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Abstract
Mobile Edge Computing (MEC) provides com-

putation resources within 5G networks hosting 
applications that are close to a user equipment 
(UE). For scalability, MEC servers can be placed 
behind the base stations of an access network 
(AN) and also inside the core network (CN) of a 
cellular system, which results in a two-tier architec-
ture. A scalable MEC system reveals a management 
problem because keeping all servers on as traffic 
fluctuates wastes operational expenditure. On the 
other hand, traffic can become unbalanced, with 
hotspots in some base stations. This work proposes 
a two-tier multi-site multi-server architecture and 
integrates Latency Satisfaction Aware Autoscaling 
(LSAA) and Dynamic Weight Offloading (DWO) 
to address the above two problems. Offloading is 
a short-term solution to hotspot traffic, while auto-
scaling is a long-term solution to traffic fluctuation. 
A two-tier MEC testbed was implemented in the 
framework of OpenNESS with 3GPP integration, 
with experimental comparisons of one-tier vs. 
two-tier, uniform vs. hotspot, transient vs. persistent 
hotspot traffic, with or without offloading and auto-
scaling. Under heavy hotspot traffic, two-tier MEC 
satisfies 86 percent, 73 percent, and 21 percent 
traffic with both offloading and autoscaling, offload-
ing only, and without offloading and autoscaling, 
respectively, while one-tier MEC only satisfies 32 
percent, 32 percent, and 21 percent traffic.

Introduction
5G cellular communication standards are expect-
ed to fulfill various services which are catego-
rized as Enhanced Mobile Broadband (eMBB), 
Ultra-reliable and Low-latency Communications 
(uRLLC), and Massive Machine Type Communi-
cations (mMTC). Mobile Edge Computing (MEC) 
provides computation resources which are closer 
to user equipment (UE) to accommodate services 
with tight delay requirements such as URLLC [1]. 
There are two kinds of MEC, termed Infrastructure 
MEC and Application MEC. Infrastructure MEC 
holds software-defined networking (SDN) and 
Network Functions Virtualization (NFV) services 
for supporting physical network infrastructure, for 
example, creating network slicing for various ser-
vices. Application MEC hosts consumer applica-
tions in virtual machines (VM) and containers [2].

MEC is a kind of cloud system with a cluster of 
servers across access networks (AN) and core net-
works (CN). In terms of scalability, a cloud system 
has a vast number of servers in a centralized area 
while MEC has tens of servers in some AN and CN 
areas closer to UEs [3]. Providing scalability in a 
distributed system such as the MEC system is not 
trivial because each location may require a differ-
ent capacity.

Several MEC studies have been conducted with 
and without taking into account the scalability issue. 
Studies [4] and [5] did not address scalability and 
focused on traffic redirection to MEC applications 
and GTP handling to develop MEC behind a base 
station. The authors of [6] considered a service 
placement optimization to alleviate a single MEC 
scalability problem. Wang et al. [7] took account 
of UE’s device as system capacity. Studies [8–13] 
discussed scalable MEC. Moradi et al. [8] proposed 
SoftBox, a scalable infrastructure MEC framework 
at CN sites, while Sonkoly et al. [9] focused on 
optimizing the orchestrator to manage distributed 
scalable MEC. Studies [10, 11] developed scalable 
application MEC at AN sites. Scalable MEC simu-
lations were conducted in [12] and [13]. Some of 
these papers did note scalability but did not con-
sider any traffic patterns, such as hotspot traffic that 
may arise in a sporting event or a music concert 
that overloads an AN-MEC site. Most of them imple-
mented one-tier MEC architecture, which deploys 
MEC servers only at AN or CN sites. The authors of 
[13] considered two-tier MEC architecture, but only 
used a single server for each MEC site.

This article proposes a two-tier multi-site 
multi-server MEC architecture, which places a clus-
ter of servers at each AN and CN site to accom-
modate some traffic scenarios, including hotspot 
traffic. There are three challenges in a two-tier 
multi-site multi-server MEC architecture system. 
The first lies in deploying infrastructure, and that 
consumer applications of distributed MEC systems 
must be carried out centrally and automatically 
to reduce deployment complexity. The second 
is how to minimize the number of active servers 
automatically, appropriate to the various traffic sce-
narios while still addressing the latency satisfaction 
constraint. The third challenge is distributing the 
arriving traffic to available resources to minimize 
latency violation, which is categorized as a con-
trol plane challenge. Traffic can be offloaded verti-
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cally, from an AN site to CN sites, or horizontally, 
between AN sites or between CN sites.

