
1536-1284/21/$25.00 © 2021 IEEE IEEE Wireless Communications • Accepted for Publication1

Abstract
Mobile Edge Computing (MEC) provides com-

putation resources within 5G networks hosting
applications that are close to a user equipment
(UE). For scalability, MEC servers can be placed
behind the base stations of an access network
(AN) and also inside the core network (CN) of a
cellular system, which results in a two-tier architec-
ture. A scalable MEC system reveals a management
problem because keeping all servers on as traffic
fluctuates wastes operational expenditure. On the
other hand, traffic can become unbalanced, with
hotspots in some base stations. This work proposes
a two-tier multi-site multi-server architecture and
integrates Latency Satisfaction Aware Autoscaling
(LSAA) and Dynamic Weight Offloading (DWO)
to address the above two problems. Offloading is
a short-term solution to hotspot traffic, while auto-
scaling is a long-term solution to traffic fluctuation.
A two-tier MEC testbed was implemented in the
framework of OpenNESS with 3GPP integration,
with experimental comparisons of one-tier vs.
two-tier, uniform vs. hotspot, transient vs. persistent
hotspot traffic, with or without offloading and auto-
scaling. Under heavy hotspot traffic, two-tier MEC
satisfies 86 percent, 73 percent, and 21 percent
traffic with both offloading and autoscaling, offload-
ing only, and without offloading and autoscaling,
respectively, while one-tier MEC only satisfies 32
percent, 32 percent, and 21 percent traffic.

Introduction
5G cellular communication standards are expect-
ed to fulfill various services which are catego-
rized as Enhanced Mobile Broadband (eMBB),
Ultra-reliable and Low-latency Communications
(uRLLC), and Massive Machine Type Communi-
cations (mMTC). Mobile Edge Computing (MEC)
provides computation resources which are closer
to user equipment (UE) to accommodate services
with tight delay requirements such as URLLC [1].
There are two kinds of MEC, termed Infrastructure
MEC and Application MEC. Infrastructure MEC
holds software-defined networking (SDN) and
Network Functions Virtualization (NFV) services
for supporting physical network infrastructure, for
example, creating network slicing for various ser-
vices. Application MEC hosts consumer applica-
tions in virtual machines (VM) and containers [2].

MEC is a kind of cloud system with a cluster of
servers across access networks (AN) and core net-
works (CN). In terms of scalability, a cloud system
has a vast number of servers in a centralized area
while MEC has tens of servers in some AN and CN
areas closer to UEs [3]. Providing scalability in a
distributed system such as the MEC system is not
trivial because each location may require a differ-
ent capacity.

Several MEC studies have been conducted with
and without taking into account the scalability issue.
Studies [4] and [5] did not address scalability and
focused on traffic redirection to MEC applications
and GTP handling to develop MEC behind a base
station. The authors of [6] considered a service
placement optimization to alleviate a single MEC
scalability problem. Wang et al. [7] took account
of UE’s device as system capacity. Studies [8–13]
discussed scalable MEC. Moradi et al. [8] proposed
SoftBox, a scalable infrastructure MEC framework
at CN sites, while Sonkoly et al. [9] focused on
optimizing the orchestrator to manage distributed
scalable MEC. Studies [10, 11] developed scalable
application MEC at AN sites. Scalable MEC simu-
lations were conducted in [12] and [13]. Some of
these papers did note scalability but did not con-
sider any traffic patterns, such as hotspot traffic that
may arise in a sporting event or a music concert
that overloads an AN-MEC site. Most of them imple-
mented one-tier MEC architecture, which deploys
MEC servers only at AN or CN sites. The authors of
[13] considered two-tier MEC architecture, but only
used a single server for each MEC site.

This article proposes a two-tier multi-site
multi-server MEC architecture, which places a clus-
ter of servers at each AN and CN site to accom-
modate some traffic scenarios, including hotspot
traffic. There are three challenges in a two-tier
multi-site multi-server MEC architecture system.
The first lies in deploying infrastructure, and that
consumer applications of distributed MEC systems
must be carried out centrally and automatically
to reduce deployment complexity. The second
is how to minimize the number of active servers
automatically, appropriate to the various traffic sce-
narios while still addressing the latency satisfaction
constraint. The third challenge is distributing the
arriving traffic to available resources to minimize
latency violation, which is categorized as a con-
trol plane challenge. Traffic can be offloaded verti-

Ying-Dar Lin, Widhi Yahya, Chien-Ting Wang, Chi-Yu Li, and Jeans H. Tseng

Scalable Mobile Edge Computing:
A Two-tier Multi-Site Multi-Server

Architecture with Autoscaling and Offloading

ACCEPTED FROM OPEN CALL

Ying-Dar Lin, Widhi Yahya, Chien-Ting Wang, and Chi-Yu Li are with the National Yang Ming Chiao Tung University;
Jeans H. Tseng is with Lanner Inc.

