
1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Workload and Capacity Optimization for
Cloud-Edge Computing Systems with Vertical and

Horizontal Offloading
Minh-Tuan Thai, Ying-Dar Lin, Fellow, IEEE, Yuan-Cheng Lai, and Hsu-Tung Chien

Abstract—A collaborative integration between cloud and edge
computing is proposed to be able to exploit the advantages of
both technologies. However, most of the existing studies have only
considered two-tier cloud-edge computing systems which merely
support vertical offloading between local edge nodes and remote
cloud servers. This paper thus proposes a generic architecture
of cloud-edge computing with the aim of providing both vertical
and horizontal offloading between service nodes. To investigate
the effectiveness of the design for different operational scenarios,
we formulate it as a workload and capacity optimization problem
with the objective of minimizing the system computation and
communication costs. Because such a mixed-integer nonlinear
programming (MINLP) problem is NP-hard, we further develop
an approximation algorithm which applies a branch-and-bound
method to obtain optimal solutions iteratively. Experimental
results show that such a cloud-edge computing architecture can
significantly reduce total system costs by about 34%, compared
to traditional designs which only support vertical offloading. Our
results also indicate that, to accommodate the same number
of input workloads, a heterogeneous service allocation scenario
requires about a 23% higher system costs than a homogeneous
scenario.

Index Terms—capacity optimization, edge computing, fog com-
puting, optimization, workload offloading.

I. INTRODUCTION

Cloud service providers traditionally rely on massive data
centers to provide virtualized computational resources to users
with the advantages of high availability and rapid elasticity [1].
Unfortunately, such an approach is not capable of accommo-
dating real-time and delay-sensitive services, such as high-
quality video streaming or instant emergency alarms, which
require immediate responses. In fact, the transmission of such
service workloads to and from remote data centers results
in long network latency which might significantly downgrade
their performance. Furthermore, the data centers, which pro-
vide computational resources in a centralized manner, cannot
handle the requirements of mobility and geo-distribution of
mobile and Internet of things (IoT) services efficiently.

To overcome such issues of cloud computing, an edge
computing paradigm [2]–[6] aims to process service workloads

Minh-Tuan Thai is with the Department of Information Technology, Can
Tho University, Can Tho, Vietnam.

Ying-Dar Lin and Hsu-Tung Chien are with the Department of Computer
Science, National Chiao Tung University, Hsinchu, Taiwan.

Yuan-Cheng Lai is with the Department of Information Management,
National Taiwan University of Science and Technology, Taipei, Taiwan.

Minh-Tuan Thai is the corresponding author (e-
mail:tmtuan@cit.ctu.edu.vn).

Manuscript received

locally, near their sources. In other words, the concept allows
deploying virtualized resources of computing and communica-
tion on mobile/IoT devices, network edges, and core servers by
leveraging virtualization technologies. By doing so, the end-
to-end delay for accessing the resources is reduced since the
network distance between them and end-users is significantly
shortened. Hence, edge computing is likely more suitable for
real-time or delay-sensitive services than cloud computing.
Furthermore, edge computing enables virtualized resources
to be geographically distributed at network edges which can
potentially address the requirements of mobility and geo-
distribution of mobile and IoT services.

While cloud computing provides high availability, reliabil-
ity, and good resource utilization, and has almost capacity
limit, edge computing offers mobility and enhances perfor-
mance. As a result, integration of cloud with edge computing
has been proposed to exploit the advantages of both these tech-
nologies [7]. Conceptually, the approach allocates computation
and communication virtualized resources into th hierarchy,
such as to end device, network edge, central office, and data
center tiers, to handle incoming service workloads. By doing
so, cloud-edge computing can efficiently accommodate differ-
ent types of services whose characteristics are diverse while
maintaining availability and reliability. In fact, although end
devices and network edges are suitable for real-time and delay-
sensitive services, they may not be able to handle services
which demand a significant amount of computing capacity.
The workloads of such services must thus be redirected to
central offices or data centers for executions.

In practice, a cloud-edge computing system must serve a
vast, diverse, and ever-increasing volume of service workloads.
It is thus crucial and challenging to manage its capital expen-
diture (CAPEX) and operating expenses (OPEX) efficiently,
while guaranteeing service quality (e.g., delay constraints).
Research papers such as [7]–[14] have attempted to address
these requirements of cloud-edge computing. However, these
studies only considered simple two-tier systems, i.e., local
network edge nodes and remote cloud servers, or neglected
the horizontal offloading between service nodes in the same
tier, such as device-to-device and edge-to-edge offloading.
To this end, we first derive generic architecture of cloud-
edge computing, taking into consideration both vertical and
horizontal offloading between service nodes. We then model a
workload and capacity optimization problem with the objective
of minimizing system computation and communication costs.
This would then allow us to study the architecture perfor-

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

mance with different input workloads, service allocations,
and capacity price scenarios. Since the problem is a mixed-
integer nonlinear programming (MINLP) problem, which is
very difficult to address, we develop a branch-and-bound
algorithm to obtain optimal solutions iteratively. Experimental
results show that our cloud-edge computing design, which sup-
ports both vertical and horizontal offloading, can significantly
reduce system costs for various operational scenarios by about
34%, compared to a traditional approach which only provides
vertical offloading.

Compared to related work, the contributions of this paper
are across three aspects: (i) this paper is the first study, to
the best of our knowledge, which considers both vertical and
horizontal offloading in a cloud-edge computing system and
formally models its architecture into an optimization problem;
(ii) we derive a branch-and-bound algorithm to reduce the
complexity and obtain optimal solutions for the problem; and
(iii) various experimental simulations were conducted to in-
vestigate important operating scenarios along with significant
observations.

Although the proposed algorithm can solve our optimization
problem efficiently, its long-running time, especially in large-
scale cloud-edge systems which consist of a large number of
service nodes and network connections, would be a limitation
of this work. Also, our architecture assumes that service
nodes fairly treat all submitted service requests. Thus, it is
not suitable for a situation in which some service nodes
with special capabilities can process particular services more
quickly than the others. Besides, the implementation of hori-
zontal offloading capability on end devices and network edges
is an extremely complex task due to their greatly varied
characteristics [15], [16].

The remainder of this paper is organized as follows. In
Section 2, we review existing papers on workload and capacity
optimizations for cloud-edge computing, which are closely
related to our work. We then develop our architecture of
cloud-edge computing and present the problem formulation
in Section 3. In Section 4, we elaborate a branch-and-bound
algorithm to address the problem. Evaluation study and exper-
imental results are presented in Section 5. Finally, Section 6
concludes this paper.