This research proposes auto-deployment, auto-
scaling, and offloading modules to address the 
three aforementioned challenges, respectively. An 
auto-deployment module is a management plane 
module that tackles the distributed MEC deploy-
ment challenge. This module is represented in the 
form of a server-proxy-orchestrator architecture. 
The proxy is an orchestrating agent placed at each 
AN and CN MEC site. An autoscaling module is a 
management plane module that adjusts the number 
of active servers to satisfy arrival traffic. A Latency 
Satisfaction Aware Autoscaling (LSAA) algorithm is 
derived to determine the number of active servers. 
We propose Dynamic Weight Offloading (DWO) 
as a control plane module’s algorithm to overcome 
the control plane challenge. A control plane module 
distributes traffic to servers based on their weight, 
which is dynamically adjusted based on their latency 
satisfaction percentage. Offloading and autoscaling 
modules are executed in the order of seconds and 
minutes, respectively, which are the short-term and 
long-term solutions to hotspot traffic.

The main contributions of this research are sum-
marized as follows:
•	 This article proposes a scalable two-tier multi-

site multi-server MEC architecture.
•	 The auto-deployment module was proposed to 

tackle the distributed MEC deployment chal-
lenge using a server-proxy-orchestrator archi-
tecture.

•	 The LSAA algorithm was proposed to address 
the autoscaling issue on the management 
plane.

•	 The DWO algorithm was designed to address 
traffic distribution among servers on the control 
plane.

We investigated and compared a two-tier multi-
site multi-server with a one-tier multi-site sin-
gle-server MEC in accommodating some traffic 
scenarios. The OpenNESS framework was used 
to implement and orchestrating a two-tier multi-
site multi-server MEC testbed. The generated traf-
fic was addressed to face detection applications 

that were deployed in edge nodes. To expand 
our understanding, we also investigated the effect 
of uniform vs. hotspot traffic; the effect of transient 
hotspot vs. persistent hotspot traffic; and with vs. 
without offloading and autoscaling modules in 
terms of cost and latency satisfaction percentage.

The remainder of this work is organized as 
follows. The following section presents the relat-
ed works regarding the scalable MEC. We then 
describe the problem statements and solutions. 
Details of implementation are then described. Fol-
lowing that we provide the experiment results and 
analysis. The final section concludes this article.

Related Work
Table 1 compares the studies related to scalable 
MEC. A multi-site architecture was implement-
ed in [8–13] to serve traffic from multiple base 
stations. The authors of [12] and [13] utilized a 
single server for each MEC site. The single-server 
MEC cannot handle bursty or heavy traffic. To 
solve this problem, the authors of [9–11] imple-
mented multi-site, multi-server MEC only at AN 
sites, while Moradi et al. [8] implemented it only 
in CN sites. For better scalability, we implement 
multi-site multi-server MEC not only at AN sites 
but also at CN sites that employed a two-tier 
architecture. So, if hotspot traffic overloads all 
AN-MEC sites, then the traffic can be offloaded 
onto CN-MEC sites.

In a scalable MEC system, the management 
plane bonded to the control plane for some objec-
tives such as minimizing the signaling messages 
of a cellular network [8], maximizing cost-effec-
tiveness or system utilization [10, 12], minimizing 
VM mapping time for better system response time 
[9], and minimizing the resources [11, 13]. In [8] 
and [10], active container and VM adjustment was 
carried out, respectively. Neither of the studies 
considered deactivating an idle server, which also 
results in inefficient power consumption. Sonkoly 
et al. [9] only considered service placement and 
disregarded server activation and deactivation. The 
authors of [11–13] considered server activation 
and deactivation, while Tonini et al. [13] mini-

TABLE 1. Scalable MEC developments.