Digital Object Identifier:
10.1109/MWC.111.2100004

IEEE Wireless Communications • Accepted for Publication 2

cally, from an AN site to CN sites, or horizontally,
between AN sites or between CN sites.

This research proposes auto-deployment, auto-
scaling, and offloading modules to address the
three aforementioned challenges, respectively. An
auto-deployment module is a management plane
module that tackles the distributed MEC deploy-
ment challenge. This module is represented in the
form of a server-proxy-orchestrator architecture.
The proxy is an orchestrating agent placed at each
AN and CN MEC site. An autoscaling module is a
management plane module that adjusts the number
of active servers to satisfy arrival traffic. A Latency
Satisfaction Aware Autoscaling (LSAA) algorithm is
derived to determine the number of active servers.
We propose Dynamic Weight Offloading (DWO)
as a control plane module’s algorithm to overcome
the control plane challenge. A control plane module
distributes traffic to servers based on their weight,
which is dynamically adjusted based on their latency
satisfaction percentage. Offloading and autoscaling
modules are executed in the order of seconds and
minutes, respectively, which are the short-term and
long-term solutions to hotspot traffic.

The main contributions of this research are sum-
marized as follows:
•	 This article proposes a scalable two-tier multi-

site multi-server MEC architecture.
•	 The auto-deployment module was proposed to

tackle the distributed MEC deployment chal-
lenge using a server-proxy-orchestrator archi-
tecture.

•	 The LSAA algorithm was proposed to address
the autoscaling issue on the management
plane.

•	 The DWO algorithm was designed to address
traffic distribution among servers on the control
plane.

We investigated and compared a two-tier multi-
site multi-server with a one-tier multi-site sin-
gle-server MEC in accommodating some traffic
scenarios. The OpenNESS framework was used
to implement and orchestrating a two-tier multi-
site multi-server MEC testbed. The generated traf-
fic was addressed to face detection applications

that were deployed in edge nodes. To expand
our understanding, we also investigated the effect
of uniform vs. hotspot traffic; the effect of transient
hotspot vs. persistent hotspot traffic; and with vs.
without offloading and autoscaling modules in
terms of cost and latency satisfaction percentage.

The remainder of this work is organized as
follows. The following section presents the relat-
ed works regarding the scalable MEC. We then
describe the problem statements and solutions.
Details of implementation are then described. Fol-
lowing that we provide the experiment results and
analysis. The final section concludes this article.

Related Work
Table 1 compares the studies related to scalable
MEC. A multi-site architecture was implement-
ed in [8–13] to serve traffic from multiple base
stations. The authors of [12] and [13] utilized a
single server for each MEC site. The single-server
MEC cannot handle bursty or heavy traffic. To
solve this problem, the authors of [9–11] imple-
mented multi-site, multi-server MEC only at AN
sites, while Moradi et al. [8] implemented it only
in CN sites. For better scalability, we implement
multi-site multi-server MEC not only at AN sites
but also at CN sites that employed a two-tier
architecture. So, if hotspot traffic overloads all
AN-MEC sites, then the traffic can be offloaded
onto CN-MEC sites.

In a scalable MEC system, the management
plane bonded to the control plane for some objec-
tives such as minimizing the signaling messages
of a cellular network [8], maximizing cost-effec-
tiveness or system utilization [10, 12], minimizing
VM mapping time for better system response time
[9], and minimizing the resources [11, 13]. In [8]
and [10], active container and VM adjustment was
carried out, respectively. Neither of the studies
considered deactivating an idle server, which also
results in inefficient power consumption. Sonkoly
et al. [9] only considered service placement and
disregarded server activation and deactivation. The
authors of [11–13] considered server activation
and deactivation, while Tonini et al. [13] mini-

TABLE 1. Scalable MEC developments.

Paper

Scalability

Offloading Scaling Objective Constraint
3GPP
Integration

Implementation
frameworkMulti-site

single-server
Multi-site
multi-server

[8] — CN Heuristic Heuristic
Minimize Signaling
overhead

Latency O Softbox

[9] — AN Heuristic Heuristic
Minimize VM
mapping time

Latency X
OpenStack,
Docker

[12] AN — PSO PSO
Minimize cost-
effectiveness

Latency X Simulation

[13] AN, CN — Heuristic and ILP Heuristic and ILP
Minimize active
nodes

Latency X Simulation

[10] — AN Contextual based Location based services Optimize utilization Response time X OSM, OpenStack

[11] — AN Load balanced
Mixed integer
programming problem

Minimize active
servers

Response time X SMOKE, Docker

Ours — AN,CN
Dynamic weight
offloading (DWO)

Latency satisfaction aware
autoscaling (LSAA)

Minimize active
servers

Latency
satisfaction
percentage

O OpenNESS

IEEE Wireless Communications • Accepted for Publication3

mized the infrastructure MEC server while provid-
ing high availability. Rodrigues et al. [12] carried
out scalable MEC simulations with scaling and an
off loading mechanism that considered fi xed laten-
cy constraint. Avegris et al. [11] implemented a
SMOKE autoscaling framework, which uses a fi xed
response time as its constraint. Achieving a hun-
dred percent satisfaction is difficult since a man-
agement plane runs in the order of minutes while
traffic can fluctuate over time. The papers men-
tioned above did not address off loading and scal-
ing onto control and management planes, which
have different time domains. Our work propos-
es control plane and management modules that
employ DWO and LSAA algorithms. Both algo-
rithms use latency satisfaction percentage as its
constraint instead of fi xed latency constraint.

