stable at a lower accuracy no matter how many 

ounds. This is because FedAVG does not have any defense mech- 

nism, so the attackers’ models are always involved in the aggre- 

ation in the global model. The increase of accuracy in the first 

ound (to the second round) for FedAVG is because of the effect of 

he aggregation. 

Regarding attacking techniques, label-flipping (random) and 

abel-flipping (PGD) attacks have a similar trend, but backdoor at- 

acks significantly differ. It is noteworthy that the accuracy under 

ackdoor attacks is measured only for the poisoned data while 

he accuracy under label-flipping attacks is measured for all test- 

ng data. Conducting this kind of measurement seems a little bit 

trange but it is the same as that in other previous literature. 
-FL and other mechanisms 
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Fig. 6. Performance comparison of DPA-FL and other mechanisms 
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he reason is that the label-flipping attacks will affect the accu- 

acy of overall testing data, while the backdoor attacks will not 

hange this accuracy and only affect the accuracy of poisoned data. 

bserving from this figure, the accuracy of label-flipping attacks 

s moderate in the first few rounds because some attackers con- 

ribute to their corrupted models. However, once the attackers are 

etected and removed, the accuracy begins to rise steadily at a 

low rate until reaching convergence. On the other hand, the ac- 

uracy of the mechanisms except for DPA-FL for backdoor attacks 

s very low, representing that these mechanisms encounter difficul- 

ies in classifying the attackers using backdoors. These approaches 

till slowly raise the accuracy of classifying the traffic because Fe- 

AVG, which is a baseline, can generate a better global model as 

ore rounds pass even if it cannot defend against any backdoor 

ttack. 

About the comparison of four defense mechanisms, for label- 

ipping attacks, DPA-FL and D2MIF have a significant increase in 

ccuracy in the second to fourth rounds, which is caused by the 

xclusion of the attacker. For DPFL, because the attacker is not re- 

oved and only its influence degree is adjusted, there is only a 

mall improvement in accuracy. As more rounds pass, the accuracy 

f DPFL is increased a little because the influence degree of the 

ttacker will be diluted. For FedAVG, the accuracy is almost stable 

ecause it has no defense mechanism. For backdoor attacks, only 

PA-FL has a significant increase in accuracy because it excludes 

he attacker in the fourth round. The accuracy of FedAVG is kept 

t a low level because it does not have any defense mechanism. 

 little bit faster increase in accuracy for DPFL is that it only ad- 

usts the influence degree of the attacker, but does not remove it. 

2MIF can detect some backdoor attacks and detect more as more 

ounds pass, but its accuracy and efficiency are significantly lower 

han that of DPA-FL. 

.3. Comparison of DPA-FL and Other Mechanisms 

The final results of each mechanism are shown in Fig. 6 where 

he left y-axis is the F1-score and the right y-axis is the number 

f detection rounds. Many interesting things can be observed from 

his figure. First, it can be found that both label-flipping attacks 

ave few differences in their attacking effects, especially for DPA- 

L and FedAVG. This represents that the effect of using a carefully 

esigned approach, PGD, to generate label-flipping has similar re- 

ults to the effect of using random label-flipping. This may be be- 

ause DPA-FL can detect most label-flipping attacks, no matter ran- 

om or PGD, while FedAVG cannot detect any attack. 
10 
Second, about F1-score (participant), FedAVG and DPFL will 

enerate undefined values, which are not shown in the figure, be- 

ause their false negative rate is one, as shown in Fig. 7 . The rea-

on is that FedAVG cannot identify any attacker, so it regards all 

articipants as benign ones. Similarly, DPFL also cannot explicitly 

dentify any attacker and only reduces the influence degree ac- 

ording to its suspiciousness. D2MIF can achieve a low value on 

1-score (participant), i.e., 0.60 for label-flipping (random), 0.47 for 

abel-flipping (PGD), and 0.21 for backdoor attacks, representing 

hat sometimes D2MIF cannot identify the attacker and/or some 

enign participants are misclassified as the attackers. On the other 

and, DPA-FL can more correctly classify the attacker and benign 

articipants, so its F1-score (participant) is higher as 0.8, 0.87, and 

.77, for label-flipping (random), label-flipping, and backdoor, re- 

pectively. For the detection round, the value of FedAVG and DPFL 

s the largest number of rounds set in the experiment because they 

o not exclude the attacker. However, DPA-FL and D2MIF achieve 

imilar detection rounds in label-flipping, but the detection round 

f D2MIF for backdoor attacks is as large as 14.6. In fact, this value 

s an average result. In our experiments, sometimes D2MIF can 

dentify the attacker which uses the backdoor attacks, but some- 

imes it cannot. 