Paper

Scalability

Offloading Scaling Objective Constraint
3GPP 
Integration

Implementation 
frameworkMulti-site 

single-server
Multi-site 
multi-server

[8] — CN Heuristic Heuristic
Minimize Signaling 
overhead

Latency O Softbox

[9] — AN Heuristic Heuristic
Minimize VM 
mapping time

Latency X
OpenStack, 
Docker

[12] AN — PSO PSO
Minimize cost-
effectiveness

Latency X Simulation

[13] AN, CN — Heuristic and ILP Heuristic and ILP
Minimize active 
nodes

Latency X Simulation 

[10] — AN Contextual based Location based services Optimize utilization Response time X OSM, OpenStack

[11] — AN Load balanced
Mixed integer 
programming problem

Minimize active 
servers

Response time X SMOKE, Docker

Ours — AN,CN
Dynamic weight 
offloading (DWO)

Latency satisfaction aware 
autoscaling (LSAA)

Minimize active 
servers

Latency 
satisfaction 
percentage

O OpenNESS
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mized the infrastructure MEC server while provid-
ing high availability. Rodrigues et al. [12] carried 
out scalable MEC simulations with scaling and an 
off loading mechanism that considered fi xed laten-
cy constraint. Avegris et al. [11] implemented a 
SMOKE autoscaling framework, which uses a fi xed 
response time as its constraint. Achieving a hun-
dred percent satisfaction is difficult since a man-
agement plane runs in the order of minutes while 
traffic can fluctuate over time. The papers men-
tioned above did not address off loading and scal-
ing onto control and management planes, which 
have different time domains. Our work propos-
es control plane and management modules that 
employ DWO and LSAA algorithms. Both algo-
rithms use latency satisfaction percentage as its 
constraint instead of fi xed latency constraint.

The implementation papers [9, 10] built MEC 
on top of OpenStack. OpenStack is a cloud devel-
opment framework with no 3GPP integration. [10] 
utilized Open Source Mano (OSM) to manage 
edge networking. OSM is an open-source software 
to manage and orchestrate NFV. OSM enables 
3GPP integration in OpenStack [14]. We imple-
ment a scalable MEC architecture on top of an 
OpenNESS framework which is specifi cally made 
for building MEC. OpenNESS also has 3GPP inte-
gration (https://www.openness.org/api-documen-
tation/?api=cups). An OpenNESS controller utilizes 
Kubernetes for managing a container’s life cycle, 
and is also equipped with some micro-services for 
edge networking.

tWo-tIer multI-sIte, 
multI-serVer ArchItecture desIgn

This article proposes a two-tier multi-site, 
multi-server MEC architecture, shown in Fig. 1a. 
This architecture distributes a cluster of servers to 
each AN site behind the base station, and at each 
CN site of a cellular system. In 5G networks, a 
CN-MEC site connects to multiple AN-MEC sites. 
The CN-MEC shares its capacity if some of the 
AN-MEC sites become overloaded by hotspot 
traffi  c. Since hotspot traffi  c occurs rarely and ran-
domly at any AN-MEC site, it is better to have 

more capacity at the centralized CN-MEC with 
wider coverage than to have more capacity at 
distributed AN-MEC sites.

In a distributed MEC system, the orchestrator’s 
management module manages everything, servers, 
applications, traffi  c, and infrastructure services, cen-
trally and effi  ciently via management paths. Proxy 
extends the orchestrator to manage the edge 
nodes automatically. The AN-MEC’s proxy, which 
is the first hop user plane of the UEs, distributes 
traffi  c to some servers at its site or servers at anoth-
er MEC site through the data paths. The term traf-
fi c that is used in this article is a service’s requests 
which are generated by UEs. Traffic is distributed 
by each of AN-MEC’s proxy based on the off load-
ing weights dynamically adjusted by the control 
plane module via control paths.

desIgn Issues
Auto-Deployment: Managing a distributed 

two-tier MEC system is cumbersome because 
servers are situated in diff erent geographic loca-
tions. In deploying a new MEC server, a system 
engineer installs and configures all the required 
packages manually by remoting or directly visiting 
a newly deployed server. Furthermore, deploying 
services manually by humans can cause confi gu-
ration inconsistency, which can result in catastro-
phe. An auto-deployment module configuring a 
new deployed machine automatically and central-
ly is needed to reduce the deployment complexi-
ty and avoid confi guration inconsistency.