The implementation papers [9, 10] built MEC
on top of OpenStack. OpenStack is a cloud devel-
opment framework with no 3GPP integration. [10]
utilized Open Source Mano (OSM) to manage
edge networking. OSM is an open-source software
to manage and orchestrate NFV. OSM enables
3GPP integration in OpenStack [14]. We imple-
ment a scalable MEC architecture on top of an
OpenNESS framework which is specifi cally made
for building MEC. OpenNESS also has 3GPP inte-
gration (https://www.openness.org/api-documen-
tation/?api=cups). An OpenNESS controller utilizes
Kubernetes for managing a container’s life cycle,
and is also equipped with some micro-services for
edge networking.

tWo-tIer multI-sIte,
multI-serVer ArchItecture desIgn

This article proposes a two-tier multi-site,
multi-server MEC architecture, shown in Fig. 1a.
This architecture distributes a cluster of servers to
each AN site behind the base station, and at each
CN site of a cellular system. In 5G networks, a
CN-MEC site connects to multiple AN-MEC sites.
The CN-MEC shares its capacity if some of the
AN-MEC sites become overloaded by hotspot
traffi c. Since hotspot traffi c occurs rarely and ran-
domly at any AN-MEC site, it is better to have

more capacity at the centralized CN-MEC with
wider coverage than to have more capacity at
distributed AN-MEC sites.

In a distributed MEC system, the orchestrator’s
management module manages everything, servers,
applications, traffi c, and infrastructure services, cen-
trally and effi ciently via management paths. Proxy
extends the orchestrator to manage the edge
nodes automatically. The AN-MEC’s proxy, which
is the first hop user plane of the UEs, distributes
traffi c to some servers at its site or servers at anoth-
er MEC site through the data paths. The term traf-
fi c that is used in this article is a service’s requests
which are generated by UEs. Traffic is distributed
by each of AN-MEC’s proxy based on the off load-
ing weights dynamically adjusted by the control
plane module via control paths.

desIgn Issues
Auto-Deployment: Managing a distributed

two-tier MEC system is cumbersome because
servers are situated in diff erent geographic loca-
tions. In deploying a new MEC server, a system
engineer installs and configures all the required
packages manually by remoting or directly visiting
a newly deployed server. Furthermore, deploying
services manually by humans can cause confi gu-
ration inconsistency, which can result in catastro-
phe. An auto-deployment module configuring a
new deployed machine automatically and central-
ly is needed to reduce the deployment complexi-
ty and avoid confi guration inconsistency.

Autoscaling: A two-tier multi-site, multi-serv-
er MEC architecture uses very many servers. Not
all servers should be switched on all the time, as
computing requirements will change dynamically.
Some idle servers must be switched off to mini-
mize operating expenditure (OpEx) in light arrival
traffic volume, while in heavy arrival traffic rates,
an exact number of servers must be turned on to
satisfy computation requirements. The adjustment
of the number of active servers is a part of a man-
agement plane problem which can be described
as follows. Given several active servers at each site,
arrival traffi c rate, and latency information, the out-
put is the number of active servers that satisfi es a

FIGURE 1. The two-tier multi-site multi-server MEC system: a) the two-tier multi-site multi-server MEC Architecture; b) implementation
on top of OpenNESS.

(a)
(b)

IEEE Wireless Communications • Accepted for Publication 4

defi ned constraint. This work uses latency satisfac-
tion percentage as a constraint, with the objective
of minimizing the number of active servers. Laten-
cy satisfaction percentage is the percentage of the
traffi c which satisfi es the latency constraint.

Off loading: The off loading module distributes
traffic based on the server’s load condition. Dis-
tributing traffi c to overloaded servers can increase
delay violations. The off loading module addresses
the control plane problem, which can be described
as follows. Given the number of AN and CN-MEC
sites, the number of active servers, the servers’
latency information, the output is the offloading
weight based on the server’s latency satisfaction
percentage, with the objective of maximizing the
latency satisfaction percentage at the currently
active servers.

solutIon IdeAs
Orchestrator-Proxy-Server Architecture: The

auto-deployment mechanism is applied by placing
the proxy between the orchestrator and server,
which establishes the orchestrator-proxy-server
architecture, and which is shown in Fig. 1a.
Generally, the orchestrator manages the servers
directly. Since the proposed autoscaling module
scales and configures physical servers automat-
ically, that cannot be done by a current orches-
trator such as Kubernetes, we propose a proxy as
an orchestrator agent to do so. The orchestrator
provides some information such as the orchestra-
tor’s IP address, edge applications, application-re-
lated confi guration, edge hostname, and edge IP
address to the registered proxy. When we add
new servers to AN-MEC or CN-MEC sites, a proxy
will bypass the confi guration information between
the new servers and the orchestrator, so the new
machine’s confi guration can be set automatically.