Third, in the comparison of four defense mechanisms, for label- 

ipping attacks, because FedAVG does not have any defense mech- 

nism, the F1-score (traffic) is the lowest at 93.2%. DPFL only re- 

uces the influence degree of the attackers, so its F1-score (traffic) 

an rise to about 94.6%. DPA-FL and D2MIF methods both remove 

he attacker, so both reach about 96.5%. Note although D2MIF can 

chieve a high F1-score (traffic), but obtain a very low F1-score 

participant). That is, as shown in Fig. 7 , D2MIF has a high false

ositive rate, i.e., misclassifies benign participants as attackers and 

xcludes them. Under this case, the global model will aggregate 

ewer local models, sometimes resulting in a less accurate global 

odel or a longer converge time. In terms of backdoor attacks, 

edAVG achieves 0.59 on F1-score (traffic) because it cannot de- 

ect any backdoor attack. However, DPFL can reduce the influ- 

nce degree of the attacker, so it can obtain a higher value of 

bout 0.69. Our proposed mechanism DPA-FL can correctly clas- 

ify the attacker which adopts backdoor attacks and benign par- 

icipants, so it can achieve 0.77 on F1-score (participant) and 0.97 

n F1-score (traffic). Overall speaking, DPA-FL can detect the label- 

ipping attacker and excludes it, so the F1-score (traffic) is im- 

roved by about 3% compared to other mechanisms. The small im- 

rovement is mainly caused that the original accuracy achieved by 

edAVG is quite high. Also, the DPA-FL can detect the backdoor at- 
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Fig. 7. False positive rate and false negative rate of all mechanisms 

Fig. 8. Effect of data poisoning ratio 
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acker and excludes it, so the F1-score (traffic) is improved by 20 

 

0 . 97 −0 . 81 
0 . 81 ) ∼64% ( 0 . 97 −0 . 59 

0 . 59 ) compared to other mechanisms. 

In summary, D2MIF is based on accuracy testing, while back- 

oor attacks only pinpoint specific targets and do not affect accu- 

acy. This causes that D2MIF is useful against label-flipping attacks 

ut weak in identifying the attackers which use backdoor attacks. 

lthough DPFL can successfully suspect both attackers, it merely 

djusts their influence degrees to slightly relieve their damages 

ut cannot completely avoid them because the global model is still 

olluted. DPA-FL undergoes relative comparison during RP, detect- 

ng both label-flipping attacks and backdoor attacks because their 

odels’ weights are different from that of benign participants. The 

esting data in AP is particularly designed to include backdoor data, 

o DPA-FL can further strengthen the detection of backdoor attacks. 

lso when the attackers are detected, they are excluded to avoid 

olluting the global model. Thus DPA-FL can achieve the highest 

1-score (participant), meaning that it correctly classifies the at- 

ackers regardless of label-flipping (random), label-flipping (PGD), 

r backdoor attacks, and most benign participants. 

Fig. 7 shows the intermittent results of the false positive rate 

participant), false negative rate (participant), false positive rate 

traffic), and false negative rate (traffic). These results can provide 

vidence for the above explanations about these mechanisms. For 

xample, for label-flipping attacks, we can see the false negative 
11 
ates (participant) achieved by DPA-FL and D2MIF are zero, repre- 

enting that they can correctly detect these attacks. On the other 

and, the false negative rates (participant) achieved by FedAVG 

nd DPFL are one, representing that they cannot detect these at- 

acks. The reason is mentioned before. DPA-FL and D2MIF achieve 

 false positive rate of 0.05 and 0.16 for label-flipping (random) 

nd 0.04 and 0.22 for label-flipping (PGD), respectively, represent- 

ng that sometimes they will misclassify a few benign participants 

s attackers. However, DPA-FL still can perform better than D2MIF. 

or backdoor attacks, DPA-FL always has a significantly smaller 

alse positive rate (traffic) and false negative rate (traffic), com- 

ared with other mechanisms, representing that it can more cor- 

ectly classify malicious and benign traffic. 