Autoscaling: A two-tier multi-site, multi-serv-
er MEC architecture uses very many servers. Not 
all servers should be switched on all the time, as 
computing requirements will change dynamically. 
Some idle servers must be switched off to mini-
mize operating expenditure (OpEx) in light arrival 
traffic volume, while in heavy arrival traffic rates, 
an exact number of servers must be turned on to 
satisfy computation requirements. The adjustment 
of the number of active servers is a part of a man-
agement plane problem which can be described  
as follows. Given several active servers at each site, 
arrival traffi  c rate, and latency information, the out-
put is the number of active servers that satisfi es a 

FIGURE 1. The two-tier multi-site multi-server MEC system: a) the two-tier multi-site multi-server MEC Architecture; b) implementation 
on top of OpenNESS.

(a)
(b)
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defi ned constraint. This work uses latency satisfac-
tion percentage as a constraint, with the objective 
of minimizing the number of active servers. Laten-
cy satisfaction percentage is the percentage of the 
traffi  c which satisfi es the latency constraint.

Off loading: The off loading module distributes 
traffic based on the server’s load condition. Dis-
tributing traffi  c to overloaded servers can increase 
delay violations. The off loading module addresses 
the control plane problem, which can be described 
as follows. Given the number of AN and CN-MEC 
sites, the number of active servers, the servers’ 
latency information, the output is the offloading 
weight based on the server’s latency satisfaction 
percentage, with the objective of maximizing the 
latency satisfaction percentage at the currently 
active servers.

solutIon IdeAs
Orchestrator-Proxy-Server Architecture: The 

auto-deployment mechanism is applied by placing 
the proxy between the orchestrator and server, 
which establishes the orchestrator-proxy-server 
architecture, and which is shown in Fig. 1a. 
Generally, the orchestrator manages the servers 
directly. Since the proposed autoscaling module 
scales and configures physical servers automat-
ically, that cannot be done by a current orches-
trator such as Kubernetes, we propose a proxy as 
an orchestrator agent to do so. The orchestrator 
provides some information such as the orchestra-
tor’s IP address, edge applications, application-re-
lated confi guration, edge hostname, and edge IP 
address to the registered proxy. When we add 
new servers to AN-MEC or CN-MEC sites, a proxy 
will bypass the confi guration information between 
the new servers and the orchestrator, so the new 
machine’s confi guration can be set automatically.

The proposed proxy hosts several functions, 
such as proxy handler, path handling, edge node 
agent, core agent, proxy agent, eNB agent, and 
monitoring agent. As shown in Fig. 1b, proxies are 
controlled by a proxy handler which consists of 
a proxy register, an auto-deployment API, and a 

forwarding agent. The autoscaling and off loading 
modules manage a site through an auto-deploy-
ment API and forwarding agent, respectively. The 
proxy handler receives the orchestrator’s com-
mands regarding scaling and off loading decisions. 
The edge node agent handles the new deployment 
and scaling processes. After an edge node agent 
automatically carries out application confi guration, 
Kubernetes can deploy the application automati-
cally. Path handling responsible for traffi  c off load-
ing is integrated with the cellular network path 
through core and eNB agents. A proxy can com-
municate with other proxies via a proxy agent. A 
specifi c application monitoring agent is also placed 
in a proxy for monitoring application latency by 
inspecting and probing approaches.

Latency Satisfaction Aware Autoscaling 
(LSAA): The proposed autoscaling module runs 
in orchestrator node in the order of minutes and 
consumes the server latency information, which is 
owned by the monitoring module. Figure 2a shows 
that the autoscaling algorithm has outer and inner 
iterations to scale the system. The outer iteration 
scales the active servers at CN-MEC (si

C), with the 
limit of the number of CN-MEC sites, Ni

C. In the 
inner iteration, the algorithm scales the active serv-
ers of each jth AN-MEC site, which is connected 
to the ith CN-MEC site. The total  AN-MEC sites of 
each ith CN-MEC site is denoted by Ni,J