II. RELATED WORK

A variety of research papers [7]–[14] has dealt with the
collaborative integration between cloud and edge computing
to exploit the advantages of both these technologies. Some
of these papers have investigated simple two-tier systems
which considered only vertical offloading between local edge
nodes and remote cloud servers [7]–[11]. The authors of [12],
[13] attempted to provide four-tier architectures of cloud-edge
computing, wherein each tier has different capacity, vicinity,
and reachability for end-users. Unfortunately, the horizontal
offloading between the service nodes in the same tier was not
addressed in these architectures.

The reason for these limitations of existing studies, from our
understanding, is to reduce the complexity of their optimiza-
tion models. Besides, the papers seemed to encounter some

difficulties, such as the horizontal offload capacity modeling
and the loop situations between service nodes, while formu-
lating both vertical and horizontal offloading between service
nodes into their optimization models. To address the issues,
this paper defines the definitions of parent and sibling nodes
of a service node, to which it can do vertical and horizontal
offloading, respectively. Also, the node cannot receive the
workloads of a service from its siblings if it already horizon-
tally offloads this type of workload in order to prevent loop
situations. The consideration of both vertical and horizontal
offloading obviously increases the computational complexity
of our model, compared to those of existing studies. Thus,
we develop an approximation algorithm applying a branch-
and-bound approach to obtain solutions for our optimization
problem.

Table I summarizes those papers which address workload
and cost optimization for cloud-edge computing. It must be
noted that in this paper, we use the terms edge computing
and fog computing interchangeably. Generally, the objectives
of these cited papers are to minimize system costs or the end-
to-end delay of services offered. For example, the paper [8]
presented an integration approach to minimize service delay,
which utilizes both VM migration and transmission power
control. Deng et al. [9] formulated a trade-off between power
consumption and delay in a cloud-edge computing system
as an MINLP problem. The authors of [10] considered four
components, the energy cost of cloud servers, cost of network
bandwidth, propagation delay, and the compensation paid
for end devices, while formulating a total cost minimization
problem for a cloud-edge computing system. Lin et al. [11]
introduced a two-phase iterative optimization algorithm which
aims to minimize the capacity cost of a three-tier cloud-
edge system. Resource allocation problems with the objective
of service delay minimization were studied by Souza et al.
in [12], [13]. The authors of [14] considered both vertical
offloading between edge and cloud nodes and horizontal
offloading between neighboring edge nodes in a study on
online workload optimization. Unfortunately, the authors only
investigated a simple case of single service in this work.

To sum up, our optimization model shares the same ob-
jective with related work [9]–[11] which is to minimize
computation and communication costs, e.g., CS and CN , of
the system, while satisfying the end-to-end delay constraints
of service requests. Note that some related work [7], [8], [12]–
[14] has reversed objective and constraints with our model. In
other words, the studies aim to minimize the end-to-end delay
D of service requests while ensuring all service allocations.

III. GENERIC ARCHITECTURE OF COLLABORATIVE
CLOUD-EDGE COMPUTING AND OPTIMIZATION MODEL

A. Generic architecture of collaborative cloud-edge comput-
ing

Our proposed design of collaborative cloud-edge computing
is described in Figure 1. The novel aspect of the design is
that it deploys virtualized communication and computation
services to four different hierarchical tiers. The first tier of the
hierarchy is composed of end devices, such as smartphones,

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

TABLE I: Comparison of studies on workload and capacity optimization for cloud-edge computing

#
Tiers

#
Services

Horizontal
offloading Variables Objective

(Minimize)
Optimization

problem Solution

[8] 2
(Device/Edge) 1 No RA D NLP Integrated VM migration and TPC

[9] 2
(Device/Cloud) 1 No WO and CA CS MINLP Decomposition algorithm

[7] 2
(Edge/Cloud) Multiple No WO D MIP Simulated annealing algorithm

[10] 2
(Device/Cloud) Multiple No WO CS +CN MINLP Distributed Jacobian algorithm

[11] 3
(Device/Edge/Cloud) 2 No WO and CA CS NLP Two-phase iterative optimization

[12] 4
(Device/Edge 1/Edge 2/Cloud) Multiple No RA D ILP Solved by optimization tools

[13] 4
(Device/Edge 1/Edge 2/Cloud) Multiple No Multiple RA D Knapsack Solved by optimization tools

[14] 2
(Device/Cloud) 1 Yes WO D MINLP Online k-secretary algorithm

Ours 4
(Device/Edge/Office/Cloud) Multiple Yes WO and CA CS +CN MINLP Branch-and-bound algorithm

(Abbreviation - WO: workload offloading, CA: capacity allocation, RA: resource allocation, D: system delay, CS : computation cost, CN : communication
cost, MINLP: mixed-integer nonlinear programming, MIP: mixed-integer programming, ILP: integer linear programming, NLP: nonlinear programming, TPC:
transmission power control)

IP cameras and IoT sensors, which directly receive service
workloads from their sources. In our design, a device can
by itself locally process (i.e., carry out local offloading) a
fraction of the input workloads or horizontally offload some
of the other workloads to neighboring devices, using various
short-range wireless transmission techniques such as LTE
D2D, Wi-Fi Direct, ZigBee, and Bluetooth. For the remaining
workloads, the device needs to vertically offload to network
edge nodes (e.g., edge servers, switches, routers, base stations)
in the second tier using access network technologies such as
Ethernet, Wi-Fi, and 4G/5G. The edge nodes, in turn, can also
process a part of received workloads. Further, horizontal and
vertical offloading can be carried out by the nodes to dispatch
their workloads to nearby edge nodes, and to central offices
in the third tier, by leveraging core network technologies.
Similar to devices and edge nodes, a central office, which is re-
structured as a small-size data center, can also carry out local
processing, and horizontal offloading to neighboring central
offices and vertical offloading to a remote federated data
center in the fourth tier. In our design, the central offices are
connected to each other and to the data center using backbone
network technologies. The data center, which is located in
the top-most tier of the cloud-edge computing hierarchy, acts
as the backstop to the whole system. In other words, it is
responsible for processing the remaining workloads which
cannot be handled by lower tiers.

Our aim is to develop a generic architecture which can be
used to deploy different types of services. Taking a real-time
vehicle congestion avoidance service in smart cities as an
example, IP cameras, which are used for traffic monitoring,
can provide instant alarms of emergency events such as
car accidents by detecting abnormal traffic behavior. Note
that only a fraction of the volume of the captured data is
dispatched to an edge server for detailed analysis. The server
then processes the data to obtain more refined information
which can be sent to automobile drivers or conveyed to news

outlets across the whole city. If there is a lack of computation
capacity, the server can send the data to nearby edge servers
for execution. In cases of serious situations, some data can also
be redirected to central offices or even to a remote data center
for running traffic re-routing algorithms which need very
high computation capacity. Note that the proposed architecture
is generic which includes four different hierarchical tiers,
such as end device, network edge, central office, and data
center which provide both vertical and horizontal offloading
between service nodes. In real deployments, the design can
be customized and adjusted by, for example, merging the
central office and the data center into a cloud tier or removing
the horizontal offloading capability between end devices. By
doing so, the design becomes specific architectures, such as
Edge server, Coordinate device and Device cloud [16] which
can accommodate different types of cloud-edge services and
applications.