The proposed proxy hosts several functions,
such as proxy handler, path handling, edge node
agent, core agent, proxy agent, eNB agent, and
monitoring agent. As shown in Fig. 1b, proxies are
controlled by a proxy handler which consists of
a proxy register, an auto-deployment API, and a

forwarding agent. The autoscaling and off loading
modules manage a site through an auto-deploy-
ment API and forwarding agent, respectively. The
proxy handler receives the orchestrator’s com-
mands regarding scaling and off loading decisions.
The edge node agent handles the new deployment
and scaling processes. After an edge node agent
automatically carries out application confi guration,
Kubernetes can deploy the application automati-
cally. Path handling responsible for traffi c off load-
ing is integrated with the cellular network path
through core and eNB agents. A proxy can com-
municate with other proxies via a proxy agent. A
specifi c application monitoring agent is also placed
in a proxy for monitoring application latency by
inspecting and probing approaches.

Latency Satisfaction Aware Autoscaling
(LSAA): The proposed autoscaling module runs
in orchestrator node in the order of minutes and
consumes the server latency information, which is
owned by the monitoring module. Figure 2a shows
that the autoscaling algorithm has outer and inner
iterations to scale the system. The outer iteration
scales the active servers at CN-MEC (si

C), with the
limit of the number of CN-MEC sites, Ni

C. In the
inner iteration, the algorithm scales the active serv-
ers of each jth AN-MEC site, which is connected
to the ith CN-MEC site. The total AN-MEC sites of
each ith CN-MEC site is denoted by Ni,J

A.
The scaling function considers the latency satis-

faction percentage of each AN and CN-MEC site
which is denoted as Li,J

A and Li
C, respectively. These

satisfaction percentages represent the traffic that
satisfi es the latency constraint. The latency satisfac-
tion percentage threshold, L, is used as the scaling
threshold. The algorithm calculates s as the num-
ber of servers that will be turned on or off at a site.
The capacity of a server (x) is derived by querying
the traffic rate of the server, which has a satisfac-
tion percentage a little bit greater than, or equal
to, the defined satisfaction percentage threshold
from the monitoring database. Assuming we carry
out benchmarking for the deployed system in the
system initiation, we can always derive x. The arriv-

FIGURE 2. Autoscaling and off loading algorithms: a) latency satisfaction aware autoscaling (LSAA); b) dynamic weight off loading (DWO).

(a) (b)

IEEE Wireless Communications • Accepted for Publication5

al traffic rates of a site l’i/i,j in an interval time are
predicted using the moving average algorithm.
Assuming the MEC system contains homogeneous
servers, the required number of servers at a site
for the next interval time (s’C/A

i/i,j) can be derived by
taking the ceil of l’i/i,j divided by x. So, s = |s’C/A

i/i,j – sC/A
i/i,j | where sC/A

i/i,j is number of current active
servers at a site. Each AN-MEC and CN-MEC site
has a maximum number of servers that is denoted
by SA

i,j and SC
i, respectively.

Dynamic Weight Offloading (DWO): Figure
2b shows the dynamic weight offloading (DWO)
algorithm in detail. This algorithm runs in orches-
trator node and applies the weight to the proxies
placed at AN-MEC sites. A proxy will distribute
the arrival traffic to available servers at AN-MEC
and CN-MEC sites based on their weight, which is
bound to the latency satisfaction percentage. The
server’s weight is calculated based on the ratio of
its latency satisfaction to the sum of all the servers’
latency satisfaction values. The idea is to distribute
more traffic to servers with a high satisfaction ratio.
The offloading module is executed in the order
of seconds or, if the monitoring module receives
three consecutive urgent messages, urgent mes-
sages are generated if the incoming traffic causes
consecutive latency violations.

Implementation
The two-tier multi-site multi-server MEC imple-
mentation is grouped into sections as orchestrator
or OpenNESS controller, OpenNESS edge node,
monitoring system, and proxy implementation.

Orchestrator Node:
OpenNESS Controller and Kubernetes

The system orchestrator was built on top of a server
with an Intel Core i7 CPU and 32 GB RAM. The
orchestrator was constructed by running the Open-
NESS v.20.03 Playbook with the Network Edge

option, and was integrated with the Kubernetes to
manage containerized services. Some functions,
such as authentication, config agent, network access
agent, and VM deployment API, were added as
container-based micro-services. The offloading and
autoscaling modules were written in Python and ran
in the orchestrator node every 10 seconds and 30
minutes. Both modules consumed the latency infor-
mation from the monitoring database.