A.
The scaling function considers the latency satis-

faction percentage of each AN and CN-MEC site 
which is denoted as Li,J

A and Li
C, respectively. These 

satisfaction percentages represent the traffic that 
satisfi es the latency constraint. The latency satisfac-
tion percentage threshold, L, is used as the scaling 
threshold. The algorithm calculates s as the num-
ber of servers that will be turned on or off  at a site. 
The capacity of a server (x) is derived by querying 
the traffic rate of the server, which has a satisfac-
tion percentage a little bit greater than, or equal 
to, the defined satisfaction percentage threshold 
from the monitoring database. Assuming we carry 
out benchmarking for the deployed system in the 
system initiation, we can always derive x. The arriv-

FIGURE 2. Autoscaling and off loading algorithms: a) latency satisfaction aware autoscaling (LSAA); b) dynamic weight off loading (DWO).

(a) (b)
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al traffic rates of a site l’i/i,j in an interval time are 
predicted using the moving average algorithm. 
Assuming the MEC system contains homogeneous 
servers, the required number of servers at a site 
for the next interval time (s’C/A  

i/i,j  ) can be derived by 
taking the ceil of l’i/i,j divided by x. So, s = |s’C/A  

i/i,j   – sC/A  
i/i,j | where sC/A  

i/i,j  is number of current active 
servers at a site. Each AN-MEC and CN-MEC site 
has a maximum number of servers that is denoted 
by SA

i,j and SC
i, respectively.

Dynamic Weight Offloading (DWO): Figure 
2b shows the dynamic weight offloading (DWO) 
algorithm in detail. This algorithm runs in orches-
trator node and applies the weight to the proxies 
placed at AN-MEC sites. A proxy will distribute 
the arrival traffic to available servers at AN-MEC 
and CN-MEC sites based on their weight, which is 
bound to the latency satisfaction percentage. The 
server’s weight is calculated based on the ratio of 
its latency satisfaction to the sum of all the servers’ 
latency satisfaction values. The idea is to distribute 
more traffic to servers with a high satisfaction ratio. 
The offloading module is executed in the order 
of seconds or, if the monitoring module receives 
three consecutive urgent messages, urgent mes-
sages are generated if the incoming traffic causes 
consecutive latency violations.

Implementation
The two-tier multi-site multi-server MEC imple-
mentation is grouped into sections as orchestrator 
or OpenNESS controller, OpenNESS edge node, 
monitoring system, and proxy implementation.

Orchestrator Node:  
OpenNESS Controller and Kubernetes

The system orchestrator was built on top of a server 
with an Intel Core i7 CPU and 32 GB RAM. The 
orchestrator was constructed by running the Open-
NESS v.20.03 Playbook with the Network Edge 

option, and was integrated with the Kubernetes to 
manage containerized services. Some functions, 
such as authentication, config agent, network access 
agent, and VM deployment API, were added as 
container-based micro-services. The offloading and 
autoscaling modules were written in Python and ran 
in the orchestrator node every 10 seconds and 30 
minutes. Both modules consumed the latency infor-
mation from the monitoring database.

Edge Nodes: OpenNESS Edge Nodes
The edge nodes were built on top of four Lanner 
HTCA-6200 boxes. Each HTCA-6200 box consist-
ed of two servers. Each server used an Intel Xeon 
processor, with 128 GB RAM, and a 32-port 10 
GbE. The OpenNESS edges were also deployed 
through the OpenNESS Playbook. All OpenNESS 
edge nodes were connected to the orchestrator 
through a layer-two switch. The OpenNESS edge 
nodes were integrated with the Evolved Packet Core 
(EPC), which used the Open Air Interface (OAI).

Monitoring System
The developed monitoring system used inspect-
ing and probing agents. The inspecting agent was 
placed in the proxy, and inspected and counted 
traffic flows that were going to the application 
container through the proxy. Pcap and dpkt were 
used in the inspection module. The probing agent 
generated a request to a specific application 
for measuring its latency. Probing was required 
because the inspecting module could not obtain 
latency information of nodes that were not the 
destination of current flows. The probing mes-
sages were sent to all servers every second. The 
latency and traffic information were saved in 
MongoDB, which ran in the orchestrator node.