In the following subsection, we provide an optimization
model for the proposed cloud-edge computing architecture.
We then formulate a cost minimization problem for the model
whose important notations are summarized in Table II.

B. Optimization model

1) Workload model: Let f ∈ F denote an offered service
of a cloud-edge computing system. Each service f has a
computation size ZS

f
which is the number of mega CPU

cycles required to process a request for service f . Also,
communication size ZN

f
indicates the data size of the request

in megabytes. Let Iα, Iβ, Iγ, and Iδ be the sets of devices,
network edges, central offices and data centers of the system,
respectively. A service node i ∈ I could process a set of
services Fi ⊆ F, where I is the set of all service nodes of
the system, i.e., I = Iα ∪ Iβ ∪ Iγ ∪ Iδ .

a) Local processing: Let p f
i denote the workload (in

requests per second) of a service f which is locally processed

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

TABLE II: Summary of important notations

Notation Meaning Attribute
Service
f , F index and set of system services Input
ZS
f
, ZN

f
computation and communication size of service f Input

Service node - Capacity
i, I index and set of all service nodes Input
Fi set of services supported by a node i Input
Iα, Iβ, Iγ, I δ sets of devices, network edge nodes, central offices and data centers Input
Hi,Vi, Ki sets of sibling, parent, child nodes of a node i Input
µS
i computation capacity of a node i ∈ Iα ∪ Iβ Variable

ni, ν
S
i number of active servers and computation capacity of a server of a node i ∈ Iγ ∪ I δ Variable

µN
i, j communication capacity of network connection from i to j Variable

Workload
λ
f
i input workload of service f to a device i ∈ Iα Input

p
f
i workload of service f locally processed by a node i Variable

x
f
i, j horizontal offloading workload of service f from i to j, where j ∈ Hi Variable

u
f
j, i horizontal offloading workload of service f from j to i, where j ∈ Hi Variable

y
f
i, j vertical offloading workload of service f from i to j, where j ∈ Vi Variable

v
f
i, j vertical offloading workload of service f from j to i, where j ∈ Ki Variable

Delay
DS

i computation delay of a node i Output
DN

i, j communication delay of a network connection from i to j Output
Dα, Dβ, Dγ, Dδ delay of device tier, edge tier, central office tier, and data center tier Output
Dα, Dβ, Dγ, Dδ delay thresholds of device tier, edge tier, central office tier, and data center tier Input
Cost
W S
α ,W

S
β ,W

S
γ ,W

S
δ

computation cost of a device, edge node, central office, and data center Input
WN
α,α,W

N
α,β,W

N
β,β ,

WN
β,γ,W

N
γ,γ,W

N
γ,δ

communication cost of a device-to-device, a device-to-edge, edge-to-edge, edge-to-office,
office-to-office, and office-to-center connection Input

CS,CN , C computation cost, communication cost, and total cost of the system Output

Fig. 1: The generic architecture of collaborative cloud-edge
computing

by a node i. We have

p f
i =

{
≥ 0, if f ∈ Fi, ∀i ∈ I,
= 0, if f < Fi, ∀i ∈ I .

(1)

b) Sibling node and horizontal offloading: The set of
siblings Hi of a node i ∈ I consists of service nodes which
are located in the same tier as i, and to which i can horizontally

offload its workloads. Also, let x f
i, j be the workload of a

service f which is horizontally offloaded from i to a service
node j ∈ Hi . Similarly, let u f

j,i be the workload of a service
f which is horizontally offloaded from j ∈ Hi to i. Here,
we assume that a service node i can offload the workload
of a service f to a sibling node j on condition that j is
able to process f , i.e., f ∈ Fj . In addition, to prevent loop
situations, a node cannot receive the workloads of a service f
from its siblings if it already horizontally offloads this type of
workload. Thus, we have

x f
i, j =

{
≥ 0, if f ∈ Fj, ∀ j ∈ Hi, ∀i ∈ I,
= 0, if f < Fj, ∀ j ∈ Hi, ∀i ∈ I,

(2a)

u f
j,i =

{
≥ 0, if f ∈ Fi, ∀ j ∈ Hi, ∀i ∈ I,
= 0, if f < Fi, ∀ j ∈ Hi, ∀i ∈ I,

(2b)

x f
i, j ∗

∑
j∈Hi

u f
j,i = 0, ∀ f ∈ F, ∀i ∈ I . (2c)

c) Parent/child node and vertical offloading: The set of
parents Vi of a service node i ∈ I consists of the nodes located
in the next tier up with i, and to which i can vertically offload
its workloads. Let y

f
i, j be the workload of a service f which

is vertically offloaded from i to a node j ∈ Vi . The set of
children Ki of i consists of the nodes which are located in the
right lower-tier with i, and from which i receives incoming
workloads. Let v fj,i denote the workload of a service f which
is vertically offloaded from j ∈ Ki to i. Since a device i ∈ Iα

directly receives service workloads from external sources, it

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

has no child nodes, i.e., Ki = ∅, ∀i ∈ Iα. Similarly, a data
center i ∈ Iδ is in the most-top tier of the system, and hence
has no parent nodes, i.e., Vi = ∅, ∀i ∈ Iδ . Opposed to
horizontal offloading, a service node can carry out vertical
offloading for all services f ∈ F. In other words, it can
dispatch all types of workloads to its parents. Thus, we have

y
f
i, j ≥ 0, ∀ f ∈ F, ∀ j ∈ Vi, ∀i ∈ Iα ∪ Iβ ∪ Iγ, (3a)

v
f
j,i ≥ 0, ∀ f ∈ F, ∀ j ∈ Ki, ∀i ∈ Iβ ∪ Iγ ∪ Iδ . (3b)

Let λ f
i denote the submitted workload of a service f from

external sources to a device i ∈ Iα. We have

λ
f
i ≥ 0, ∀ f ∈ F, ∀i ∈ Iα . (4)

Hence, the workload balanced constraints of the system are
defined as

∑
j∈Hi

u
f
j, i + λ

f
i =

∑
j∈Hi

x
f
i, j +

∑
j∈Vi

y
f
i, j + p

f
i if i ∈ Iα,∑

j∈Hi

u
f
j, i +

∑
j∈Ki

v
f
j, i =

∑
j∈Hi

x
f
i, j +

∑
j∈Vi

y
f
i, j + p

f
i if i ∈ Iβ ∪ Iγ ∪ I δ .