Edge Nodes: OpenNESS Edge Nodes
The edge nodes were built on top of four Lanner
HTCA-6200 boxes. Each HTCA-6200 box consist-
ed of two servers. Each server used an Intel Xeon
processor, with 128 GB RAM, and a 32-port 10
GbE. The OpenNESS edges were also deployed
through the OpenNESS Playbook. All OpenNESS
edge nodes were connected to the orchestrator
through a layer-two switch. The OpenNESS edge
nodes were integrated with the Evolved Packet Core
(EPC), which used the Open Air Interface (OAI).

Monitoring System
The developed monitoring system used inspect-
ing and probing agents. The inspecting agent was
placed in the proxy, and inspected and counted
traffic flows that were going to the application
container through the proxy. Pcap and dpkt were
used in the inspection module. The probing agent
generated a request to a specific application
for measuring its latency. Probing was required
because the inspecting module could not obtain
latency information of nodes that were not the
destination of current flows. The probing mes-
sages were sent to all servers every second. The
latency and traffic information were saved in
MongoDB, which ran in the orchestrator node.

Proxy
In extensive field deployment, we could not con-
figure the machines individually or set the routing
rules and connections manually, which was very
inefficient. We thus designed a proxy to commu-
nicate AN-MEC, CN-MEC, orchestrator, EPC, and
eNB. The proxy was implemented as a pod in the
Kubernetes system. The proxy handler, path han-
dling, edge node agent, core agent, proxy agent
eNB agent, and monitoring agent were written in
Python. The edge node agent turns the server on
by using the Wake on LAN function or turns the
servers off by shutdown command. The auto-de-
ployment API and edge node agent were written
in Python and used the Remote Procedure Call
(RPC) approach. HAProxy was implemented as a
proxy’s path handling. Basically, the HAProxy is a
load balancer that uses a round-robin or least-con-
nection algorithm. In this work, the HAProxy was
extended by the proxy handler to perform DWO.

Experimental Results
This section describes the parameter settings in eval-
uating a two-tier multi-site multi-server MEC archi-
tecture. Some scenarios are also determined for
autoscaling and offloading modules. Results provide
numerical results to answer research questions.

Parameter Settings
The parameter settings are shown in Table 2.
The two-tier multi-site multi-server MEC testbed
consisted of four sites, two AN-MEC sites and

TABLE 2. Parameter settings.

Category Parameter Values

Two-tier multi-site multi-
server architecture

AN-MEC sites 2

CN-MEC sites 2

The number of servers in each AN-MEC site 2

The number of server in each CN-MEC site 1

One-tier multi-site
single-server architecture

AN-MEC sites 2

The number of server in each site 1

Hardware
AN and CN-MEC servers HTCA 6200

Orchestrator node Core i7 with 32GB RAM

Latency setting
Latency constraint 300 ms

Latency satisfaction percentage constraint 80 percent

Traffic of each AN-MEC

Light uniform 50 reqs/s

Light with hotspot 1:2 50 and 100 reqs/s

Light with hotspot 1:4 30 and 120 reqs/s

Heavy uniform 100 reqs/s

Heavy with hotspot 1:2 100 and 200 reqs/s

Heavy with hotspot 1:4 60 and 240 reqs/s

IEEE Wireless Communications • Accepted for Publication 6

two CN-MEC sites. All MEC sites were connect-
ed through a layer-two switch. The switch also
connected all MEC sites to an orchestrator serv-
er. Each AN-MEC site had two servers, and each
CN-MEC site had one server. The proposed sys-
tem was compared to a one-tier MEC system,
which only consisted of AN-MEC sites with one
server for each site.

Two PCs were connected to AN-MEC sites for
emulating the UEs. We used Jmeter to generate
multiple requests to the face detection applications
deployed in AN-MEC and CN-MEC servers as con-
tainers. The deployed face detection application
used a web socket as its interface.

Face detection is usually implemented as a real-
time streaming application. According to an ITU-T
G.1010 recommendation on latency requirements
of real-time services, which is 150-400 ms, we set
the latency constraint to 300 ms. The latency sat-
isfaction percentage threshold was set to 0.8 or
80 percent. Since overloading the MEC server is
hard to achieve by only generating requests, the
Stress tool was also used to overload the servers
and increase node latency.

Scenarios
The two-tier MEC testbed was evaluated in six
traffic scenarios: light uniform traffic, light with
hotspot 1:2, light with hotspot 1:4, heavy uniform
traffic, heavy with hotspot 1:2, and heavy with
hotspot 1:4. Details of traffic rates can be seen in
Table 2. The light and heavy with hotspot traffic
scenarios are a kind of non-uniform traffic with
different traffic ratios for each AN-MEC site. As
noted above, the scalable MEC testbed has two
AN-MEC sites. The ratio represents the ratio of
arrival traffic of two AN-MEC sites. All of those
requests were generated within one hour.