.4. Effect of Data Poisoning Ratio 

Fig. 8 shows the effects of data poisoning ratios on the perfor- 

ance of DPA-FL. When the ratio is small, more detection rounds 

re needed. This is because when the amount of poisoned data is 

mall, the difference between the benign participants and the at- 

acker becomes small, resulting in more difficult detection. In some 

ases, e.g. backdoor attacks with a 1% poisoning ratio, false neg- 

tives even happen. However, F1-score (traffic) does not change 

uch because of a similar reason. When the amount of poisoned 
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Fig. 9. Effect of the number of attackers 
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ata is small, the local model of the attacker is similar to that of 

he benign participants. As the global model aggregates the few- 

ifference malicious model with many benign models, the mali- 

ious weights only generate few influences on the global model. 

hus, even the attacker with a little portioned data cannot be cor- 

ectly classified, but its effect on the global model is minor, so 

PA-FL still generates a good result on F1-score (traffic). 

For backdoor attacks, although the number of detection rounds 

nd F1-Score (participant) slightly fluctuate due to the experimen- 

al variation, it can still be found that the larger the poisoning ra- 

io, the faster and the easier the detection. Note that the F1-score 

participant) value of 0.3 ∼0.8 in the figure is because that DPA- 

L misclassifies some benign participants as attackers, but it still 

orrectly classifies the attacker. However, aggregating fewer but 

nough benign participants can still generate a good and almost 

ame F1-score (traffic). 

.5. Effect of the Number of Attackers 

Fig. 9 shows the performance of DPA-FL with the increase in 

he number of attackers. We can see that regardless of the attack- 

ng techniques, the more attackers, the larger the number of detec- 

ion rounds, the lower the F1-score (participant), and the lower the 

1-score (traffic). Because RP provides relative comparison, when 

ore attackers exist, RP detection might make a wrong decision 

ecause of two reasons: (1) RP only detects at most one attacker; 

2) the values of quartiles will be biased because of too many at- 

ackers. In this case, DPA-FL must rely on the defense mechanism 

f AP. However, the effect of defense in AP is also affected by the 

lassification results, i.e., B and M , done by RP, Thus, when the 

umber of attackers is larger, the performance of DPA-FL becomes 

orse. Overall, in the case of a small number of attackers, i.e., less 

han one-quarter of all participants, DPA-FL can exclude the attack- 

rs within twelve rounds and achieve a low false positive rate. 

Although the number of attackers does affect the defense per- 

ormance, fortunately, only few attackers likely appear in a realistic 

nvironment. 

. Conclusions and Future Works 

This paper proposes a two-phase defense method, DPA-FL, ap- 

lied to the global server to mitigate the effects of poisoning at- 

acks. The first phase, RP, uses LOF to compare models’ weights 

mong participants, removing the obvious attackers. The second 

hase, AP, screens attackers using verifiable testing data prepared 

n advance. We also dynamically adjust the threshold by applying 

L, enhancing the classification accuracy. 
12 
There are some interesting observations from our experiment: 

1) using random or PGD to conduct label-flipping attacks does not 

iffer significantly for DFA-FL because it has an excellent defense 

erformance. (2) Backdoor attacks are more effective than label- 

ipping attacks because most of the defense mechanisms cannot 

ell defend against the former. (3) the more attackers, the more 

ffective the attacks. When the number of attackers occupies more 

han one-quarter of the participants, the accuracy of defense will 

ignificantly drop. (4) An attacker who increases the amount of 

oisoning data will not cause more serious damage because it is 

ore easily detected. On the other hand, although an attack with 

 low poisoning ratio is less likely to be detected, it only causes 

iny damage to accuracy. (5) Lastly, compared with the mechanism 

ithout any defense, FedAVG, and other defense mechanisms, DPA- 

L can improve about 3% on F1-score (traffic) for label-flipping at- 

acks and 20 ∼64% for backdoor attacks. Also, DPA-FL can remove 

he attackers within twelve rounds when the attackers are few. 

he small improvement for label-flipping is mainly caused that the 

riginal accuracy achieved by FedAVG is quite high. 

As the number of participants in FL might be large, the qual- 

ty of trained data and model in each participant can greatly vary. 

herefore, we want to consider the significance of each partici- 

ant and increase the weights of important ones. Such adjustment 

an be conducted through a comprehensive credit scoring system. 

hose with larger credits have larger impacts on the detection, in- 

reasing the accuracy of defense. By the way, currently the testing 

ata used in AP is obtained through random sampling. In the fu- 

ure, we will carefully select fewer representative samples to re- 

uce the testing time. Finally, this study only considers an IID en- 

ironment, so how to handle a non-IID dataset should be another 

irection in the future. 
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