(5)

2) Computation and Communication delay:
a) Computation delay of device and edge nodes: In the

case of a service node i is a device or a network edge, i.e., i ∈
Iα ∪ Iβ , where there is only a single server in the node which
is responsible for processing incoming workloads. Hence, the
M/M/1 queuing model [17, Ch. 2] is employed to compute the
node’s computation delay DS

i as

DS
i =

1
µSi −

∑
f ∈Fi

p f
i ∗ ZS

f

, (6)

∑
f ∈Fi

p f
i ∗ ZS

f < µSi ≤ µ
S,MAX
i , ∀i ∈ Iα ∪ Iβ, (7)

where µSi is the computation capacity (in mega CPU cycles
per second), i.e., service rate, of the node i; and

∑
f ∈Fi

p f
i ∗ ZS

f

is the total CPU cycles per second demanded for executing all
workloads p f

i , ∀ f ∈ Fi , which have to be locally processed by
i. Note that µSi cannot exceed the maximum value µS,MAX

i .
b) Computation delay of central office and data center

nodes: In the case where a service node i is a central office or
a data center, i.e., i ∈ Iγ∪Iδ , there are multiple parallel servers
in the node which can process incoming workloads. Therefore,
we apply the M/M/n queuing model in [10] to compute the
node’s computation delay DS

i as

DS
i =

1
ni ∗ νSi −

∑
f ∈Fi

p f
i ∗ ZS

f

+
1
νSi
, (8)

ni ∗ νSi >
∑
f ∈Fi

p f
i ∗ ZS

f , ∀i ∈ Iγ ∪ Iδ, (9a)

νSi ≤ ν
S,MAX
i , ∀i ∈ Iγ ∪ Iδ, (9b)

ni ∈ N, (9c)
ni ≤ nMAX

i , ∀i ∈ Iγ, (9d)

where ni is the number of active servers of the node i, and
which cannot exceed the maximum value nMAX

i , ∀i ∈ Iγ; and

νSi is the computation capacity of the servers which cannot
exceed the maximum value νS,MAX

i . Note that we assume that
the servers are identical and there is not constraint of an upper
limit for the number of active servers νSi of a data center i ∈ Iδ .

c) Communication delay of network connections: Let
(i, j) be a network connection from a service node i to another
node j, where j ∈ Hi ∪ Vi . Each connection (i, j) has a
communication capacity µNi, j , i.e., network bandwidth, which
is measured in megabytes per second. The total amount of
data transmitted through (i, j) per second is

∑
f ∈Fi

x f
i, j ∗ ZN

f
or∑

f ∈F
y
f
i, j ∗ ZN

f
.Thus, its communication delay DN

i, j is calculated

by the M/M/1 queuing model as

DN
i, j =


1

µN
i, j−

∑
f ∈Fi

x
f
i, j∗Z

N
f

+
Ni, j
LS if j ∈ Hi,

1
µN
i, j−

∑
f ∈F

y
f
i, j∗Z

N
f

+
Ni, j
LS if j ∈ Vi,

(10)

∑
f ∈Fi

x f
i, j ∗ ZN

f < µNi, j, ∀ j ∈ Hi, ∀i ∈ Iα ∪ Iβ ∪ Iγ, (11a)∑
f ∈F

y
f
i, j ∗ ZN

f < µNi, j, ∀ j ∈ Vi, ∀i ∈ Iα ∪ Iβ ∪ Iγ, (11b)

where Ni, j

LS is the propagation delay of a network connection
(i, j); and where Ni, j is the distance between i and j, and LS
is the speed of light, i.e., approximately 3 ∗ 108m/s.

d) Computation and communication delay of the cloud-
edge computing system: The delay of a tier in our cloud-edge
computing architecture which consists of its computation and
communication delay is defined as

Dα =
1
|Iα |

∑
i∈Iα

DS
i +

1
|Hi |

∑
i∈Iα

∑
j∈Hi

DN
i, j, (12a)

Dβ =
1
|Iβ |

∑
i∈Iβ

DS
i +

1
|Hi |

∑
i∈Iβ

∑
j∈Hi

DN
i, j +

1
|Vi |

∑
i∈Iα

∑
j∈Vi

DN
i, j

+
1
|Hi |

∑
i∈Iα

∑
j∈Hi

DN
i, j,

(12b)

Dγ =
1
|Iγ |

∑
i∈Iγ

DS
i +

1
|Hi |

∑
i∈Iγ

∑
j∈Hi

DN
i, j +

1
|Vi |

∑
i∈Iβ

∑
j∈Vi

DN
i, j

+
1
|Hi |

∑
i∈Iβ

∑
j∈Hi

DN
i, j +

1
|Vi |

∑
i∈Iα

∑
j∈Vi

DN
i, j +

1
|Hi |

∑
i∈Iα

∑
j∈Hi

DN
i, j,

(12c)

Dδ =
1
|I δ |

∑
i∈I δ

DS
i + DN

i, j +
1
|Vi |

∑
i∈Iγ

∑
j∈Vi

+
1
|Hi |

∑
i∈Iγ

∑
j∈Hi

DN
i, j

+
1
|Vi |

∑
i∈Iβ

∑
j∈Vi

DN
i, j +

1
|Hi |

∑
i∈Iβ

∑
j∈Hi

DN
i, j +

1
|Vi |

∑
i∈Iα

∑
j∈Vi

DN
i, j

+
1
|Hi |

∑
i∈Iα

∑
j∈Hi

DN
i, j,

(12d)

where Dα,Dβ,Dγ, and Dδ are the delay of device, edge,
central office, and data center tier, respectively. Since a cloud-

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

edge computing system has to satisfy its delay constraints, we
then have

Dα ≤ Dα, (13a)
Dβ ≤ Dβ, (13b)

Dγ ≤ Dγ, (13c)

Dδ ≤ Dδ, (13d)

where Dα,Dβ,Dγ, and Dδ are the delay thresholds of device,
edge, central office, and data center tier, respectively.

3) Total Cost Minimization Problem: Here, we focus on
minimizing the total cost of a cloud-edge computing system
which consists of the computation cost of service nodes and
the communication cost of network connections.

a) Computation cost of service nodes: Let
WS
α,W

S
β ,W

S
γ , and WS

δ be the computation capacity cost
(in money units/mega CPU cycles per second) of a device,
an edge node, a central office, and a data center, respectively.
Thus, the computation cost of the system is

CS =W S
α ∗

∑
i∈Iα

µS
i +W

S
β ∗

∑
i∈I β

µS
i +W

S
γ ∗

∑
i∈Iγ

ni ∗ν
S
i +W

S
δ ∗

∑
i∈I δ

ni ∗ν
S
i .