Results
Comparisons between the two-tier multi-site
multi-server MEC and the less scalable one-tier
multi-site single-server were also carried out in this
section, addressing three key questions.

Uniform vs. Hotspot Traffic: Figure 3a shows
the CDF of traffic latency for light traffic scenari-
os. 100 percent of light uniform traffic had laten-
cy less than the defined latency constraint. Both
one-tier and two-tier MEC satisfied all the arrival
traffic because the light uniform arrival traffic rate
did not overload the AN-MEC servers. In serving
uniform light traffic, both one-tier and two-tier MEC
have one active server at each AN site. When the
traffic changed to a hotspot 1:4, with offloading
only, two-tier MEC still had a latency satisfaction of
66 percent. After scaling up the system by turning
on one more AN-MEC server, two-tier satisfied 99
percent of hotspot traffic 1:4. In contrast, one-tier’s
satisfaction percentage dropped to 61 percent for
hotspot 1:4. The one-tier with limited resources
could not adjust its capacity to avoid server over-
load, which caused increasing node latency and
latency violation.

In two-tier MEC, the autoscaling module
responded to the heavy traffic by turning on all
AN-MEC servers. As shown in Fig. 3b, two-tier MEC
had 92 percent latency satisfaction, while one-tier
only satisfied 45 percent of the arrival traffic. With-
out scaling, two-tier MEC still satisfied about 73
percent of the arrival traffic in the hotspot 1:4 sce-

nario. The autoscaling module decided to turn on
two CN-MEC servers since the heavy with hotspot
overloaded all AN-MEC sites and could satisfy 86
percent of the traffic. In contrast, one-tier MEC with
offloading only satisfied 32 percent of the arrival
traffic in hotspot 1:4. The base-line system, one-tier
MEC without offloading, and autoscaling module
only satisfied 21 percent of the heavy with hotspot
traffic. Most latency violations appeared in an
AN-MEC site with hotspot traffic.

These results show that offloading was a short-
term solution to non-uniform traffic, such as hotspot
traffic. As shown in Figs. 3a and 3b, with only off-
loading, the satisfaction percentages of two-tier
MEC were about 66 percent and 73 percent in light
and the heavy hotspot traffic scenarios, respectively,
while one-tier MEC without offloading satisfied only
25 percent and 21 percent of the traffic. Two-tier
MEC systems must have an offloading module to
redirect traffic from AN to CN-MEC sites. Two-ti-
er MEC architecture with no offloading module is
the same as one-tier MEC architecture, and there-
fore their latency satisfaction percentage of heavy
hotspot 1:4 was the same, at 21 percent for both
architectures. Bounded by offloading and autoscal-
ing mechanisms, the two-tier MEC satisfied more
than 80 percent of arrival traffic. The two-tier MEC
has CN-MEC servers which are activated only if
AN-MEC sites are overloaded, for example in serv-
ing heavy hotspot traffic. Uniform traffic decreases
the latency satisfaction percentage according to its
rate, with a low impact on the satisfaction percent-
age at a low rate and a high impact on high arrival
rate. The autoscaling module played a key role in
heavy uniform traffic. Changing the offloading ratio
did not much affect the latency satisfaction percent-
age because all sites were equally loaded.

Transient Hotspot vs. Persistent Hotspot: The
difference between transient hotspot and persistent
hotspot lay in the occurrence time. The transient
hotspot appeared in the system in short intervals,
while the persistent hotspot occupied the system
for a long time. The offloading module was respon-
sible for distributing the hotspot traffic to all avail-
able active servers to minimize latency violation.
As shown in Figs. 3c and 3d, the transient hotspot
decreased the latency satisfaction percentage by
only 7 and 10 percent in light and heavy traffic sce-
narios, respectively. Changing the hotspot ratio
from 1:2 to 1:4 also did not much affect the satis-
faction percentage because the offloading module
distributes the arrival traffic based on the server’s
latency satisfaction, leading to fair traffic distribu-
tion in terms of latency.

The transient hotspot had a low probability of
bringing latency satisfaction percentage below 80
percent. This probability depended on how long
we generated hotspot traffic. In our case, the tran-
sient hotspot was generated for a total of 15 min-
utes in the first half of the experiment (one hour
for each scenario). When the transient hotspot’s
latency satisfaction percentage was still higher than
the latency satisfaction threshold, it did not trigger
the scaling up mechanism. The persistent hotspot,
as shown in Figs. 3a and 3b, decreased the satisfac-
tion percentage equal to or less than 80 percent,
which triggered the autoscaling module to scale
the system up.

With vs. Without Offloading and Autoscal-
ing: Figure 4a shows that the two-tier MEC with

Uniform traffic
decreases the latency

satisfaction percentage
according to its rate,

with a low impact on
the satisfaction percent-

age at a low rate and
a high impact on high
arrival rate. The auto-

scaling module played
a key role in heavy

uniform traffic. Chang-
ing the offloading ratio

did not much affect
the latency satisfaction

percentage because
all sites were equally

loaded.