Proxy
In extensive field deployment, we could not con-
figure the machines individually or set the routing 
rules and connections manually, which was very 
inefficient. We thus designed a proxy to commu-
nicate AN-MEC, CN-MEC, orchestrator, EPC, and 
eNB. The proxy was implemented as a pod in the 
Kubernetes system. The proxy handler, path han-
dling, edge node agent, core agent, proxy agent 
eNB agent, and monitoring agent were written in 
Python. The edge node agent turns the server on 
by using the Wake on LAN function or turns the 
servers off by shutdown command. The auto-de-
ployment API and edge node agent were written 
in Python and used the Remote Procedure Call 
(RPC) approach. HAProxy was implemented as a 
proxy’s path handling. Basically, the HAProxy is a 
load balancer that uses a round-robin or least-con-
nection algorithm. In this work, the HAProxy was 
extended by the proxy handler to perform DWO.

Experimental Results
This section describes the parameter settings in eval-
uating a two-tier multi-site multi-server MEC archi-
tecture. Some scenarios are also determined for 
autoscaling and offloading modules. Results provide 
numerical results to answer research questions.

Parameter Settings
The parameter settings are shown in Table 2. 
The two-tier multi-site multi-server MEC testbed 
consisted of four sites, two AN-MEC sites and 

TABLE 2. Parameter settings.

Category Parameter Values

Two-tier multi-site multi-
server architecture

AN-MEC sites 2

CN-MEC sites 2

The number of servers in each AN-MEC site 2

The number of server in each CN-MEC site 1

One-tier multi-site 
single-server architecture

AN-MEC sites 2

The number of server in each site 1

Hardware
AN and CN-MEC servers HTCA 6200

Orchestrator node Core i7 with 32GB RAM

Latency setting
Latency constraint 300 ms

Latency satisfaction percentage constraint 80 percent

Traffic of each AN-MEC

Light uniform 50 reqs/s

Light with hotspot 1:2 50 and 100 reqs/s

Light with hotspot 1:4 30 and 120 reqs/s

Heavy uniform 100 reqs/s

Heavy with hotspot 1:2 100 and 200 reqs/s

Heavy with hotspot 1:4 60 and 240 reqs/s
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two CN-MEC sites. All MEC sites were connect-
ed through a layer-two switch. The switch also 
connected all MEC sites to an orchestrator serv-
er. Each AN-MEC site had two servers, and each 
CN-MEC site had one server. The proposed sys-
tem was compared to a one-tier MEC system, 
which only consisted of AN-MEC sites with one 
server for each site.

Two PCs were connected to AN-MEC sites for 
emulating the UEs. We used Jmeter to generate 
multiple requests to the face detection applications 
deployed in AN-MEC and CN-MEC servers as con-
tainers. The deployed face detection application 
used a web socket as its interface.

Face detection is usually implemented as a real-
time streaming application. According to an ITU-T 
G.1010 recommendation on latency requirements 
of real-time services, which is 150-400 ms, we set 
the latency constraint to 300 ms. The latency sat-
isfaction percentage threshold was set to 0.8 or 
80 percent. Since overloading the MEC server is 
hard to achieve by only generating requests, the 
Stress tool was also used to overload the servers 
and increase node latency.

Scenarios
The two-tier MEC testbed was evaluated in six 
traffic scenarios: light uniform traffic, light with 
hotspot 1:2, light with hotspot 1:4, heavy uniform 
traffic, heavy with hotspot 1:2, and heavy with 
hotspot 1:4. Details of traffic rates can be seen in 
Table 2. The light and heavy with hotspot traffic 
scenarios are a kind of non-uniform traffic with 
different traffic ratios for each AN-MEC site. As 
noted above, the scalable MEC testbed has two 
AN-MEC sites. The ratio represents the ratio of 
arrival traffic of two AN-MEC sites. All of those 
requests were generated within one hour.

Results
Comparisons between the two-tier multi-site 
multi-server MEC and the less scalable one-tier 
multi-site single-server were also carried out in this 
section, addressing three key questions.