(14)
b) Communication cost of network connections: Let

WN
α,α,W

N
α,β,W

N
β,β,W

N
β,γ,W

N
γ,γ, and WN

γ,δ denote the communi-
cation capacity cost (in money units/MBps) of a device-to-
device, a device-to-edge, an edge-to-edge, an edge-to-office,
an office-to-office, and an office-to-center connection, respec-
tively. Thus, the communication cost of the system is

CN = CN
α + CN

β + CN
γ , (15)

where

CN
α =

∑
i∈Iα

∑
j∈Vi

WN
α,α ∗ µ

N
i, j +

∑
i∈Iα

∑
j∈Hi

WN
α,β ∗ µ

N
i, j, (16a)

CN
β =

∑
i∈Iβ

∑
j∈Vi

WN
β,β ∗ µ

N
i, j +

∑
i∈Iβ

∑
j∈Hi

WN
β,γ ∗ µ

N
i, j, (16b)

CN
γ =

∑
i∈Iγ

∑
j∈Vi

WN
γ,γ ∗ µ

N
i, j +

∑
i∈Iγ

∑
j∈Hi

WN
γ,δ ∗ µ

N
i, j . (16c)

c) System total cost: The total system cost C of a cloud-
edge computing is defined as

C = CS + CN . (17)

Since we aim to minimize the total cost of the cloud-edge
computing system while guaranteeing its delay constraints, we
hence have an optimization problem which is defined as

(P) min
p
f
i ,x

f
i, j,y

f
i, j,µ

S
i ,ni,ν

S
i ,µ

N
i, j

C, (18a)

s.t. (1) − (5), (7), (9), (11), (13). (18b)

IV. ALGORITHM DESIGN - BRANCH-AND-BOUND WITH
PARALLEL MULTI-START SEARCH POINTS

As can be seen, the problem P has integer variables ni and
nonlinear delay constraint functions. Thus, P is an MINLP
problem, which is generally very difficult to solve. We thus

apply the Branch-and-bound algorithm [18] to address the
problem. The general idea is to relax P to a tree whose nodes
are nonlinear programming (NLP) subproblems, which are
easier to tackle, by removing the integrality conditions of P,
i.e., variables ni can be continuous. Each subproblem node in
the tree is iteratively selected for solving using a depth-first
search strategy. When a feasible solution with variables ni as
integers is found, it provides an upper bound solution for the
original problem P. Other nodes that exceed this bound are
pruned, and the enumeration is conducted until all leaf nodes
of the tree are resolved or the search conditions are reached.

Algorithm 1 shows the pseudo-code of our proposed algo-
rithm, in which C(N,O) denotes the current optimal solution
for P, where N and O are the sets of determined integers
and continuous variables of the solution, respectively. In the
algorithm, we first attempt to find an initial solution by
applying a Feasibility Pump [19] relaxation heuristic (lines
2-5), before starting the branch-and-bound procedure. If a
feasible solution C∗(N∗,O∗) is reached, it becomes the current
optimal solution C(N,O) (line 4). After that, an NLP sub-
problem SP, which is generated by removing the integrality
conditions of variables ni of the problem P, is added to
the tree data structure T (lines 6-7). Next, the branch-and-
bound procedure starts to iteratively solve the sub-problem
SP ∈ T by the well-known Interior/Direct algorithm [20]
with parallel multiple initial searching points. Then we have
four possibilities. If a feasible solution C∗(N∗,O∗) which is
smaller than the current optimal solution C(N,O) is obtained
and N∗ are integers, it becomes the current optimal solution
and the node SP is pruned, i.e., we remove SP and its
sub-nodes from T (line 13-14). If N∗ is not an integer, a
branching operation is performed on a variable ni ∈ N∗. In
other words, two new sub-problems SSP1 and SPP2 of SP
are created and added into T using the Pseudo-cost branching
method [19] (line 16). In cases where C∗(N∗,O∗) is equal to
or greater than C(N,O), or there is no a feasible solution, the
node SP is also pruned. The branch-and-bound procedure is
repeated until all nodes of T have been resolved (line 8).

Note that we solve an NLP problem SP ∈ T using
the Interior/Direct algorithm which can just yield a local
optimal solution C∗(N∗,O∗). To address this issue, we apply
the parallel multiple-start point method which attempts to
obtain a global optimal solution by running the Interior/Direct
algorithm with different initial values of the variables of the
problem SP. In this paper, the values are randomly generated,
which satisfies the lower and upper bound constraints of the
variables.

V. NUMERICAL RESULTS

In this section, we present the numerical results which were
obtained from simulation experiments carried out to investi-
gate the performance of our proposed cloud-edge computing
architecture.

A. Experiment parameter settings
For simplicity, but without the loss of generality, we carried

out simulation experiments using a tree topology of a cloud-
edge computing system whose number of service nodes and

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

Algorithm 1: Branch-and-bound with parallel multi-start
search points

1 C(N,O) ← ∞, T ← ∅;
/* Attemp to find an initial solution

*/
2 Solve P by Feasibility Pump heuristic;
3 if find a feasible solution C∗(N∗,O∗) then
4 C(N,O) ← C∗(N∗,O∗);
5 end
/* Begin branch-and-bound procedure */

6 SP ← Relax integrality constraints of P;
7 Add(T ,SP);
8 while ∃SP ∈ T has not been reached or pruned do
9 Select a subproblem SP ∈ T by depth-first strategy;

10 Solve SP by Parallel Multi-start Interior/Direct
algorithm;

11 if find a feasible solution C∗(N∗,O∗) < C(N,O) then
12 if N∗ ∈ N then
13 C(N,O) ← C∗(N∗,O∗);
14 Prune(T ,SP);
15 else
16 Create 2 subproblem nodes SSP1, SPP2 of

SP by Pseudo-cost branching on a ni ∈ N∗;
17 end
18 else
19 Prune(T ,SP);
20 end
21 end

their network distances are summarized in Table III. In the
topology, a service node has only one parent node, and the
nodes with the same parent can carry out horizontal offloading
to each other. Note that the topology can be extended to
more service nodes with similar results. Table IV shows
the important parameters applied in our experiments, refer-
ing [9] and [10]. All optimization problems were modeled by
AMPL [21], [22], and the algorithm 1 was implemented using
Knitro [23] optimization solvers.