IEEE Wireless Communications • Accepted for Publication7

an autoscaling module adjusted its active servers
according to the arrival traffi c rate while having a
latency satisfaction percentage greater than 80 per-
cent. As shown in Fig. 4b, without the autoscaling
module, two-tier MEC had the highest latency sat-
isfaction percentage, but it turned all servers on for
all of the time, which is costly. An HTCA-6200 serv-
er consumes 1200 W on peak load and assumes
300 W on idle load. Since the relationship between
CPU utilization and system power is linear [15],
the MEC system with an autoscaling module used
two AN-MEC servers with CPU utilization of about
30-70 percent, which consumed about 1400 W
(each server consumed 700 W on average) in a
light traffi c scenario. Without an autoscaling mod-
ule, the load was distributed to six servers with
CPU utilization of about 20-30 percent and con-
sumed 2700 W (each server consumed 450 W on
average). Thus, the system with autoscaling could
save up to 40 percent more energy than without
an autoscaling module. In contrast, the one-tier
MEC system had limited capacity to adapt to the
increasing amount of arrival traffi c, resulting in the
worst latency satisfaction percentage. As shown in
Fig. 4b, the one-tier latency satisfaction percentage
dropped to 32 percent in handling 300 reqs/sec.

This study proposed a two-tier multi-site

multi-server MEC architecture, which is equipped
with auto-deployment, off loading, and autoscaling
modules. The auto-deployment module enables
the deployment of edge servers in a distributed
area efficiently. Two-tier MEC with offloading
(DWO) and autoscaling (LSAA) modules satisfy
more than 80 percent of the traffic in all traffic
scenarios, while the one-tier multi-site single-serv-
er MEC architecture only satisfies 32-61 percent
of the traffic in serving heavy with hotspot traffic.
Two-tier MEC shares CN-MEC servers that will be
activated if the arrival traffic overloads AN-MEC
sites and violates the latency satisfaction percent-
age constraint, while one-tier only relies on AN
sites that may be overloaded in serving hotspot
traffi c. Off loading, which is executed every 10 sec-
onds or when the off loading module receives three
consecutive urgent messages, is a short-term solu-
tion in handling non-uniform traffi c, such as hotspot
traffi c. Autoscaling, which runs every 30 minutes, is
a long-term solution for scaling up a system when
a persistent hotspot exists or scaling down a system
when the latency satisfaction percentage is above
the threshold. A persistent hotspot has a higher
probability of bringing down the latency satisfac-
tion percentage than a transient hotspot.

The proposed LSAA and DWO algorithms

FIGURE 3. CDF of the arrival traffi c latency in all scenarios: a) CDF of latency satisfaction in light traffi c rate scenario; b) CDF of latency
satisfaction in heavy traffi c rate scenario; c) transient hotspot in light traffi c scenario; d) transient hotspot in heavy traffi c scenario.

(a) (b)

(c) (d)

IEEE Wireless Communications • Accepted for Publication 8

rely on an application latency requirement. Con-
sidering more applications should be evaluated
in future studies. A combination of using a virtual
machine and container for deploying applications
also needs to be considered in developing an auto-
scaling module. Finally, further experiments in a
realistic 5G environment are required for evaluat-
ing off loading and autoscaling module integration.

AcknoWledgment
This work and its proof-of-concept system were
supported by a project from Lanner Inc.

reFerences
[1] Y. C. Hu et al., “Mobile Edge Computing — A Key Technol-

ogy Towards 5G,” ETSI white paper, vol. 11, no. 11, 2015,
pp. 1–16.

[2] 5G PPP Architecture Working Group and Others, “View on
5G Architecture, Version 3.0, February 2020,” 5G Architec-
ture White Paper, no. 3, 2020.

[3] V. Kumar et al., “Comparison of Fog Computing & Cloud
Computing,” Int’l. J. Mathematical Sciences and Computing
(IJMSC), vol. 5, no. 1, 2019, pp. 31–41.

[4] C.-Y. Chang et al., “MEC Architectural Implications for LTE/
LTE-A Networks,” Proc. MobiArch ’16, 2016, pp. 13–18.

[5] C.-Y. Li et al., “Mobile Edge Computing Platform Deploy-
ment in 4G LTE Networks: A Middlebox Approach,” Hot-
Edge, 2018.

[6] Z. Ning et al., “Distributed and Dynamic Service Placement
in Pervasive Edge Computing Networks,” IEEE Trans. Parallel
and Distributed Systems, vol. 32, no. 6, 2021, pp. 1277–92.

[7] X. Wang, Z. Ning, and S. Guo, “Multi-Agent Imitation Learn-
ing for Pervasive Edge Computing: A Decentralized Com-
putation Offloading Algorithm,” IEEE Trans. Parallel and
Distributed Systems, vol. 32, no. 2, 2021, pp. 411–25.