Uniform vs. Hotspot Traffic: Figure 3a shows 
the CDF of traffic latency for light traffic scenari-
os. 100 percent of light uniform traffic had laten-
cy less than the defined latency constraint. Both 
one-tier and two-tier MEC satisfied all the arrival 
traffic because the light uniform arrival traffic rate 
did not overload the AN-MEC servers. In serving 
uniform light traffic, both one-tier and two-tier MEC 
have one active server at each AN site. When the 
traffic changed to a hotspot 1:4, with offloading 
only, two-tier MEC still had a latency satisfaction of 
66 percent. After scaling up the system by turning 
on one more AN-MEC server, two-tier satisfied 99 
percent of hotspot traffic 1:4. In contrast, one-tier’s 
satisfaction percentage dropped to 61 percent for 
hotspot 1:4. The one-tier with limited resources 
could not adjust its capacity to avoid server over-
load, which caused increasing node latency and 
latency violation.

In two-tier MEC, the autoscaling module 
responded to the heavy traffic by turning on all 
AN-MEC servers. As shown in Fig. 3b, two-tier MEC 
had 92 percent latency satisfaction, while one-tier 
only satisfied 45 percent of the arrival traffic. With-
out scaling, two-tier MEC still satisfied about 73 
percent of the arrival traffic in the hotspot 1:4 sce-

nario. The autoscaling module decided to turn on 
two CN-MEC servers since the heavy with hotspot 
overloaded all AN-MEC sites and could satisfy 86 
percent of the traffic. In contrast, one-tier MEC with 
offloading only satisfied 32 percent of the arrival 
traffic in hotspot 1:4. The base-line system, one-tier 
MEC without offloading, and autoscaling module 
only satisfied 21 percent of the heavy with hotspot 
traffic. Most latency violations appeared in an 
AN-MEC site with hotspot traffic.

These results show that offloading was a short-
term solution to non-uniform traffic, such as hotspot 
traffic. As shown in Figs. 3a and 3b, with only off-
loading, the satisfaction percentages of two-tier 
MEC were about 66 percent and 73 percent in light 
and the heavy hotspot traffic scenarios, respectively, 
while one-tier MEC without offloading satisfied only 
25 percent and 21 percent of the traffic. Two-tier 
MEC systems must have an offloading module to 
redirect traffic from AN to CN-MEC sites. Two-ti-
er MEC architecture with no offloading module is 
the same as one-tier MEC architecture, and there-
fore their latency satisfaction percentage of heavy 
hotspot 1:4 was the same, at 21 percent for both 
architectures. Bounded by offloading and autoscal-
ing mechanisms, the two-tier MEC satisfied more 
than 80 percent of arrival traffic. The two-tier MEC 
has CN-MEC servers which are activated only if 
AN-MEC sites are overloaded, for example in serv-
ing heavy hotspot traffic. Uniform traffic decreases 
the latency satisfaction percentage according to its 
rate, with a low impact on the satisfaction percent-
age at a low rate and a high impact on high arrival 
rate. The autoscaling module played a key role in 
heavy uniform traffic. Changing the offloading ratio 
did not much affect the latency satisfaction percent-
age because all sites were equally loaded.

Transient Hotspot vs. Persistent Hotspot: The 
difference between transient hotspot and persistent 
hotspot lay in the occurrence time. The transient 
hotspot appeared in the system in short intervals, 
while the persistent hotspot occupied the system 
for a long time. The offloading module was respon-
sible for distributing the hotspot traffic to all avail-
able active servers to minimize latency violation. 
As shown in Figs. 3c and 3d, the transient hotspot 
decreased the latency satisfaction percentage by 
only 7 and 10 percent in light and heavy traffic sce-
narios, respectively. Changing the hotspot ratio 
from 1:2 to 1:4 also did not much affect the satis-
faction percentage because the offloading module 
distributes the arrival traffic based on the server’s 
latency satisfaction, leading to fair traffic distribu-
tion in terms of latency.

The transient hotspot had a low probability of 
bringing latency satisfaction percentage below 80 
percent. This probability depended on how long 
we generated hotspot traffic. In our case, the tran-
sient hotspot was generated for a total of 15 min-
utes in the first half of the experiment (one hour 
for each scenario). When the transient hotspot’s 
latency satisfaction percentage was still higher than 
the latency satisfaction threshold, it did not trigger 
the scaling up mechanism. The persistent hotspot, 
as shown in Figs. 3a and 3b, decreased the satisfac-
tion percentage equal to or less than 80 percent, 
which triggered the autoscaling module to scale 
the system up.