In these experiments, we compared our cloud-edge com-
puting architecture design (WH) which supports horizontal
offloading to a traditional design (NH) which does not support
horizontal offloading between service nodes. The optimization
model of NH is similar to the problem P, but its service nodes
have no sibling nodes, i.e., Hi = ∅, ∀i ∈ I. Consequently, the
nodes can only carry out local and vertical workload offload-
ing. It is appropriate because NH shares common character-
istics with related work [7]–[14]. Two designs WH and NH
were evaluated under light, medium, and heavy workload cases
in which the arrival rate λ f

i was adjusted to generate submitted
service workloads whose total demanded computation capacity
was about 10%, 50%, and 100%, respectively, of the maximum
capacity of all service nodes in device, edge, and central office
tiers.

Note that the objective of our optimization model is to
minimize the total system cost C which consists of the
computation cost of service nodes and the communication cost

TABLE III: Service nodes and their distances in experiments
Service node Value Distance Value

devices per edge 4 device-to-device 0.1 Km
edges per central office 3 device-to-edge 1 Km
central offices 3 edge-to-edge 1 Km
data center 1 edge-to-central office 10 Km

office-to-office 100 Km
office-to-data center 1000 Km

of network connections. It obviously is the main performance
metric of our experiments. We also present the results of other
metrics such as computation capacity allocation, workload
allocation, and horizontal offloading workloads to explain the
phenomenon observed from the experiments.

B. Analysis of results

The simulation results presented in this section evaluate the
effectiveness of WH and NH designs under three different
operational scenarios. We first investigate their performance
in the unbalanced and balanced input workload scenarios.
Then, two service allocation strategies, i.e., homogeneous and
heterogeneous, are tested. Finally, the impact of different
situations of computation capacity costs on WH and NH
designs is observed.

1) Unbalanced vs. Balanced workload scenario: We ob-
served the performance of WH and NH designs under un-
balanced and balanced workload scenarios. As can be seen
in Figure 2, in an unbalanced scenario, the input workloads
λ
f
i of a device i ∈ Iα were randomly generated according

to an exponential distribution with different mean values λ
f

i

calculated using Equations 19 and 20 whereas the workloads
were exponentially distributed with the same value of λ

f

i in
a balanced scenario. In the unbalanced scenario, λ

f

0 and ∆0
were set to 0.1 and 2.0 for all workload cases, and φ was set to
0.5, 1.0, and 1.5 for light, medium, and heavy workload cases.
In the balanced workload scenario, λ

f

i was set to 2.5, 10.0 and
25.0 for these cases.

λ
f

i =

{
λ
f

0, if i = 0,
λ
f

i−1 ∗ ∆j, otherwise, ∀i ∈ Kj, ∀ j ∈ Iβ,
(19)

where

∆j =

{
∆0, if j = 0,
∆j−1 + φ, otherwise, ∀ j ∈ Iβ .

(20)

As can be seen in Figure 3a, the design with horizontal
offloading WH can significantly reduce the total system cost in
an unbalanced workload scenario, compared to the NH design
which has no horizontal offloading ability. In the case of a light
workload, for example, the cost was decreased approximately
4.4 (i.e., from 15.9 to 11.5) ten thousands of a money unit
by the WH design, which means about a 28% decrease. The
cost difference was 12.6 and 27.0 ten thousands of money unit,
which means about 15% and 10% lower in medium and heavy
workload cases. The improvement is explained in Figure 3b,
3c, and 3d. Compared to the NH design, the WH approach
can process more workloads in the service nodes of lower
tiers instead of vertical offloading to those in higher tiers,

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

TABLE IV: Experiment parameters

Notation Meaning Value Unit
|F | # offered services 4 n/a
ZS
f

computation size of services [1 100 1 100] Mcycles/request
ZN
f

communication size of services [1 5 1 5] MBytes/request

µS,MAX
i , νS,MAX

i maximum computation capacity [1000 3000] Mcycles
nMAX
i maximum # servers 10 n/a

W S
α ,W

S
β ,W

S
γ ,W

S
δ computation cost [5.0 10.0 15.0 20.0] money units/Mcycles

WN
α,α,W

N
α,β,W

N
β,β , WN

β,γ,W
N
γ,γ,W

N
γ,δ communication cost [1.0 2.0 3.0 4.0 5.0 6.0] money units/MBytes

Dα, Dβ, Dγ, Dδ delay constraints [1.0 1.0 1.0 5.0] ms

λ
f
i arrival rate of service workloads exponential(λ

f
i) requests/ms

(a) Unbalanced scenario (λ f0 = 1.0,∆0 = 2.0, φ = 0.5)
(b) Balanced scenario (λ f

i
= 2.5)

Fig. 2: Unbalanced and balanced input workload scenarios

by carrying out horizontal offloading to utilize lower tiers’
nodes. In other words, the WH approach can allocate more
computation capacity in the service nodes of lower tiers to
process the workloads, and since the costs of the computation
capacity of lower tiers are lower than those of higher tiers, the
total system cost was significantly reduced using this approach.

Figure 3a also clearly shows that in a balanced workload
scenario, the total system cost of the WH and NH designs
was roughly the same in every workload case. The numerical
results in Figures 3b and 3c also illustrate that the computation
capacity and workload allocation were approximately equal in
these two approaches. The reason why the WH design did not
produce much improvement is that its service nodes received
the same input workloads. As a result, horizontal offloading
did not contribute to a decrease in the total system cost by
utilizing the service nodes in lower tiers; it might increase the
cost by adding extra communication cost. The nodes either had
to process by themselves or vertically offload their received
workloads to parents, and had almost no horizontal offloading
operations (see Figure 3d). In other words, the WH and NH
designs behaved similarly in a balanced workload scenario
which led to their performance being roughly the same.

2) Service allocation - Homogeneous vs. Heterogeneous:
We conducted a further experiment to investigate the per-
formance of the WH and NH designs in homogeneous and
heterogeneous service allocation scenarios. In a homogeneous
scenario, all service nodes i ∈ I have the same capability
which can process all services f ∈ F, i.e., Fi = F, ∀i ∈ I. On
the other hand, in a heterogeneous scenario, their capability
Fi can differ from each other. Note that this experiment was
conducted with unbalanced input workloads.

As anticipated, Figure 4a shows that a heterogeneous service
allocation scenario required higher system cost in both WH
and NH designs, compared to a homogeneous scenario. For
example, in the case of a light workload, the cost increased
by about 12% and 23% (i.e., from 11.5 to 12.9, and from
15.9 to 19.6 of ten thousands of money unit) in WH and
NH designs. This phenomenon can be explained by the fact
that in a heterogeneous scenario, a service node might receive
the workload of a service which it cannot accommodate.
The workloads were then horizontally or vertically offloaded
which resulted in an increase in total system cost. As can
be seen in Figure 4c, in the homogeneous scenario, more
workloads were vertically offloaded from lower to higher tiers
for processing. Consequently, the two designs had to allocate

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

(a) Total system cost (b) Computation capacity allocation

(c) Workload allocation (d) Horizontal offloading

Fig. 3: Performance of WH and NH designs in unbalanced and balanced workload scenarios.(WH-Un: With horizontal offloading
in unbalanced scenario, NH-Un: Without horizontal offloading in unbalanced scenario, WH-Ba: With horizontal offloading in
balanced scenario, NH-Ba: Without horizontal offloading in balanced scenario)

more computation capacity to higher ties this scenario (see
Figure 4b).