[8] M. Moradi et al., “SoftBox: A Customizable, Low-Latency,
and Scalable 5G Core Network Architecture,” IEEE JSAC,
vol. 36, no. 3, 2018, pp. 438–56.

[9] B. Sonkoly et al., “Scalable Edge Cloud Platforms for IoT Ser-
vices,” J. Network and Computer Applications, vol. 170, no.
4, Aug. 2020, p. 102 785.

[10] D. Spatharakis et al., “A Scalable Edge Computing Architec-
ture Enabling Smart Off loading for Location Based Services,”
Pervasive and Mobile Computing, vol. 67, no. 4, 2020, p.
101 217.

[11] M. Avgeris et al., “Where There Is Fire There Is Smoke: A
Scalable Edge Computing Framework for Early Fire Detec-
tion,” Sensors (Switzerland), vol. 19, no. 3, 2019, p. 639.

[12] T. G. Rodrigues et al., “Cloudlets Activation Scheme for
Scalable Mobile Edge Computing with Transmission Power
Control and Virtual Machine Migration,” IEEE Trans. Com-
puters, vol. 67, no. 9, 2018, pp. 1287–1300.

[13] F. Tonini et al., “Scalable Edge Computing Deployment for
Reliable Service Provisioning in Vehicular Networks,” J. Sen-
sor and Actuator Networks, vol. 8, no. 4, Oct. 2019, p. 51.

[14] T. Dreibholz, “Flexible 4G/5G Testbed Setup for Mobile
Edge Computing Using OpenAirInterface and Open Source
MANO,” Workshops of the Int’l. Conf. Advanced Infor-
mation Networking and Applications, Springer, 2020, pp.
1143–53.

[15] X. Fan et al., “Power Provisioning for a Warehouse-Sized
Computer,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 2, 2007, pp. 13–23.

 bIogrAphIes
YING-DAR LIN is a Chair Professor of computer science at
National Yang Ming Chiao Tung University (NYCU), Taiwan. He
received his Ph.D. in computer science from the University of
California at Los Angeles (UCLA) in 1993. His research interests
include network softwarization, cybersecurity, and wireless com-
munications. His work on multi-hop cellular was the fi rst along
this line, and has been cited over 1000 times. He is an IEEE Fel-
low and IEEE Distinguished Lecturer. He has served or is serving
on the editorial boards of several IEEE journals and magazines,
and was the Editor-in-Chief of IEEE Communications Surveys and
Tutorials (COMST) during 2016–2020.

WIDHI YAHYA received his M.S. degree in computer science
and information engineering from National Central University
(NCU), Taiwan in 2014. He is a lecturer in computer science at
the University of Brawijaya, Indonesia. He is currently pursuing
a Ph.D. degree at the EECS International Graduate Program of
National Yang Ming Chiao Tung (NYCU). His research interests
are in the areas of network programming, software-defi ned net-
working, and multi-access edge computing (MEC) optimization.

CHIEN-TING WANG received his M.S. degree in communications
engineering from National Chung Cheng University (CCU) -
Taiwan in 2013. He is currently pursuing his Ph.D. in computer
science at National Yang Ming Chiao Tung University (NYCU).
He is with the Graduate Degree Program of Network and Infor-
mation Systems, National Chiao Tung University, Taiwan and
Academia Sinica, Taiwan. His research interests include soft-
ware-defined networking, network function virtualization, ser-
vice chain placement and resource slicing.

CHI-YU LI [M] received bachelor’s and master’s degrees from
the Department of Computer Science, National Chiao Tung
University (NCTU), Hsinchu, Taiwan, and the Ph.D. degree in
computer science from the University of California, Los Ange-
les (UCLA), Los Angeles, CA, USA, in 2015. He is currently
an associate professor with the Department of Computer Sci-
ence, National Yang Ming Chiao Tung University (NYCU). His
research interests include wireless networking, mobile networks
and systems, and network security. He received the Award
of MTK Young Chair Professor (2016), MOST Young Scholar
Research Award (2017–2020), and Best Paper Award in IEEE
CNS 2018.

JEANS H. TSENG is SVP, CTO and GM for Telecom Applications
BU at Lanner Electronics Inc. He leads the development of vCPE
benchmarking and NFV PoC with various third parties, including
Verizon, Wind River and NTT Lab. He has over 30 years of
experience in sales and technical management in the IT, net-
working, and telecom industries. Prior to Lanner, he was with
Alcatel-Lucent from 1999 to 2013 as country general manager,
VP of sales and President of Taiwan Alcatel Technology Co. Ltd.
Prior to that, he was with Xylan Corp. as country general manag-
er, D-Link and Siemens Telecommunication Systems as Director
of the R&D Center and software engineer.

FIGURE 4. With vs. without off loading and autoscaling: a) allocated Resources; b) latency satisfaction percentage.

(a) (b)