With vs. Without Offloading and Autoscal-
ing: Figure 4a shows that the two-tier MEC with 

Uniform traffic 
decreases the latency 

satisfaction percentage 
according to its rate, 

with a low impact on 
the satisfaction percent-

age at a low rate and 
a high impact on high 
arrival rate. The auto-

scaling module played 
a key role in heavy 

uniform traffic. Chang-
ing the offloading ratio 

did not much affect 
the latency satisfaction 

percentage because 
all sites were equally 

loaded.
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an autoscaling module adjusted its active servers 
according to the arrival traffi  c rate while having a 
latency satisfaction percentage greater than 80 per-
cent. As shown in Fig. 4b, without the autoscaling 
module, two-tier MEC had the highest latency sat-
isfaction percentage, but it turned all servers on for 
all of the time, which is costly. An HTCA-6200 serv-
er consumes 1200 W on peak load and assumes 
300 W on idle load. Since the relationship between 
CPU utilization and system power is linear [15], 
the MEC system with an autoscaling module used 
two AN-MEC servers with CPU utilization of about 
30-70 percent, which consumed about 1400 W 
(each server consumed 700 W on average) in a 
light traffi  c scenario. Without an autoscaling mod-
ule, the load was distributed to six servers with 
CPU utilization of about 20-30 percent and con-
sumed 2700 W (each server consumed 450 W on 
average). Thus, the system with autoscaling could 
save up to 40 percent more energy than without 
an autoscaling module. In contrast, the one-tier 
MEC system had limited capacity to adapt to the 
increasing amount of arrival traffi  c, resulting in the 
worst latency satisfaction percentage. As shown in 
Fig. 4b, the one-tier latency satisfaction percentage 
dropped to 32 percent in handling 300 reqs/sec.

This study proposed a two-tier multi-site 

multi-server MEC architecture, which is equipped 
with auto-deployment, off loading, and autoscaling 
modules. The auto-deployment module enables 
the deployment of edge servers in a distributed 
area efficiently. Two-tier MEC with offloading 
(DWO) and autoscaling (LSAA) modules satisfy 
more than 80 percent of the traffic in all traffic 
scenarios, while the one-tier multi-site single-serv-
er MEC architecture only satisfies 32-61 percent 
of the traffic in serving heavy with hotspot traffic. 
Two-tier MEC shares CN-MEC servers that will be 
activated if the arrival traffic overloads AN-MEC 
sites and violates the latency satisfaction percent-
age constraint, while one-tier only relies on AN 
sites that may be overloaded in serving hotspot 
traffi  c. Off loading, which is executed every 10 sec-
onds or when the off loading module receives three 
consecutive urgent messages, is a short-term solu-
tion in handling non-uniform traffi  c, such as hotspot 
traffi  c. Autoscaling, which runs every 30 minutes, is 
a long-term solution for scaling up a system when 
a persistent hotspot exists or scaling down a system 
when the latency satisfaction percentage is above 
the threshold. A persistent hotspot has a higher 
probability of bringing down the latency satisfac-
tion percentage than a transient hotspot.

The proposed LSAA and DWO algorithms 

FIGURE 3. CDF of the arrival traffi  c latency in all scenarios: a) CDF of latency satisfaction in light traffi  c rate scenario; b) CDF of latency 
satisfaction in heavy traffi  c rate scenario; c) transient hotspot in light traffi  c scenario; d) transient hotspot in heavy traffi  c scenario.

(a) (b)

(c) (d)
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rely on an application latency requirement. Con-
sidering more applications should be evaluated 
in future studies. A combination of using a virtual 
machine and container for deploying applications 
also needs to be considered in developing an auto-
scaling module. Finally, further experiments in a 
realistic 5G environment are required for evaluat-
ing off loading and autoscaling module integration.
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FIGURE 4. With vs. without off loading and autoscaling: a) allocated Resources; b) latency satisfaction percentage.
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