Figure 4a also shows that in a heterogeneous scenario,
compared to the NH design, the WH design decreased the
system cost more in light and medium workload cases. The
cost was decreased by about 34% (i.e., from 19.6 to 12.9)
and 18% (i.e., from 97.2 to 80.1), in these two cases. The
corresponding numbers for a homogeneous scenario were 28%
(i.e., from 15.9 to 11.5) and 15% (i.e., from 86.9 to 73.5).
However, in the case of heavy workload, the cost improvement
for the heterogeneous scenario was only about 5%, instead of
10% as for the homogeneous scenario.

3) Impact of computation capacity costs: In this exper-
iment, the performance of the WH and NH designs was
investigated in decreased and equal computation capacity cost
situations. In other words, the costs of computation capacity
of lower tiers were more expensive than those of higher tier
in a decreased cost situation. On the other hand, the costs
were the same in every tier in an equal-cost situation. The
costs WS

α,W
S
β ,W

S
γ ,W

S
δ were set to [20.0 15.0 10.0 5.0] and

[12.5 12.5 12.5 12.5] in money units, in the decreased and
equal computation capacity cost situations, respectively. Note
that the homogeneous service allocation and unbalanced input
workload scenarios were used for this experiment.

As can be seen in Figure 5a, experimental results showed

that the WH design did not produce any noticeable improve-
ment, compared to the NH design. In other words, the system
cost of two designs was approximately the same in every
workload case in both computation capacity cost situations.
Figure 5d illustrates that there was almost no horizontal
offloading by the WH design in the decreased cost scenario.
Although the design still carried out some horizontal offload-
ing operations in the equal-cost scenario, it did not lead to a
significant decrease in the system cost.

Figure 5b clearly shows that most of the computation
capacity was allocated to the data center tier in the decreased
cost scenario since it had the cheapest computation cost. A
significant number of workloads was processed by lower tiers,
such as device, edge, and central office (see Figure 5c). It
meant that the workloads of small computation size were
processed by lower tiers. On the other hand, those of large
size were offloaded to the data center tier for processing in
this computation cost situation.

VI. CONCLUSION

In this paper, we have developed a cloud-edge computing
architecture which includes vertical and offloading to effi-
ciently and promptly process different virtualized computing
services. The workload and capacity optimization model of

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

(a) Total system cost (b) Computation capacity allocation

(c) Workload allocation (d) Horizontal offloading

Fig. 4: Performance of WH and NH designs in homogeneous and heterogeneous service allocation scenarios. (WH-Ho: With
horizontal offloading in homogeneous scenario, WH-He: With horizontal offloading in heterogeneous scenario, NH-Ho: Without
horizontal offloading in homogeneous scenario, NH-He: Without horizontal offloading in heterogeneous scenario)

the design was then formulated as an MINLP problem to
investigate its effectiveness in different operational scenarios.
We further derived an approximation algorithm which applied
branch-and-bound method to find an optimal solution for the
problem iteratively.

Experimental results showed that our proposed cloud-edge
computing design could significantly reduce the total system
cost by 34% in an unbalanced input workload scenario,
compared to conventional designs which only provided ver-
tical offloading. However, the total system cost of these two
designs was roughly the same in a balanced input scenario.
Furthermore, the results also show that a heterogeneous service
allocation required 12% and 23% more system cost than a
homogeneous scenario in WH and NH designs, respectively.
Another interesting observation was that in contrast, as in
an increased computation capacity cost situation, horizontal
offloading did not produce a noticeable improvement in system
cost in decreased and equal-cost situations.

There are still some important research problems come
out of this paper which should be carefully studied in our
future work when we will focus on extending our problem
formulation to study the impact of service diversity on the
performance of cloud-edge computing. Furthermore, a two-
tier global and local optimization approach, which carries
out a global level optimization on groups of service nodes,

and concurrent local level optimizations on service nodes
of every group of the system, will also be considered to
provide the scalability for large-scale cloud-edge computing
systems. Another possible future work is to develop a real
testbed which allows us to implement and study different
resource management and optimization models for cloud-edge
computing systems.

ACKNOWLEDGMENT

The authors would like to thank the support from the
H2020 collaborative Europe/Taiwan research project 5G-
CORAL (grant number 761586). This work was done when
the first author was with the EECS International Graduate
Program, National Chiao Tung University, Hsinchu, Taiwan.

REFERENCES

[1] M. Gharbaoui, B. Martini, and P. Castoldi, “Anycast-based optimizations
for inter-data-center interconnections [Invited],” IEEE/OSA Journal of
Optical Communications and Networking, vol. 4, no. 11, pp. B168–
B178, Nov. 2012.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017, arXiv:
1702.05309. [Online]. Available: http://arxiv.org/abs/1702.05309

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

(a) Total system cost (b) Computation capacity allocation

(c) Workload allocation (d) Horizontal offloading

Fig. 5: Performance of WH and NH designs in decreased and equal computation capacity cost scenarios. (WH-DP: With
horizontal offloading in decreased computation capacity cost scenario, NH-DP: Without horizontal offloading in decreased
computation capacity cost scenario, WH-SP: With horizontal offloading in equal computation capacity cost scenario, NH-SP:
Without horizontal offloading in equal computation capacity cost scenario)

[4] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in
2016 10th International Conference on Intelligent Systems and Control
(ISCO), Jan. 2016, pp. 1–8.

[5] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos,
“ENORM: A Framework For Edge NOde Resource Management,” IEEE
Transactions on Services Computing, pp. 1–1, 2018.

[6] A. Munir, P. Kansakar, and S. U. Khan, “IFCIoT: Integrated Fog
Cloud IoT Architectural Paradigm for Future Internet of Things,”
arXiv:1701.08474 [cs], Jan. 2017, arXiv: 1701.08474. [Online].
Available: http://arxiv.org/abs/1701.08474

[7] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, Apr. 2016, pp.
1–9.

[8] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid Method
for Minimizing Service Delay in Edge Cloud Computing Through VM
Migration and Transmission Power Control,” IEEE Transactions on
Computers, vol. 66, no. 5, pp. 810–819, May 2017.

[9] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload
Allocation in Fog-Cloud Computing Toward Balanced Delay and Power
Consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, Dec. 2016.

[10] L. Yu, T. Jiang, and Y. Zou, “Fog-Assisted Operational Cost Reduction
for Cloud Data Centers,” IEEE Access, vol. 5, pp. 13 578–13 586, 2017.

[11] Y. Lin, Y. Lai, J. Huang, and H. Chien, “Three-Tier Capacity and Traffic
Allocation for Core, Edges, and Devices for Mobile Edge Computing,”
IEEE Transactions on Network and Service Management, vol. 15, no. 3,
pp. 923–933, Sep. 2018.

[12] V. B. C. Souza, W. Ramrez, X. Masip-Bruin, E. Marn-Tordera, G. Ren,
and G. Tashakor, “Handling service allocation in combined Fog-cloud
scenarios,” in 2016 IEEE International Conference on Communications

(ICC), May 2016, pp. 1–5.
[13] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W. Ramirez, and

S. Sanchez, “Towards Distributed Service Allocation in Fog-to-Cloud
(F2c) Scenarios,” in 2016 IEEE Global Communications Conference
(GLOBECOM), Dec. 2016, pp. 1–6.

[14] G. Lee, W. Saad, and M. Bennis, “An Online Secretary Framework
for Fog Network Formation with Minimal Latency,” arXiv:1702.05569
[cs, math], Feb. 2017, arXiv: 1702.05569. [Online]. Available:
http://arxiv.org/abs/1702.05569

[15] K. Wang, H. Yin, W. Quan, and G. Min, “Enabling Collaborative Edge
Computing for Software Defined Vehicular Networks,” IEEE Network,
vol. 32, no. 5, pp. 112–117, Sep. 2018.

[16] K. Toczé and S. Nadjm-Tehrani, “A Taxonomy for Management and
Optimization of Multiple Resources in Edge Computing,” Wireless
Communications and Mobile Computing, vol. 2018, 2018.

[17] D. Gross, J. Shortle, J. Thompson, and C. Harris, Fundamentals
of Queueing Theory, 4th Edition. Wiley, Sep 2011. [Online].
Available: https://www.wiley.com/en-us/Fundamentals+of+Queueing+
Theory%2C+4th+Edition-p-9780471791270

[18] I. Quesada and I. E. Grossmann, “An LP/NLP based branch and bound
algorithm for convex MINLP optimization problems,” Computers
& Chemical Engineering, vol. 16, no. 10, pp. 937–947, Oct.
1992. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0098135492800288

[19] L. Bertacco, M. Fischetti, and A. Lodi, “A feasibility pump
heuristic for general mixed-integer problems,” Discrete Optimization,
vol. 4, no. 1, pp. 63–76, Mar. 2007. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1572528606000855

[20] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An
interior algorithm for nonlinear optimization that combines line
search and trust region steps,” Mathematical Programming, vol.

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2937342, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

107, no. 3, pp. 391–408, Jul. 2006. [Online]. Available: https:
//link.springer.com/article/10.1007/s10107-004-0560-5

[21] R. Fourer, D. M. Gay, and B. W. Kernighan, “A Modeling
Language for Mathematical Programming,” Management Science,
vol. 36, no. 5, pp. 519–554, May 1990. [Online]. Available:
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.36.5.519

[22] D. M. Gay, “The AMPL Modeling Language: An Aid to Formulating
and Solving Optimization Problems,” in Numerical Analysis and
Optimization, ser. Springer Proceedings in Mathematics & Statistics.
Springer, Cham, 2015, pp. 95–116. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-319-17689-5 5

[23] “Artelys knitro - nonlinear optimization solver,” URL https://www.
artelys.com/en/optimization-tools/knitro, [accessed on: 15 March 2018].

Minh-Tuan Thai joined the faculty of the College of
Information and Communication Technology at Can
Tho University, Vietnam and has served as a lec-
turer/assistant professor from 2005. He received the
M.S. and Ph.D. degrees in computer science from
National Chiao-Tung University (NCTU), Taiwan in
2013 and 2018, respectively. His research interests
include software-defined networking, network func-
tion virtualization, computer and network security,
and 5G mobile edge computing.

Ying-Dar Lin is a Distinguished Professor of com-
puter science at National Chiao Tung University
(NCTU), Taiwan. He received his Ph.D. in computer
science from the University of California at Los
Angeles (UCLA) in 1993. He was a visiting scholar
at Cisco Systems in San Jose during 20072008,
CEO at Telecom Technology Center, Taiwan, during
2010-2011, and Vice President of National Ap-
plied Research Labs (NARLabs), Taiwan, during
2017-2018. Since 2002, he has been the founder
and director of Network Benchmarking Lab (NBL,

www.nbl.org.tw), which reviews network products with real traffic and au-
tomated tools, and has been an approved test lab of the Open Networking
Foundation (ONF) since July 2014. He also cofounded L7 Networks Inc.
in 2002, later acquired by D-Link Corp, and OPrueba Inc. in 2018. His
research interests include network security, wireless communications, and
network softwarization. His work on multi-hop cellular was the first along
this line, and has been cited over 850 times and standardized into IEEE
802.11s, IEEE 802.15.5, IEEE 802.16j, and 3GPP LTE-Advanced. He is an
IEEE Fellow (class of 2013), IEEE Distinguished Lecturer (20142017), ONF
Research Associate, and received in 2017 Research Excellence Award and K.
T. Li Breakthrough Award. He has served or is serving on the editorial boards
of several IEEE journals and magazines, and is the Editor-in-Chief of IEEE
Communications Surveys and Tutorials (COMST). He published a textbook,
Computer Networks: An Open Source Approach (www.mhhe.com/lin), with
Ren-Hung Hwang and Fred Baker (McGraw-Hill, 2011).

Yaun-Cheng Lai received his Ph.D. degree in the
Department of Computer and Information Science
from National Chiao Tung University in 1997. He
joined the faculty of the Department of Informa-
tion Management at National Taiwan University of
Science and Technology in August 2001 and has
been a distinguished professor since June 2012.
His research interests include performance analysis,
software-defined networking, wireless networks, and
IoT security.

Hsu-Tung Chien received his B.S. and M.S. degrees
in computer science from Tung Hai University, Tai-
wan, and National Chiao Tung University (NCTU),
Taiwan, in 2014 and 2017, respectively. He has
been pursuing his Ph.D. in NCTU since 2017. His
research interests include wireless networks, mo-
bile networks, and protocol design. Meanwhile, he
is part of H2020 projects in 5GPPP, 5G-CORAL,
Crosshaul, and Transformer, to design and develop
an edge and fog system, front-/back- hauls, and a
vertical slicer for 5G networks.

